
The Utility of Exploiting Idle Workstations for ParallelComputation�Anurag Acharya, Guy Edjlali, Joel SaltzUMIACS and Department of Computer ScienceUniversity of Maryland, College Park 20742facha,edjlali,saltzg@cs.umd.eduAbstractIn this paper, we examine the utility of exploiting idle workstations for parallel computation. Weattempt to answer the following questions. First, given a workstation pool, for what fraction of time canwe expect to �nd a cluster of k workstations available? This provides an estimate of the opportunity forparallel computation. Second, how stable is a cluster of free machines and how does the stability varywith the size of the cluster? This indicates how frequently a parallel computation might have to stop foradapting to changes in processor availability. Third, what is the distribution of workstation idle-times?This information is useful for selecting workstations to place computation on. Fourth, how much bene�tcan a user expect? To state this in concrete terms, if I have a pool of size S, how big a parallel machineshould I expect to get for free by harvesting idle machines. Finally, how much bene�t can be achieved ona real machine and how hard does a parallel programmer have to work to make this happen? To answerthe workstation-availability questions, we have analyzed 14-day traces from three workstation pools. Todetermine the equivalent parallel machine, we have simulated the execution of a group of well-knownparallel programs on these workstation pools. To gain an understanding of the practical problems, wehave developed the system support required for adaptive parallel programs as well as an adaptive parallelCFD application.1 IntroductionExploiting idle workstations has been a popular research area. This popularity has been fueled partlyby studies which have indicated that a large fraction of workstations are unused for a large fraction oftime [9, 17, 19, 25] and partly by the rapid growth in the power of workstations. Batch-processing systemsthat utilize idle workstations for running sequential jobs have been in production use for many years. Awell-known example is Condor [15], which has been has been in operation at the University of Wisconsin forabout 8 years and which currently manages about 300 workstations [6].The utility of harvesting idle workstations for parallel computation is less clear. First, the workstation-availability results [9, 17, 19, 25] that have held out the promise of free cycles assume, at least implicitly,that progress of execution on one workstation, or the lack thereof, has no e�ect on the progress of executionon other workstations. This assumption does not hold for most parallel computation. This is particularly sofor data-parallel programs written in an SPMD style (most data-parallel programs are written in an SPMDstyle). When a workstation running a parallel job is reclaimed by its primary user, the remaining processesof the same job have to stop to allow the computation to be recon�gured. Recon�guration may need oneor more of data repartitioning, data/process migration and updating data location information. To makeprogress, a parallel job requires that a group of processors be continuously available for a su�ciently longperiod of time. If the state of a large number of processors rapidly oscillates between available and busy, aparallel computation will be able to make little progress even if each processor is available for a large fraction�This research was supported by ARPA under contract #F19628-94-C-0057, Syracuse subcontract #353-14271



of time. Second, parallel programs are often not perfectly parallel. That is, they are able to run only oncertain con�gurations - for example, con�gurations with powers-of-two processors. Addition or deletion of asingle workstation may have no e�ect, a small e�ect or a very signi�cant e�ect on the performance dependingon the application requirements and the number of available machines.In this paper, we examine the utility of exploiting idle workstations for parallel computation. We attemptto answer the following questions. First, given a workstation pool, for what fraction of time can we expectto �nd a cluster of k workstations available? This provides an estimate of the opportunity for parallelcomputation. Second, how stable is a cluster of free machines and how does the stability vary with the sizeof the cluster? This indicates how frequently a parallel computation might have to stop for adapting tochanges in processor availability. Third, what is the distribution of workstation idle-times? That is, what isthe probability that a workstation that is currently idle will be idle for longer than time t? This informationis useful for selecting workstations to place computation on. Fourth, how much bene�t can a user expect?To state this in concrete terms, if I have a pool of size S, how big a parallel machine should I expect to getfor free by harvesting idle machines. Finally, how much bene�t can be achieved on a real machine and howhard does a parallel programmer have to work to make this happen?We have addressed these questions in three di�erent ways. To answer the workstation-availability ques-tions, we have analyzed 14-day traces from three workstation pools of di�erent sizes (40, 60 and 300 worksta-tions) and at di�erent locations (College Park, Berkeley and Madison). To determine the equivalent parallelmachine, we have simulated the execution of a group of well-known parallel programs on these workstationpools. To gain an understanding of the practical problems that arise when trying to run parallel programsin an adaptive fashion, we have developed system support that allows programs to detect changes in theirenvironment and to adapt to these changes. We have also developed an adaptive version of a computa-tional uid dynamics program and have measured its actual performance using an IBM SP-2 as a cluster ofworkstations and one of the workstation availability traces mentioned above as the sequential workload.Previous research into using idle workstations for parallel computation has taken one of three approaches.Leutenegger and Sun [14] use an analytic-model-based approach to study the feasibility of running parallelapplications on non-dedicated workstation pool. Their study is based on simple synthetic models of bothworkstation availability and parallel program behavior. It is di�cult to draw conclusions about behavior ofreal parallel programs on real workstation pools from their work. Carreiro et al [4] and Pruyne&Livny [21]propose schemes based on a master-slave approach. If the workstation on which a task is being executedis reclaimed, the task is killed and is reassigned by the master to a di�erent workstation. There are twoproblems with this approach. First, most parallel programs are not written in a master-slave style. Second,rewriting existing parallel programs as master-slave programs would greatly increase the total communicationvolume and would require very large amounts of memory on the master processor. Arpaci et al [2] studythe suitability of dedicated and non-dedicated workstation pools for executing parallel programs. Theytake a trace-based-analysis approach and base their study on a workstation availability trace, a job arrivaltrace for a 32-node CM-5 partition and a suite of �ve data-parallel programs. Their results show that a60-workstation pool is able to process the workload submitted to a 32-node CM-5 partition. Our approachis closest to that of Arpaci et al but there are several basic di�erences. Arpaci et al focus on the interactiveperformance of parallel jobs and assume a time-sliced scheduling policy. They deduce the need for interactiveresponse from the presence of a large number of short-lived parallel jobs in the CM-5 job trace. Most largeparallel machines are, however, run in a batch mode. Usually, a small number of processors are provided forinteractive runs. To better understand the need for interactive performance for parallel jobs, we analyzedlong-term (six months to a year) job execution traces from three supercomputer centers (Cornell, Maui andSan Diego). We found that over 90% of short-lived jobs used 16 processors or less (for details, see section 3.2).We take the position that the need for interactive response can be met by a small dedicated cluster and thatthroughput should be the primary goal of schemes that utilize non-dedicated workstations. In doing so, wefollow the lead of Miron Livny and the Condor group at the University of Wisconsin which has had excellentsuccess in utilizing idle workstations for sequential jobs.We �rst examine the workstation-availability questions. We describe the traces and the metrics computedto estimate the opportunity for parallel computation. Next, we describe our simulation experiments andtheir results. We then describe our experience with the implementation and execution of an adaptive parallelprogram. Finally, we present a summary of our conclusions.2



2 Workstation availabilityTo determine the availability of free workstation clusters for parallel computation, we have analyzed threetwo-week traces from three workstation pools. For each of these traces, we have computed two metrics.First, for what fraction of time can we expect to �nd a cluster of k free workstations. We refer to this asthe availability metric. Second, for how long, on the average, is a cluster of k workstations stable? Thatis, how long can a parallel computation running on k processors expect to run undisturbed? We refer tothis as the stability metric. In addition, we have computed two other measures for each trace. First, forwhat fraction of time is a workstation available on the average and second, how does the number of availableworkstations vary with time? These measures are for comparison with previous studies. Finally, we havecomputed the probability distribution for idle-times for all the workstations in this study. We �rst describethe three traces. We then present the parallel-availability metrics and the other measures for all three traces.2.1 TracesThe �rst trace is from the workstation cluster of the CAD group at the UC Berkeley and contains datafor about 60 workstations. This trace covers a 46-day period between 02/15/94 and 03/31/96. The tracewe received had the busy and availability periods marked in for each workstation. This trace was used byArpaci et al in [2]. We extracted the 14-day segment which had the largest number of traced workstations.We refer to this trace as the ucb trace.The second trace is from the Condor workstation pool at the University of Wisconsin and contains datafor about 300 workstations. This trace covers a 14-day period between 09/24/96 and 10/07/96. For thepurpose of this trace, a workstation was considered to be available whenever the Condor status monitormarked it available. Condor uses several criteria, including user preferences, to decide if a workstation isavailable for batch jobs. We collected this trace by sampling the Condor status information once every threeminutes using the web interface provided by the Condor project [5]. We refer to this as the wisc trace.The third trace is from the public workstation cluster of the Department of Computer Science, Universityof Maryland. This trace contains data for about 40 workstations and covers a 14-day period from 09/24/96to 10/07/96. For the purpose of this trace, a workstation was considered to be available if the load averagewas below 0.3 for more than �ve minutes. We refer to this as the umd trace.The number of workstations participating in the pools was not constant throughout the tracing periods.The average number of participating workstations was 52 for the ucb trace, 277 for the wisc trace and 39for the umd trace. We use these �gures as a measure of the size of the corresponding pools.In addition to the variations in size, time period and location, these pools also vary in the way theyare (were) used. The College Park pool consists of publicly available machines which are primarily used byjunior computer science graduate students for course assignments as well as for personal purposes (mail etc).The Berkeley pool consists of workstations belonging to a single research group and is used for both personalpurposes and compute-intensive research. The Madison pool includes both compute servers and personalworkstations. It spans several departments. We expect that together these pools are representative of mostworkstation clusters available in university environments.2.2 Parallel-availability metricsFigure 1 presents the availability metric for all three pools. Each graph shows how the metric varies withcluster size. For each pool, the fraction of time for which a cluster of k workstations is available drops moreor less linearly with k. Note, however, that for each pool, a substantial fraction (20-70%) of the pool isalways available. Except for the umd trace, the drop is relatively slow { clusters larger than half the totalsize of the pool are available for over half the time.Figure 2 presents the stability metric for all three pools. Each graph shows how the metric varies withcluster size. These graphs show that clusters up to half the size of the pool are stable for four to �fteenminutes and clusters up to a third of the pool are stable for �ve to thirty minutes. This holds out promisefor parallel applications. Even if the cost of reacting to a reclamation event is as high as one minute, it ispossible to make signi�cant progress. An important point to note is that even though Figure 1 shows thatlarge workstation clusters are available at any given time, these clusters are not stable. For example, a cluster3



0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

F
ra

c
ti
o
n
 o

f 
ti
m

e
 a

v
a
il
a
b
le

Cluster size

umd

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

F
ra

c
ti
o
n
 o

f 
ti
m

e
 a

v
a
il
a
b
le

Cluster size

ucb

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

F
ra

c
ti
o
n
 o

f 
ti
m

e
 a

v
a
il
a
b
le

Cluster size

wisc

Figure 1: Availability for the three pools. These graphs show for what fraction of time can we expect to�nd a cluster of k free workstations and how this fraction varies with the cluster size k. For comparison, theaverage number of participating workstations was 52 for ucb, 277 for wisc and 39 for umd.
0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30 35 40

A
v
e
ra

g
e
 l
if
e
ti
m

e
 (

s
e
c
o
n
d
s
)

Cluster size

umd

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60

A
v
e
ra

g
e
 l
if
e
ti
m

e
 (

s
e
c
o
n
d
s
)

Cluster size

ucb

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300

A
v
e
ra

g
e
 l
if
e
ti
m

e
 (

s
e
c
o
n
d
s
)

Cluster size

wisc

Figure 2: Stability for the three pools. These graphs plot the average period a cluster is stable for againstthe cluster size.of 88 workstations can always be found in the wisc pool as per Figure 1 but a cluster of 88 workstations isstable only for �ve and a half minutes (see Figure 2). The upturns at the right end of the graphs for the ucband umd traces correspond to a small number of idle periods on weekend nights.Figure 3 shows how the fraction of workstations that are idle varies with time for the three pools.Weekdays are indicated by the dips; nights by the humps and weekends by the shorter-than-usual dips. Ineach graph, the horizontal line labeled avg shows the average fraction of the pool that is available. Theseresults indicate that, on the average, 60% to 80% of the workstations in a pool are available. This agreeswith previous results [2, 9, 17].2.3 Distribution of workstation idle-timeIn this section, we try to answer the question { what is the probability that an idle workstation will be idle forlonger than time t? This question has been previously looked at by several researchers [2, 9]. The commonexperience has been that machines that have been idle for a short time are more likely to be reclaimed thanmachines that have been idle for a relative long period. Douglis&Ousterhout [9] mention that for their cluster,machines that were idle for 30 seconds were likely to be idle for an average of 26 minutes; Arpaci et al [2]mention that, in their study, a recruitment threshold of 3 minutes provided the best throughput. Given therelative plenty in terms of workstation availability, we did not focus on the issue of recruitment. Instead, welooked at distribution of relatively long idle periods (tens of minutes to several hours). Our goal was to helpselect between multiple available workstations for the placement of computation.4



0

0.2

0.4

0.6

0.8

1

0 250000 500000 750000 1e+06 1.25e+06

F
ra

c
ti
o
n
 o

f 
m

a
c
h
in

e
s
 a

v
a
il
a
b
le

Time (seconds)

umd
avg

0

0.2

0.4

0.6

0.8

1

0 250000 500000 750000 1e+06

F
ra

c
ti
o
n
 o

f 
m

a
c
h
in

e
s
 a

v
a
il
a
b
le

Time (seconds)

ucb
avg

0

0.2

0.4

0.6

0.8

1

0 250000 500000 750000

F
ra

c
ti
o
n
 o

f 
m

a
c
h
in

e
s
 a

v
a
il
a
b
le

Time (seconds)

wisc
avg

Figure 3: Fraction of workstations available for the three pools.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3000 6000 9000 12000 15000

F
ra

c
ti
o
n
 o

f 
w

o
rk

s
ta

ti
o
n
s
 w

it
h
 P

(x
>

t)
 >

 1
/2

Length of idle period

umd

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000

F
ra

c
ti
o
n
 o

f 
w

o
rk

s
ta

ti
o
n
s
 w

it
h
 P

(x
>

t)
 >

 1
/2

Length of idle period

ucb

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000 35000
F

ra
c
ti
o
n
 o

f 
w

o
rk

s
ta

ti
o
n
s
 w

it
h
 P

(x
>

t)
 >

 1
/2

Length of idle period

wisc

Figure 4: Cumulative distribution of the idleness-cuto� for the three pools.For each workstation occurring in the workstation-availability traces, we computed the probability P (x >t) that an idle period would last longer than time t. We considered only the idle periods that were at least�ve minutes long. We found that the probability distribution varied widely. To summarize the information,we characterized each workstation by the time T such that P (x > T ) = 0:5. We refer to this measure as theidleness-cuto�. That is, idle periods shorter than T had a probability greater than half; idle periods longerthan T had a probability less than half. The minimum value of the idleness-cuto� was 18 minutes and themaximum value was 9 hours. Figure 4 shows the cumulative distribution of the idleness-cuto�. The averagevalue of the idleness-cuto� was 40 minutes for the ucb trace, 70 minutes for the umd trace and 90 minutesfor the wisc trace. Given the large value of the idleness-cuto�, simple strategies (such as LIFO, FIFO,random etc) for selecting between available workstations should su�ce. We note that all of these values aresigni�cantly higher than the 26 minutes reported by Douglis [8] in 1990 for the Sprite workstations.3 How much bene�t can a user expect?To estimate the bene�t that parallel programs might achieve in shared workstation environments, we sim-ulated the execution of a group of well-known parallel programs on all three pools. We selected a suite ofeight programs which includes the NAS parallel benchmarks [22] and three programs that have been studiedby one or more research groups working on parallel processing. We simulated two scenarios: (1) repeatedexecution of individual applications without gaps; (2) repeated execution of the entire set of applications,also without gaps. Since these scenarios keep the pool busy at all times, they provide an approximate upperbound on the throughput. The equivalent parallel machine is used as the metric.We �rst describe the programs we used as benchmarks. We then describe our simulations and the5



information used to drive them. Finally, we present the results.3.1 BenchmarksAll programs in this suite are programmed in the SPMD model. Figure 5 shows the speedups for thebenchmarks running on dedicated parallel machines. These numbers have been obtained from publications [1,3, 22, 23, 26]. The programs themselves are described below. We used class B datasets for all the NASbenchmarks.� nas-bt: this program uses an approach based on block-tridiagonal matrices to solve the Navier-Stokesequations [22]. The running time on one processor of the IBM SP-2 is 10942 seconds and the totalmemory requirement is 1.3 GB. This program runs on con�gurations with square number of processors.� nas-sp: this program uses a pentadiagonal matrix-based algorithm for the Navier-Stokes equations [22].The running time on one processor of the IBM SP-2 is 7955 seconds and the total memory requirementis 325.8 MB. This program runs on con�gurations with square number of processors.� nas-lu: this program uses a block-lower-triangular block-upper-triangular approximate factorization tosolve the Navier-Stokes equations. The running time on one processor of the IBM SP-2 is 8312 secondsand the total memory requirement is 174.8 MB. This program runs on con�gurations with powers-of-two processors.� nas-mg: this implements a multigrid algorithm to solve the scalar discrete Poisson equation [22]. Therunning time on one processor of the IBM SP-2 is 228 seconds and the total memory requirement is461 MB. This program runs on con�gurations with powers-of-two processors.� nas-fftpde: this program solves a Poisson partial di�erential equation using the 3-D FFT algo-rithm [1]. The running time on sixteen processors of the IBM SP-1 is 286 seconds and the totalmemory requirement is 1.75 GB. This program runs on con�gurations with powers-of-two processors.� dsmc3d: is a Monte-Carlo simulation used to study the ow of gas molecules in three dimensions [23].The running time on one processor of the iPSC/860 is 4876 seconds and the total memory requirementis 30 MB.� unstructured: this is a ow solver capable of solving the Navier-Stokes equations about complexgeometries through the use of unstructured grids [3]. Its running time on one processor of the IntelParagon is 68814 seconds and the total memory required is 134 MB. We have data for this programrunning on 1,2,3,4,5,10,25 and 50 processors.� hydro3d: this is a parallel implementation of 3 + 1-dimensional relativistic hydrodynamics [26]. Itsrunning time on one processor of the Intel Delta is 406000 seconds and the total memory required is89.2 MB. We have data for this program running on 1,8,16,32 and 64 processors.3.2 SimulationsTo compute the equivalent parallel machine for the scenarios mentioned above, we performed a high-levelsimulation of the execution of SPMD parallel programs on non-dedicated workstation pools. The simulatortakes as input workstation availability traces and a description of the parallel programs to be simulated andcomputes the total execution time. The equivalent-parallel-machine measure is computed by determiningthe size of the parallel machine that would be required to complete the execution in the same time. Allthe programs used in this study can run only on a �xed set of con�gurations (e.g. powers-of-two). If theexecution time falls in between two con�guration, linear interpolation is used to compute the equivalentparallel machine.All the programs used in this study are iterative. For the purpose of this study, we characterize thespeed of execution by the time taken to execute each iteration. We obtained the time per iteration from thepublications cited above. We characterize the size of each process by the size of its partition of the program6



0

20

40

60

80

100

120

0 20 40 60 80 100 120

S
pe

ed
up

Number of Processors

nas-bt
nas-sp
nas-lu

unstructured
dsmc

hydro3d
nas-mg

ideal

Figure 5: Speedups of the benchmark programs on dedicated parallel machines.data. We obtained the size of the program data by code inspection for all benchmarks except the last two.For the last two programs, we obtained the size information from publications.Many of these benchmarks have very large data sets which cannot reasonably �t in the memory of asingle workstation. We assumed workstations with no more than 128 MB and did not perform experimentsthat required more than this amount on any of the machines.There are many ways in which an SPMD program can adapt to a change in the number of availableprocessors. For example, it could checkpoint the evicted process to disk and restart it elsewhere (as inCondor [24]) or it could stop the process and copy it over from memory to memory (as in Locus [20]), orit could copy the stack and a small number of pages over and fault the rest in lazily (as in Accent [28]and Sprite [8]). All of these schemes involve moving an executing process. Since SPMD applications runmultiple copies of the same program which are usually in (loose) synchrony, there is another, possiblycheaper, alternative. Just the program data for the process can be moved; scratch data and text need notbe moved. If su�cient workstations are not available, data is moved to processes that are already running;otherwise, the program has to pay the cost of starting up a new process at the new location (this cost is notspeci�c to this scheme - expanding the number of processors requires new processes). There are two pointsto note. First, adaptation can happen only when the data is in a \clean" state and in a part of the codethat every processor will reach. That usually means outside parallel loops. Second, the process startup costalso includes the cost of recomputing communication schedules. In our study, we have assumed that thisadaptation technique is used.The simulator assumes a point-to-point, 15 MB/s-per-link interconnect. It models the eviction cost intwo parts: a �xed eviction cost that consists of the process startup cost and a variable part that includesthe memory copy cost at both ends, the time on the wire and end-point congestion for the data motionrequired for eviction. The process startup cost is paid at least once { to account for the initializationtime. Thereafter it is paid every time an application adapts to a change in processor availability. We used64 ms/MB as the memory copy cost which we obtained empirically from a DEC Alpha Server 4/2100 runningDigital Unix 3.2D. The simulator also models a settling period between the completion of one program andthe start of another. We used a settling period of two seconds.Since idle workstations are relatively plentiful, our goal was to use as simple a scheduling strategy aspossible. In their study, Arpaci et al [2] focus on the interactive performance of parallel jobs and assumea time-sliced scheduling policy. They deduce the need for interactive response from the presence of a largenumber of short-lived parallel jobs in the CM-5 job arrival trace. Most parallel machines, however, run ina batch mode. To better understand the need for interactive response from parallel jobs, we analyzed long-7



0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64 128 256 512

C
um

ul
at

iv
e 

fr
ac

tio
n 

of
 jo

bs

Number of processors

cornell

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64 128 256 512

C
um

ul
at

iv
e 

fr
ac

tio
n 

of
 jo

bs

Number of processors

maui

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64 128 256 512

C
um

ul
at

iv
e 

fr
ac

tio
n 

of
 jo

bs

Number of processors

san deigoFigure 6: Processor usage distribution for short-lived jobs. The Cornell results are based on jobs executedbetween Jun 18 and Dec 2 1995; the Maui results are based on jobs executed between Jan 1 and Aug 31,1996; and the San Diego results are based on jobs executed between Jan 1 and Dec 31, 1995. The totalnumber of short-lived jobs are 53015 (San Diego), 13651 (Maui) and 14822 (Cornell). The average numberof short-lived jobs per day is 145, 56 and 88 respectively.term (six months to a year) job execution traces from three supercomputer centers (Cornell, Maui and SanDiego). Figure 6 shows the processor usage distribution of short-lived jobs (jobs that run for two minutesor less) for the three traces. In all three cases, over 90% of the short jobs run on sixteen processors or less.Based on this and on our own experience with parallel machines, we speculate that interactive performanceis usually desired for debugging and testing purposes; most production runs are batch jobs. We take theposition that the need for interactive response can be met by a small dedicated cluster and that throughputshould be the primary goal of schemes that utilize non-dedicated workstations. In doing so, we follow thelead of Miron Livny and the Condor group at the University of Wisconsin which has had excellent success inutilizing idle workstations for sequential jobs. In our study we assume a simple �rst-come-�rst-served batchscheduling policy.We ran our experiments for one week of simulated time. This allowed us to study long-term throughputand to understand the e�ect of time-of-day/day-of-week variations in workstation usage.3.3 ResultsTable 1 presents the equivalent parallel machine implied by the performance of the di�erent applicationsfor week-long runs. We have computed two aggregate measures: the average equivalent machine and themedian equivalent machine. The median measure was computed to avoid possible bias due to outliers. Fromthese results, we conclude that harvesting idle workstations from these pools can provide the equivalent of29 (College Park), 25 (Berkeley) and 92/109 (Madison) dedicated processors. The measures for the Berkeleypool match the 1:2 rule of thumb that Arpaci et al [2] suggest for the parallel machine equivalent to anon-dedicated workstation pool. However, the rule does not match the results for the other two clusters.We rule out the di�erence in the scheduling strategies as the primary cause of the di�erence as using a largequantum would eliminate most of the e�ects of time-slicing. Instead, we believe that the di�erence is due to(1) the limited con�guration e�ect and (2) di�erence in the load characteristics. The limited con�guratione�ect refers to the fact that parallel programs can run only on certain con�gurations. Addition or deletionof a single workstation may have no e�ect, a small e�ect or a very signi�cant e�ect on the performancedepending on the application requirements and the number of available machines. This e�ect is particularlyimportant when the number of available workstations hovers around \magic numbers" like powers-of-twoand squares.Figure 7 shows the temporal variation in the performance over the period of the experiment. Since thebenchmark programs run for widely varying periods, it is not possible to compute an aggregate number.We have selected nas-bt as the exemplar program. Beside the obvious diurnal variations, the graphs showthe impact of the limited con�guration e�ect. There are sharp changes in performance as the workstationavailability crosses certain thresholds. Note that of all our benchmarks, nas-bt is the one that can run onthe maximum number of con�gurations (it runs on square number of processors). Another point to noteis the di�erence in the nature of the graphs for umd and ucb on one hand and the graph for wisc on theother hand. The graphs for umd and ucb are jagged whereas the graph for wisc consists mostly of a thick8



College Park Berkeley MadisonAverage proc on 39 52 277Average proc avail 34 32 169Applicationsdsmc3d 31 27 109hydro3d 32 27 61nas-bt 29 28 113nas-fftpde 30 22 114nas-lu 31 25 115nas-mg 26 23 68nas-sp 30 29 117unstructured 24 22 49roundrobin 29 24 90Average par mc 29 (0.74) 25 (0.48) 92 (0.33)Median par mc 29 (0.74) 25 (0.48) 109 (0.39)Table 1: Average per-application equivalent parallel machine over one week. The process startup time isassumed to be two seconds. The fraction in the parentheses is the ratio of the equivalent parallel machineand the size of the pool.
0

5

10

15

20

25

30

35

40

0 200000 400000 600000

E
q
u
iv

a
le

n
t 
p
a
ra

ll
e
l 
m

a
c
h
in

e

Time (seconds)

umd

0

5

10

15

20

25

30

35

40

0 200000 400000 600000

E
q
u
iv

a
le

n
t 
p
a
ra

ll
e
l 
m

a
c
h
in

e

Time (seconds)

ucb

0

20

40

60

80

100

120

140

0 200000 400000 600000

E
q
u
iv

a
le

n
t 
p
a
ra

ll
e
l 
m

a
c
h
in

e

Time (seconds)

wisc

Figure 7: Variation of equivalent parallel machine over a week. nas-bt was used as the exemplar.band. The jaggedness indicates that workstation availability often hovered around \magic numbers" andforced switches between di�erent con�gurations. The thick band indicates that workstations were plentifuland that the program did not have to change con�gurations. Instead, when a workstation was taken away,a replacement was available. The deep dip in the middle of the graph for ucb corresponds to a period ofintensive use (see the corresponding availability graph in Figure 3).3.4 Impact of change in eviction costIn the experiments described above, we assumed that the process startup time was two seconds. Recall thatprocess startup time is �xed portion of the eviction cost. It includes the cost of initiating the adaptation, thecost of starting up a new process (if need be), and the cost of recomputing the communication schedules. Thiscost depends on the particular adaptation mechanism used. To determine the impact of eviction cost on theperformance, we repeated out experiments for a wide range of process startup costs. Figure 8 shows how theequivalent parallel machine varies with process startup cost. In each graph, we plot the performance achievedfor four applications - dsmc3d, nas-bt, nas-lu and nas-mg. The performance for the other four applicationslies approximately between the curves for dsmc3d, nas-bt and nas-lu. We make two observations: (1) the9



0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

E
q
u
iv

a
le

n
t 
p
a
ra

ll
e
l 
m

a
c
h
in

e

Cost of process startup (seconds)

dsmc
nas-bt
nas-lu

nas-mg

0

5

10

15

20

25

30

0 10 20 30 40 50 60

E
q
u
iv

a
le

n
t 
p
a
ra

ll
e
l 
m

a
c
h
in

e

Cost of process startup (seconds)

dsmc
nas-bt
nas-lu

nas-mg

0

20

40

60

80

100

120

0 10 20 30 40 50 60

E
q
u
iv

a
le

n
t 
p
a
ra

ll
e
l 
m

a
c
h
in

e

Cost of process startup (seconds)

dsmc
nas-bt
nas-lu

nas-mg

(a) College Park (b) Berkeley (c) MadisonFigure 8: Variation of the equivalent parallel machine with process startup cost.
0

5

10

15

20

25

30

35

40

0 200000 400000 600000

E
q
u
iv

a
le

n
t 
p
a
ra

ll
e
l 
m

a
c
h
in

e

Time (seconds)

nas-bt

0

5

10

15

20

25

30

35

40

0 200000 400000 600000

E
q
u
iv

a
le

n
t 
p
a
ra

ll
e
l 
m

a
c
h
in

e

Time (seconds)

nas-lu

0

5

10

15

20

25

30

35

40

0 200000 400000 600000
E

q
u
iv

a
le

n
t 
p
a
ra

ll
e
l 
m

a
c
h
in

e

Time (seconds)

nas-fftpde

Figure 9: Impact of con�guration exibility.performance for nas-mg drops sharply for all three pools; (2) the relative drop in the performance for theother applications is largest for wisc, followed by ucb and umd; the drops for umd being quite small.The primary cause for the sharp drop in the performance of nas-mg is that it runs for a very short time.The total execution time is 228 seconds on a single processor and about 19 seconds on 16 processors. As aresult, the performance for nas-mg is swamped by startup costs. The gradation in the performance di�erenceacross the pools can be attributed to di�erences in the frequency of reclamation events.3.5 Impact of con�guration exibilityTo examine the e�ect of con�guration exibility, we compared the performance of a single pool for threeprograms, nas-bt, nas-lu and nas-fftpde with di�erent levels of con�gurability. We selected the Berkeleypool for this comparison as con�guration exibility is likely to have the maximum impact for situations witha relatively small number of processors and relatively frequent reclamations. The �rst of these programs,nas-bt, runs on square number of processors and the other two run on powers-of-two processors. However,the dataset of nas-fftpde is so large that it is cannot be run on con�gurations smaller than 16 processors.While the e�ect of con�guration exibility can be seen in several parts of the graph, it is most apparent in thecentral dip. The �rst two programs are able to salvage some computation during this time period, nas-btbeing more successful towards the end since it can run on 25 processors. On the other hand, nas-fftpdemakes virtually no progress in this period. We would like to point out that the period in question is of theorder of two days. 10



Num processors 1 2 4 8 16dataset 1 319 ms 196 ms 134 ms 106 ms 87 msdataset 2 510 ms 380 ms 209 ms 150 ms 130 msTable 2: Time per iteration for the two datasets.4 Evaluation on a real machineTo gain an understanding of the practical problems that arise when trying to run parallel programs inan adaptive fashion, we have developed system support that allows programs to detect changes in theirenvironment and adapt to these changes. We have also developed an adaptive version of a computationaluid dynamics program and have measured its actual performance using an IBM SP-2 as a cluster ofworkstations and one of the workstation availability traces mentioned above as the sequential workload.Our system (called Finch) uses a central coordinator to keep track of the workstation availability and aper-application manager process which keeps track of the progress of the application. The central coordinatorresembles the Condor central manager [24] and runs on a central machine. The applicationmanager is createdwhen the job is submitted and lives for the duration of the job. It runs on the submitting machine. Globalresource allocation decisions are made by the central coordinator; coordination of application processes forthe purpose of adaptation is done by the application manager. Currently, we assume a cooperative userenvironment and provide a pair of programs that the primary user of the workstation can use to makethe workstation available and to reclaim it for personal use. User requests (reclamation or otherwise)are sent to the central coordinator which selects the application that must respond to the event. It theninforms the corresponding application manager which coordinates the response. Finch is portable acrossUnix environments. Currently, it runs on Suns, Alphas and RS/6000s.For this study, we used a template extracted from a multiblock computational uid dynamics applicationthat solves the thin-layer Navier-Stokes equations over a 3D surface (multiblock TLNS3D [27]). This isan iterative SPMD program, each iteration corresponds to a di�erent timestep. We chose the top of thetime-step loop as the safe point for eviction. If a reclamation request is received when the program is atany other point, eviction is delayed till all processes reach this point. As described later in this section,the additional delay introduced, at least for this program, is quite small. We used the Adaptive MultiblockPARTI library [10] from the University of Maryland for parallelizing the application. This library performsthe data partitioning for normal execution as well as the repartitioning for adaptation. It also manages thenormal data communication as well as the data motion needed for eviction. To achieve e�cient commu-nication, this library pre-computes communication schedules. Changing the number or the identity of itsprocessors requires recomputation of the schedule. Adaptive Multiblock PARTI is not unique in providingthese services. The DRMS system [16] from IBM Research provides similar functionality. The point wewould like to make is that this support does not have to be implemented by a parallel programmer.We needed to make four changes to the program to allow it to run in an adaptive fashion. First, weadded a call to initialization code which includes contacting the central coordinator for resources. Second,we added code to the top of the time-step loop to check for adaptation events and a call to an adaptationroutine if the check succeeds. Third, we wrote the adaptation routine which repartitions the data arrays andmoves it to destination nodes. Finally, we added a call to a �nalization routine which, among other things,informs the central coordinator about the completion of this program.We evaluated the performance of Finch and this application using a 16-processor IBM SP-2 as theworkstation pool and 16 workstation availability traces from the College Park pool as the sequential workload.We ran this program in powers-of-two con�gurations from one to sixteen processors. We used two inputdatasets for our experiments with di�erent meshes. Table 2 shows the time per iteration for the di�erentcon�gurations.We designed our experiments to allow us to compute three measures. First, the cost of the running theadaptive version when no adaptation is required. Second, the time for eviction. That is, the time a user hasto wait for her workstation once she has made a reclamation request. We have divided this time into two11



Num processors 1 2 4 8 16dataset 1 0.1% 0.1% 0.1% 0.1% 0.5%dataset 2 0.1% 0.1% 0.1% 0.1% 0.4%Table 3: Slowdown relative to the non-adaptive version. The workstation pool was assumed to be unusedfor the period of this experiment.Num of src proc 1 1 1 1 2 2 2 4 4 8Num of dest proc 2 4 8 16 4 8 16 8 16 16Remap time 125 ms 188 ms 214 ms 250 ms 62 ms 93 ms 115 ms 28 ms 48 ms 19 msTable 4: Application-level cost of adaptation (dataset 1).parts. The �rst part consists of the time spent by the application (the time to repartition, move the data aswell as compute the new communication schedules) and the second part consists of time spent by the centralcoordinator and the application manager. Finally, we computed the equivalent parallel machine.Table 3 shows the slowdown of adaptive version of the code compared to the original non-adaptive version.For the period of this experiment, the workstation pool was assumed to be quiescent and no adaptation wasrequired. We note that the overhead of using the adaptive version is negligible. This is understandable sincethe check for an adaptation event is no more than checking whether there is a pending message on a socket.The rest of the adaptation code is not used if there are no adaptations.Table 4 presents the application-level cost of adapting between di�erent con�gurations. The cost isroughly proportional to the magnitude of the change in the number of processors and the size of the datapartition owned by each processor.Figure 10 shows the equivalent parallel machine for one, two and four copies of the program runningtogether. In these experiments, the �rst copy is allowed to start �rst and others follow in sequence. The �rstcopy is assigned as many nodes as it wants at start time and the other copies compete for the remainingnodes and for the nodes that become available during the computation. As a result, the �rst copy achievesbetter performance than the others. The largest equivalent parallel machine is 11 processors for the �rstdataset and 13 processors for the second data set. That corresponds to 69% and 81% of the size of the pool.For comparison, the equivalent parallel machine for the entire set of umd traces was computed to be 74%(see section 3.3).The average time the user had to wait for a guest process to leave depended on the number of processorsand the size of data for the job the guest process was a part of. For a single program running by itself onthe pool, the average wait time for eviction was 1.191 seconds. For multiple programs running together, theaverage wait time for eviction was 1.669 seconds. The number of adaptation events over the period of thisexperiment was 487.5 Other Related workIn this paper, we considered the use of idle workstations as compute servers. With the current growth inthe number and the size of data-intensive tasks, exploiting idle workstations for their memory could be anattractive option. Dahlin et al [7] study the feasibility of using idle memory to increase the e�ective �lecache size. Feely et al [11] describe a low-level global memory management system that uses idle memoryto back up not just �le pages but all of virtual memory as well. They show that this scheme is able to useidle memory to improve the performance of a suite of sequential data-intensive tasks by a factor between1.5 and 3.5. Franklin et al [12] describe a uni�ed memory management scheme for the servers and all theclients in a client-server database system. Their goal was to avoid replication of pages between the bu�erpools of all the clients as well as the bu�er pools of the servers. Explicit memory servers have been proposed12



1 2 4
0

2

4

6

8

10

12

Nu
m

be
r o

f P
ro

ce
ss

or
s

1 2 4

Number of Parallel Programs

Parallel Program 4
Parallel Program 3
Parallel Program 2
Parallel Program 1

1 2 4
0

2

4

6

8

10

12

14

Nu
m

be
r o

f P
ro

ce
ss

or
s U

se
d

1 2 4

Number of Parallel Programs

Parallel Program 4
Parallel Program 3
Parallel Program 2
Parallel Program 1

Figure 10: Equivalent parallel machine for one, two and four programs. The graph on the left is for the �rstdataset and the graph on the right is for the second dataset.by Narten&Yavagkar [18] and Iftode et al [13]. Narten&Yavagkar describe a memory server similar in spiritto the Condor central manager. It keeps track of the idle memory available and ships memory objects to thecorresponding machines as needed. Iftode et al propose extending the memory hierarchy of multicomputersby introducing a remote memory server layer.Harvesting idle workstations for their memory imposes fewer requirements on the system support thanharvesting them for their computation. If done properly, memory can be often be shared for long periodswithout signi�cant impact on the interactive performance, particularly for today's machines which have largeprimary memories. Eviction of guest memory pages does not have the same urgency as the eviction of guestprocesses.6 Summary of conclusionsThere are two primary conclusions of our study. First, that there is signi�cant utility in harvesting idleworkstations for parallel computation. There is, however, considerable variance in the performance achieved.For the three non-dedicated pools we studied, we found that they could achieve performance equal to adedicated parallel machine between one-third to three-fourths the size of the pool. Supporting evidence forthis conclusion is provided by our experience with Finch and an adaptive Navier-Stokes template. Second, theparallel throughput achieved by a non-dedicated pool depends not only on the characteristics of sequentialload but also on the exibility of the parallel jobs being run on it. Jobs that can run only on a small numberof con�gurations are less able to take advantage of the dynamic changes in availability; jobs that can runon a large set of con�gurations achieve better throughput. This e�ect is particularly important when thenumber of workstations available hovers around \magic numbers" like powers-of-two and squares.The other conclusions of our study are:� On the average, 60% to 80% of the workstations of a pool are available. The fraction of time for whicha cluster of k workstations is available drops more or less linearly with k. Clusters larger than half thetotal size of the pool are available for over half the time. Moreover, a substantial fraction (20%-70%)of the workstations is always available.� Even though large clusters are available at any given time, these clusters are not stable. Clusters upto half the size of the pool are stable for four to �fteen minutes and clusters up to a third of the pool13



are stable for �ve to thirty minutes.� There is a wide variance in the distribution of the length of idle periods across di�erent workstations.The expected length of an idle period varied from a minimum of 18 minutes to a maximum of 9 hours.On the average, workstation that has been idle for �ve minutes can be expected to be idle for another40-90 minutes.� It is not too di�cult to convert SPMD programs to run in an adaptive environment. This conversion isbenign. That is, the modi�cations do not have an adverse impact on the performance of the programs.Also, useful gains are possible on real machines.� The eviction delay seen by a user is not unacceptably large. However, we would like to caution thereader that this conclusion is based on a scheme that does no checkpointing and as such is unable torecover from failures.AcknowledgmentsWe would like to thank Remzi Arpaci for the UC Berkeley workstation availability traces. We would liketo thank the Condor group at the University of Wisconsin for providing the web interface to the Condorstatus monitor. We would like to thank Steven Hotovy of the Cornell Theory Center for the trace of the jobssubmitted to their IBM SP-2, Regan Moore and George Kremenek of the San Diego Supercomputing Centerfor the trace of the jobs submitted to their Intel Paragon, and Peter Young of the Maui High PerformanceComputing center for the trace of the jobs submitted to their IBM SP-2.References[1] R.C. Agarwal, F.G. Gustavson, and M. Zubair. An e�cient algorithm for the 3-D FFT NAS parallel benchmark.In Proceedings of SHPCC'94 (Scalable High-Performance Computing Conference), pages 129{33, May 1994.[2] R.H. Arpaci, A.D. Dusseau, A.M. Vahdat, L.T. Liu, T.E. Anderson, and D.A. Patterson. The interaction ofparallel and sequential workloads on a network of workstations. In Proceedings of the 1995 ACM SIGMETRICSJoint International Conference on Measurement and Modeling of Computer Systems, pages 267{78, May 1995.[3] D. Bannerjee, T. Tysinger, and W. Smith. A scalable high-performance environment for uid-ow analysis onunstructured grids. In Proceedings of Supercomputing'94, pages 8{17, November 1994.[4] N. Carriero, D. Gelernter, M. Jourdenais, and D. Kaminsky. Piranha scheduling: strategies and their implemen-tation. International Journal of Parallel Programming, 23(1):5{33, Feb 1995.[5] The Condor status monitor. http://www.cs.wisc.edu/cgi-bin/condor status/-server, 1996.[6] The Condor summary status monitor. http://www.cs.wisc.edu/cgi-bin/condor status/-server+-tot, 1996.[7] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Cooperative caching: using remote memory to improve �lesystem performance. In Proceedings of the �rst Symposium on Operating System Design and Implementation,pages 267{80, Nov 1994.[8] F. Douglis. Transparent Process Migration in the Sprite Operating System. PhD thesis, Computer ScienceDivision, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Sep1990.[9] Fred Douglis and John Ousterhout. Transparent process migration: Design alternatives and the Sprite imple-mentation. Software Practice and Experience, 21(8):757{85, August 1991.[10] G. Edjlali, G. Agrawal, A. Sussman, and J. Saltz. Data parallel programming in an adaptive environment. InProceedings of the ninth International Parallel Processing Symposium, pages 827{32, April 1995.[11] M. Feely, W. Morgan, F. Pighin, A. Karlin, H. Levy, and C. Thekkath. Implementing global memory managementin a workstation cluster. In Proceedings of the �fteenth ACM Symposium on Operating System Principles, pages201{12, Dec 1995.[12] M. Franklin, M. Carey, and M. Livny. Global memory management in client-server DBMS architectures. InProceedings of the eighteenth International Conference on Very Large Data Bases, pages 596{609, Aug 1992.14



[13] L. Iftode, K. Li, and K. Petersen. Memory servers for multicomputers. In COMPCON Spring'93 Digest ofPapers, pages 538{47, Feb 1993.[14] S. Leutenegger and X.-H. Sun. Distributed computing feasibility in a non-dedicated homogeneous distributedsystem. In Proceedings of Supercomputing'93, pages 143{52, November 1993.[15] M. Litzkow and M. Livny. Experiences with the Condor distributed batch system. In Proceedings of the IEEEWorkshop on Experimental Distributed Systems, pages 97{101, Oct 1990.[16] J. Moreira, V. Naik, and R. Konuru. A programming environment for dynamic resource allocation and datadistribution. Technical Report RC 20239, IBM Research, May 1996.[17] Matt Mutka and Miron Livny. The available capacity of a privately owned workstation environment. PerformanceEvaluation, 12(4):269{84, July 1991.[18] T. Narten and R. Yavagkar. Remote memory as a resource in distributed systems. In Proceedings of the thirdWorkshop on Workstation Operating Systems, pages 132{6, April 1992.[19] David Nichols. Using idle workstations in a shared computing environment. In Proceedings of the Eleventh ACMSymposium on Operating Systems, pages 5{12, November 1987.[20] G. Popek and B. Walker. The LOCUS Distributed System Architecture. The MIT Press, 1985.[21] J. Pruyne and M. Livny. Parallel processing on dynamic resources with CARMI. In Proceedings of the Workshopon Job Scheduling Strategies for Parallel Processing, pages 259{78, April 1995.[22] W. Saphir, A. Woo, and M. Yarrow. The NAS Parallel Benchmarks 2.1 Results. Technical Report NAS-96-010,NASA Ames Research Center, August 1996.[23] S. Sharma, R. Ponnuswami, B. Moon, Y-S Hwang, R. Das, and J. Saltz. Runtime and compile-time support foradaptive irregular problems. In Proceedings of Supercomputing'94, pages 97{108, November 1994.[24] T. Tannenbaum and M. Litzkow. The Condor distributed processing system. Dr. Dobbs' Journal, 20(2):42{4,Feb 1995.[25] Marvin Theimer and Keith Lantz. Finding idle machines in a workstation-based distributed system. IEEETransactions on Software Engineering, 15(11):1444{57, November 1989.[26] A.S. Umar, D.J. Dean, C. Bottcher, and M.R. Strayer. Spline methods for hydrodynamic equations: parallelimplementation. In Proceedings of the Sixth SIAM conference on parallel processing for scienti�c computing,pages 26{30, March 1993.[27] V.N. Vatsa, M.D. Sanetrik, and E.B. Parlette. Development of a exible and e�cient multigrid-based multiblockow solver; AIAA-93-0677. In Proceedings of the 31st Aerospace Sciences Meeting and Exhibit, January 1993.[28] E. Zayas. The Use of Copy-on-Reference in a Process Migration System. PhD thesis, Department of ComputerScience, Carnegie Mellon University, Pittsburgh PA, April 1987.
15


