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Abstract

Discretizations of inverse problems lead to systems of linear equations with a highly
ill-conditioned coefficient matrix, and in order to compute stable solutions to these sys-
tems 1t is necessary to apply regularization methods. Classical regularization methods,
such as Tikhonov’s method or truncated SVD, are not designed for problems in which
both the coefficient matrix and the right-hand side are known only approximately. For
this reason, we develop T'LS-based regularization methods that take this situation into
account.

Here, we survey two different approaches to incorporation of regularization, or
stabilization, into the T'LS setting. The two methods are similar in spirit to Tikhonov
regularization and truncated SVD, respectively. We analyze the regularizing properties
of the methods and demonstrate by numerical examples that in certain cases with large
perturbations, these new methods are able to yield more accurate regularized solutions
than those produced by the standard methods.

1 Discrete Ill-Posed Problems

In this paper we study linear, and possibly overdetermined, systems of equations Ax =~ b
whose m X n coefficient matrix A (with m > n) is very ill conditioned. We restrict our
attention to the important case where all the singular values of A decay gradually to zero,
i.e., with no particular gap in the spectrum.

Such ill-conditioned linear systems arise frequently in connection with discretizations
of ill-posed problems, such as Fredholm integral equations of the first kind, and the term
discrete ill-posed problem is sometimes used to characterize these systems. For more details
about the underlying theory see, e.g., [2], [3], [6], [8] and the references therein. Suffice it
here to say that the gradual decay of the singular values of A is an intrinsic property of
discretizations of many ill-posed problems.

For discrete ill-posed problems, the ordinary least squares solution z1,g, as well as the
ordinary total least squares solution z71rs, are hopelessly contaminated by noise in the
directions corresponding to the small singular values of A or (A, b). Because of this, it is
necessary to compute a regularized solution in which the effects of the noise are filtered out.
Surveys of regularization methods for discrete ill-posed problems are given in [6] and [8].

The filtering is often done either by truncation of the small singular values of A or by
Tikhonov’s method.

If A=3" uolvT is the SVD of A, then the truncated SVD (TSVD) solution xy,
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with truncation parameter k, is given by
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In the Tikhonov method, a side constraint ||Lz|lz < & is added to the least squares
formulation:
(2) min ||Az — bl|z  s.t. || Lz|lz < 6.

If L = I, then the problem is in standard form, but it is often advantageous to choose L as
a discrete approximation to a derivative operator. A solution to this optimization problem
solves the system of equations

(3) (ATA+ ML L)ye = ATh

with A > 0. It can be shown that the solution x5 to (2) is identical to the solution to (3)
for an appropriately chosen A, and there is a monotonic relation between the parameters 6
and A. In the standard-form case (L = I,,), the Tikhonov solution is given by
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For both the truncated SVD and the Tikhonov algorithm, the regularized solution is a
filtered version of the ordinary least squares solution. The filter factors (the ratio between
the coefficients of v/ in the computed solution and the exact solution z1g) are zeros and
ones for the T'SVD solution and ¢/*/(a/* + \), for the Tikhonov solution.

Most regularization methods used today assume that the errors are confined to the
right-hand side b. Although this is true in many applications there are problems in which
also the coefficient matrix A is not precisely known. For example, A may be available only
by measurement, or may be an idealized approximation of the true operator. Discretization
typically also adds some errors to the matrix A. Hence, there is a need for regularization
methods that take into account the errors in A and their size relative to those in b.

In this paper we survey two such regularization methods in the TLS setting. One is
analogous to the Tikhonov-regularized solution and the other to the truncated SVD, but
both allow errors in the entries of A. These methods have been developed recently in [4]
and [5]. We discuss the regularizing effects of these methods and illustrate by numerical
examples that they can be superior to the classical regularization methods.

2 Regularized TLS

The first TLS-based regularization method is based on the Tikhonov formulation (2). In
the TLS setting, we add the bound ||Lz||; < 6 to the ordinary TLS problem, and the
regularized TLS (R-TLS) problem thus becomes

(5) min (4, 5) = (Ao, bo)llr st bo= Az, ||Lally < 6.
0%

The corresponding Lagrange formulation is
(6) £( Ao ) = [I(A, b) = (Ao, Aoa)[[%+ p(llall} - 62) .

where 1 is the Lagrange parameter. The R-TLS solution Zs to (5) is characterized by the
following theorem from [5].
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THEOREM 2.1. The regularized TLS solution to (5) is a solution to the problem
(7) (ATA+ ML, + 2L D)z = ATh

where the parameters Ar and Ap, are given by

|6 — Az|)3
(8) A o= Al
L+ [zl
(9) Aro= (14 [l213)

and where i is the Lagrange multiplier in (6). Moreover, the TLS residual satisfies

(10) 1A )~ (Ao, o)l = ~Ar.

2.1 The Standard-Form Case
In the standard-form case (L = 1,,), Eq. (7) simplifies to

(11) (ATA+ 2jpl)z = ATb

with A7z = A7 + Ar. In this case, the standard-form R-TLS solution Zs and the standard-
form Tikhonov solution zs have a close relationship which is proved in [5].

THEOREM 2.2. For a given value of 8, the solutions Ts and x5 are related as follows,
where 0,41 denotes the smallest singular value of (A, b):

6 solutions AIL
o< HxLSHQ T = s A, >0
6 = HxLSHQ Tsg = Xs = TLS Ar =0
lzisllz < 6 < [laTisl2 Ts # 15 = TLs ~0h <Az <0
6> HxTLSHQ Ts = TTLS, T§ = TLS AL = _U%-H

We conclude that as long as é < [|zrs||2, which is normally the case in regularization
problems where ||z1g||2 is very large, then regularized T'LS produces solutions that are
identical to the Tikhonov solutions. In other words, replacing the LS residual with the TLYS
residual in the Tikhonov formulation has no effect when L = I,, and § < ||ars]|2.

We remark that since ||zrrs|ls > [JzLs]lz (see [12, Corollary 6.2]) there is usually a
nontrivial set of “large” é’s for which the multiplier Ajp is negative. The corresponding
R-TLS solutions zs can be expected to be even more dominated by errors than the least
squares solution zpg.

2.2 The General-Form Case

In many applications, it is necessary to choose a matrix L different from the identity matrix,
and often L is chosen to represent the first or second derivative operator. In this case, the
R-TLS solution Z; is different from the Tikhonov solution whenever the residual b — Az is
different from zero, since both Ay and A; are nonzero.

Notice that Ar is always positive, as long as § < ||zTLs||2 (because the Lagrange
parameter p is positive for these values of A). On the other hand, A; is always negative,
and thus adding some de-regularization to the solution. Statistical aspects of a negative
regularization parameter in Tikhonov’s method are discussed in [9].
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For a given ¢, there are usually several pairs of parameters A; and Ar, and thus several
solutions z, that satisfy relations (7)—(9), but only one of these satisfies the optimization
problem (5). According to (10), this is the solution that corresponds to the smallest value
of |Az|. The following relations hold:

6 solutions AT AL
o< HLxTLSHQ Ts Ar<0 8/\1/85>0 A >0 8/\L/86<0
6 > ||Latis|l2 | @5 = 718 Ar=—0o2 AL =10

We note that if the matrix A7l + Ar, LT L is positive definite, then the R-TLS solution
corresponds to a Tikhonov solution for which the seminorm ||Lz||; in (3) is replaced with
the Sobolev norm (Af||=||3 4+ Ap||Lz||3)/2. T A;L, + A LT L is indefinite or negative definite
then there is no equivalent interpretation.

2.3 Computational Aspects

To compute the R-TLS solutions for L # I,,, we have found it most convenient to avoid
explicit use of §; instead we use Ay, as the free parameter, fixing its value and then computing
the value of A7 that satisfies (8) and is smallest in absolute value. As shown in [5], the
corresponding value of é can then easily be computed from the relation

(12) A 6% =0T (b— Az) + A1

We now discuss how to solve (7) efficiently for many values of A\;j and Az. We assume
that the matrix L is a banded matrix, which is often the case when L approximates a
derivative operator. The key to efficiency is then to reduce A to bidiagonal form B by
means of orthogonal transformations: H' A K = B. The orthogonal right-transformations
should also be applied to I, and simultaneously we should apply orthogonal transformations
to L from the left in order to maintain its banded form. It is convenient to use sequences of
Givens transformations to form J, H and K, since this gives us the most freedom to retain
the banded form of ¢ = JTL K.

Once B and C' have been computed, we note that (7) is equivalent to the following least

squares problem
B HTb
( ALC ) (KTz) - ( 0 )
iArl, 0

where 1 is the imaginary unit. Since Ay changes more frequently than Ay in our approach,

(13) min

2

/\BC) to bidiagonal form B by means of Givens
L
rotations, along the same lines as in Elden’s algorithm [1, Section 5.3.4]. This changes

HTbN . .
into d, and thus we arrive at the problem

0
(iffn) () - (g)

We are currently investigating stable and efficient numerical algorithms for solving (14).

the next step is to reduce the submatrix (

(14) min

2

3 Truncated 7TLS

The second TLS-based approach to regularization is inspired by the TS VD method in which
the small singular values of A are discarded. In the truncated TLS (7T-TLS) method the
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key idea is to neglect the small singular values of (A, b), by setting those below a given
threshold to zero; see, for example, [12]. The idea to apply the T-TLS method to discrete
ill-posed problems where there is no particular gap in the singular value spectrum, and
where some of the larger singular values may also be discarded, was proposed in [4].

The details of the T-TLS method are as follows. Let the SVD of (A, b) be given by
n+1
(15) (A, by=UxVvT = §:w%i

and assume that oy is the smallest nonzero singular value that we wish to retain in the
T-TLS solution. As is usual in TLS problems, we also assume that o}, is separated from
Ok+1. If we partition the (n 4+ 1) x (n + 1) matrix V in (15) such that

Vi V12) nxk
V= , ViieR
<V21 Vaa 1

then the T-TLS solution is given by
(16) = —ViaV3h = =Via Vi Vaall3 .

Here V), = VL ||Vasll72 is the pseudoinverse of the 1 X (n — k + 1) submatrix V3.
The following relations follow immediately from (16):

(17) lzill = IVasll3? = 1,
(18) (A, )~ (Ao, bo)llr = Joky, +- +02y.

showing that the solution norm ||Z||; increases monotonically with & while the T'LSresidual
norm ||(A, b) — (Ag, bo)||r decreases monotonically with k.

3.1 The 7-TLS Filter Factors (Standard Form)

One of the key results in [4] is an expression for the T-TLS solution Zj in terms of the SVD
of A, rather than the SVD of (A, b) as was previously the case. The advantage of using the
SVD of Ais that it immediately yields the T-TLSfilter factors and thus lets us quantify the
regularizing properties of the T-TLS solution. We emphasize that the following theorem,
whose proof can be found in [4], holds generally, and not just for discrete ill-posed problems.
Thus, it supplements Thm. 3.8 in [12].

THEOREM 3.1. Assume that the singular values of A and (A, b) are simple. Then the
T-TLS solution can be written as

n ’Tb
(19) Tk = Zfl Z/Tv

Z

where the filter factors f; corresponding to u/'b # 0 and o' # 0 are given by

/2

vn—l—l,
(20) Z | - 7

[Vazl|5 0F — o

The filter factors for v < k corresponding to u;frb # 0 increase monotonically with ¢ and
satisfy

‘7134-1
(21) 0< fi—1<——F+

2 2
0, Okt
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The filter factors for k < i < rank(A) corresponding to ul'b # 0 satisfy

—92 0'2{2
(22) 0< fi <|[[Vaell, e

As an immediate consequence of the results in Thm. 3.1 we have ||Z||s > |[Jzg]|2 for

all k. Moreover, we obtain the following expression for the first k filter factors

Uz+1 ‘7134-1 .
1< fi<1+ s +0 prall I i=1,...,k,

showing that the larger the ratio between o! and oj4q, the closer the bound on f; is to 1.
Similarly, for the last n — k filter factors we obtain

i o? ,
Oﬁfz’SHVmHz_&—ZQ 1+0 5—22 , i=k+1,...,n,
k k

showing that the smaller the ratio between o/ and oy, the closer f; is to zero.

Hence, Thm. 3.1 guarantees that the first k£ filter factors will be close to one and that
the last n — k filter factors will be small, even in the case where there is no gap in the
singular value spectrum, provided that ||Vas||z is not very small. As a consequence, the
T-TLS solution is a regularized, or filtered, solution.

3.2 A Lanczos Bidiagonalization Algorithm

When the dimensions of A are not too large, one can compute the full SVD of (A, b) and
then experiment with various choices of k. This is particularly useful if no a priori estimate
of a suitable k£ is known.

When the dimensions of A become large, this approach becomes prohibitive because
the SVD algorithm is of complexity O(mn?). We shall therefore describe an alternative
technique that is much more suited for large-scale problems with k£ < n, which is indeed
the case in most discrete ill-posed problems.

Our algorithm uses the Lanczos bidiagonalization process which computes approxima-
tions to the principal singular triplets of a matrix. Approximations to the ordinary TLYS
solution can thus be computed by applying the Lanczos bidiagonalization process to the
matrix (A, b), cf. [1, Section 7.6.5].

The Lanczos T-TLS algorithm proposed in [4] is based on Lanczos bidiagonalization of
the matrix A rather than (A, b). After k iterations, the Lanczos bidiagonalization process
with starting vector uy = b/||b||2 has produced two sets of vectors Uy, = (uq, ..., up41) and
Vi = (v1,...,v;) and a (k+ 1) x k bidiagonal matrix By such that

AV, = ULBy, and Grug = b .

Thus, after & Lanczos iterations we can project the TLS problem onto the subspaces
spanned by U and Vi, in the hope that for large enough k& we have captured all the
large singular values of A that are needed for computing a useful regularized solution. The
projected TLS problem is equivalent to

Ve 0
U,?((A,b)—(A07k,bo7k))<0k 1)HF st. UL AgpViy = Ulboy

min
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or
(23) min ||(Bg, f1e1) — (Bok, €ox)||F subject to Bory=eok,
where e, = (1,0,...,0)7, and By and eq are generally full. Our algorithm reduces to

the LSQR algorithm [10] if we require By = By in each step.

In each Lanczos step we can now compute an approximate T-TLS solution by applying
the ordinary TLS algorithm to the small-size problem in (23). For convenience, we can
permute the vector fieq in front of By such that, in each step, we merely need to compute
the last singular triplet of the (k4 1) x (k + 1) upper bidiagonal matrix (f1eq , By). This
can be done in O(k?) operations by means of the PSVD algorithm [13].

We remark that it is easy to augment the above algorithm to include the computations
of the LSQR algorithm [10]. Approximate T'SVD solutions can thus be computed together
with the approximate T-TLS solutions with little overhead.

3.3 The General-Form Case

In connection with the T-TLS and Lanczos T-TLS algorithms it may also be convenient
to implicitly use regularization in general form with L # I. This is done in the same way
as general-form regularization is treated numerically in other regularization methods. First
transform the problem involving A, L and b into a standard-form problem. Then apply the
T-TLS or Lanczos T-TLS algorithm to the standard-form problem to obtain a regularized
solution. Finally, transform this solution back to the general-form setting. We omit the
details here and refer to the discussion of the implementation details in [6, §4.3] and [8].

4 Numerical Results

In this section we present some numerical results that demonstrate the usefulness of the
R-TLS and T-TLS methods. All computations were carried out in MATLAB using the
REGULARIZATION TooLs package [7]. More elaborate tests can be found in [4] and [5],
where results from tests with the Lanczos T-TLS algorithm can also be found.

It is a generally accepted fact that for small noise levels, we should not expect the
ordinary TLS solution to differ much from the ordinary least squares solution; see [11].
The same observations are made in [4] and [5] for the TLS-based regularized solutions, and
the numerical results presented below also support this observation. We emphasize that
the precise meaning of “small” depends on the particular problem.

4.1 Illustration of the R-TLS Algorithm

The test problem we have chosen to illustrate the R-TLS algorithm is a discretization
by means of Gauss-Laguerre quadrature of the inverse Laplace transform

o 1 1
—st) f(H)dt = = — ———— <
| essn =5 - . 0<s

J(t) = 1= exp(~t/2)

as implemented in the function ilaplace(n,2) in [7]. The matrix L approximates the first

derivative operator. The dimensions are m = n = 16, the matrix A and the exact right-
hand side p¥¥act = Az®¥aCt are scaled such that ||Al|p = [|6°¥3Y |, = 1, and the perturbed
right-hand side is generated as

b= (A+ || E|F E)® 4 olle]l; e,
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Fic. 1. Plots of the relative errors in the Tikhonov solutions (dashed lines) and R-TLS

solutions (solid lines) versus Ap for four values of the noise level.
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Fic. 2. Plots of the “optimal” Tikhonov solutions (dashed lines) and R-TLS solutions (solid

lines) for four values of the noise level. Also shown is the exact solution (dotted lines).

exact ig the exact solution, and £ and e are perturbations with unbiased normally

where
distributed elements.

Figure 1 shows the relative errors ||zt — g5/ ||zt ||, and ||zt — z||o/ ||z¥%2Y |
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Fra. 3. The SVD components ugTbexact of the exact right-hand side in the “artificially

generated” test problem.

in the Tikhonov and R-TLS solutions, respectively, for four values of the noise level:
o =0.03, 0.1, 0.3, 1.0.

We see that for small values of ¢ the two methods lead to almost the same minimum relative
error, for almost the same value of A;,. However, for larger value of &, the minimum relative
error for the R-TLS method is clearly smaller than that for Tikhonov’s method, and it
occurs for a larger value of Ar. This shows the potential advantage of the R-TLS method,
provided, of course, that a good estimate of the optimal regularization parameter can be
found. This topic is outside the scope of the current paper.

In Fig. 2 we have plotted the “optimal” Tikhonov and R-TLS solutions, defined as
the solutions that correspond to the minima of the curves in Fig. 1. In addition, we have
plotted the exact solution 2¢*3t, Clearly, the addition of the term A1, in (7) introduces a
non-constant component in the right part of the plot of the regularized solution, and it is
precisely this component that improves the R-TLS error, compared to the Tikhonov error.

4.2 Illustration of the 7-TLS Algorithm

For the T-TLS method, it was found in [4] that the T-TLS solutions are superior to
the other regularized solutions only when the T-TLS solution has large SVD components
corresponding to the smallest retained singular values in the solution.

To illustrate this, we use an “artificially generated” test problem similar to the one used
in [4]. The matrix A is 32 X 32 and comes from discretization of Phillip’s test problem (cf.
phillips in [7]) with kernel

. ) 14cos(n(s—1)/3), |s—1| <3

Ix(s,t)_{o s—1] >3
by means of the Galerkin method with I orthonormal basis functions. The exact
solution X3¢t is generated such that the SVD components u/ b*¥3t of the corresponding

exact right-hand side p¥a°t = A2®¥aCt appear as shown in Fig. 3. The scaling and the
perturbations are similar to those for the R-TLS example above, except that the noise
levels are smaller:

o = 0.001, 0.002, 0.004, 0.008.

Plots of the relative errors ||z — zp||2/[|2¥2Y |, and [|a€*3t — Z, ||, /||x®*2¢t||, for

the TSVD and T-TLS methods are shown in Fig. 4. For small noise levels, the minimum
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Fic. 4. Plots of the relative errors in the TSVD solutions (dashed lines) and T-TLS solutions

(solid lines) versus Ap for four values of the noise level.

relative errors are identical. As the noise level increases, the minimum 7-7TLS errors become
smaller than those of the TSVD method. Histograms showing the results of many similar
experiments can be found in [4], supporting the conclusion that 7-TLS'is superior to TSVD,
as well as Tikhonov’s method, whenever the noise level is large and the solution has large
SVD components corresponding to the smallest retained singular values.

5 Conclusion

We have presented two different approaches to incorporation of regularization, or stabiliza-
tion, into the TLS setting. The two methods are similar in spirit to Tikhonov regularization
and truncated SVD, respectively. We have described the regularizing properties of the two
methods and demonstrated by numerical examples that in certain cases with large pertur-
bations, these new methods are able to yield more accurate regularized solutions than those
produced by the standard methods.

References

[1] A. Bjorck, Numerical Methods for Least Squares Problems, SITAM, Philadelphia, 1996.

[2] H. W. Engl, Regularization methods for the stable solulion of inverse problems, Surv. Math.
Ind. 3 (1993), pp. 71-143.

[3] C. W. Groetsch, Inverse Problems in the Mathematical Sciences, Vieweg, Wiesbaden, 1993.

[4] R. D. Fierro, G. H. Golub, P. C. Hansen and D. P. O’Leary, Regularization by truncated total
least squares, Report UNIC-93-14 (20 pages), December 1993; revised July 1995; STAM J. Sci.
Comput., to appear.

[5] G. H. Golub, P. C. Hansen and D. P. O’Leary, Tikhonov reqularization and total least squares,
manuscript in preparation for STAM J. Sci. Comput.



[6]

TLS-BASED REGULARIZATION ALGORITHMS 11

M. Hanke and P. C. Hansen, Regularization methods for large-scale problems, Surv. Math. Ind.
3 (1993), pp. 253-315.

P. C. Hansen, Regularization Tools: A Matlab Package for Analysis and Solution of Discrete
Ill-Posed Problems; Numer. Algo. 6 (1994), pp. 1-35.

P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, Doctoral Dissertation, Poly-
teknisk Forlag, Denmark, 1996.

T. A. Hua and R. F. Gunst, Generalized ridge regression: a note on negative ridge parameters,
Commun. Statist. — Theor. Meth. 12 (1983), pp. 37-45.

C. C. Paige and M. A. Saunders, LSQR: an algorithm for sparse linear equations and sparse
least squares, ACM Trans. Math. Software 8 (1982), pp. 43-71.

G. W. Stewart, On the invariance of perturbed null vectors under column scaling, Numer.
Math. 44 (1984), pp. 61-65.

S. Van Huffel & J. Vandewalle, The Total Least Squares Problem: Computational Aspects and
Analysis, STAM, Philadelphia, 1991.

S. Van Huffel, J. Vandewalle and A. Haegemans, An efficient and reliable algorithm for
computing the singular subspace of a matriz, associated with its smallest singular values, J.

Comp. Appl. Math. 19 (1987), pp 313-330.



