Symbolic Model Checking of Infinite State Programs

Using Presburger Arithmetic

*

Tevfik Bultan, Richard Gerber and William Pugh
Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland, College Park
College Park, MD 20742
(301) 405-2710
{bultan,rich,pugh}@cs.umd.edu

ABSTRACT

Model checking is a powerful technique for analyzing
large, finite-state systems. In an infinite transition sys-
tem, however, many basic properties are undecidable.
In this paper we present a new symbolic model checker
which conservatively evaluates safety and liveness prop-
erties on infinite-state programs. We use Presburger for-
mulas to symbolically encode a program’s transition sys-
tem, as well as its model-checking computations. All fix-
point calculations are executed symbolically, and their
convergence is guaranteed by using approximation tech-
niques. We demonstrate the promise of this technol-
ogy on some well-known infinite-state concurrency prob-
lems.

Keywords
Static analysis, symbolic model checking, transition sys-
tems, Presburger arithmetic.

INTRODUCTION

In recent years CTL model checking [5] has emerged
as a successful method for verifying large finite-state
systems [4, 18]. Two main reasons behind this success
are: (1) many of the properties one wants to check are
representable in CTL; and (2) there are efficient proce-
dures to check them. But when transition systems are
not restricted to be finite, CTL model checking becomes
undecidable.

We have developed a new symbolic model checker to
attack this problem. Our technique is based on the fol-
lowing ideas:

e It symbolically encodes transition relations and
program states using Presburger formulas, and uses
this representation for computing truth sets of tem-
poral logic formulas.

e It uses approximation techniques in its analysis
of infinite-state programs, which guarantee conver-
gence (by allowing false negatives).

This work was supported in part by ONR grant N00014-94-
10228, NSF YT CCR-9357850, NSF CCR-9157384 and a Packard
Fellowship.

Of course, in any computer system variables are even-
tually mapped to finite representations. Thus it might
be argued that integers can be given a finite range, and
programs can then be analyzed as finite-state machines
— for example, using BDD’s [4, 14]. For two reasons,
however, this may not always be the best way to pro-
ceed. First, mapping integer variables and operations
to their binary implementations may lead to highly in-
efficient static analysis. But perhaps more importantly,
one may wish to analyze an algorithm as an abstrac-
tion, and prove its correctness in a general sense, for
any implementation of integers.

In this paper we demonstrate our model checker’s ef-
fectiveness on some “classical” infinite-state programs,
taken from a standard concurrency textbook [2]. While
relatively small, they possess some interesting sub-
tleties, especially in the tricky way their infinite-state
variables influence control flow.

Other methods have been proposed to deal with infinite-
state programs like these, and we note some of them
here. One is to come up with a finite abstraction of
the program, and then check the property on the ab-
straction [6]. Of course this requires the user to find
the abstraction, and hence is not completely automat-
able. Another approach is to use a technique like sym-
bolic execution [10, 11], which symbolically generates
a program’s execution paths. In practice, this method
may end up generating an infinite number of nodes, and
thus never terminate. This limitation can be overcome
by having the user specify assertions about a process’s
behavior, which can be verified locally. Then the local
proofs can be checked for cooperation [10]. Although
the method has the benefit of incrementally proving
correctness (as opposed to generating all possible in-
terleavings), it relies on users to come up with the right
assertions.

Our work has some strong historical antecedents. For
example, Cooper developed a technique which encodes
transition relations as sets of Presburger formulas, and
then converts queries about a program’s properties to
validity checks in the Presburger arithmetic [7]. Due
to the complexity of general Presburger solvers, how-



ever, proving correctness as single Presburger decision
problem is not a method that can scale very well. We
have found it more beneficial to use model checking as
our primary technology, and use a Presburger solver for
some subservient set-theoretic computations.

Our work was also influenced by known techniques from
abstract interpretation [8]; specifically, we use some ap-
proximation methods first developed for that domain.
Most properties of programs can be formulated as least
fixpoints over sets of the program’s states, and conser-
vative abstract interpretation provides a way of approx-
imating these fixpoints.

Our encoding of program states is similar to that used
by Alur et al. in verifying Hybrid systems [1]. The fun-
damental difference is that we encode sets of integers (as
opposed to the real numbers used in hybrid systems),
and we can thus use Presburger formulas as our sym-
bolic representation. This enables us to state properties
such as, z @5 even, ¢ < y+ z + 10, etc. In hybrid sys-
tems, variables change linearly with respect to time, and
range over the reals.

The remainder of the paper is organized as follows. In
the following section we present the syntax, semantics,
and Presburger encodings for concurrent programs and
their properties. Then we describe our symbolic model
checker, and show how it exploits the Presburger rep-
resentation. After formally defining the term conserva-
twe approrimation, we discuss the specific approxima-
tion techniques we use for computing upper and lower
bounds of fixpoints. Finally, we conclude with some
discussion on our results.

PROGRAMS AND PROPERTIES

In this section we define our models for representing
programs and properties. We use the event-action lan-
guage from [17] as our syntax for concurrent programs,
with a semantics defined in terms of infinite transition
systems. For representing temporal properties, we use
a variant of CTL, in which the ground propositions are
encoded as Presburger formulas.

Representing Programs

A concurrent program is represented by a (1) finite set
of data and control variables, and (2) a finite set of
events, where each event is considered atomic. The cur-
rent state of a program is determined by the values of its
data and control variables, in which the domain of each
variable is countable. Each event is represented with an
enabling condition and an action, where the enabling
condition constrains the states in which the event can
occur, and the action defines a transformation on the
states.

Consider the concurrent program shown in Figure 1,
which implements the bakery algorithm [2] to achieve

Data Variables: a,b: integer
Control Variables: pc; : {Ty,W1,C1}, pea : {T2,Wa,Ca}
Initial Condition: a = b =0
Events:
er, enabled: pcp =1)
action: pef =WinAa =b+1

ew, ena‘bled: pe1 = Wi Aa<bVvb=0)
action: pey = C1

ec, enabled: pcp =)
action: pey =T1Aa’ =0

ey enabled: pcy =15
action: pch =WoAb =a+1

ew, enabled: pc;=WaA(b<aVa=0)
action: pch = O

ecy enabled: pcy = O
action: pceh = To AD =

Figure 1: The Bakery Algorithm

TiT2

N
Ownz TlWZO

ery ers
cor 11 (o2 e = [\ N[N
' OWl ’ OWZ ciT2 O TiC2
\ew1 ew?2 \ /
OCl OCZ mw@ Och
Process 1 Process 2

\%5/

Program

Figure 2: Structure of the bakery algorithm.

mutual exclusion between two processes. Figure 2 shows
the structure of the program, where arcs represent
events and nodes represent control points. Note that
actions of events are represented as relations, with v
and v’ denoting the current and next values of a vari-
able v. If v is not mentioned in the action of an event,
then we assume that v = v. In the above program, con-
trol points for each process are denoted T, W, C', which
stand for thinking, watting or in critical section, respec-
tively.

When a process wants to enter the critical section it first
gets a ticket, which will be higher than that of all other
processes currently in the critical section or waiting for
entry. In the above program, variables a and b hold the
ticket values for processes 1 and 2, respectively. A pro-
cess gets its ticket by simply adding one to the highest
outstanding ticket number.

There are two properties we wish to prove about the
program. The first 1s mutual exclusion, i.e., two pro-
cesses are never in the critical section at the same time.



(pcl,pc2,a,b)
(0,0,0,0)

/\

(1,0,1,0 (0,1,0,1)

O\

)
(201,0 1112 (11,2,1) 0,20,1)

N

(2112
|
1,

I'n

(1,221

o,

/

3,2) (1123

o

,2) (1,0,2,0

a

1

32)

o~ fo—p

1,0,3,0)

N

(2,0,3,0)

N

2,1,3,4)
|

N

(1

=

/:

34

(0104)

Figure 3: Part of the infinite transition system of the
bakery algorithm.

The second is starvation-freedom, i.e., tf ¢ process starts
waiting for entry to the critical section, it eventually
gets in. The first property is a safety property, while
the second is a progress property.

Note that variables @ and b can increase without bound.
For example, consider the scenario where process 1 gets
a ticket; then process 2 gets a ticket before process 1
leaves the critical section. Then 1 gets another ticket
before 2 leaves, etc. In other words, this is not a finite-
state program.

Given a program in the above language, we model it
as an infinite transition system M = (S, 1, X, L), where
S is the domain of states, I is the set of initial states,
X C S x S is the transition relation, and L : S x SF —
{True, False} is the valuation function for state formulas
over the program’s variables. These formulas form the
building blocks for our temporal logic.

Figure 3 shows a part of the infinite transition system
for the bakery algorithm above. Note that we use an
interleaving model, where each transition represents ex-
ecution of a single event, 1.e. only one event can occur
at a time. The set of program states, S, is obtained
by taking Cartesian product of domains of all program
variables. Each state corresponds to a valuation of all
the variables of the program.

The transition relation X can be derived from the set
of events, E, of the program. Every event e € F defines
a binary relation on the program’s states, X, C 5 x 5,
such that

Xe=A{((w1,29,...,2,), (2}, 25, ... 20)) :
(x1,®2,...,2,) € enabled(e)A
((x1,ma, ..., 2n), (2], 2, ..., 2))) € action(e)}

where a1, 29, ..., 2, and &}, 25, ..., ¢/, denote values of
data and control variables before and after the execu-
tion of event e. The sets enabled(e) and action(e)
respectively denote the enabling condition and action
of event e. Hence the global transition relation X is

X = UeeExe'

Representing Properties

Consider our safety property, which states that two pro-
cesses are never in the critical section at the same time.
This is equivalent to asserting that the following for-
mula is always satisfied over the program’s reachable
state-space:

= (per = C1 A peg = C)

We call this type of assertion a state formula, which is
generated by the following grammar:

f t<t () LA~ [Bvar f
t == (t)|t+t] var | constant

Here, the terminals constant and var represent integer
constants and variables, respectively. Using this base
language, we can easily represent formulas including <,
=, V, ¥, as well as multiplication by a constant. The set
of closed formulas defined by the above grammar forms
the theory of integers with addition, called Presburger
arithmetic. An important property of Presburger arith-
metic is that validity is decidable, i.e., given a closed
formula, there are decision procedures which can decide
if it is true or false [15, 16].

For a given program, its class of state formulas, SF, is
the set of Presburger formulas in which all open vari-
ables are the variables of the program. In other words,
these are exactly the formulas that have an interpreta-
tion via the program’s valuation function, L.

We often “close off” a state-formula using its corre-
sponding set representation. For example, for the bak-
ery program,

{(pclaPCZa a, b) L pc = Cl APCZ = CZ}

represents all program states in which both processes
are in the critical section at the same time. Also, note
that we may also include quantifiers in our state formu-
las, which allows postulating more complicated proper-
ties; e.g.,

{(pc1,peaya,b) - Ja . b =2a 4+ 1}



sEf iff  L(s, f) = True, where f € SF

skE-f iff shES

sEfAg if sEfandskg

so EVO S iff for all maximal paths (so,s1,s2,...),
with length > 2, 51 E f

so E30O f iff for some maximal path (s0,51,s2,...),
with length > 2, 51 E f

so EVOS iff for all maximal paths (sg, 51,52,...),
there exists an ¢, s; = f

so E 3OS iff for some maximal path (sg,s1,s2,...),
there exists an ¢, s; = f

Table 1: Semantics of our temporal logic.

represents the set of states in which 6 is odd.

Our temporal operators extend directly from those of
CTL. We use four modal operators as the logic’s basis
— the “quantified-next-state” operators (3O and V()),
and “quantified-eventuality” operators (3¢ and VO).
Thus, the logic we use to reason about a program is
generated over the set

{f €sF, 30, VO, 30, ¥vO, A, v, —}

As usual, CTL’s quantified-invariant operators can eas-
ily be represented as IOf = —VYO—f, and VOf =
=3O f, respectively.

The semantics of temporal logic formulas is defined on a
program’s transition system M = (5,1, X, L), as shown
in Table 1. The table represents the semantics in terms
of a program’s paths, where a path (sg,s1,82,...) is a
(finite or infinite) sequence of states, such that for each
successive pair of states (s;,s;41) € X.

Unlike Clarke et al [5], we do not require the transition
relation X to be total. Rather, our semantics is defined
using maximal paths [3] (as opposed to infinite paths).
A maximal path i1s one which is either infinite, or it ends
with a state that has no successors.

Consider the two properties of the bakery algorithm we
discussed at the beginning of this section. Our safety
property — two processes are never at the critical section
at the same time — can easily be expressed as:

VO(—{(pc1, pea, a,b) : pey = Cy A peg = Ca})
which is equivalent to
—(3C{(per, pea, a,b)  pey = Cy Apes = Ca}).

Note that for the sake of clarity, we are using the sym-
bols Cy and (% as valuations for the control variables
pey and pes. In practice, we map all program variables
to integer domains.

Now recall our progress property: If a process starts
waiting for entry to the critical section, it eventually
gets in. For the first process, this can be expressed as:

VD({(pclaPCZaa,b) Lpep = Wl} —
VO({(pclaPCZa a, b) Lpep = Cl}))

which is equivalent to:

_|(E|<>({(pclap62aa’b) pa = Wl}/\
~(VO({(pe1, pea, a,b) : per = C1})))).

Symbolic Representations

As we have shown, Presburger formulas — and their cor-
responding set representations — give us a convenient
way to symbolically encode sets of states in a program.
We can also encode the transition relation of a program
with Presburger formulas, as long as we restrict the un-
derlying program’s enabling conditions and actions to
Presburger formulas. This prevents us, for example,
from defining multiplication within a single event.

In general, representing the entire transition relation
(X) with a single Presburger formula will not be practi-
cal. Since this formula will represent all the program’s
events, 1t may end up being quite large. Rather, we
exploit individual event-transition relations (the X.’s),
which yield a natural decomposition of X. For each
e € E, if we assume that enabled(e) and action(e) are
representable as Presburger formulas, then X, is also
representable as a Presburger formula. This results in
|E| Presburger formulas, which together symbolically
encode the transition relation X.

Representing all of a program’s state space (S) by a
single Presburger formula may also lead to a very large
formula, which will be of little use for analysis. Instead
we use the structure of the program as follows:

1. We partition the state-space S, and symbolically
represent each partition class individually.

2. We incrementally analyze the program by consid-
ering one class at a time.

In general, let P = {5y, S5, ..
the program states; i.e.,

., Sn} be a partitioning of

S=JS and Vij, SnS; =0

In our method, partitioning of the program states is
based on the valuations of the control variables. We as-
sume that each valuation defines a control point, which
in turn induces a partition class. I.e., when applied to
the bakery program this yields:

P =S, 1), S(1.,w2), - - > Scen,00) )
where, for example,

Stey 1) = 1(per, pea, a,b) 1 pey = Cy Apes = Th}

While the entire state-space can be partitioned via S;’s,
so can any subset of S. That is, let @ C S. Then



Operation | Description

FnGg intersection of F' and G

FudGg union of ¥ and G

F-G difference of F' and G

T inverse of I (relation)

F[G] restrict domain of I (relation) to G (set) and
return the range of the resulting relation

Table 2: Symbolic operations on Presburger sets and
relations.

PQ = {QlaQZa .- 'aQn}’ where QZ = Q N Sia is a parti—
tioning of . E.g., for our bakery program, the set

Q = {(pc1,pea,a,b) 1 a < b}

denotes all states in which a is less than 4. Using a
partitioning via control points, we have

Q(cy,05) = {(pc1,pe2,a,b) 1 per = Cy Apea = C2 Aa < b}

This formula denotes the set of states where a is less
than b and both processes are at the critical section.

SYMBOLIC MODEL CHECKER

In the previous section we defined the syntax and se-
mantics of our temporal logic. Now we show how a
formula in the logic can be computed symbolically.

For a given temporal formula f, we implicitly use the
symbolic form of f to denote the set of states that satisfy
Jf —i.e., the set {s|s = f}. From elementary set theory,
we then get the following interpretations:

~f=S—f

fhng=fng fvg=fuUyg

To carry these operations out symbolically, we use a
toolset called the Omega library [12], which includes
a large collection of object classes to manipulate Pres-
burger formulas. Of particular use to us are the func-
tions shown in Table 2, which are all implemented as
Omega functions. These operations take Presburger
sets or relations as inputs, and return the symbolic form
of a Presburger set or relation as output.

We also use these operators to help us symbolically com-
pute the temporal operators. First, we define a func-
tion pred : 2° — 27 called predecessor function, which,
given a set of states, returns all the states which can
reach this set in one step (i.e. after execution of a single
event). Formally,

pred(Q)={s:s € QA (s,s) e X}

or using the notation in Table 2, pred(Q) = X~1[Q].
Since we do not represent X as a single relation, we
don’t compute pred(Q) in a single step. Rather, we

PROCEDURE CHECK( f)
(Subformulas are computed recursively.)
CASE
f€SF  : RETURN(S)
f=-f1 :RETURN(S — f1)
f = fi A f2: RETURN(f1 N f2)
f =30 fi: RETURN(pred(f1))
F =Y O fi: RETURN(S — pred(S — f1))

f=30f1 : Qo=h
Qit1 = Q; U pred(Q;)
RETURN(Qr) when Qn = Qpny1
f=vof1 : Qo=h

Qit1 = Qi U((S — pred(S — Qi) Npred(Q;))
RETURN(Qr) when Qn = Qpny1

Figure 4: Symbolic Model Checker.

compute pred with respect to our program’s partition-
ing, and compute one formula for each set of the par-
tition. Formally, let P = {S;,55,...,5,} be our par-
titioning of the program states, and let ¢} be a set of
program states. Since @ = [Js,¢p(QNS;), we can com-
pute pred(Q) as

pred(Q) = pred(Us,¢p(Q N 5i))
= US,eP pred(Q N.S;) = US,eP,eeE XN S

This is nothing more than symbolically computing the
weakest precondition of () with respect to each set of the
partition. It often makes sense to do this individually
for each partition class, since many formulas inherently
refer to only a small number of classes. E.g., let ) =
{(pe1,pea,a, byt s) : pey = Cy Apeg = Ca}, ie. @ is
the set of states where both processes are at the critical
section. Then,

pred(Q) = pred(Q NS, c.))
= U X7'en S )

e€lew; ew,}
which 1s equal to:
{(pc1,pe2,a,b) :pcr = Wi Apeo=Co A(b=0Va<b)}
U{(pec1,pe2,a,b) :pcr =C1L Apea =Wo A{a =0V <a)}

Now, according to the semantics of the temporal oper-
ators defined in Table 1, we immediately have

A0 f=pred(f) VO[f=S5—pred(S-/)

So given a symbolic representation for f, we can sym-
bolically compute 3 () f and V O f using the function
pred.

As for 3¢ and VO, consider the functionals g =
Ay. fVvIQyand ap = Ay. FVIVOyATOy).
The least fixpoints of 7gp and 74p are equal to AOCf
and VO f respectively [13]. To compute these fixpoints
we can use the following property:



Property 1 For alln € Z,

IOf D (Ay. FVIQy)(False)

=

-
I
=)

(Ay. FV(YOyATOy))(False)

1]
=

vof

K3

I
=)

This property tells us that every element in the sequence
False = 0, 7er(0), 725 (0), 72 £(0), . .. is a subset of the
least fixpoint of Tgp; similarly, every element in the se-
quence False = 0, 74p(0), 73 2 (0), 73 (D), . . . is a subset
of the least fixpoint of 74p. Since 7gp and T4p are
both monotonic, and since we start the sequence with
(), these sequences are non-decreasing. So we can keep
iterating until we reach a fixpoint, and when we do, we
know that it is the least fixpoint [14].

These methods lead directly to the semi-decision proce-
dure shown in Figure 4. Given a program and a tempo-
ral logic formula, the procedure will (attempt to) sym-
bolically compute the set of program states that satisfy
the input formula. That is, the procedure will give an
exact answer if it converges.

In finite-state systems this is the end of the story, since
the procedure is guaranteed to converge. This is also
true in some infinite-state systems,; depending on the
structure of the program and the formula. This is the
case in our analysis of the bakery algorithm, where we
can compute an exact fixpoint.

Algorithm, Revisited
Recall the mutual exclusion requirement for the bakery
algorithm, represented as:

—(FO{(per, pea, a,b)  pey = Cy A pea = Ca})).

To prove this property, the model checker starts by com-
puting the least fixpoint IO({(per, pea,a,b) : pey =
Cy A pea = Ca}), with the first iterate initialized to
Qo = {(pc1,pea,a,b) : pey = C1 Apea = Ca}. The
fixpoint computation converged to a set ) after 4 it-
erations (for a total computation time of 2.85 seconds
on a Sun SPARCstation 5), where @ is partitioned as
follows:

Q(leTQ) pc1 = T4 A pea = T A False

Q(ry,w2) per =T1 Apeo =Wa Ab=0

Q(ry,02) pe1 =T1 Apeo =Ca Ab=0

Qw,,12) per = Wi Apeo =To Aa=0
Qw,,wy) per = Wi Apeo =WaoA(a=b=0V

a=0A1<bVvb=0A1<aqa)

Qw,,Cs) pe1 = Wi Apeo =CoA(b=0Va<b)
Q(cy,12) per =C1Apea=T2Aa=0

Qe wa) per =C1Apea =WoAla=0Vh<a)

Q(Cl’CQ) pc1 = Cq1 A peo = Ca A True.

Our top-level formula is ~(FO{(per, pea, a,b) @ pey =
Cy A pea = Ca}), which means that we have to com-
pute S — Q. This will yield the set of states which can
never reach a violation of the mutual exclusion prop-
erty. For the bakery algorithm the initial condition is
I = {(pe1,pea,a,b) : pey =Th Apea =Ta Aa = b = 0},
and it is easy to see that 7 C (S — @); i.e., all of the
initial states satisfy the safety property, and hence the
property is proved.

The model checker was also able to prove the progress
property:

_|(E|<>({(pclap62aa’b) pa = Wl}/\
~(VO({(pe1, pea, a,b) : per = C1})))).

The inner (V<) and outer (3¢) fixpoint computations
converge in 9 and 1 iterations, respectively (with a total
computation time of 7.64 seconds). Hence, both our re-
quirements were proved by the symbolic model checker
described in Figure 4.

In general, however, we will not be so fortunate. Af-
ter all, we have a Turing-computable language — which
means that we may easily keep iterating forever with-
out reaching a fixpoint. (If this were not the case, we
would be able to solve the halting problem.) Thus we
also need a conservative approximation method, which
will converge in finite time.

APPROXIMATION TECHNIQUES

It 1s usually impossible to determine in advance whether
an exact fixpoint computation will converge; in general
this is itself an undecidable problem. So when we carry
out our analysis, we first attempt to compute an ex-
act solution. If the calculation takes an unacceptable
amount of time, or perhaps uses too much space, we
appeal instead to a conservative approach. A conserva-
tive analyzer is one which never yields a “false positive”
(and reports that a property holds when in fact it does
not), but it may yield a “false negative,” and indicate
that a property does not hold when it really does.

Ticket Algorithm.

Our exact analyzer diverged when we fed it the so-called
ticket algorithm [2], along with its related mutual exclu-
sion property. The program text is presented in Fig-
ure 5. In particular, note its similarity to the Bakery
example. Both algorithms use a few shared variables to
maintain mutual exclusion, and they ensure progress in
a similar way. Here, when a process attempts to enter
to the critical section 1t first gets a ticket, which has a
higher number than all of the tickets issued before. The
value of the next available ticket is stored in the global
variable ¢, while s holds the highest ticket value served
thus far. New tickets are obtained by executing a fetch-
and-add on ¢ — where the returned values are stored
in either a or b, the local ticket repositories. A cus-



Data Variables: a,b,t, s: integer
Control Variables: pcy : {Th, W1, Ch }, pep 2 {12, Wa,Ca}
Initial Condition: ¢t = s
Events:
er, enabled: pcy =1
action: pef =Wina =tAt =t4+1

ew, enabled: pcg=WiAs>a
action: pe) = C1

ec, enabled: pc; =)
action: pey =T1As' =s+1

ey enabled: pcy =15

action: pch =WoAb =tAt =t +1
ew, enabled: pey=Wa2As2>5b

action: pch = Ch
ecy enabled: pcy = Cs

action: pchb=To As'=s+1

Figure 5: The Ticket Mutual-Exclusion Algorithm

tomer can enter the critical section when the last-used
ticket s catches up to its local ticket number. Again,
the mutual-exclusion property is:

_'(El<>{(pclap62a a, bata 5) L pc = Cl APCZ = CZ})

which asserts that no two processes can be in the critical
section at the same time. When the exact analyzer went
to work on this property, it attempted to symbolically
enumerate ways that both a and & could be less than s.
Since s and ¢ are arbitrary integers, this method failed
to converge. At this point we turned to the conservative
analyzer, which yielded a positive response.

What is Conservative?

As explained above, the goal of model-checking is to
compute a truth set {s : s E fAs € S} for some
temporal formula f. (In the sequel — as in the preceding
text — we use the formula f to represent this set.) We
also typically wish to determine whether I C f, i.e.,
whether f holds for the initial states in 7. But if we can’t
directly compute f on our program, the next-best-thing
is to generate a lower-bound for f, denoted f~, such
that f= C f. Then if we determine that I C f~, we
have also achieved our objective — that I C f. However
if I € f~, we can conclude nothing.

Consider the property ¢ = -3O(a = b). We want to
show that there is no state on any reachable path where
a = b. Again, the objective is to first compute a lower
bound ¢~ for ¢, and then check if I C ¢g~. But note
that there is a subtle twist here: Since we seek to carry
out our analysis in a compositional (syntax-directed)
manner, the most direct way to obtain g~ is to (1) to
compute an upper approximation At for the term h =
3O(a = b), and then (2) to let ¢ = S — hT. This
follows directly from set theory, since if A C h', then

=(hT) C —h. Hence we need algorithms to compute
both lower and upper bounds of temporal formulas.

First we show that in negation-free formulas, lower and
upper bound computations are trivially compositional.
Recall that model-checking is a recursive procedure (see
Figure 4), which works in a bottom-up manner on a
formula’s structure — first on the leaves (i.e., the state-
formulas), then up to the next-level enclosing formula,
and so on. Thus, the compositionality of an approx-
imation follows directly from the fact that all opera-
tors other than — are monotonic. l.e., for any operator

op € {A,v,30,¥0), 30, ¥}

JTCrCrt = op(f7) Cop(f) Cop(ft)

This means that any lower/upper approximation for
a formula can be computed using the corresponding
lower /upper approximation for its subformulas.

As for negation, we showed above how we can handle
formulas with a single “=” at the outermost level, by
exploiting the properties (=f)~ = =(f%) and (=f)* =
=(f7). We can easily generalize this method for the ar-
bitrary use of negation. To compute a bound for a CTL
formula f, the following procedure determines which of
f’s subformulas require an upper bound, and which re-
quire a lower bound.

1. Mark the root of the parse tree for formula f with
a minus sign (“=") if a lower bound is desired, and
with a plus sign (“+”) if an upper bound is desired.

2. Using a preorder tree traversal, visit each node in
the tree, mark each node with the mark of its par-
ent, unless its parent is a — operator. In that case
mark the node with the opposite bound.

Computing Upper Bounds

Suppose our objective is to compute an upper bound for
either ACf or VO f for some formula f. In examining
Figure 4, we see that the exact iterations for ICf and
V<O f form increasing sequences over the lattice of state
sets (2°,0,5,U,N), with  as bottom, S as top, U as
join, and N as meet. L.e.;, we have that

Qo CQ1 € Q2 ...

and moreover, each (); 1s a lower approximation to the
fixpoint. But since we have an infinite state-space, there
may in fact be infinitely many members of the chain,
with each member containing successively more states
than its preceding neighbor. From elementary fixpoint
theory we know that a least fixpoint exists — but it may
simply not be computable. Hence our job is to accel-
erate the computation, and “leap-frog” over multiple of
the members of the chain — perhaps at the risk of over-
shooting the exact least fixpoint. As long as the result



is larger than the exact fixpoint, we have an upper ap-
proximation.

The way we go about this is as follows. If the exact
iteration sequence is @y, @1, Qs, . . ., then we find a ma-
jorizing sequence Qq,Q1,Qo, ... such that (1) for each
i, Q; C Q;, and (2) the (); sequence terminates. From
(1) we immediately have that the fixpoint of the Qs
1s an upper approximation to the least fixpoint of the
Q;’s; from (2) we can obtain it in finite time.

To generate the Q;’s, we adopt a method developed by
Cousot and Cousot, within the framework of abstract
interpretation [8]. That is, we define an operator called
widening, or “57”, which majorizes the union computa-
tion as follows:

For any pair of sets P, P’, PUP' C Pv P'.

Using a suitable widening operator, we slightly redefine
the procedure for IO f from Figure 4:

Qo= A
Qiy1 = Qi v (QiUpred(Q;))
Font Qn when Qn = Qny1

From the monotonicity of the pred operator, one can
easily show by induction that this sequence does indeed
majorize the @;’s computed in Figure 4. (We leave the
proof to the reader.) And if the sequence terminates,
the final iterate is an upper bound for 3¢ f. For VO f
we use the analogous approximation technique:

Qo=1f
Qi1 =Q: vV (Qs U ((S — pred(S — @:)) N pred(Q:)))
(VO =Qn when Qn = Qnys

If we reach termination, we have that (VOf)T is an

upper bound for VO f.

Our goal is to find a widening operator which (1) yields
a suitable (i.e., reasonably tight) upper bound for union,
and (2) forces the QZ sequence to converge. To do
this, we generalize the application of widening used
by Cousot and Halbwachs in [9], where the idea is to
“guess” the direction of growth in the checker’s @; it-
erates, and to extend the successive iterates in these
directions. Cousot and Halbwachs defined a widening
operator 57 that accomplishes this for conver polyhedra
— le., regions formed by a conjunction of affine con-
straints. If both P and P’ are convex, then PP’ is
defined by the constraints in P which are also satisfied
by P’. Hence, P</P’ is built by simply removing con-
straints from P; since we cannot remove infinitely many
constraints, the finiteness property is satisfied.

A simple example shows how widening can be used in
the context of our event-action language, and with Pres-
burger sets. Consider the following simple program,
which consists of only one event:

QQ \\\Q /S Q@ QI Q2

a Qo
1
al }Q }QZ

a2

QI Q2

a X

Figure 6: A simple example demonstrating how the
widening operator 57 works.

Data Variables: z,y: positive integer
Events:
e enabled: z >0
action: z' =z -1Ay =y +1

Assume that we wish to check the property VO{(xz,y) :
y # a}, where a is a positive constant. Our sym-
bolic model checker will convert this property to
-3O({(#,y) : y = a}), and first try to compute an ex-
act fixpoint for IC({(x,y) : y = a}). Figure 6 shows
the regions @u, @1, @2 generated by the first iterations
of the exact algorithm. At this point, it might be pre-
dicted that the sequence will diverge (and indeed, it
will). Thus, we can set Qo = @1, and then note that
Qs = Qo Upred(Qo). We then obtain @ by computing

Q1 Q2:
Qv Qs {(z,y)a<z+yha—1<y<a}
{(x,y)ra<z+yrna—2<y<a}

{(x,y) ;a<e+yn0<y<al

<l

The iterations converge, since this formula is also gen-
erated for Q;. When we negate the result, we get
{(z,y) : v+ y < aVa <y} In other words, if our
initialization of # and y satisfies this condition, then
the invariant will indeed hold.

However, a program’s state space is not always convex;
in fact, most (exact) fixpoint computations are com-
posed of a (potentially large) number of disjuncts, each
defining a convex polytope. To accommodate this we
generalize the widening definition in [9] to handle mul-
tiple polyhedra. Assume that we have two Presburger
sets @@ and R, where ) C R. Then ) and R can be

represented as:

Q=qUgU...Ugy and R=rUrsU...7rp...Ur,

where all the ¢;’s and r;’s are convex polytopes, and
where m < n, and for all 1 < i < m, ¢; C r;. Then we
can define our new widening operator to be

Qv R=Jp (1)

i=1



such that for 1 < m, p; = (qi%ri), and for m < ¢ < n,
we have p; = r;.

We do face some technical issues when we use this defi-
nition in practice. Assume that we are computing a 3O
property, and that

Qi=q1quU...qu

where each of the ¢;’s is convex. Then Qi+1 = QZ \V4
(Q; Upred(Q;)), with

Qi upred(@)) = (UL, o) U U, pred(;))
= (@U@U...Ugy) U@ Up2U...Upy)

Here the p;’s represent a convex decomposition of
U;nzl pred(g;). Now we use a simple algorithm to
merge selected ¢;’s with p;’s in a pairwise fashion. For
each ¢; (1 < j < m) we scan the p’s (1 < k < n), look-
ing for polyhedra to merge. This is done by computing
the convex hull of ¢; Upy — denoted hull(¢; Upg) — and
determining if it is equal to ¢; U pi. If so, we delete
the py term and replace ¢; with hull(¢; U pi). We con-
tinue this process until a maximum amount of merging
is accomplished, after which we have:

Q = aUpU.. Ugn
QiUpred(Qi) = rUrU...Un

such that m <[, and for all 1 < j < m, ¢; C r;, Then
the conditions for 57 in (}) are satisfied, and therefore
we can use 1t as our widening operation.

Note, however, that the r; decomposition of @Q; U
pred(Qi) may include too many terms, since it is possi-
ble that there will be little potential for merging the ¢;’s
with the pp’s. So to ensure that we converge, we also
assign an upper bound to the number of disjoint convex
regions we wish to represent. When we reach this bound
we force-merge disjoint regions by replacing them with
their convex hull — even if the hull properly contains
their union. Since we are computing upper bounds, we
can do this at the expense of losing precision.

Computing Lower Bounds

Recall that each iteration of an exact fixpoint computa-
tion will yield a lower a bound for 3O f and VO f. So to
obtain a lower approximation for the purposes of analy-
sis, we need only stop after a finite number of iterations;
in this manner we are guaranteed to have a conservative
approximation. Of course the question is: when do we
stop?

Our verifier uses the following rules: if it is handling the
outermost formula, then after each iteration it checks
whether the initial states are included in the current
lower bound. If so it stops, since the property is proved.
If not it keeps going. Obviously there will be cases where

this method fails to converge, and if this happens the
tool will not be able to prove or disprove the property.
However, the user is able to interact with the analyzer,
and periodically monitor its progress; thus the user can
optionally “pull the plug” on waiting for a response.

If the fixpoint we are computing is a subformula of an-
other computation, the analyzer sets an arbitrary time
to stop generating an approximation — after which it
used in the next-higher formula. But if the analyzer
is unable to prove or disprove the outermost formula,
the user may optionally return and improve the lower
bound by continuing the fixpoint sequence.

Approximate Analysis of the Ticket Algorithm

Now we demonstrate the approximation methods on the
Ticket Algorithm(Figure 5). Recall the mutual exclu-
sion property, which is represented in temporal logic as:

_'(El<>{(pclap62a a, bata 5) L pe1 = Cl APCZ = CZ})
Using the negation-labeling algorithm we get
(_'(El<>{(pclap62a a, bata 5) L pc = Cl APCZ = CZ}+)+)_

which means that we want to compute an upper bound
for 3O{(pe1, pea, a,b,t,s) : pey = Cy Apea = Ca}, e
the states which violate mutual exclusion. The sym-
bolic model checker computes the upper bound using
the widening technique developed in the previous sec-
tion; it converges after 9 iterations (with a CPU time of
7.32 seconds). The result is a Presburger set ), which
is partitioned as

Q(T17T2) : o paa =Ty Apeco=To At < s

Q(T17W2) o opeg =Ty Apera =WaAt<s

Q(Thcz) o opeg =Ty Apera =Co At < s

Q(W17T2) :opeg =WiApea=To At<s
Q(W17W2) i pag =WiApee =WonAn(b<sAa<sV

t<s+1Ab<sVvi<s+1lAra<s)

Q(Wl,CQ) opaa=WiApea=CoAn(b<sVvt<s41)
Q(CI,TQ) o opeg =C1Apey =To At <s

Qucy,wy) per =CiApea =WoAla<sViEi<s+1)
Q(Cl’CQ) : pcer = Cqp A pex = Ca A True.

However, note that we are actually computing
=(3FO{(per, pea, a, bty s) : pey = C1 Apea = Ca}), ie.,
we have to get S — @, which will give us a lower ap-
proximation for the states which respect mutual exclu-
sion. Recall that the ticket algorithm’s initial condition
is I = {(pe1, pea,a,b,s,t) : pey =Ty Apes = To At = s},
and observe that I C (S — Q). This means that all the
initial states of the program satisfy the safety property,
hence the property is proved.

We also wish to prove starvation-freedom, where the



relevant formula for process 1 is:

—(FO{(per, pea, a, b, t,s) : pep = WA
(VO{(per, peay a, by, s) : per = C11)))).
The negation-labeling algorithm converts this to:
(=(3C({(pe1, pea, a, b, t,s) : per = Wi}t A
(~(VO({(per, pe2, a,b,t,5)  per = C1}7)7)7)F)F) )7

Note that because of the double negation, the inner
fixpoint YO is marked with “=” (i.e., a lower bound),
whereas the outer fixpoint 3¢ is marked with “+.” The
model checker computes the VO property exactly, in 5
fixpoint iterations; hence the lower bound turns out to
be exact. Then i1t computes an upper bound for the
3O property in 7 iterations, by using the widening tech-
nique (for a total CPU time of 27.03 seconds). After
the lower bound for the whole formula is computed, the
model checker reports that all the initial states do in-
deed satisfy the liveness property.

Using Forward Analysis

The fixpoint computations we have described thus far
are backward techniques, in that they start with a prop-
erty f, and then use pred to determine which states
can reach f. The last step is to determine whether the
initial condition [ is included in the derived set. Alter-
natively, it may be useful to start with I, compute an
upper approximation RS7T to the reachable state-space,
and then use RSt to help in the model-checking pro-
cess. We can practically accomplish this by altering the
symbolic model checker to restrict its computations to
states in RST.

To help generate the upper bound RS, we define a
function suce : 2° — 2%, called the successor function,
which, given a set of states, returns the states reachable
from this set in one step. Formally,

suce(Q)={s:s € QAN(s,s)e X}

In particular, note that this is the “forward analogue”
to the pred function. We claim that the (exact) reach-
able state space of a program is the least fixpoint of the
functional Ay. (I V suce(y)); hence it can be computed
using the techniques we previously developed for IO f.
Moreover, the same upper bound method works as well:

Ry = 1
Riy1 = R; 7 (R Usucc(Ry))
(RS)Y = R, when R, = R,q1

After computing RST, we restrict the result of every
operation in the model checker (Figure 4) to RST. In
other words, when each iterate (); is produced, it 1s re-
placed by @Q; N RST. Most importantly, we can also use

10

Data Variables: 7,5, 01, 02: integer
Constants: a: integer
Initial Condition: i =a A (b =01 =02 =0)
Events:
ew enabled: >0
action: d=i—1AW =b+1

er, enabled: b>0
action: o] =01 +1AV =b-1

er, enabled: b>0
action: ofb =op+1Ab =b—-1

Figure 7: A Producer-Consumer Algorithm

this technique when we compute approximate backward
fixpoints, as defined above.

We demonstrate this method on a producer-consumer
problem. Consider the program in Figure 7, which im-
plements a buffer with one “writer” and two “readers.”
The writer continues executing until it exhausts its in-
put, while the readers consume data whenever some is
available.

The property we wish to prove is as follows. If the in-
put is exhausted, and the buffer is empty, then the total
items consumed is equal to the total number produced:

VD({(i’baOl;O2) i =b=0— 01+ 09 = a})

When we translate this into existential form, and submit
to our negation-labeling process, we get:

( ~3E(HE

Before tackling this property, we first obtain the upper
bound RS* for the reachable states of the program

b,01,00) :i=b=0— 01 + 02 =a}))* )~

RSt = {(i,b,01,09) 1 i+ b+ 01 + 0y =a}

The approximate fixpoint computation given above con-
verges to this set in 4 iterations. Now we turn to the
correctness property. As explained above, we set the Qg
seed of the 3O fixpoint algorithm to:

={(i,b,01,09) :i=b=0— 01+ 0y =a} N RST

which yields the empty set! In other words, the fix-
point computation trivially converges to False. When
we negate it, we see that all reachable program states
do indeed satisfy the property we wanted to prove. The
total verification effort required a CPU time of 2.87 sec-
onds.

CONCLUSIONS

We have presented a new symbolic model checker for
infinite-state programs, which evaluates safety and live-
ness properties expressed in a variant of CTL. Our
method is based on three key concepts:



e Symbolically encoding transition relations and
state sets in Presburger formulas, which we can ef-
ficiently manipulate using the Omega library [12].

e Partitioning a program’s state-space via the control
variables; and using the partition classes as reposi-
tories for the model checker’s formula-labeling com-
putations.

e Approximating fixpoint computations with tech-
niques that guarantee convergence in finite time.

We presented three infinite-state concurrent programs,
which demonstrated our three analysis techniques: ex-
act, approximate-backward and approximate-forward
analysis. While the programs do not contain many
lines of code, they exhibit subtle interplay between the
infinite-state variables and predicates controlling execu-
tion flow. They are the sort of programs usually ana-
lyzed in hand proofs.

There is much work remaining. While our multiple-
polyhedra widening approximation helped solve two
of the problems in this paper, it can often be rather
coarse. In general it sacrifices precision for finite termi-
nation. We are currently developing more precise widen-
ing methods, which produce abstractions on execution
paths rather than sets of states. As we acquire more
experience with both types of approximations, we hope
to determine which techniques work best for different
classes of programs, and why.

We also plan to develop a better way to handle compo-
sitionality. We currently form our state-partitions over
the Cartesian-product of all variable domains. When
we scale to large numbers of processes we will obviously
need a more compositional approach. To this end, we
believe we can use many of the analogous methods de-
veloped for finite-state systems.

REFERENCES

[1] R. Alur, T. A. Henzinger, and P. Ho. Automatic Sym-
bolic Verification of Embedded Systems. IFEE Trans-
actions on Software Engineering 22(3), March 1996.

[2] Gregory R. Andrews, Concurrent Programming, Prin-
ciples and Practice. 1991, The Benjamin/Cummings
Publishing Company.

[3] Andre Arnold, Finite Transition Systems: Semantics of
Communicating Systems, New Jersey, 1994, Prentice

Hall.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. H. Hwang. Symbolic model checking: 10%° states
and beyond. In Proceedings of the 5th Annual Sym-
posium on Logic in Computer Science, pages 428—439,
1990.

11

[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Au-
tomatic verification of finite-state concurrent systems
using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244-263,
(April 1986).

[6] E. M. Clarke, O. Grumberg, D. E. Long Model check-
ing and abstraction. In Proceedings of the 18th Annual
Symposium on Principles of Programming Languages,
pages 343-354, 1992.

[7] D. C. Cooper. Programs for mechanical program veri-
fication. In Machine Intelligence 6, B. Meltzer and D.
Michie, editors, pages 43-59, New York, 1971, Ameri-
can Elsevier.

[8] P. Cousot and R. Cousot. Static determination of dy-
namic properties of programs. In Proceedings of Col-
loque International sur la programmation, April 1976.

[9] P. Cousot and N. Halbwachs. Automatic discovery of
linear restraints among variables of a program. In Pro-
ceedings of the 5th Annual Symposium on Principles of
Programming Languages, 1978, ACM Press.

[10] L. K. Dillon. ACM Transactions on Programming Lan-
guages and Systems, 12(4):643-669, (October 1990).

[11] S. L. Hantler and J. C. King. An Introduction to prov-
ing the correctness of programs. ACM Computing Sur-
veys 8(3):331-353, (September 1976).

[12] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T.
Shpeisman and D. Wonnacott. The Omega Ii-
brary (version 1.00) Interface Guide. Available at
<http://www.cs.umd.edu/projects/omega>.

[13] D. Kozen Results on the propositional p-Calculus, The-
oretical Computer Science 27:333-354, (1983).

[14] K. L. McMillan. Symbolic Model Checking: An Ap-
proach to the State Explosion Problem. PhD Thesis,
Carnegie Mellon University, 1992. CMU-CS-92-131.

pn

[15] D. C. Oppen. A 92” Upper Bound on the Complexity
of Presburger Arithmetic. Journal of Computer and
System Sciences 16:323-332, (1978).

[16] W. Pugh. The Omega test: a fast and practical integer
programming algorithm for dependence analysis. Com-
munications of the ACM, 8:102-104, (August 1992).

[17] A.Udaya Shankar. An Introduction to Assertional Rea-
soning for Concurrent Systems. ACM Computing Sur-
veys, 25(3):225-262, (September 1993).

[18] J. M. Wing and M. Vaziri-Farahani. Model Checking
Software Systems: A Case Study In Proceedings of
the Third ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, pages 128-138, (October
1995).



