
Regularization Algorithms Based on Total Least SquaresPer Christian Hansen� Dianne P. O'LearyyAbstractDiscretizations of inverse problems lead to systems of linear equations with a highlyill-conditioned coe�cient matrix, and in order to compute stable solutions to these sys-tems it is necessary to apply regularization methods. Classical regularization methods,such as Tikhonov's method or truncated SVD, are not designed for problems in whichboth the coe�cient matrix and the right-hand side are known only approximately. Forthis reason, we develop TLS -based regularization methods that take this situation intoaccount.Here, we survey two di�erent approaches to incorporation of regularization, orstabilization, into the TLS setting. The two methods are similar in spirit to Tikhonovregularization and truncated SVD, respectively. We analyze the regularizing propertiesof the methods and demonstrate by numerical examples that in certain cases with largeperturbations, these new methods are able to yield more accurate regularized solutionsthan those produced by the standard methods.1 Discrete Ill-Posed ProblemsIn this paper we study linear, and possibly overdetermined, systems of equations Ax � bwhose m � n coe�cient matrix A (with m � n) is very ill conditioned. We restrict ourattention to the important case where all the singular values of A decay gradually to zero,i.e., with no particular gap in the spectrum.Such ill-conditioned linear systems arise frequently in connection with discretizationsof ill-posed problems, such as Fredholm integral equations of the �rst kind, and the termdiscrete ill-posed problem is sometimes used to characterize these systems. For more detailsabout the underlying theory see, e.g., [2], [3], [6], [8] and the references therein. Su�ce ithere to say that the gradual decay of the singular values of A is an intrinsic property ofdiscretizations of many ill-posed problems.For discrete ill-posed problems, the ordinary least squares solution xLS, as well as theordinary total least squares solution xTLS, are hopelessly contaminated by noise in thedirections corresponding to the small singular values of A or (A ; b). Because of this, it isnecessary to compute a regularized solution in which the e�ects of the noise are �ltered out.Surveys of regularization methods for discrete ill-posed problems are given in [6] and [8].The �ltering is often done either by truncation of the small singular values of A or byTikhonov's method.If A = Pni=1 u0i �0i v0Ti is the SVD of A, then the truncated SVD (TSVD) solution xk,�Department of Mathematical Modelling, Building 305, Technical University of Denmark, DK-2800Lyngby, Denmark (pch@mm.dtu.dk)yDepartment of Computer Science and Institute for Advanced Computer Studies, University of Maryland,College Park, MD 20742, USA (oleary@cs.umd.edu). This work was supported by the U.S.A. NationalScience Foundation under Grant CCR 95-03126. 1



2 Hansen et al.with truncation parameter k, is given byxk = kXi=1 u0Ti b�0i v0i; k � n:(1) In the Tikhonov method, a side constraint kLxk2 � � is added to the least squaresformulation: min kAx� bk2 s.t. kLxk2 � �:(2)If L = In then the problem is in standard form, but it is often advantageous to choose L asa discrete approximation to a derivative operator. A solution to this optimization problemsolves the system of equations (ATA+ �LTL) x = AT b(3)with � � 0. It can be shown that the solution x� to (2) is identical to the solution to (3)for an appropriately chosen �, and there is a monotonic relation between the parameters �and �. In the standard-form case (L = In), the Tikhonov solution is given byx� = nXi=1 �02i�02i + � u0Ti b�0i v0i:(4) For both the truncated SVD and the Tikhonov algorithm, the regularized solution is a�ltered version of the ordinary least squares solution. The �lter factors (the ratio betweenthe coe�cients of v0i in the computed solution and the exact solution xLS) are zeros andones for the TSVD solution and �02i =(�02i + �), for the Tikhonov solution.Most regularization methods used today assume that the errors are con�ned to theright-hand side b. Although this is true in many applications there are problems in whichalso the coe�cient matrix A is not precisely known. For example, A may be available onlyby measurement, or may be an idealized approximation of the true operator. Discretizationtypically also adds some errors to the matrix A. Hence, there is a need for regularizationmethods that take into account the errors in A and their size relative to those in b.In this paper we survey two such regularization methods in the TLS setting. One isanalogous to the Tikhonov-regularized solution and the other to the truncated SVD, butboth allow errors in the entries of A. These methods have been developed recently in [4]and [5]. We discuss the regularizing e�ects of these methods and illustrate by numericalexamples that they can be superior to the classical regularization methods.2 Regularized TLSThe �rst TLS -based regularization method is based on the Tikhonov formulation (2). Inthe TLS setting, we add the bound kLxk2 � � to the ordinary TLS problem, and theregularized TLS (R-TLS) problem thus becomesminA0;x k(A ; b)� (A0 ; b0)kF s.t. b0 = A0x; kLxk2 � �:(5)The corresponding Lagrange formulation isL(A0; x; �) = k(A ; b)� (A0 ; A0x)k2F + � (kxk22 � �2) ;(6)where � is the Lagrange parameter. The R-TLS solution �x� to (5) is characterized by thefollowing theorem from [5].



TLS-Based Regularization Algorithms 3Theorem 2.1. The regularized TLS solution to (5) is a solution to the problem(ATA+ �IIn + �LLTL) x = ATb(7)where the parameters �I and �L are given by�I = � kb� Axk221 + kxk22(8) �L = � (1 + kxk22)(9)and where � is the Lagrange multiplier in (6). Moreover, the TLS residual satis�esk(A ; b)� (A0 ; b0)k2F = ��I :(10)2.1 The Standard-Form CaseIn the standard-form case (L = In), Eq. (7) simpli�es to(ATA + �ILIn) x = AT b(11)with �IL = �I + �L. In this case, the standard-form R-TLS solution �x� and the standard-form Tikhonov solution x� have a close relationship which is proved in [5].Theorem 2.2. For a given value of �, the solutions �x� and x� are related as follows,where �n+1 denotes the smallest singular value of (A ; b):� solutions �IL� < kxLSk2 �x� = x� �IL > 0� = kxLSk2 �x� = x� = xLS �IL = 0kxLSk2 < � < kxTLSk2 �x� 6= x� = xLS ��2n+1 < �IL < 0� � kxTLSk2 �x� = xTLS; x� = xLS �IL = ��2n+1We conclude that as long as � � kxLSk2, which is normally the case in regularizationproblems where kxLSk2 is very large, then regularized TLS produces solutions that areidentical to the Tikhonov solutions. In other words, replacing the LS residual with the TLSresidual in the Tikhonov formulation has no e�ect when L = In and � � kxLSk2.We remark that since kxTLSk2 � kxLSk2 (see [12, Corollary 6.2]) there is usually anontrivial set of \large" �'s for which the multiplier �IL is negative. The correspondingR-TLS solutions �x� can be expected to be even more dominated by errors than the leastsquares solution xLS.2.2 The General-Form CaseIn many applications, it is necessary to choose a matrix L di�erent from the identity matrix,and often L is chosen to represent the �rst or second derivative operator. In this case, theR-TLS solution �x� is di�erent from the Tikhonov solution whenever the residual b�Ax isdi�erent from zero, since both �I and �L are nonzero.Notice that �L is always positive, as long as � < kxTLSk2 (because the Lagrangeparameter � is positive for these values of �). On the other hand, �I is always negative,and thus adding some de-regularization to the solution. Statistical aspects of a negativeregularization parameter in Tikhonov's method are discussed in [9].



4 Hansen et al.For a given �, there are usually several pairs of parameters �I and �L, and thus severalsolutions x, that satisfy relations (7){(9), but only one of these satis�es the optimizationproblem (5). According to (10), this is the solution that corresponds to the smallest valueof j�I j. The following relations hold:� solutions �I �L� < kLxTLSk2 �x� �I < 0 @�I=@� > 0 �L > 0 @�L=@� < 0� � kLxTLSk2 �x� = xTLS �I = ��2n+1 �L = 0We note that if the matrix �IIn + �LLTL is positive de�nite, then the R-TLS solutioncorresponds to a Tikhonov solution for which the seminorm kLxk2 in (3) is replaced withthe Sobolev norm (�Ikxk22+�LkLxk22)1=2. If �IIn+�LLTL is inde�nite or negative de�nitethen there is no equivalent interpretation.2.3 Computational AspectsTo compute the R-TLS solutions for L 6= In, we have found it most convenient to avoidexplicit use of �; instead we use �L as the free parameter, �xing its value and then computingthe value of �I that satis�es (8) and is smallest in absolute value. As shown in [5], thecorresponding value of � can then easily be computed from the relation�L �2 = bT (b� Ax) + �I :(12)We now discuss how to solve (7) e�ciently for many values of �I and �L. We assumethat the matrix L is a banded matrix, which is often the case when L approximates aderivative operator. The key to e�ciency is then to reduce A to bidiagonal form B bymeans of orthogonal transformations: HTAK = B. The orthogonal right-transformationsshould also be applied to L, and simultaneously we should apply orthogonal transformationsto L from the left in order to maintain its banded form. It is convenient to use sequences ofGivens transformations to form J , H and K, since this gives us the most freedom to retainthe banded form of C = JTLK.Once B and C have been computed, we note that (7) is equivalent to the following leastsquares problem min 0@ B�LC�̂ �IIn1A (KTx)�0@HTb00 1A2(13)where �̂ is the imaginary unit. Since �I changes more frequently than �L in our approach,the next step is to reduce the submatrix � B�LC � to bidiagonal form B̂ by means of Givensrotations, along the same lines as in Elden's algorithm [1, Section 5.3.4]. This changes�HT b0 � into d̂, and thus we arrive at the problemmin � B̂�̂�IIn � (KTx)� � d̂0�2 :(14)We are currently investigating stable and e�cient numerical algorithms for solving (14).3 Truncated TLSThe second TLS -based approach to regularization is inspired by the TSVDmethod in whichthe small singular values of A are discarded. In the truncated TLS (T-TLS) method the



TLS-Based Regularization Algorithms 5key idea is to neglect the small singular values of (A ; b), by setting those below a giventhreshold to zero; see, for example, [12]. The idea to apply the T-TLS method to discreteill-posed problems where there is no particular gap in the singular value spectrum, andwhere some of the larger singular values may also be discarded, was proposed in [4].The details of the T-TLS method are as follows. Let the SVD of (A ; b) be given by(A ; b) = U �V T = n+1Xi=1 ui �i vTi(15)and assume that �k is the smallest nonzero singular value that we wish to retain in theT-TLS solution. As is usual in TLS problems, we also assume that �k is separated from�k+1. If we partition the (n+ 1)� (n+ 1) matrix V in (15) such thatV = �V11 V12V21 V22� ; V11 2 <n�kthen the T-TLS solution is given by�xk = �V12V y22 = �V12V T22kV22k�22 :(16)Here V y22 = V T22kV22k�22 is the pseudoinverse of the 1� (n� k + 1) submatrix V22.The following relations follow immediately from (16):k�xkk2 = qkV22k�22 � 1 ;(17) k(A ; b)� (A0 ; b0)kF = q�2k+1 + � � �+ �2n+1 ;(18)showing that the solution norm k�xkk2 increases monotonically with k while the TLS residualnorm k(A ; b)� (A0 ; b0)kF decreases monotonically with k.3.1 The T-TLS Filter Factors (Standard Form)One of the key results in [4] is an expression for the T-TLS solution �xk in terms of the SVDof A, rather than the SVD of (A ; b) as was previously the case. The advantage of using theSVD of A is that it immediately yields the T-TLS �lter factors and thus lets us quantify theregularizing properties of the T-TLS solution. We emphasize that the following theorem,whose proof can be found in [4], holds generally, and not just for discrete ill-posed problems.Thus, it supplements Thm. 3.8 in [12].Theorem 3.1. Assume that the singular values of A and (A ; b) are simple. Then theT-TLS solution can be written as �xk = nXi=1 fi u0Ti b�0i v0Ti ;(19)where the �lter factors fi corresponding to u0Ti b 6= 0 and �0i 6= 0 are given byfi = kXj=1 vn+1;jkV22k22 �02i�2j � �02i :(20)The �lter factors for i � k corresponding to uTi b 6= 0 increase monotonically with i andsatisfy 0 � fi � 1 � �2k+1�02i � �2k+1 :(21)



6 Hansen et al.The �lter factors for k < i � rank(A) corresponding to uTi b 6= 0 satisfy0 � fi � kV22k�22 �02i�2k � �02i :(22)As an immediate consequence of the results in Thm. 3.1 we have k�xkk2 � kxkk2 forall k. Moreover, we obtain the following expression for the �rst k �lter factors1 � fi � 1 + �2k+1�02i + O �4k+1�04i ! ; i = 1; : : : ; k ;showing that the larger the ratio between �0i and �k+1, the closer the bound on fi is to 1.Similarly, for the last n � k �lter factors we obtain0 � fi � k �V22k�22 �2i��2k  1 +O �2i��2k!! ; i = k + 1; : : : ; n ;showing that the smaller the ratio between �0i and �k , the closer fi is to zero.Hence, Thm. 3.1 guarantees that the �rst k �lter factors will be close to one and thatthe last n � k �lter factors will be small, even in the case where there is no gap in thesingular value spectrum, provided that k �V22k2 is not very small. As a consequence, theT-TLS solution is a regularized, or �ltered, solution.3.2 A Lanczos Bidiagonalization AlgorithmWhen the dimensions of A are not too large, one can compute the full SVD of (A ; b) andthen experiment with various choices of k. This is particularly useful if no a priori estimateof a suitable k is known.When the dimensions of A become large, this approach becomes prohibitive becausethe SVD algorithm is of complexity O(mn2). We shall therefore describe an alternativetechnique that is much more suited for large-scale problems with k � n, which is indeedthe case in most discrete ill-posed problems.Our algorithm uses the Lanczos bidiagonalization process which computes approxima-tions to the principal singular triplets of a matrix. Approximations to the ordinary TLSsolution can thus be computed by applying the Lanczos bidiagonalization process to thematrix (A ; b), cf. [1, Section 7.6.5].The Lanczos T-TLS algorithm proposed in [4] is based on Lanczos bidiagonalization ofthe matrix A rather than (A ; b). After k iterations, the Lanczos bidiagonalization processwith starting vector u1 = b=kbk2 has produced two sets of vectors Uk = (u1; : : : ; uk+1) andVk = (v1; : : : ; vk) and a (k+ 1)� k bidiagonal matrix Bk such thatAVk = UkBk and �1u1 = b :Thus, after k Lanczos iterations we can project the TLS problem onto the subspacesspanned by Uk and Vk, in the hope that for large enough k we have captured all thelarge singular values of A that are needed for computing a useful regularized solution. Theprojected TLS problem is equivalent tomin UTk �(A ; b)� (A0;k ; b0;k)��Vk 00 1�F s.t. UTk A0;k Vk y = UTk b0;k ;



TLS-Based Regularization Algorithms 7or min k(Bk ; �1e1)� (B0;k ; e0;k)kF subject to B0;k y = e0;k ;(23)where e1 = (1; 0; : : : ; 0)T , and B0;k and e0;k are generally full. Our algorithm reduces tothe LSQR algorithm [10] if we require B0;k = Bk in each step.In each Lanczos step we can now compute an approximate T-TLS solution by applyingthe ordinary TLS algorithm to the small-size problem in (23). For convenience, we canpermute the vector �1e1 in front of Bk such that, in each step, we merely need to computethe last singular triplet of the (k + 1)� (k + 1) upper bidiagonal matrix (�1e1 ; Bk). Thiscan be done in O(k2) operations by means of the PSVD algorithm [13].We remark that it is easy to augment the above algorithm to include the computationsof the LSQR algorithm [10]. Approximate TSVD solutions can thus be computed togetherwith the approximate T-TLS solutions with little overhead.3.3 The General-Form CaseIn connection with the T-TLS and Lanczos T-TLS algorithms it may also be convenientto implicitly use regularization in general form with L 6= I . This is done in the same wayas general-form regularization is treated numerically in other regularization methods. Firsttransform the problem involving A, L and b into a standard-form problem. Then apply theT-TLS or Lanczos T-TLS algorithm to the standard-form problem to obtain a regularizedsolution. Finally, transform this solution back to the general-form setting. We omit thedetails here and refer to the discussion of the implementation details in [6, x4.3] and [8].4 Numerical ResultsIn this section we present some numerical results that demonstrate the usefulness of theR-TLS and T-TLS methods. All computations were carried out in Matlab using theRegularization Tools package [7]. More elaborate tests can be found in [4] and [5],where results from tests with the Lanczos T-TLS algorithm can also be found.It is a generally accepted fact that for small noise levels, we should not expect theordinary TLS solution to di�er much from the ordinary least squares solution; see [11].The same observations are made in [4] and [5] for the TLS -based regularized solutions, andthe numerical results presented below also support this observation. We emphasize thatthe precise meaning of \small" depends on the particular problem.4.1 Illustration of the R-TLS AlgorithmThe test problem we have chosen to illustrate the R-TLS algorithm is a discretizationby means of Gauss-Laguerre quadrature of the inverse Laplace transformZ 10 exp(�s t) f(t) dt = 12 � 1s+ 1=2 ; 0 � sf(t) = 1� exp(�t=2)as implemented in the function ilaplace(n,2) in [7]. The matrix L approximates the �rstderivative operator. The dimensions are m = n = 16, the matrix A and the exact right-hand side bexact = Axexact are scaled such that kAkF = kbexactk2 = 1, and the perturbedright-hand side is generated asb = (A+ �kEk�1F E)xexact + �kek�12 e;
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Fig. 1. Plots of the relative errors in the Tikhonov solutions (dashed lines) and R-TLSsolutions (solid lines) versus �L for four values of the noise level.
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Fig. 4. Plots of the relative errors in the TSVD solutions (dashed lines) and T-TLS solutions(solid lines) versus �L for four values of the noise level.relative errors are identical. As the noise level increases, the minimum T-TLS errors becomesmaller than those of the TSVD method. Histograms showing the results of many similarexperiments can be found in [4], supporting the conclusion that T-TLS is superior to TSVD,as well as Tikhonov's method, whenever the noise level is large and the solution has largeSVD components corresponding to the smallest retained singular values.5 ConclusionWe have presented two di�erent approaches to incorporation of regularization, or stabiliza-tion, into the TLS setting. The two methods are similar in spirit to Tikhonov regularizationand truncated SVD, respectively. We have described the regularizing properties of the twomethods and demonstrated by numerical examples that in certain cases with large pertur-bations, these new methods are able to yield more accurate regularized solutions than thoseproduced by the standard methods.References[1] �A. Bj�orck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.[2] H. W. Engl, Regularization methods for the stable solution of inverse problems, Surv. Math.Ind. 3 (1993), pp. 71{143.[3] C. W. Groetsch, Inverse Problems in the Mathematical Sciences, Vieweg, Wiesbaden, 1993.[4] R. D. Fierro, G. H. Golub, P. C. Hansen and D. P. O'Leary, Regularization by truncated totalleast squares, Report UNIC-93-14 (20 pages), December 1993; revised July 1995; SIAM J. Sci.Comput., to appear.[5] G. H. Golub, P. C. Hansen and D. P. O'Leary, Tikhonov regularization and total least squares,manuscript in preparation for SIAM J. Sci. Comput.
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