
Compiler-directed Dynamic Linking for Mobile Programs�Anurag Acharya Joel SaltzUMIACS and Department of Computer ScienceUniversity of Maryland, College Park 20742facha,saltzg@cs.umd.eduAbstractIn this paper, we present a compiler-directed technique for safe dynamic linking for mobile programs.Our technique guarantees that linking failures can occur only when a program arrives at a new executionsite and that this failure can be delivered to the program as an error code or an exception. We useinterprocedural analysis to identify the set of names that must be linked at the di�erent sites the programexecutes on. We use a combination of runtime and compile-time techniques to identify the calling contextand to link only the names needed in that context. Our technique is able to handle recursive programsas well as separately compiled code that may itself be able to move. We discuss language constructs forcontrolling the behavior of dynamic linking and the implication of some of these constructs for applicationstructure.1 IntroductionMobile programs can move from host to host during execution. At migration points, the execution stack andthe heap of the program are transferred from original host to the target host; execution continues at the targethost. Mobile programs have been proposed as a suitable model of computation for the Internet [5, 16, 21].To access local resources or to use site-speci�c operations available at individual hosts, they need to be ableto name them. The mapping between program names and local procedures/operations has to be establisheddynamically. There are three reasons for this. First, dynamic linking allows the host to retain �ne-graincontrol over what mobile programs can do. If a program cannot refer to the operation that opens local �les,it cannot open local �les. Second, dynamic linking allows the program to use the same names for identicaloperations for di�erent hosts. For example, the name open() can be used while executing on any host torefer to the procedure used to open local �les. Third, the same program could visit di�erent hosts everytime it is run.Dynamic linking provides functionality that is necessary for secure exible use of mobile programs butit introduces a new class of runtime errors - unbound procedure names. Dynamically linked static programscan avoid this problem by making sure that all the procedures that a program might refer to are available;only the actual linking is delayed till runtime.1 It is still possible to have access-control/authentication errorsbut that is not because the program can not name the procedure for an operation; it just does not havethe right to perform the operation. Linkers for mobile programs do not know where the program might beexecuted and, therefore, are unable to provide a similar guarantee.There are two approaches for dealing with this problem. The �rst is to make sure that the executionenvironment on every host is exactly identical. This restriction is stronger than requiring that every hostprovide a well-known interface (for example, the JavaTM [9] API). Instead it requires that every environ-ment provide nothing else. This would eliminate an important reason for program mobility. For example, a�This research was supported by ARPA under contract #F19628-94-C-0057, Syracuse subcontract #353-14271Unbound procedure names can occur even on a single host, if the environment has changed since the program was lastprocessed by the linker. This can happen, for example, after a new version of a shared library has been installed.1

 cleanup_and_go("A");
 execute_A_specific_fn();
end

proc execute_on_B()
 cleanup_and_go("B");

proc execute_on_A()

 execute_b_specific_fn();

end

end

proc clean_and_go(string hostname)
 finalize_local_state();
 go(hostname);
 initialize_on_new_host();Figure 1: A simple program that cannot be completely linked if calling context is ignored.program that searches distributed data repositories can improve its performance by migrating to the repos-itories, performing the search on-site using local repository-speci�c procedures that can e�ciently processthe data in its native form and returning the result to the requesting site.The second, and a more exible, approach is to accept these failures as yet another class of failurespossible in a distributed system and to insert checks that localize them and allow the program to takecorrective action. This can be achieved by requiring that dynamic linking operations be performed only as apart of a change-execution-site operation (which we refer to as go). The operation succeeds i� valid bindingscan be found for all names that the program could possibly refer to while executing on the target host. Elsethe operation is aborted and an error-code or exception is returned. The program can take corrective actionby seeking an alternative site or using an alternative way of accessing the site (e.g. using an remote interfacewith lesser functionality).The second approach requires identi�cation of the set of names that the program could possibly refer towhile executing on the target host. This has to be done for every call to go in the program. There are threeways in which this could be done. The �rst and the simplest alternative is to require that a valid binding forevery name in the program is available on each execution site. In general, this can succeed if and only if allenvironments are identical. But that defeats the purpose. The second alternative is to require the user to dothe identi�cation. For simple programs, this could work well but for more complicated programs, especiallyprograms with deep call-graphs, it could be di�cult. The third alternative is to use compiler analysis.In this paper, we present a compiler-directed technique. We use interprocedural analysis to identify theset of names that must be linked at each call to go (we refer to these as linksets). Calls to go embeddedin procedures that are called from multiple sites pose a problem for a compile-time approach. It is notpossible to distinguish between di�erent call-sites of the enclosing procedure. This forces the analysis to beoverly conservative and include names from paths corresponding to all call-sites. Since programs can containcalls to site-speci�c procedures, linking for fairly simple programs cannot be completed (see Figure 1 for anexample). We use a combination of runtime and compile-time techniques to identify the calling context andto link only the names needed in that context. An explicit goal of our technique is to perform analyses thatmight be expensive only at compile-time and to defer only simple processing to run-time.We �rst present a simple version of the technique that assumes all code that could contain a go iscompiled together. That is, all the code that is to be linked in dynamically does not contain a call to go.We then relax this constraint and show how separately compiled mobile code can be dealt with. This alsoallows our technique to deal with library sites [20]. Library sites are an intriguing idea - these are sites thatprovide pre-compiled mobile code that can be picked up by mobile programs for execution on other sites.For example, an organization with multiple hosts could provide a library site which provides code needed toaccess data on all hosts belonging to the organization. We then discuss language constructs that can be usedto control the behavior of dynamic linking and the implications of some of the constructs for applicationstructure.2 Linking mobile programs with non-mobile codeThe basic idea of our technique is quite simple. For every call to go, determine the set of calls to go thatare visible from it. We say program point B is visible from program point A i� there exists at least one pathfrom A to B in the control-ow graph that has no call to go; calls to go are said to hide the code that they2

dominate (in the sense of dominators in control-ow graphs [22]). We refer to the set of gos visible from aparticular go as its departure-set. If the program arrives at a host by this go and it does not terminate onthis host, it will depart from the host via one of the calls in the departure-set. For every go, we computethe set of names referred to on any path between itself and its departure-set. If the language does notallow procedure calls, we are done. This set of names is the linkset at the go in question. For realisticlanguages, this simple scheme runs into the problem of preserving the calling context. Calls to go embeddedin procedures that are called from multiple sites are the primary problem as it is not possible to distinguishbetween di�erent call-sites of the enclosing procedure. This forces the analysis to be overly conservative andinclude names from paths corresponding to all call-sites. Since programs can contain calls to site-speci�cprocedures, linking for fairly simple programs cannot be completed (see Figure 1 for an example). To getaround this problem, we use compiler analysis to generate the linksets for program fragments and simpleruntime support that uses information from the execution-stack to quickly construct the complete linksetfor any particular go.In this section, we describe our proposed technique. We �rst describe the program representation usedfor the compiler analysis. We then present the analysis algorithm and the data structure that is generatedbased on the information collected. This data structure is used at runtime by the dynamic linker. Finally, wedescribe how the complete linkset for a go is constructed at runtime. We use a running example to illustratethe analysis as well as the dynamic linking procedure.2.1 Program representationFor this section, we make three assumptions about the language: (1) programs can move only by using anexplicit go, (2) programs are �rst-order and (3) all the code that might contain a go is compiled together;none of the code that is dynamically linked has an embedded go. We shall remove the third assumption inthe next section. Extending our analysis to programs that use higher-order functions or to programs thatcan move without an explicit operation is beyond the scope of this paper.We use a modi�ed version of the full-program representation (FPR) introduced by Agrawal et al [1, 2].In our version, a program is represented by a directed multigraph; nodes correspond to program points andedges correspond to a control-ow path or paths between program points. There are �ve kinds of nodes: apair of entry and exit nodes for every procedure; a pair of call and resume nodes for every call-site and ago node for every call to go. Dummy entry and exit nodes are inserted for functions that are to be linkeddynamically. For every call-site, two edges are inserted: (1) an edge between the call node corresponding tothe call-site and the entry node corresponding to the called procedure and (2) an edge between the exit nodecorresponding to the called procedure and the resume node corresponding to the call-site. For proceduresthat are to be linked dynamically, an edge is inserted between the corresponding entry node and the exitnode. This encodes the assumption that there is no call to go within these procedures. In addition, an edgeis inserted between a pair of nodes i� there exists at least one path in the control-ow graph which does notpass through any of the other nodes. More concretely, an edge is inserted between a pair of nodes i� thereis at least one path between the two nodes that does not contain a procedure call or a call to go. For nodesi and j, the edge (i; j) represents the code corresponding to all paths in the control-ow graph between thecorresponding program points.We illustrate the program representation using an example. Figure 2 contains our running example. Thecorresponding program representation is shown in Figure 3. Note that each edge corresponds to the groupof control-ow paths between the two nodes it connects. For example, the edge between A entry and call1consists of the statement i = 0 and the edge between res1 and call2 consists of code in frag1 as well asthe loop header. Also note that each basic block can be part of more than one paths and, therefore, canbe included in the code corresponding to more than one edge. For example, the header for the while loopappears in three edges: (res1; call2), (res3; call2), and (res4; call2) corresponding to the initial entry, theloop-back from if branch and the loop-back from the else branch respectively.In the next subsection, we present the analysis algorithm.3

cs6

Proc B()

 go(....);

end

Proc D()
 B();

end

Proc E()

end

cs1

cs2

go1

cs3

cs5

cs4

Proc A()
 i = 0;
 B();

 while (i > 100)
 C();

 if (condition)
 D();
 else
 E();
 endif

 endwhile;
 D();
end

 i++;

frag1

frag2

frag3

frag4

frag5

frag6Figure 2: Running example. The csi annotations mark the call-sites, the fragi annotations mark codefragments that have no calls and no gos.
GO

res1

call1

A_entry

res6

res3

res2

res4

res5

A_exit

call3

B_entry

B_exit

call2

call4

call5

E_entry

E_exit

C_entry

C_exit

D_entry

D_exit

call6

Figure 3: Program representation for the running example.4

go

gogo

call2call1

entry

3

exit

res1 res2

1

2Figure 4: Simpli�ed example to illustrate the calling context problem.2.2 Analysis algorithmThe basic intent of the algorithm is clear enough - collect all names that occur on all paths between a goand its departure-set. The primary problem is preserving the calling context for calls to go embedded inmultiply-called procedures. This problem is illustrated in Figure 4. If the calling context is not taken intoconsideration, the linkset for the top go consists of the names occurring in the blocks of code correspondingto edges 1, 2 and 3. Since the code corresponding to edges 2 and 3 may never be executed on the same host,it is possible that no host will provide the procedures referred to in both links.To resolve this problem, we do not create complete linksets at compile-time. Instead, we partitionthe paths between a go and a member of its departure-set into a set of segments using resume nodes asseparators. In Figure 4, this results in three segments, corresponding to edges 1, 2 and 3. Intuitively, eachsegment corresponds to the portion of the path that lies entirely within a single procedure.2 The compileranalysis computes the linksets for individual segments. It also marks if the segment ends in a go node ora resume node. Intuitively, this indicates whether this is the �nal segment in a path. The complete linksetfor a go is constructed at runtime by threading together the linksets for individual fragments. At runtime,the linker determines the calling context either by inspecting the return addresses on the runtime-stack orby inspecting a call-stack maintained separately. It walks backward over the stack. For each call-site, theassociated linkset is collected. The walk continues till either it reaches the �nal segment of a path or itreaches the bottom of the stack. In Figure 4, if the go occurs when called from the left-hand-side, thelinksets for edges 1 and 2 are collected; if the go occurs when called from the right-hand-side, the linksetsfor edges 1 and 3 are collected.The algorithm to construct the linksets for path segments is presented in Figure 5. We would like to drawattention to some aspects of the algorithm. This algorithm computes a set of names for every node in theprogram representation graph. Only the sets corresponding to go nodes and resume nodes and root nodesare used to create the linksets. The sets corresponding to call and entry nodes are computed for algorithmicconvenience and are propagated to parent nodes (if a parent exists). The sets corresponding to exit nodesare always empty. Root nodes are entry nodes for procedures that are not called in the code being compiled.Linksets for root nodes are used for initial linking on the node that the program begins execution. They arealso needed to handle separately compiled code. Note that the set of names corresponding to a go node arenever propagated. However, the set of names corresponding to a resume node could be propagated to thecorresponding call node. This is needed if it is possible that during the execution of the procedure called atthat site, there might be no call to go and control might reach the resume point while the program is still atthe current host. This condition is represented in the algorithm by the call to visible(entry(p),exit(p))which determines if the exit node of the procedure is visible from its entry. Recall that we say program pointB is visible from program point A i� there exists at least one path from A to B in the control-ow graphthat has no call to go. If there exists no such a path, the set of names for the resume node is not propagated.2This intuition is precise only if there are no calls to procedures that do not have a go as the the �rst statement. In othercases, there is some merging of paths between procedures, but the intuition is nevertheless helpful.5

Program point Linksetgo1 nm(frag4)res1 nm(frag1) [fCg [nm(frag2) [nm(frag3) [nm(frag6)res3 fCg [nm(frag2) [nm(frag3) [nm(frag6)res5 �res6 nm(frag5)Table 1: Linksets for the running example. The nm function is used for illustrative convenience. It returnsthe list of names in a code fragment.The reason for this is simple: if there is no path through a called procedure P that does not contain a go,the program will migrate to another site before this call returns. In that case, there is no need for bindingnames that are visible from the resume point which implies there is no need to include the names in thelinkset for this resume node in the linkset of any of the calls to go that precede the call under consideration.Another point to note is that procedures that are not available during the compilation (that is, theprocedures that are to be dynamically linked) are assumed to be empty for the purpose of this algorithm.These procedures are compiled separately and their entry nodes contain the set of names that need to belinked for their execution.To illustrate the operation of the algorithm, we present the linksets for the running example (Figure 2)in Table 1. Note that two of the resume nodes, res2 and res4 do not need linksets as the procedures calledat these sites, C() and E() respectively, are not mobile (their execution cannot encounter a go). The namesin the code fragments frag4 and frag5 are dominated by either a call to go or a call to a procedure thatcalls go. This is the reason why they do not appear in the linkset for res1. All other code is visible fromres1.It is easy to see that this algorithm terminates. The linksets for all nodes are initialized to �. Eachiteration of the propagation phase visits every node exactly once and each iteration (except the last one)increases the linkset of at least one node by at least one name. The number of iterations cannot be morethan the product of the number of nodes and the number of names. This is an extremely loose bound.For non-recursive programs, the algorithm needs exactly two iterations. For recursive programs, it needsone iteration more than the maximum syntactic depth of recursion: programs that have only self-recursiveprocedures take two iterations, programs with at most pair-wise recursive procedures take three iterationsand so on. Each iteration is a depth-�rst traversal of the directed acyclic graph corresponding to the program.The visited markers ensure that no node is visited twice in the same iteration.In the next subsection, we present the algorithm used by the linker to construct complete linksets.2.3 Constructing complete linksets at runtimeThe compiler analysis described in the previous subsection generates two data structures for the linker: anarray of structures corresponding to resume nodes and an array of structures corresponding to go nodes.Each structure contains two �elds: the linkset containing the names that have to be linked and a booleanindicating whether this linkset is terminal. The boolean is extracted from the reaches exit �eld of thecorresponding node (see Figure 5 for a description of how this is computed). The algorithm for the linkeris given in Figure 6. The do link() procedure does the actual linking. For every new procedure linked, itextracts the linkset from the entry node and checks if valid bindings for all names in names can be foundin the execution environment available on the current host. If this check fails for some reason, it returns anerror code (or an exception if the language supports exceptions).To illustrate the operation of the algorithm, we consider the two calls to D() in the running example(Figure 2). For the go embedded in the call at cs3, the complete linkset consists of the union of the linksetsfor go1, res6 and res3; the linkset for the other call at cs5 is the union of the linksets for go1, res6 andres5. 6

function successors(node p)returns the set of nodes that are successors of pfunction names(node p, node q)returns the set of names referred to in code associated with (p; q)function entry(node p)if p is a call node, returns singleton set with corr. entry nodeelse returns singleton set with entry node of enclosing procfunction exit(node p)if p is a call node, returns singleton set with corr. exit nodeelse returns singleton set with entry node of enclosing procfunction resume(node p)if p is a call node, returns singleton set with corr. resume nodeelse returns singleton set with entry node of enclosing procfunction proc(node p)if p is a call or resume node, returns singleton set with name of the corr. proc.else returns singleton set with name of enclosing proc.function visible(node p, node q)if q is visible from p returns trueelse returns falsefunction linkset(node p)if (p->visited 6= 0)return p->linkset;p->visited 1prev val = p->linkset;if (p->nodetype == entry || p->nodetype == go || p->nodetype == resume)succset successors(p);foreach q in succsetp->linkset p->linkset [linkset(q) [names(p,q)else if (p->nodetype == call)if (visible(entry(p),exit(p))p->linkset p->linkset [proc(p) [entry(p)->linkset [resume(p)->linksetelse p->linkset p->linkset [proc(p) [entry(p)->linksetelse /* p->nodetype == exit */p->linkset �p->reaches exit visible(p,exit(p))if (not equal(prev val,p->linkset))changed 1return p->linksetendprocedure compute linksets()foreach p in allnodesp->linkset �changed 1while (changed == 1)changed 0foreach p in allnodesp->visited 0/* a root node is the entry for a proc. that is not called in* the code being compiled */foreach node in root nodeslinkset(node)endwhileend Figure 5: Algorithm to compute the linksets.7

structure f nameset names; boolean terminal; g res pts[numres];structure f nameset names; g go pts[numgo];/* res_seq contains the sequence of resume node identifiers.* the order corresponds to walking backward in the stack */function dyn link(sequence res seq)item res;nameset names;if (res seq == NULL) return SUCCESSres car(res_seq); res_seq cdr(res_seq);names �;while (res->terminal 6= 0)names names [res->names;if (res_seq == NULL) break;res car(res_seq); res_seq cdr(res_seq);endwhileif (do link(names) == SUCCESS)return SUCCESSelsereturn error codeend Figure 6: Algorithm used by the dynamic linker to construct complete linksets.3 Linking mobile programs with mobile codeIn the previous section, we assumed that the procedures to be linked dynamically did not have a call to go.In this section, we relax that assumption. This allows us to deal with the possibility of library sites; sitesthat provide code to be picked up by programs for execution on other nodes. We �rst describe what newproblem is introduced by allowing dynamically linked procedures to move. Next, we describe our solutionand show that it works.The main problem introduced by allowing dynamically linked code to move is that it is no longer possibleto accurately compute the predicate visible(p; q) which indicates whether there exists at least one pathbetween nodes p and q that does not have a go. This problem does not arise for dynamically linked codethat can not move { the analysis algorithm can safely and accurately model the missing code by a nullstatement (as mentioned in section 2.1). As a result, the compiler analysis is no longer able to determinewhen the linkset for a resume node should propagated to the call node and beyond.One possible solution is to delay linking code that may be mobile to just before it is invoked. But thatwould violate the guarantee we would like to o�er: that linking failures can happen only at calls to go.Another possible solution is ignore the fact that the linked code can contain gos and to use the analysisdescribed in the previous section. This would result in possibly more names being linked at a go thanotherwise { since linksets are possibly being propagated further than they should be. This might appear tobe a conservative approximation but it is not. Consider the example in Figure 7. Assume that B() is theprocedure to be linked dynamically. If we ignore the fact that B() might contain a go, we will propagatemagic host specific code to the linkset corresponding to go(ordinary host). When go(ordinary host)is executed, the linker will fail trying to �nd magic host specific code on ordinary host. We propose athird alternative and show that it preserves the fail-only-at-go guarantee and avoids the problem mentionedabove.The basic idea is simple. We cannot safely and accurately propagate linksets at compile-time; we cannotdelay linking till the linked procedure is invoked; all linking must happen at gos. Therefore, the only option8

 B();

end

 go(ordinary_host);

 magic_host_specific_code()

Proc A() Proc B()

Unavailable at compile-time

 go(magic_host);
end

Available at compile-timeFigure 7: Example to illustrate that moving names past gos is unsafe.left is to delay the propagation of linksets till one of the gos that they are visible from. This is similar inspirit to our scheme of reconstructing complete linksets at runtime.We modify the program representation described in section 2.1 such that no edge is inserted betweenthe dummy entry and exit nodes that represent procedures not available at compile-time. By doing so,we encode the assumption that all control-ow paths in a procedure that is unavailable at compile-timehave at least one call to go. As a result, linksets are never propagated past calls to unavailable procedures.We extend the compiler analysis to determine the resume nodes that are visible from each call-site of anunavailable procedure. In addition, each name in a linkset is annotated with the list of its call-sites that arevisible from the corresponding program point. We extend the data structures generated by the analysis toinclude an array of structures corresponding to call-sites of unavailable procedures. Each structure containsthe set mentioned above and a boolean that indicates whether this procedure contains at least one pathfrom its entry to its exit that does not contain a call to go. The algorithm presented in Figure 5 alreadycomputes this predicate at each call-site; the only extension is to store the value for use at runtime. Weextend the linking algorithm such that whenever a new procedure is linked in, the corresponding booleanvalue is checked. If it indicates that the exit of the procedure is not visible from the entry, our compile-timeassumption is valid and the operations described in Figure 6 su�ce. If this is not the case and there is atleast one path between the entry and the exit of the procedure, the compile-time assumption is invalid andthe linksets should have been propagated. To handle this case, the linker inspects the set of resume nodesassociated with this call-site and adds the linksets corresponding to all of them to the set of names to belinked.It is quite easy to see that this scheme preserves the fail-only-at-go guarantee and that at each go, thelinkset constructed does not contain any name that it would not have contained if all mobile procedures wereavailable at compile-time. The �rst part is obvious. To assure ourselves about the second part, we need toobserve a couple of points about linksets and the visibility property. First, a name appears in a linkset i� areference to the name is visible from the program point the linkset is associated with. Second, visibility istransitive. If a procedure P is to be linked at a go site G, then at least one call-site of P is visible from G. Ifthe exit of P is visible from its entry, then all program points visible from the exit are also visible from theentry and transitively from G. Therefore, if the procedure was available during compile-time, all the namesin the linksets corresponding to all resume nodes visible from the call-site would be included in the linksetfor G and would be linked whenever control reaches G. This is exactly what happens with our scheme.4 Language constructs and application structureIn the previous sections, we have described algorithms to determine what needs to be linked at particularpoints in a mobile program. In this section, we discuss language constructs that allow the programmer tocontrol the behavior of the linking procedure. Our desire is to explore the space of user directives { howmuch control can be given to the user without forcing her to explicitly specify linking operations.There are four avors of dynamic linking that might be useful for mobile programs, two of which requireno user directives and two that can be controlled by user directives.� local-only: linking done at a site is valid at that site only. When a program departs, all bindingscreated on this site are voided. This guarantees that departing programs do not retain bindings tolocal operations. However, this works only if the code that is to be linked in does not contain a go.Also, library sites are not possible. 9

dynamically_linked_lib_proc();

dynamically_linked_lib_proc()
 while (condition)
 do_magic_operations()
 find_next_site_to_go();
 go(next_site);
 endwhile
end

dynamically_linked_lib_proc()

go(library_site);

 do_magic_operations()

 go(some_site);

 find_next_site_to_go()
 go(next_site);
end

endwhile

go(library_site);
while (condition)
 dynamically_linked_lib_proc();Figure 8: Example to illustrate loop placement for mobile code linked at library sites. The version on theleft might fail linking at a remote site, the version on the right will not.� code-on-stack-is-sticky: this is a variation of local-only linking that allows code that is currently in-use(that is, an instance of the procedure is on the stack) to move when the program departs the linkingsite. Bindings for all other names is voided when the program departs from this site. If at a subsequentmigration, the stack no longer contains the stack frame corresponding to the call to the procedure inquestion, the binding is eliminated and the code is garbage-collected. This allows library sites to exist.Elimination of the binding when it is no longer in use allows programs to pick up di�erent copies of theprocedures by visiting di�erent library sites. This would be useful, for example, if library sites wereassociated with speci�c organizations and provided the code needed to access data on all execution sitesbelonging to the organization. The program would pick up a local version of the procedure whenever itvisits hosts belonging to a new organization. This scheme also allows individual sites to control whatcode can be taken away by a mobile program. Note that this has implications for application structure.Once such a procedure executes a go statement, it can not be assured that it is executing in the sameenvironment. Therefore, all code that is available only at the linking site and that is necessary for itsexecution must be inlined into this procedure. Second, repeated application of procedures linked atlibrary sites may fail if program moves repeatedly. Therefore, loops that call such procedures shouldbe pushed into the procedures. Figure 8 provides an example. Note that these complications canbe eliminated if the unit of linking is a module instead a single procedure. In that case, inlining alllocally-provided operations into each mobile procedure that might need them would not be needed.� user-speci�es-sticky-links: the idea here is that the user can specify which names once bound shouldbe bound forever. This eliminates some of the complications of the code-on-stack-is-sticky scheme.Programs that need to pick up similar procedures from multiple library sites would have to name themdi�erently. One di�erence between this scheme and user-speci�ed linking is that in this scheme, theprogrammer does not need to specify which site the procedure is to be found. Second, sticky links canbe easily speci�ed by a sticky annotation on the interface declaration. Third, sticky links cannot berebound, user-speci�ed linking can rebind names.� user-speci�ed linking: in this case, the user explicitly speci�es which names are to be bound to whichoperations on which sites. An example of this would be the net import() primitive provided byObliq [4] (as well the NetObj.Import primitive provided by Network Objects [3] that has been used toimplement it). While this provides the greatest exibility of all schemes, the programmer can rebindnames as and when needed, it requires the user to manage all linking operations.5 Related workVarious forms and implementations of user-speci�ed linking have been described in the literature. At thesimplest level, the eval(env,expr) primitive that has long been available allows the user to control the bindingsfor the free variables in the expression expr. Obliq [4] and Network Objects [3] allow the programmer to querya name-server and obtain a reference which can then be bound to a name in the program. The fragmented-objects model [17, 18] proposed by Shapiro includes a detailed interface for binding and unbinding references10

in a distributed system. First-class environments [8] can also be used for various scenarios in whch user-speci�ed linking might be useful. Miller&Rozas [12] propose to use �rst-class environments to remove theneed for a distinguished top-level interaction environment for Scheme. Jagannathan [11] proposes a rei�cationoperator that returns the current environment as a �rst-class object and a reection operator that merges aset of bindings from a named environment into the current environment. Queinnec&DeRoure [15] proposea chain-environment function which can compose environments. This can be used to share commonenviornments between di�erent programs/users. These schemes provide varying degrees of exibility andconvenience but all of them require the user to explicit manage the linking.There has also been considerable work on e�cient (and safe) implementation of dynamic linking, partic-ularly in the context of shared libraries and kernel extensions [6, 10, 13, 14, 19]. These schemes focus onthe linking procedure and the performance of the linked code. They do not address the issue of determiningwhat needs to be linked.Dynamic linking issues for mobile programs, in particular the need to be able to name procedures thataccess resources local to an execution site, have been previously considered by Cardelli [4] and Knabe [7].The Obliq language presented in [4] handles this problem by packaging the execution environment availableat a site as an object and using its methods to access the procedures available at that site. The responsibilityof determining whether the environment available on a host provides all names needed by the program resideswith the user. Knabe [7] proposes that certain functions be speci�ed to be ubiquitous - that is, they areavailable on all sites and that all remaining code should be carried by the mobile program. This does notallow for site-speci�c procedures.6 SummaryIn this paper, we have presented a compiler-directed technique for safe dynamic linking for mobile programs.Our technique guarantees that linking failures can occur only when a program arrives at a new execution siteand that this failure can be delivered to the program as an error code or an exception. We use interproceduralanalysis to identify the set of names that must be linked at the di�erent sites the program executes on. Weuse a combination of runtime and compile-time techniques to identify the calling context and to link onlythe names needed in that context. Our technique is able to handle recursive programs as well as separatelycompiled code that may itself be able to move. We discuss language constructs for controlling the behaviorof dynamic linking and the implication of some of these constructs for application structure.AcknowledgmentsWe would like to thank Shamik Sharma for providing a sorely needed sounding board for our ideas. Wewould also like to thank M. Ranganathan for several discussions. The algorithms presented in Figures 5 and6 were formatted using the code.sty style �le written by Olin Shivers.References[1] G. Agrawal, A. Acharya, and J. Saltz. An interprocedural framework for placement of asynchronous I/Ooperations. In Proceedings of the 1996 International Conference on Supercomputing, pages 358{65, May 1996.[2] G. Agrawal, J. Saltz, and R. Das. Interprocedural partial redundancy elimination and its application to dis-tributed memory compilation. In Proceedings of the ACM SIGPLAN'95 Conference on Programming LanguageDesign and Implementation, pages 258{69, Jun 1995.[3] A. Birrell, G. Nelson, S. Owicki, and E. Wobber. Network objects. In Proceedings of the 14th ACM Symposiumon Operating System Principles, pages 217{30, Dec 1993.[4] L. Cardelli. A language with distributed scope. In Proceedings of the 22nd ACM Symposium on Principles ofProgramming Languages, Jan. 1995.[5] L. Cardelli. Mobile computation. Position Paper, 1995. http://www.research.digital.com/SRC/personal-/Luca Cardelli/Papers/MobileComputationPosition.ps.11

[6] C. Cowan, T. Autrey, C. Krasic, C. Pu, and J. Walpole. Fast concurrent dynamic linking for an adaptiveoperating system. In Proceedings of the Third International Conference on Con�gurable Distributed Systems,pages 108{15, May 1996.[7] F.C.Knabe. Language and compiler support for mobile agents. PhD Thesis, Carnegie Mellon University, Nov.1995.[8] D. Gelernter and S. Jagannathan. Environments as �rst class objects. In Proceedings of the 14th Annual ACMSymposium on Principles of Programming Languages, pages 98{110, Jan 1987.[9] J. Gosling and H. McGilton. The Java language environment white paper, 1995.[10] E. Ho, C. Wei-Chau, and L. Leung. Optimizing the performance of dynamically-linked programs. In Proceedingsof the 1995 USENIX Technical Conference, pages 225{33, Jan 1995.[11] S. Jagannathan. Dynamic modules in higher-order languages. In Proceedings of the 1994 International Conferenceon Computer Languages, pages 74{87, May 1994.[12] J. Miller and G. Rozas. Free variables and �rst-class environments. Lisp and Symbolic Computation, 4(2):107{41,Apr 1991.[13] M. Nelson and G. Hamilton. High performance dynamic linking through caching. In Proceedings of the Summer1993 USENIX Conference, pages 253{65, 1993.[14] D. Orr, J. Bonn, J. Lepreau, and R. Mecklenburg. Fast and exible shared libraries. In Proceedings of theSummer 1993 USENIX Conference, pages 237{51, 1993.[15] C. Queinnec and D. D. Roure. Sharing code through �rst-class environments. In Proceedings of the 1996International Conference on Functional Programming, May 1996.[16] M. Ranganathan, A. Acharya, S. Sharma, and J. Saltz. Network-aware mobile programs. In Proceedings of the1997 USENIX Annual Technical Conference, Jan 1997. To appear.[17] M. Shapiro. Flexible bindings for �ne-grain distributed objects. Technical Report 2007, Institut National deRecherche et en Automatique, August 1993.[18] M. Shapiro. A binding protocol for distributed shared objects. In Proceedings of the 14th International Conferenceon Distributed Systems, Jun 1994.[19] E. Sirer, M. Fiucynski, P. Pardyak, and B. Bershad. Safe dynamic linking in an extensible operating system. InThe First Workshop on Compiler Support for System Software, Feb 1996.[20] J. White. Talk at the DAGS'96 Workshop on Transportable Agents, Sep 1996.[21] J. White. Telescript Technology: Mobile Agents, 1996. http://www.genmagic.com/Telescript/Whitepapers.[22] M. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley, 1995.
12

