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Of course, in any computer system variables are even-tually mapped to �nite representations. Thus it mightbe argued that integers can be given a �nite range, andprograms can then be analyzed as �nite-state machines{ for example, using BDD's [4, 14]. For two reasons,however, this may not always be the best way to pro-ceed. First, mapping integer variables and operationsto their binary implementations may lead to highly in-e�cient static analysis. But perhaps more importantly,one may wish to analyze an algorithm as an abstrac-tion, and prove its correctness in a general sense, forany implementation of integers.In this paper we demonstrate our model checker's ef-fectiveness on some \classical" in�nite-state programs,taken from a standard concurrency textbook [2]. Whilerelatively small, they possess some interesting sub-tleties, especially in the tricky way their in�nite-statevariables in
uence control 
ow.Other methods have been proposed to deal with in�nite-state programs like these, and we note some of themhere. One is to come up with a �nite abstraction ofthe program, and then check the property on the ab-straction [6]. Of course this requires the user to �ndthe abstraction, and hence is not completely automat-able. Another approach is to use a technique like sym-bolic execution [10, 11], which symbolically generatesa program's execution paths. In practice, this methodmay end up generating an in�nite number of nodes, andthus never terminate. This limitation can be overcomeby having the user specify assertions about a process'sbehavior, which can be veri�ed locally. Then the localproofs can be checked for cooperation [10]. Althoughthe method has the bene�t of incrementally provingcorrectness (as opposed to generating all possible in-terleavings), it relies on users to come up with the rightassertions.Our work has some strong historical antecedents. Forexample, Cooper developed a technique which encodestransition relations as sets of Presburger formulas, andthen converts queries about a program's properties tovalidity checks in the Presburger arithmetic [7]. Dueto the complexity of general Presburger solvers, how-1



2ever, proving correctness as single Presburger decisionproblem is not a method that can scale very well. Wehave found it more bene�cial to use model checking asour primary technology, and use a Presburger solver forsome subservient set-theoretic computations.Our work was also in
uenced by known techniques fromabstract interpretation [8]; speci�cally, we use some ap-proximation methods �rst developed for that domain.Most properties of programs can be formulated as least�xpoints over sets of the program's states, and conser-vative abstract interpretation provides a way of approx-imating these �xpoints.Our encoding of program states is similar to that usedby Alur et al. in verifying Hybrid systems [1]. The fun-damental di�erence is that we encode sets of integers (asopposed to the real numbers used in hybrid systems),and we can thus use Presburger formulas as our sym-bolic representation. This enables us to state propertiessuch as, x is even, x � y + z + 10, etc. In hybrid sys-tems, variables change linearly with respect to time, andrange over the reals.The remainder of the paper is organized as follows. Inthe following section we present the syntax, semantics,and Presburger encodings for concurrent programs andtheir properties. Then we describe our symbolic modelchecker, and show how it exploits the Presburger rep-resentation. After formally de�ning the term conserva-tive approximation, we discuss the speci�c approxima-tion techniques we use for computing upper and lowerbounds of �xpoints. Finally, we conclude with somediscussion on our results.PROGRAMS AND PROPERTIESIn this section we de�ne our models for representingprograms and properties. We use the event-action lan-guage from [17] as our syntax for concurrent programs,with a semantics de�ned in terms of in�nite transitionsystems. For representing temporal properties, we usea variant of CTL, in which the ground propositions areencoded as Presburger formulas.Representing ProgramsA concurrent program is represented by a (1) �nite setof data and control variables, and (2) a �nite set ofevents, where each event is considered atomic. The cur-rent state of a program is determined by the values of itsdata and control variables, in which the domain of eachvariable is countable. Each event is represented with anenabling condition and an action, where the enablingcondition constrains the states in which the event canoccur, and the action de�nes a transformation on thestates.Consider the concurrent program shown in Figure 1,which implements the bakery algorithm [2] to achieve

Data Variables: a; b: integerControl Variables: pc1 : fT1;W1; C1g, pc2 : fT2;W2;C2gInitial Condition: a = b = 0Events:eT1 enabled: pc1 = T1action: pc01 = W1 ^ a0 = b+ 1eW1 enabled: pc1 = W1 ^ (a < b _ b = 0)action: pc01 = C1eC1 enabled: pc1 = C1action: pc01 = T1 ^ a0 = 0eT2 enabled: pc2 = T2action: pc02 = W2 ^ b0 = a+ 1eW2 enabled: pc2 = W2 ^ (b < a _ a = 0)action: pc02 = C2eC2 enabled: pc2 = C2action: pc02 = T2 ^ b0 = 0Figure 1: The Bakery Algorithm
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T2eT1eW1 eT2eW2eC1 eC2Figure 2: Structure of the bakery algorithm.mutual exclusion between two processes. Figure 2 showsthe structure of the program, where arcs representevents and nodes represent control points. Note thatactions of events are represented as relations, with vand v0 denoting the current and next values of a vari-able v. If v is not mentioned in the action of an event,then we assume that v0 = v. In the above program, con-trol points for each process are denoted T;W;C, whichstand for thinking, waiting or in critical section, respec-tively.When a process wants to enter the critical section it �rstgets a ticket, which will be higher than that of all otherprocesses currently in the critical section or waiting forentry. In the above program, variables a and b hold theticket values for processes 1 and 2, respectively. A pro-cess gets its ticket by simply adding one to the highestoutstanding ticket number.There are two properties we wish to prove about theprogram. The �rst is mutual exclusion, i.e., two pro-cesses are never in the critical section at the same time.
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Figure 3: Part of the in�nite transition system of thebakery algorithm.The second is starvation-freedom, i.e., if a process startswaiting for entry to the critical section, it eventuallygets in. The �rst property is a safety property, whilethe second is a progress property.Note that variables a and b can increase without bound.For example, consider the scenario where process 1 getsa ticket; then process 2 gets a ticket before process 1leaves the critical section. Then 1 gets another ticketbefore 2 leaves, etc. In other words, this is not a �nite-state program.Given a program in the above language, we model itas an in�nite transition system M = (S; I;X; L), whereS is the domain of states, I is the set of initial states,X � S �S is the transition relation, and L : S �SF !fTrue;Falseg is the valuation function for state formulasover the program's variables. These formulas form thebuilding blocks for our temporal logic.Figure 3 shows a part of the in�nite transition systemfor the bakery algorithm above. Note that we use aninterleaving model, where each transition represents ex-ecution of a single event, i.e. only one event can occurat a time. The set of program states, S, is obtainedby taking Cartesian product of domains of all programvariables. Each state corresponds to a valuation of allthe variables of the program.The transition relation X can be derived from the setof events, E, of the program. Every event e 2 E de�nesa binary relation on the program's states, Xe � S � S,such that

Xe = f ((x1; x2; : : : ; xn); (x01; x02; : : : ; x0n)) :(x1; x2; : : : ; xn) 2 enabled(e)^((x1; x2; : : : ; xn); (x01; x02; : : : ; x0n)) 2 action(e)gwhere x1; x2; : : : ; xn and x01; x02; : : : ; x0n denote values ofdata and control variables before and after the execu-tion of event e. The sets enabled(e) and action(e)respectively denote the enabling condition and actionof event e. Hence the global transition relation X isX = Se2E Xe.Representing PropertiesConsider our safety property, which states that two pro-cesses are never in the critical section at the same time.This is equivalent to asserting that the following for-mula is always satis�ed over the program's reachablestate-space: : (pc1 = C1 ^ pc2 = C2)We call this type of assertion a state formula, which isgenerated by the following grammar:f ::= t � t j (f) j f ^ f j :f j9var ft ::= (t) j t + t j var j constantHere, the terminals constant and var represent integerconstants and variables, respectively. Using this baselanguage, we can easily represent formulas including <,=, _, 8, as well as multiplication by a constant. The setof closed formulas de�ned by the above grammar formsthe theory of integers with addition, called Presburgerarithmetic. An important property of Presburger arith-metic is that validity is decidable, i.e., given a closedformula, there are decision procedures which can decideif it is true or false [15, 16].For a given program, its class of state formulas, SF , isthe set of Presburger formulas in which all open vari-ables are the variables of the program. In other words,these are exactly the formulas that have an interpreta-tion via the program's valuation function, L.We often \close o�" a state-formula using its corre-sponding set representation. For example, for the bak-ery program,f(pc1; pc2; a; b) : pc1 = C1 ^ pc2 = C2grepresents all program states in which both processesare in the critical section at the same time. Also, notethat we may also include quanti�ers in our state formu-las, which allows postulating more complicated proper-ties; e.g., f(pc1; pc2; a; b) : 9� : b = 2�+ 1g



4s j= f i� L(s; f) = True, where f 2 SFs j= :f i� s 6j= fs j= f ^ g i� s j= f and s j= gs0 j= 8
 f i� for all maximal paths (s0; s1; s2; : : :),with length � 2, s1 j= fs0 j= 9
 f i� for some maximal path (s0; s1; s2; : : :),with length � 2, s1 j= fs0 j= 83f i� for all maximal paths (s0; s1; s2; : : :),there exists an i, si j= fs0 j= 93f i� for some maximal path (s0; s1; s2; : : :),there exists an i, si j= fTable 1: Semantics of our temporal logic.represents the set of states in which b is odd.Our temporal operators extend directly from those ofCTL. We use four modal operators as the logic's basis{ the \quanti�ed-next-state" operators (9
 and 8
),and \quanti�ed-eventuality" operators (93 and 83).Thus, the logic we use to reason about a program isgenerated over the setff 2 SF; 9
; 8
; 93; 83; ^; _; :gAs usual, CTL's quanti�ed-invariant operators can eas-ily be represented as 92f = :83:f , and 82f =:93:f , respectively.The semantics of temporal logic formulas is de�ned on aprogram's transition system M = (S; I;X; L), as shownin Table 1. The table represents the semantics in termsof a program's paths, where a path (s0; s1; s2; : : :) is a(�nite or in�nite) sequence of states, such that for eachsuccessive pair of states (si; si+1) 2 X.Unlike Clarke et al [5], we do not require the transitionrelation X to be total. Rather, our semantics is de�nedusing maximal paths [3] (as opposed to in�nite paths).A maximal path is one which is either in�nite, or it endswith a state that has no successors.Consider the two properties of the bakery algorithm wediscussed at the beginning of this section. Our safetyproperty { two processes are never at the critical sectionat the same time { can easily be expressed as:82(:f(pc1; pc2; a; b) : pc1 = C1 ^ pc2 = C2g)which is equivalent to:(93f(pc1; pc2; a; b) : pc1 = C1 ^ pc2 = C2g):Note that for the sake of clarity, we are using the sym-bols C1 and C2 as valuations for the control variablespc1 and pc2. In practice, we map all program variablesto integer domains.Now recall our progress property: If a process startswaiting for entry to the critical section, it eventuallygets in. For the �rst process, this can be expressed as:

82(f(pc1; pc2; a; b) : pc1 = W1g !83(f(pc1; pc2; a; b) : pc1 = C1g))which is equivalent to::(93(f(pc1; pc2; a; b) : pc1 = W1g^:(83(f(pc1; pc2; a; b) : pc1 = C1g)))):Symbolic RepresentationsAs we have shown, Presburger formulas { and their cor-responding set representations { give us a convenientway to symbolically encode sets of states in a program.We can also encode the transition relation of a programwith Presburger formulas, as long as we restrict the un-derlying program's enabling conditions and actions toPresburger formulas. This prevents us, for example,from de�ning multiplication within a single event.In general, representing the entire transition relation(X) with a single Presburger formula will not be practi-cal. Since this formula will represent all the program'sevents, it may end up being quite large. Rather, weexploit individual event-transition relations (the Xe's),which yield a natural decomposition of X. For eache 2 E, if we assume that enabled(e) and action(e) arerepresentable as Presburger formulas, then Xe is alsorepresentable as a Presburger formula. This results injEj Presburger formulas, which together symbolicallyencode the transition relation X.Representing all of a program's state space (S) by asingle Presburger formula may also lead to a very largeformula, which will be of little use for analysis. Insteadwe use the structure of the program as follows:1. We partition the state-space S, and symbolicallyrepresent each partition class individually.2. We incrementally analyze the program by consid-ering one class at a time.In general, let P = fS1; S2; : : : ; Sng be a partitioning ofthe program states; i.e.,S =[i Si and 8i; j ; Si \ Sj = ;:In our method, partitioning of the program states isbased on the valuations of the control variables. We as-sume that each valuation de�nes a control point, whichin turn induces a partition class. I.e., when applied tothe bakery program this yields:P = fS(T1;T2); S(T1;W2); : : : ; S(C1;C2)gwhere, for example,S(C1;T2) = f(pc1; pc2; a; b) : pc1 = C1 ^ pc2 = T2g:While the entire state-space can be partitioned via Si's,so can any subset of S. That is, let Q � S. Then



5Operation DescriptionF \G intersection of F and GF [G union of F and GF �G di�erence of F and GF�1 inverse of F (relation)F [G] restrict domain of F (relation) to G (set) andreturn the range of the resulting relationTable 2: Symbolic operations on Presburger sets andrelations.PQ = fQ1; Q2; : : : ; Qng, where Qi = Q \ Si, is a parti-tioning of Q. E.g., for our bakery program, the setQ = f(pc1; pc2; a; b) : a < bgdenotes all states in which a is less than b. Using apartitioning via control points, we haveQ(C1 ;C2) = f(pc1; pc2; a; b) : pc1 = C1 ^ pc2 = C2 ^ a < bg:This formula denotes the set of states where a is lessthan b and both processes are at the critical section.SYMBOLIC MODEL CHECKERIn the previous section we de�ned the syntax and se-mantics of our temporal logic. Now we show how aformula in the logic can be computed symbolically.For a given temporal formula f , we implicitly use thesymbolic form of f to denote the set of states that satisfyf { i.e., the set fsjs j= fg. From elementary set theory,we then get the following interpretations:f ^ g = f \ g f _ g = f [ g :f = S � fTo carry these operations out symbolically, we use atoolset called the Omega library [12], which includesa large collection of object classes to manipulate Pres-burger formulas. Of particular use to us are the func-tions shown in Table 2, which are all implemented asOmega functions. These operations take Presburgersets or relations as inputs, and return the symbolic formof a Presburger set or relation as output.We also use these operators to help us symbolically com-pute the temporal operators. First, we de�ne a func-tion pred : 2S ! 2S called predecessor function, which,given a set of states, returns all the states which canreach this set in one step (i.e. after execution of a singleevent). Formally,pred(Q) = fs : s0 2 Q ^ (s; s0) 2 Xgor using the notation in Table 2, pred(Q) = X�1[Q].Since we do not represent X as a single relation, wedon't compute pred(Q) in a single step. Rather, we

Procedure Check(f)(Subformulas are computed recursively.)Casef 2 SF : Return(f)f = :f1 : Return(S � f1)f = f1 ^ f2: Return(f1 \ f2)f = 9
 f1: Return(pred(f1))f = 8
 f1: Return(S � pred(S � f1))f = 93f1 : Q0 = f1Qi+1 = Qi [ pred(Qi)Return(Qn) when Qn = Qn+1f = 83f1 : Q0 = f1Qi+1 = Qi [ ((S � pred(S �Qi)) \ pred(Qi))Return(Qn) when Qn = Qn+1Figure 4: Symbolic Model Checker.compute pred with respect to our program's partition-ing, and compute one formula for each set of the par-tition. Formally, let P = fS1; S2; : : : ; Sng be our par-titioning of the program states, and let Q be a set ofprogram states. Since Q = SSi2P (Q\Si), we can com-pute pred(Q) aspred(Q) = pred(SSi2P (Q \ Si))= SSi2P pred(Q \ Si) = SSi2P;e2E X�1e [Q\ Si]This is nothing more than symbolically computing theweakest precondition of Q with respect to each set of thepartition. It often makes sense to do this individuallyfor each partition class, since many formulas inherentlyrefer to only a small number of classes. E.g., let Q =f(pc1; pc2; a; b; t; s) : pc1 = C1 ^ pc2 = C2g, i.e. Q isthe set of states where both processes are at the criticalsection. Then,pred(Q) = pred(Q \ S(C1 ;C2))= [e2feW1 ;eW2gX�1e [Q\ S(C1 ;C2)]which is equal to:f(pc1; pc2; a; b) : pc1 =W1 ^ pc2 = C2 ^ (b = 0 _ a < b)g[f(pc1; pc2; a; b) : pc1 = C1 ^ pc2 =W2 ^ (a = 0 _ b < a)gNow, according to the semantics of the temporal oper-ators de�ned in Table 1, we immediately have9
 f = pred(f) 8
 f = S � pred(S � f)So given a symbolic representation for f , we can sym-bolically compute 9 
 f and 8 
 f using the functionpred.As for 93 and 83, consider the functionals �EF =�y: f _ 9 
 y and �AF = �y: f _ (8 
 y ^ 9 
 y).The least �xpoints of �EF and �AF are equal to 93fand 83f , respectively [13]. To compute these �xpointswe can use the following property:



6Property 1 For all n 2 Z,93f � n[i=0(�y: f _ 9
 y)i(False)83f � n[i=0(�y: f _ (8 
 y ^ 9
 y))i(False)This property tells us that every element in the sequenceFalse = ;; �EF (;); �2EF (;); �3EF (;); : : : is a subset of theleast �xpoint of �EF ; similarly, every element in the se-quence False = ;; �AF (;); �2AF (;); �3AF (;); : : : is a subsetof the least �xpoint of �AF . Since �EF and �AF areboth monotonic, and since we start the sequence with;, these sequences are non-decreasing. So we can keepiterating until we reach a �xpoint, and when we do, weknow that it is the least �xpoint [14].These methods lead directly to the semi-decision proce-dure shown in Figure 4. Given a program and a tempo-ral logic formula, the procedure will (attempt to) sym-bolically compute the set of program states that satisfythe input formula. That is, the procedure will give anexact answer if it converges.In �nite-state systems this is the end of the story, sincethe procedure is guaranteed to converge. This is alsotrue in some in�nite-state systems, depending on thestructure of the program and the formula. This is thecase in our analysis of the bakery algorithm, where wecan compute an exact �xpoint.Algorithm, RevisitedRecall the mutual exclusion requirement for the bakeryalgorithm, represented as::(93(f(pc1; pc2; a; b) : pc1 = C1 ^ pc2 = C2g)):To prove this property, the model checker starts by com-puting the least �xpoint 93(f(pc1; pc2; a; b) : pc1 =C1 ^ pc2 = C2g), with the �rst iterate initialized toQ0 = f(pc1; pc2; a; b) : pc1 = C1 ^ pc2 = C2g. The�xpoint computation converged to a set Q after 4 it-erations (for a total computation time of 2.85 secondson a Sun SPARCstation 5), where Q is partitioned asfollows:Q(T1;T2) : pc1 = T1 ^ pc2 = T2 ^ FalseQ(T1;W2) : pc1 = T1 ^ pc2 = W2 ^ b = 0Q(T1;C2) : pc1 = T1 ^ pc2 = C2 ^ b = 0Q(W1;T2) : pc1 = W1 ^ pc2 = T2 ^ a = 0Q(W1;W2) : pc1 = W1 ^ pc2 = W2 ^ (a = b = 0_a = 0 ^ 1 � b _ b = 0 ^ 1 � a)Q(W1;C2) : pc1 = W1 ^ pc2 = C2 ^ (b = 0_ a < b)Q(C1;T2) : pc1 = C1 ^ pc2 = T2 ^ a = 0Q(C1;W2) : pc1 = C1 ^ pc2 = W2 ^ (a = 0 _ b < a)Q(C1;C2) : pc1 = C1 ^ pc2 = C2 ^ True:

Our top-level formula is :(93f(pc1; pc2; a; b) : pc1 =C1 ^ pc2 = C2g), which means that we have to com-pute S � Q. This will yield the set of states which cannever reach a violation of the mutual exclusion prop-erty. For the bakery algorithm the initial condition isI = f(pc1; pc2; a; b) : pc1 = T1 ^ pc2 = T2 ^ a = b = 0g,and it is easy to see that I � (S � Q); i.e., all of theinitial states satisfy the safety property, and hence theproperty is proved.The model checker was also able to prove the progressproperty::(93(f(pc1; pc2; a; b) : pc1 = W1g^:(83(f(pc1; pc2; a; b) : pc1 = C1g)))):The inner (83) and outer (93) �xpoint computationsconverge in 9 and 1 iterations, respectively (with a totalcomputation time of 7.64 seconds). Hence, both our re-quirements were proved by the symbolic model checkerdescribed in Figure 4.In general, however, we will not be so fortunate. Af-ter all, we have a Turing-computable language { whichmeans that we may easily keep iterating forever with-out reaching a �xpoint. (If this were not the case, wewould be able to solve the halting problem.) Thus wealso need a conservative approximation method, whichwill converge in �nite time.APPROXIMATION TECHNIQUESIt is usually impossible to determine in advance whetheran exact �xpoint computation will converge; in generalthis is itself an undecidable problem. So when we carryout our analysis, we �rst attempt to compute an ex-act solution. If the calculation takes an unacceptableamount of time, or perhaps uses too much space, weappeal instead to a conservative approach. A conserva-tive analyzer is one which never yields a \false positive"(and reports that a property holds when in fact it doesnot), but it may yield a \false negative," and indicatethat a property does not hold when it really does.Ticket Algorithm.Our exact analyzer diverged when we fed it the so-calledticket algorithm [2], along with its related mutual exclu-sion property. The program text is presented in Fig-ure 5. In particular, note its similarity to the Bakeryexample. Both algorithms use a few shared variables tomaintain mutual exclusion, and they ensure progress ina similar way. Here, when a process attempts to enterto the critical section it �rst gets a ticket, which has ahigher number than all of the tickets issued before. Thevalue of the next available ticket is stored in the globalvariable t, while s holds the highest ticket value servedthus far. New tickets are obtained by executing a fetch-and-add on t { where the returned values are storedin either a or b, the local ticket repositories. A cus-



7Data Variables: a; b; t; s: integerControl Variables: pc1 : fT1;W1; C1g, pc2 : fT2;W2; C2gInitial Condition: t = sEvents:eT1 enabled: pc1 = T1action: pc01 = W1 ^ a0 = t^ t0 = t+ 1eW1 enabled: pc1 = W1 ^ s � aaction: pc01 = C1eC1 enabled: pc1 = C1action: pc01 = T1 ^ s0 = s+ 1eT2 enabled: pc2 = T2action: pc02 = W2 ^ b0 = t ^ t0 = t+ 1eW2 enabled: pc2 = W2 ^ s � baction: pc02 = C2eC2 enabled: pc2 = C2action: pc02 = T2 ^ s0 = s+ 1Figure 5: The Ticket Mutual-Exclusion Algorithmtomer can enter the critical section when the last-usedticket s catches up to its local ticket number. Again,the mutual-exclusion property is::(93f(pc1; pc2; a; b; t; s) : pc1 = C1 ^ pc2 = C2g)which asserts that no two processes can be in the criticalsection at the same time. When the exact analyzer wentto work on this property, it attempted to symbolicallyenumerate ways that both a and b could be less than s.Since s and t are arbitrary integers, this method failedto converge. At this point we turned to the conservativeanalyzer, which yielded a positive response.What is Conservative?As explained above, the goal of model-checking is tocompute a truth set fs : s j= f ^ s 2 Sg for sometemporal formula f . (In the sequel { as in the precedingtext { we use the formula f to represent this set.) Wealso typically wish to determine whether I � f , i.e.,whether f holds for the initial states in I. But if we can'tdirectly compute f on our program, the next-best-thingis to generate a lower-bound for f , denoted f�, suchthat f� � f . Then if we determine that I � f�, wehave also achieved our objective { that I � f . Howeverif I 6� f�, we can conclude nothing.Consider the property g = :93(a = b). We want toshow that there is no state on any reachable path wherea = b. Again, the objective is to �rst compute a lowerbound g� for g, and then check if I � g�. But notethat there is a subtle twist here: Since we seek to carryout our analysis in a compositional (syntax-directed)manner, the most direct way to obtain g� is to (1) tocompute an upper approximation h+ for the term h =93(a = b), and then (2) to let g� = S � h+. Thisfollows directly from set theory, since if h � h+, then

:(h+) � :h. Hence we need algorithms to computeboth lower and upper bounds of temporal formulas.First we show that in negation-free formulas, lower andupper bound computations are trivially compositional.Recall that model-checking is a recursive procedure (seeFigure 4), which works in a bottom-up manner on aformula's structure { �rst on the leaves (i.e., the state-formulas), then up to the next-level enclosing formula,and so on. Thus, the compositionality of an approx-imation follows directly from the fact that all opera-tors other than : are monotonic. I.e., for any operatorop 2 f^;_; 9
; 8
;93; 83gf� � f � f+ =) op(f�) � op(f) � op(f+)This means that any lower/upper approximation fora formula can be computed using the correspondinglower/upper approximation for its subformulas.As for negation, we showed above how we can handleformulas with a single \:" at the outermost level, byexploiting the properties (:f)� = :(f+) and (:f)+ =:(f�). We can easily generalize this method for the ar-bitrary use of negation. To compute a bound for a CTLformula f , the following procedure determines which off 's subformulas require an upper bound, and which re-quire a lower bound.1. Mark the root of the parse tree for formula f witha minus sign (\�") if a lower bound is desired, andwith a plus sign (\+") if an upper bound is desired.2. Using a preorder tree traversal, visit each node inthe tree, mark each node with the mark of its par-ent, unless its parent is a : operator. In that casemark the node with the opposite bound.Computing Upper BoundsSuppose our objective is to compute an upper bound foreither 93f or 83f for some formula f . In examiningFigure 4, we see that the exact iterations for 93f and83f form increasing sequences over the lattice of statesets (2S ; ;; S;[;\), with ; as bottom, S as top, [ asjoin, and \ as meet. I.e., we have thatQ0 � Q1 � Q2 : : :and moreover, each Qi is a lower approximation to the�xpoint. But since we have an in�nite state-space, theremay in fact be in�nitely many members of the chain,with each member containing successively more statesthan its preceding neighbor. From elementary �xpointtheory we know that a least �xpoint exists { but it maysimply not be computable. Hence our job is to accel-erate the computation, and \leap-frog" over multiple ofthe members of the chain { perhaps at the risk of over-shooting the exact least �xpoint. As long as the result



8is larger than the exact �xpoint, we have an upper ap-proximation.The way we go about this is as follows. If the exactiteration sequence is Q0; Q1; Q2; : : :, then we �nd a ma-jorizing sequence Q̂0; Q̂1; Q̂2; : : : such that (1) for eachi, Qi � Q̂i, and (2) the Q̂i sequence terminates. From(1) we immediately have that the �xpoint of the Q̂i'sis an upper approximation to the least �xpoint of theQi's; from (2) we can obtain it in �nite time.To generate the Q̂i's, we adopt a method developed byCousot and Cousot, within the framework of abstractinterpretation [8]. That is, we de�ne an operator calledwidening, or \5", which majorizes the union computa-tion as follows:For any pair of sets P; P 0, P [ P 0 � P 5 P 0.Using a suitable widening operator, we slightly rede�nethe procedure for 93f from Figure 4:Q̂0 = fQ̂i+1 = Q̂i5 (Q̂i [ pred(Q̂i))(93f)+ = Q̂n when Q̂n = Q̂n+1From the monotonicity of the pred operator, one caneasily show by induction that this sequence does indeedmajorize the Qi's computed in Figure 4. (We leave theproof to the reader.) And if the sequence terminates,the �nal iterate is an upper bound for 93f . For 83fwe use the analogous approximation technique:Q̂0 = fQ̂i+1 = Q̂i 5 (Q̂i [ ((S � pred(S � Q̂i)) \ pred(Q̂i)))(83f)+ = Q̂n when Q̂n = Q̂n+1If we reach termination, we have that (83f)+ is anupper bound for 83f .Our goal is to �nd a widening operator which (1) yieldsa suitable (i.e., reasonably tight) upper bound for union,and (2) forces the Q̂i sequence to converge. To dothis, we generalize the application of widening usedby Cousot and Halbwachs in [9], where the idea is to\guess" the direction of growth in the checker's Qi it-erates, and to extend the successive iterates in thesedirections. Cousot and Halbwachs de�ned a wideningoperator b5 that accomplishes this for convex polyhedra{ i.e., regions formed by a conjunction of a�ne con-straints. If both P and P 0 are convex, then P b5P 0 isde�ned by the constraints in P which are also satis�edby P 0. Hence, P b5P 0 is built by simply removing con-straints from P ; since we cannot remove in�nitely manyconstraints, the �niteness property is satis�ed.A simple example shows how widening can be used inthe context of our event-action language, and with Pres-burger sets. Consider the following simple program,which consists of only one event:
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Figure 6: A simple example demonstrating how thewidening operator b5 works.Data Variables: x; y: positive integerEvents:e enabled: x > 0action: x0 = x� 1 ^ y0 = y + 1Assume that we wish to check the property 82f(x; y) :y 6= ag, where a is a positive constant. Our sym-bolic model checker will convert this property to:93(f(x; y) : y = ag), and �rst try to compute an ex-act �xpoint for 93(f(x; y) : y = ag). Figure 6 showsthe regions Q0; Q1; Q2 generated by the �rst iterationsof the exact algorithm. At this point, it might be pre-dicted that the sequence will diverge (and indeed, itwill). Thus, we can set Q̂0 = Q1, and then note thatQ2 = Q̂0[pred(Q̂0). We then obtain Q̂1 by computingQ1 b5Q2:Q1 b5Q2 = f(x; y) : a � x+ y ^ a� 1 � y � agb5 f(x; y) : a � x+ y ^ a� 2 � y � ag= f(x; y) : a � x+ y ^ 0 � y � agThe iterations converge, since this formula is also gen-erated for Q̂2. When we negate the result, we getf(x; y) : x + y < a _ a < yg. In other words, if ourinitialization of x and y satis�es this condition, thenthe invariant will indeed hold.However, a program's state space is not always convex;in fact, most (exact) �xpoint computations are com-posed of a (potentially large) number of disjuncts, eachde�ning a convex polytope. To accommodate this wegeneralize the widening de�nition in [9] to handle mul-tiple polyhedra. Assume that we have two Presburgersets Q and R, where Q � R. Then Q and R can berepresented as:Q = q1[q2[ : : :[qm and R = r1[r2[ : : : rm : : :[rnwhere all the qi's and ri's are convex polytopes, andwhere m � n, and for all 1 � i � m, qi � ri. Then wecan de�ne our new widening operator to beQ5R = n[i=1 pi (y)



9such that for i � m, pi = (qi b5ri), and for m < i � n,we have pi = ri.We do face some technical issues when we use this de�-nition in practice. Assume that we are computing a 93property, and that̂Qi = q1 [ q2 [ : : :[ qmwhere each of the qj's is convex. Then Q̂i+1 = Q̂i 5(Q̂i [ pred(Q̂i)), withQ̂i [ pred(Q̂i)) = (Smj=1 qj) S (Smj=1 pred(qj))= (q1 [ q2 [ : : : [ qm) S (p1 [ p2 [ : : : [ pn)Here the pj's represent a convex decomposition ofSmj=1 pred(qj). Now we use a simple algorithm tomerge selected qj's with pj's in a pairwise fashion. Foreach qj (1 � j � m) we scan the pk's (1 � k � n), look-ing for polyhedra to merge. This is done by computingthe convex hull of qj [ pk { denoted hull(qj [ pk) { anddetermining if it is equal to qj [ pk. If so, we deletethe pk term and replace qj with hull(qj [ pk). We con-tinue this process until a maximum amount of mergingis accomplished, after which we have:Q̂i = q1 [ q2 [ : : :[ qmQ̂i [ pred(Q̂i) = r1 [ r2 [ : : :[ rlsuch that m � l, and for all 1 � j � m, qj � rk, Thenthe conditions for 5 in (y) are satis�ed, and thereforewe can use it as our widening operation.Note, however, that the ri decomposition of Q̂i [pred(Q̂i) may include too many terms, since it is possi-ble that there will be little potential for merging the qi'swith the pk's. So to ensure that we converge, we alsoassign an upper bound to the number of disjoint convexregions we wish to represent. When we reach this boundwe force-merge disjoint regions by replacing them withtheir convex hull { even if the hull properly containstheir union. Since we are computing upper bounds, wecan do this at the expense of losing precision.Computing Lower BoundsRecall that each iteration of an exact �xpoint computa-tion will yield a lower a bound for 93f and 83f . So toobtain a lower approximation for the purposes of analy-sis, we need only stop after a �nite number of iterations;in this manner we are guaranteed to have a conservativeapproximation. Of course the question is: when do westop?Our veri�er uses the following rules: if it is handling theoutermost formula, then after each iteration it checkswhether the initial states are included in the currentlower bound. If so it stops, since the property is proved.If not it keeps going. Obviously there will be cases where

this method fails to converge, and if this happens thetool will not be able to prove or disprove the property.However, the user is able to interact with the analyzer,and periodically monitor its progress; thus the user canoptionally \pull the plug" on waiting for a response.If the �xpoint we are computing is a subformula of an-other computation, the analyzer sets an arbitrary timeto stop generating an approximation { after which itused in the next-higher formula. But if the analyzeris unable to prove or disprove the outermost formula,the user may optionally return and improve the lowerbound by continuing the �xpoint sequence.Approximate Analysis of the Ticket AlgorithmNow we demonstrate the approximationmethods on theTicket Algorithm(Figure 5). Recall the mutual exclu-sion property, which is represented in temporal logic as::(93f(pc1; pc2; a; b; t; s) : pc1 = C1 ^ pc2 = C2g)Using the negation-labeling algorithm we get(:(93f(pc1; pc2; a; b; t; s) : pc1 = C1 ^ pc2 = C2g+)+)�which means that we want to compute an upper boundfor 93f(pc1; pc2; a; b; t; s) : pc1 = C1 ^ pc2 = C2g, i.e.,the states which violate mutual exclusion. The sym-bolic model checker computes the upper bound usingthe widening technique developed in the previous sec-tion; it converges after 9 iterations (with a CPU time of7.32 seconds). The result is a Presburger set Q, whichis partitioned asQ̂(T1;T2) : pc1 = T1 ^ pc2 = T2 ^ t < sQ̂(T1 ;W2) : pc1 = T1 ^ pc2 = W2 ^ t � sQ̂(T1;C2) : pc1 = T1 ^ pc2 = C2 ^ t � sQ̂(W1;T2) : pc1 = W1 ^ pc2 = T2 ^ t � sQ̂(W1;W2) : pc1 = W1 ^ pc2 = W2 ^ (b � s ^ a � s _t � s+ 1^ b � s _ t � s+ 1^ a � s)Q̂(W1;C2) : pc1 = W1 ^ pc2 = C2 ^ (b � s _ t � s+ 1)Q̂(C1;T2) : pc1 = C1 ^ pc2 = T2 ^ t � sQ(C1;W2) : pc1 = C1 ^ pc2 = W2 ^ (a � s _ t � s+ 1)Q(C1;C2) : pc1 = C1 ^ pc2 = C2 ^ True:However, note that we are actually computing:(93f(pc1; pc2; a; b; t; s) : pc1 = C1 ^ pc2 = C2g), i.e.,we have to get S � Q, which will give us a lower ap-proximation for the states which respect mutual exclu-sion. Recall that the ticket algorithm's initial conditionis I = f(pc1; pc2; a; b; s; t) : pc1 = T1^pc2 = T2^ t = sg,and observe that I � (S � Q). This means that all theinitial states of the program satisfy the safety property,hence the property is proved.We also wish to prove starvation-freedom, where the



10relevant formula for process 1 is::(93(f(pc1; pc2; a; b; t; s) : pc1 = W1g^:(83(f(pc1; pc2; a; b; t; s) : pc1 = C1g)))):The negation-labeling algorithm converts this to:(:(93(f(pc1; pc2; a; b; t; s) : pc1 =W1g+ ^(:(83(f(pc1; pc2; a; b; t; s) : pc1 = C1g�)�)�)+)+)+)�:Note that because of the double negation, the inner�xpoint 83 is marked with \�" (i.e., a lower bound),whereas the outer �xpoint 93 is marked with \+." Themodel checker computes the 83 property exactly, in 5�xpoint iterations; hence the lower bound turns out tobe exact. Then it computes an upper bound for the93 property in 7 iterations, by using the widening tech-nique (for a total CPU time of 27.03 seconds). Afterthe lower bound for the whole formula is computed, themodel checker reports that all the initial states do in-deed satisfy the liveness property.Using Forward AnalysisThe �xpoint computations we have described thus farare backward techniques, in that they start with a prop-erty f , and then use pred to determine which statescan reach f . The last step is to determine whether theinitial condition I is included in the derived set. Alter-natively, it may be useful to start with I, compute anupper approximationRS+ to the reachable state-space,and then use RS+ to help in the model-checking pro-cess. We can practically accomplish this by altering thesymbolic model checker to restrict its computations tostates in RS+.To help generate the upper bound RS+ , we de�ne afunction succ : 2S ! 2S , called the successor function,which, given a set of states, returns the states reachablefrom this set in one step. Formally,succ(Q) = fs : s0 2 Q ^ (s0; s) 2 XgIn particular, note that this is the \forward analogue"to the pred function. We claim that the (exact) reach-able state space of a program is the least �xpoint of thefunctional �y: (I _ succ(y)); hence it can be computedusing the techniques we previously developed for 93f .Moreover, the same upper bound method works as well:R0 = IRi+1 = Ri5 (Ri [ succ(Ri))(RS)+ = Rn when Rn = Rn+1After computing RS+ , we restrict the result of everyoperation in the model checker (Figure 4) to RS+. Inother words, when each iterate Qi is produced, it is re-placed by Qi\RS+. Most importantly, we can also use

Data Variables: i; b; o1; o2: integerConstants: a: integerInitial Condition: i = a ^ (b = o1 = o2 = 0)Events:eW enabled: i > 0action: i0 = i� 1 ^ b0 = b+ 1eR1 enabled: b > 0action: o01 = o1 + 1^ b0 = b� 1eR2 enabled: b > 0action: o02 = o2 + 1^ b0 = b� 1Figure 7: A Producer-Consumer Algorithmthis technique when we compute approximate backward�xpoints, as de�ned above.We demonstrate this method on a producer-consumerproblem. Consider the program in Figure 7, which im-plements a bu�er with one \writer" and two \readers."The writer continues executing until it exhausts its in-put, while the readers consume data whenever some isavailable.The property we wish to prove is as follows. If the in-put is exhausted, and the bu�er is empty, then the totalitems consumed is equal to the total number produced:82(f(i; b; o1; o2) : i = b = 0! o1 + o2 = ag)When we translate this into existential form, and submitto our negation-labeling process, we get:( :(93(:f(i; b; o1; o2) : i = b = 0! o1 + o2 = ag))+ )�Before tackling this property, we �rst obtain the upperbound RS+ for the reachable states of the programRS+ = f(i; b; o1; o2) : i + b+ o1 + o2 = agThe approximate �xpoint computation given above con-verges to this set in 4 iterations. Now we turn to thecorrectness property. As explained above, we set the Q0seed of the 93 �xpoint algorithm to::f(i; b; o1; o2) : i = b = 0! o1 + o2 = ag \ RS+which yields the empty set! In other words, the �x-point computation trivially converges to False. Whenwe negate it, we see that all reachable program statesdo indeed satisfy the property we wanted to prove. Thetotal veri�cation e�ort required a CPU time of 2.87 sec-onds.CONCLUSIONSWe have presented a new symbolic model checker forin�nite-state programs, which evaluates safety and live-ness properties expressed in a variant of CTL. Ourmethod is based on three key concepts:



11� Symbolically encoding transition relations andstate sets in Presburger formulas, which we can ef-�ciently manipulate using the Omega library [12].� Partitioning a program's state-space via the controlvariables, and using the partition classes as reposi-tories for the model checker's formula-labeling com-putations.� Approximating �xpoint computations with tech-niques that guarantee convergence in �nite time.We presented three in�nite-state concurrent programs,which demonstrated our three analysis techniques: ex-act, approximate-backward and approximate-forwardanalysis. While the programs do not contain manylines of code, they exhibit subtle interplay between thein�nite-state variables and predicates controlling execu-tion 
ow. They are the sort of programs usually ana-lyzed in hand proofs.There is much work remaining. While our multiple-polyhedra widening approximation helped solve twoof the problems in this paper, it can often be rathercoarse. In general it sacri�ces precision for �nite termi-nation. We are currently developingmore precise widen-ing methods, which produce abstractions on executionpaths rather than sets of states. As we acquire moreexperience with both types of approximations, we hopeto determine which techniques work best for di�erentclasses of programs, and why.We also plan to develop a better way to handle compo-sitionality. We currently form our state-partitions overthe Cartesian-product of all variable domains. Whenwe scale to large numbers of processes we will obviouslyneed a more compositional approach. To this end, webelieve we can use many of the analogous methods de-veloped for �nite-state systems.REFERENCES[1] R. Alur, T. A. Henzinger, and P. Ho. Automatic Sym-bolic Veri�cation of Embedded Systems. IEEE Trans-actions on Software Engineering 22(3), March 1996.[2] Gregory R. Andrews, Concurrent Programming, Prin-ciples and Practice. 1991, The Benjamin/CummingsPublishing Company.[3] Andre Arnold, Finite Transition Systems: Semantics ofCommunicating Systems, New Jersey, 1994, PrenticeHall.[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,and L. H. Hwang. Symbolic model checking: 1020 statesand beyond. In Proceedings of the 5th Annual Sym-posium on Logic in Computer Science, pages 428{439,1990.
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