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1 IntroductionQualitative factors leading to topographic and computational map formation in neural net-works have been studied previously [5]. Work has also been done concerning the quantitativemeasurement of the degree of topographic map formation [2]. We are interested in the specialissues that arise in measuring hemispheric organization and lateral asymmetry of organiza-tion in computational models of topographic map development in a bihemispheric system.These issues are of concern in any study on cerebral lateralization. While there has beenextensive work regarding lateralization in humans [3], the computational modelling of the de-velopment and measurement of lateralization has to our knowledge not yet been undertakenin any systematic fashion.In this report we develop a theoretical framework for the construction of such performancemeasures. We show that heuristic suggestions made by others (e.g., [4] ) for the measurementof lateral asymmetry arise as special cases of our general framework, thus providing these pastmeasures with a rigorous theoretical foundation. This introductory section contains somebasic background information concerning our bihemispheric computational cortex models aswell as the notion of topographic map used in our studies. Subsequent sections describe thedevelopment of our theoretical framework, culminating in the de�nition of our measures, andexamples of the performance of the measures as judged by human subjects provided withpictures of bihemispheric topographic maps. We conclude the paper with a discussion of theresults and a description of work in progress.1.1 Bihemispheric Cortex ModelWe have interconnected two computational models of sensory cortex via a simulated corpuscallosum, and provided sensory connections from a simulated sensory surface as shown inFigure 1. Each hemisphere of this systemmodels a small patch of sensory cortex. The modelcortices are two{dimensional, with individual elements of the model representing corticalcolumns in the actual sensory cortex. These elements tessellate the cortex in a regularhexagonal fashion, with each element connected to its nearest neighbors. Connections inthe model represent multiple synaptic interactions in the actual cortex. Connections to thenearest neighbors are excitatory, while potentially inhibitory connections are allowed to thenext{nearest elements. The intrahemispheric interconnection pattern is hexagonal, as shownin Figure 2.Connections are provided between the hemispheres. Each element connects to those lyingwithin a certain radius of the element homotopic to it in the opposite hemisphere. This radiusof divergence may be varied, leading to di�erent behaviors during self{organization.The sensory surface is two{dimensional as well. Each sensory element connects symmet-rically to the two elements homotopic to it, one in each of the two cortical hemispheres.Sensory elements are indexed by a pair of integers denoting the elements' spatial locationwithin the regular two{dimensional lattice modelling the sensory surface. Cortical elementsinherit the index of their homotopically located sensory elements.To avoid edge e�ects, the top and bottom edges of the sensory surface and of each hemi-sphere are identi�ed, as are the left and right edges. Thus, the sensory surface and the1
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Sensory SurfaceFigure 1: The bihemipheric cortex modelhemispheres are actually two{dimensional tori rather than planar rectangles or parallelo-grams.A real{valued activation value ai(t) is associated with the i{th element in continuoustime t. The activation dynamics are governed by:daidt = in+i (M � ai) + csai � in�i (1)in+i =X cijaj + ei (2)in�i =X cijaj (3)The sum for in+i ranges over elements in the same cortical hemisphere as the i{th element, aswell as over those in the sensory surface. The sum for in�i ranges over elements in the oppositecortical hemisphere, representing inhibitory signals acting through the corpus callosum. Inboth cases, only elements lying within a certain radius of the (element homotopic to) thei{th element yield non{zero contributions to the corresponding sum.It is known that lateral inhibition is necessary to allow development of structured to-pographic maps [5]. In our model, all cortical a�erent and intrahemispheric connectionsare excitatory. Virtual inhibition is achieved by having each sensory element competitivelydistribute its output among the receiving cortical elements in proportion to their activationlevels: cki = cp wki(avk + q)Pj wji(avj + q) (4)Cortical elements competitively distribute their activation among their neighbors also. Suchcompetitive activity distribution has been shown in the past to produce peristimulus in-hibition similar to that produced by actual inhibitory connections, and topographic mapformation in systems with competitive activity distribution has been demonstrated.2



Figure 2: Intrahemispheric connection pattern. Each point where lines intersect correspondsto a cortical element, and the six line segments radiating from it indicate its immediateneighbor elements.Sensory stimuli are applied to drive the self{organization of the bihemispheric cortexmodel. Self{organization proceeds according to the rule:�wji = �(ai �wji)aj (5)By stimulating sensory elements at random according to a uniform probability distribution,the average response of each cortical element to stimuli from di�erent sensory elementscan be established. This allows one to de�ne a receptive �eld for each cortical element,consisting of those sensory elements to which the given cortical element responds signi�cantly.Each receptive �eld is de�ned by the horizontal (x) and vertical (y) o�sets of its centerrelative to the expected location at the homotopically positioned sensory element, and itsx and y radii. Dual to the notion of receptive �eld, we have for each sensory element anassociated response �eld, consisting of those cortical elements which respond signi�cantly tothe given sensory element. Further details about the single hemisphere version of the model,including the activation dynamics, competitive activity distribution, and the rule used forself{organization, are available in [7] and [8].1.2 Topographic MapsThe two{dimensional topology of the model sensory surface and hemispheres allows one toconsider the topographic maps de�ned by association of cortical elements with the corre-sponding receptive �eld centers in the sensory surface. Figure 3 provides an example. Onemay also consider the \inverse maps" obtained by associating sensory elements with their3



response �eld centers. For simplicity, the discussion below deals only with the �rst type ofmap, although clearly the statements may be applied to the inverse maps as well, essentiallyby interchanging the word \sensory" by the word \cortical", and the word \receptive" bythe word \response".We are interested here mainly in providing a quantitative measurement of the qualityof the resulting maps and of hemispheric asymmetry. A very simple working de�nitionof a topographic map su�ces for our present needs. By a topographic map we mean arepresentation of the organization, or lack thereof, in our computational model of a singlecortical hemisphere. We choose a rectangular matrix Mi;j whose entries consist of quadru-plets (cxi;j; cyi;j; rxi;j; ryi;j) indexed by the location coordinates i; j of the associated corticalelements, and indicating, respectively, the x and y o�sets of the receptive �eld center ofcortical node (i; j), and the x and y radii of the receptive �eld. This is the informationavailable to compute the desired measures of organization.
Figure 3: Visual representation of topographic map formation in the bihemispheric compu-tational model. The ellipses represent the receptive �elds. The left hemisphere has developeda rather organized topographic map, while the right hemisphere remains fairly random, withlarge receptive �elds and irregularly located receptive �eld centers.1.3 Measures to be computedWe now describe the measures that we wish to compute. The theoretical development leadingto the actual de�nitions of the measures is undertaken in the next section.For each map M :� a family of entropy measures, jjM jj, de�ned as distances, in the abstract space oftopographic maps, between the given topographic map M and an \ideal" or referencetopographic map, the latter typically meaning a completely uniform topographic map.4



Each entropy measure is a non{negative number, with the value 0 indicating completeagreement with the chosen reference map (\organization") and larger values indicatingan increasingly large deviation from the reference map (\disorganization").� an organization measure ranging between 0 and 1, with 0 representing no topographicmap formation and 1 representing a very highly organized topographic map. Theorganization measure is obtained from the entropy by a simple transformation.� the mean and variance of each of the attributes cx; cy; rx; ry; tr.To compare hemispheres L and R:� a family of lateralization metrics, which indicate the di�erence in the total level oforganization (map formation) between the two hemispheres; their values range between�1 for total left hemisphere dominance and +1 for total right hemisphere dominance.� an interhemispheric correlation measure, which assesses the degree of mirror symmetryof the topographic maps for the two hemispheres after normalizing them to have thesame total level of organization; its values range between �1 for total antisymmetrybetween the two hemispheres and +1 for total mirror symmetry between the twohemispheres.� the standard statistical correlation between like attributes cx; cy; rx; ry; tr in the twohemispheres.� the di�erence in means between hemispheres for each of cx; cy; rx; ry; tr.2 Theoretical frameworkIn this section we present a theoretical framework for the development of organization, later-alization, and correlation measures. There has been considerable research in morphometricsaddressing the comparison of shapes by techniques such as Procrustean analysis [2], and itis natural to approach the problem of comparing the organization of the two hemispheres inthis way, by selecting certain \landmarks" which de�ne corresponding map locations in thehemispheres. This approach is promising, and we will pursue it below with one small caveat.A noteworthy di�erence between standard Procrustean analysis and our current problem ofhemispheric comparison is that, for the purpose of measuring organization and lateralization,we do not wish to allow the �gures being compared to be scaled before being matched, asthis operation a�ects the overall organization levels. On the other hand, the measurementof interhemispheric correlation in the case in which the two hemispheres are of di�erent sizesmay require a preliminary step in which the hemispheres are scaled to a common size.One is tempted to select the landmarks in such a way that the associated geometricalregions coincide approximately with the \organized regions" of the hemispheres. Indeed,our experiment with human test subjects suggests that humans assess organization level andhemispheric asymmetry of organization by �rst identifying these organized regions (see the5



Experimental Comparison section below). This is reasonable in measuring the interhemi-spheric correlation. On the other hand, in measuring the net degree of lateralization thegeometric similarities between �gures de�ned by the organized regions are of little directconcern. It is easy to �nd pairs of topographic maps having approximately the same levelof individual organization, and thus producing a bihemispheric map with no lateralization,which nonetheless are considerably di�erent in appearance when viewed purely as geometricentities associated with the locations of the receptive �eld centers in the organized regions.For example, the shapes of the organized regions in the two maps might be radically di�erentgeometrically even though these regions occupy the same fraction of the total area in bothcases. Thus, for the purpose of measuring total lateralization with Procrustean methodsit is best to avoid restricting attention to the organized regions. As landmarks one couldthen use all receptive �eld centers in the hemispheres. The mean square error of the best �tbetween the landmark collections of the two hemispheres may then be used as a measure oftotal lateralization. This is one of the approaches described below.Another way to measure lateral asymmetry is to �rst measure the performance of eachhemisphere separately, then measure the performance of the bihemispheric system, and �-nally combine these measurements to obtain a measure of the relative di�erence in the levelof performance between hemispheres. The following version of this idea has been used be-fore [4]: abbreviating the left and right hemispheric performances as �L, �R, and letting�L;R measure the performance of the combined bihemispheric system, one can consider thenumber �R � �L�L;R (6)to be a measure of lateralization. Negative values of this measure indicate dominance of theleft hemisphere, and positive values indicate right dominance, assuming the value of �L;R isnon{negative.This latter particular form has heuristic merit but it needs a solid theoretical foundation.Below we propose three properties that we believe should be satis�ed by any good measuresof lateralization. We then proceed to show that a certain general form for the lateralizationmetrics can be derived from these abstract properties. It turns out that the heuristic form ofthe metric mentioned above, with �L;R = �L + �R, may be recovered from the general formby an appropriate choice of the functional parameter.Since at the present stage we are interested in measuring asymmetries in topographic mapformation only rather than actual asymmetries of function, we will assume that the desiredlateralization metric depends only on performance measures �L, �R for the individual hemi-spheres, and not on any correlational information involving both hemispheres simultaneouslysuch as might potentially be incorporated in the measure �L;R. A measure of bihemisphericcorrelation is, however, computed by our measurement program and is briey described inthe section following the current one.We begin by proposing properties for the monohemispheric performance measures. Ourmeasures actually judge the degree of hemispheric disorganization. By analogy with ther-modynamics we therefore refer to them as entropies. These measures may be interpretedas Procrustean measures if we consider all receptive �eld centers in each hemisphere to be6



landmarks. Motivated in part by the desire to allow meaningful comparisons to be madebetween hemispheres with unequal numbers of elements, we normalize the entropies withrespect to the total number of processing elements in the measured hemisphere. A measureof organization on a scale from 0 to 1 is then computed from the entropy according to aformula described below.2.1 Single hemisphere metricsFor theoretical reasons, we split the development of the monohemispheric measure into twostages. In the �rst stage we produce a disorganization measure, or entropy, which indicatesthe degree of disorganization per processing element of the given topographic map relativeto a certain prede�ned reference organization pattern. For map M , we designate the valueof this disorganization measure as jjM jj. The disorganization value 0 indicates a completelyorganized topographic map, while larger values indicate increasing values of disorganization.One reason for normalizing the entropy with respect to the total number of elements is toallow meaningful comparisons to be made between hemispheres with unequal numbers ofelements.The second stage in the construction of the monohemispheric measure consists simplyof rescaling the entropy measure to yield an organization measure org(M) taking valuesbetween 0 and 1, with the organization value 0 indicating a totally disorganized map andthe value 1 indicating a completely organized map.In general, one may consider as the organization measureorg(M) = f(jjM jj) (7)where f is a decreasing function transforming the range of the given disorganization measurejj jj into the interval [0; 1].The information used in computing the disorganization measure is that which is coded inthe measured hemisphere's topographic map. Recall that our working representation of theorganization (or lack thereof) in our computational model of a single cerebral hemisphere'smap is a 2{D matrixM . Eachmatrix entryMi;j consists of a quadruplet (cxi;j; cyi;j; rxi;j; ryi;j)indicating respectively the x and y o�sets of the receptive �eld center of cortical node (i; j),and the x and y radii of the receptive �eld center. Geometrically, each topographic mapcorresponds to a torus obtained by identifying opposite edges of the rectangular array ofprocessing elements. Notice that, in accordance with our de�nition, two topographic mapsmay be added by adding the corresponding matrices.2.1.1 Unnormalized versions of the disorganization metrics.The following are desirable properties for the monohemispheric disorganization metric jj jj.We use the term \reference location" to refer to the coordinates (i; j) of node Mi;j.1. size independence: only the disorganization per processing element is measured, sothat one controls for di�ering hemispheric sizes.7



2. spatial homogeneity: If a mapM is given and a new mapM 0 is obtained fromM by anydistance{preserving geometric transformation of the torus associated with the referencelocations of the elements of M , then M and M 0 have the same unit disorganizationmeasure.3. metric property: the disorganization measure behaves like a distance function, i.e. itsatis�es the triangle inequalityjjM �M 0jj � jjM �M 00jj+ jjM 00 �M 0jj (8)Next, three speci�c options are given for the unit disorganization measure.Basic root mean square measure. We choose the unit disorganization metric jj jj tobe an average over all the processing elements of a distance function j(cx; cy; rx; ry)j in thespace R4 of node entries (cx; cy; rx; ry). We have chosen a standard weighted Euclidean, orroot mean square, distance for j j:j(cx; cy; rx; ry)j = qacxcx2 + acycy2 + arxrx2 + aryry2 (9)The entropy measure becomesjjM jjRMS1 = vuut 1N Xall M-nodesacxcx2 + acycy2 + arxrx2 + aryry2 (10)Shift{independent root mean square measure. As an improvement, we consider anentropy measure based on the statistical variances of the node entries:jjM jjRMS = qacx�2(cx) + acy�2(cy) + arx�2(rx) + ary�2(ry) (11)This measure is obtained from the �rst version of the root mean square measure jj jjRMS1de�ned above in Eq.( 10), by eliminating the dependence on mean shifts of the nodal attributevalues. In the remainder of this paper, except where noted explicitly, we will use the term\root mean square measure" to refer to the shift{independent version jjM jjRMS de�ned here,and not to the measure jjM jjRMS1 de�ned above.Di�erential root mean square measure. To reduce the e�ect of slowly spatially varyingmap deformations, such as slight curving of the maps, the following measure is considered.Notice that mean shifts in the various attributes are also eliminated.We de�ne the di�erential square distance between neighboring nodes n; n0 to be:j(n; n0)j2di�RMS = (12)acx(cx(n0)� cx(n))2 + acy(cy(n0) � cy(n))2 + arx(rx(n0)� rx(n))2 + ary(ry(n0)� ry(n))28



and then we de�ne the di�erential root mean square measure as follows. The square of themeasure is given below for typographical convenience.jjM jj2diffRMS = 1N Xall M-nodes n Xall neighbors n0 of n j(n; n0)j2di�RMSVarious parameter choices (acx; acy; arx; ary) bring out di�erent aspects of hemisphericactivity with the measures de�ned above. For example, the choice (1; 1; 0; 0) considers onlythe location cx; cy of the receptive �eld centers, while (0; 0; 1; 1) causes the measurements todepend exclusively on the receptive �eld radii rx; ry. We have obtained good results withthe parameter vector choice (1; 1; 1; 1).Proposition 2.1. The disorganization measures jj jjRMS1, jj jjRMS, and jj jjdi�RMS de�nedabove satisfy the properties 1){3).Proof. Size independence is enforced in the de�nitions of the measures. The �rst and thirdmeasures involve an explicit division by N , and the second is de�ned in terms of the vari-ances, which are size independent as well. Spatial homogeneity follows from the fact that themeasures involve only the values of the various attributes at individual elements of the mea-sured topographic map. Any permutation of the elements leaves these measures unchanged.The metric property is a consequence of the Cauchy-Schwarz-Buniakowski inequality. �Standard statistical measures. Finally, we compute means and standard deviations ofthe attributes cx; cy; rx; ry in a given topographic map M . These measures are standard;they are de�ned as follows, where X denotes any one of the attributes:�M (X) = 1N Xall nodes n (X(M;n)) (13)�M (X) = vuut 1N � 1 Xall nodes n (X(M;n) � �M (X))2 (14)The above measures provide alternative information sources for organization assessments.Highly organized topographic maps are associated with small values for the variances of thevarious attributes.2.1.2 Normalizing the disorganization metrics.Having identi�ed three potentially useful measures jj jjjRMS1, jj jjRMS and jj jjdi�RMS, weproceed to normalize them to a 0 to 1 range which is more convenient for the computationof the corresponding organization measures. 9



The transformation from unnormalized to normalized measures is performed by the sig-moid, or logistic, function de�ned bysigmoid�;s(x) = 12 (1 + tanh(s(x� � ))) = 11 + e�2s(x��) ; (15)Applying the sigmoid function to each unnormalized entropy measure jj jj de�ned in thepreceding section, we obtain the corresponding normalized measurejjM jjsigmoid = sigmoid�;s(jjM jj) (16)The sigmoid function involves two parameters � and s, the threshold and the steepness,respectively. Increasing the value of � increases the hemispheric disorganization level re-quired to produce a given value of the disorganization measurement. Increasing s decreasesthe width of the transition region allowed by the measure between organization and disorga-nization. As s approaches 1, the sigmoid function approaches a simple threshold detector,which returns the value 1 for inputs greater than the threshold � , and the value 0 for inputsless than this threshold. Finite values of s yield continuous approximations to this thresholddetecting behavior.2.1.3 Sigmoid activation measures.Motivated by the desire to mimic humans' lateralization judgments more closely (see theExperimental Comparison section below), we have considered the following two additionalways to compute entropy functions in addition to the three described above. The additionalmeasures are normalized from the outset, so no additional normalizing transformation isneeded. The di�erence between the new measures and those described above is that in thenew measures, the sigmoid function is applied locally, at each node, and the result is averagedover all nodes, while in the measures de�ned above the sigmoid is applied after the averagehas been computed.Sigmoid RMS measure.jjM jjsigmoidRMS = 1N Xall M-nodes sigmoid�;s(j(cx; cy; rx; ry)j) (17)Here, j j is the weighted Euclidean distance (Eq. 9) described above when considering theunnormalized versions of the entropy measures, and the sigmoid function is as in Eq. 15. 22One observes that the function sigmoid(x) is commonly used in neural modelling to compute nodalactivation from total nodal input. Thus, the sigmoid{based entropy may be interpreted as the outputproduced by a neural network having the nodes of the measured topographic map as inputs, and onesigmoid processing element per input connected to a common linear output node via identical weights equalto 1=N . This suggests the idea that a neural network might be constructed which can learn to computean organization measure producing results similar to those given by the test subjects, using, e.g., errorbackpropagation. We have not yet attempted to implement this idea.10



Sigmoiddi� measure. By combining the di�erential RMS measure Eq. 13 with the sig-moid as in Eq. 17, the following measure is obtained.jjM jjsigmoiddi� = 1N Xall M-nodes n sigmoid�;s0@ Xall neighbors n0 of n j(n; n0)j2di�RMS1A 122.1.4 Organization from normalized disorganization.Given any one of the measures jj jjx of disorganization de�ned above, which has been scaledto take values between 0 and 1, we compute the associated organization measure orgx as:orgx(M) = 1 � jjM jjx (18)2.1.5 Organized area measure.Another approach to the measurement of organization is to measure the fraction of thesensory area that is covered by a well{formed topographic map. The above sigmoid{basedorganization measures may be viewed as producing only an approximation to this area. Sucha measure can be obtained by computing, for each sensory node, the perimeter of the trianglesformed by the arcs connecting the corresponding cortical node with its immediate neighborsin the topographic map. If this perimeter is below a certain threshold, and if the node'sreceptive �eld radii are less than other threshold values, and if the node's total response isabove a third threshold, then the given node is considered to form part of the organizedregion; otherwise, it is considered to lie outside this region. The resulting organizationmeasure isorgarea(M) = Xall M{trianglesIfperimeter< �p; rx < �rx; ry < �ry; tr > �trg a(triangle)(19)Here, the numbers �p; �rx; �ry; �tr are the thresholds referred to above, which are used todecide, for each triangle, if it belongs to the organized region or not. The symbol a(triangle)denotes the sensory area of the given triangle. The sum includes one term for each sensorytriangle whose vertices are all immediate neighbors of each other. The function I(q) equals 1if the condition q holds and 0 if q fails. Thus, only triangles which simultaneously have smallperimeter, small receptive �eld radii, and a signi�cant total response e�ectively contributeto the sum.Proposition 2.2. The size independence and spatial homogeneity properties for monohemis-peric measures hold for the sigmoid{based entropies and for the organized area measure aswell. However, the metric property does not hold in the form stated.Proof. The named measures are explicitly de�ned as averages over all nodes of the measuredtopographic map. This guarantees size independence. Spatial homogeneity follows from thefact that the expression which is averaged is independent of the node's location, depending11



only on the values of the attributes cx; cy; rx; ry. The failure of the metric property for thesigmoid and organized area measures is roughly due to their threshold{detecting behavior.� One should note that while the motivation underlying the organized area measure is tomeasure the \organized area", the choice of small perimeter as a criterion to identify theorganized regions is rather ad hoc, based on observations of receptive �eld map behaviorwhich suggest that map regularity is correlated with small perimeter. Indeed, the perfor-mance of this measure for receptive �eld maps is reasonably good, as shown in the Examplesin the Appendix. However, in the case of the \inverse maps" corresponding to response �eldsinstead of receptive �elds, situations arise in which the most regular regions in a map havethe triangles with the largest perimeter; see the �rst two Examples. In other examples, themeasure yields better results. The organized area measure thus does not produce consistentresults for response �eld maps.2.2 Lateralization metricsWe now address the issue of extracting lateral asymmetry information from the organizationvalues for the two hemispheres' maps. We seek a function lat(org(L); org(R)) measuring thedegree of directional preference in the total degree of organization (map formation) of thebihemispheric system, with a value of �1 indicating total left dominance, and +1 indicatingtotal right dominance. We assume the measurements org(L); org(R) are organization valuesindicating the average degree of organization per processing element of the respective leftand right hemispheres as described in the preceding section. If these organization valueshave been obtained from disorganization metrics, or entropies, jjLjj; jjRjj, then we will referto the quantities log jjLjj, log jjRjj as \log entropies"; their use will simplify the analysis tofollow in one of the subsections below.2.2.1 Simple di�erence lateralization.One can simply subtract the organization values for the two hemispheres to obtain a later-alization value between �1 and +1. The resulting measure is given by:lat(org(L); org(R)) = org(R) � org(L) (20)In fact, this simple idea has been used by other authors. However, after some experimentationand comparison with human lateralization assessments, it has become clear to us that thelateralization values so obtained fail to agree with the intuitively satisfying judgements madeby the human subjects (see the Experimental Comparison section). This has motivated usto de�ne improved lateralization metrics, which we will now describe.2.2.2 Lateralization via steepening.We can improve the simple di�erence lateralization measure by applying a steepening trans-formation f : lat steep (org(L); org(R)) = f (org(R)� org(L)) (21)12



Figure 4: Graph of the steepening function, Eq. 23where f : [�1; 1]! [�1; 1]; (22)is de�ned by f(x) = (1 + x)s � (1 � x)s(1 + x)s + (1� x)s (23)A graph of the function f for s = 2 is shown here. In this way, we obtain the followingsteepened lateralization measure:lat steep (org(L); org(R)) = (1 + org(R) � org(L))s � (1� (org(R) � org(L)))s(1 + org(R) � org(L))s + (1 � (org(R) � org(L)))s (24)2.2.3 Lateralization via an intermediate unbounding transformation.In this subsection we obtain an alternative measure of lateralization by �rst transforming anygiven organization measures into unnormalized measures of disorganization, and then seekinga measure of lateralization which can be computed from these unnormalized disorganizationmetrics. Some of the entropies discussed above were derived from unnormalized versions, sothe latter may be used in the formation of lateralization measures below. The unnormalizingprocedure may seem circuitous, and in fact the lateralization measure obtained via this routeinvolves only the original normalized organization measures, so the unnormalizing procedureis really just an intermediate technical stage which allows us to scale the resulting metricsby arbitrary numbers without leaving the allowed range.Lateralization in terms of unnormalized disorganization metrics. We assume tobegin that the unnormalizing procedure has been completed, and we seek a lateralizationmetric computable from unnormalized disorganization metrics. Thus, we assume that we13



are given an unnormalized version jj jj of a disorganization measure, and we seek to pro-duce a satisfactory lateralization metric lat(jjLjj; jjRjj). We propose the following desirableproperties for the lateralization metric lat(jjLjj; jjRjj):1. scale invariance: laterally symmetric scale changes do not a�ect the metric, i.e.lat(ax; ay) = lat(x; y) for all scalars a (25)2. antisymmetry: exchanging the hemispheres only changes the sign of the metric, i.e.lat(y; x) = �lat(x; y) (26)3. monotonicity: measurably greater relative degrees of disorganization of the left hemi-sphere yield measurably greater values for the metric, i.e.lat(x; y) is an increasing function of x if y remains �xed. (27)4. metric property: the absolute value of the lateralization metric behaves like a distancefunction, i.e. it satis�es the triangle inequalityjlat(x; z)j � jlat(x; y)j+ jlat(y; z)j (28)Proposition 2.3. In order to satisfy properties 25{ 28, it is necessary and su�cient thatthe lateralization metric lat be of the form lat(jjLjj; jjRjj) = h(log( jjLjjjjRjj)), where h is a strictlyincreasing odd positively subadditive function from the real numbers onto the interval (�1; 1).Proof. Choosing a = 1y in property 1), we obtain lat(x; y) = lat(xy ; 1). Thus, lat(x; y) =g(x=y) for some function g. We now write the candidate lateralization metric in terms ofthe log entropies log jjLjj, log jjRjj:lat(jjLjj; jjRjj) = g(jjLjj=jjRjj) = h log  jjLjjjjRjj!! (29)This does not constitute a restriction on the metric lat, since any function g may be expressedas g(x) = g(exp(log x)), so that one may take h(y) = g(exp(y)). Property 1) therefore saysthat our metric lat is a function (h) of the di�erence in log entropies between the hemispheres.Property 2) translates to the following statement about h:h(log x� log y) = �h(log y � log x) (30)This is equivalent to saying that h is an \odd" function, satisfying h(�u) = �h(u). Property3) simply says that g(x=y) is a strictly increasing function of x=y, or, equivalently, h is astrictly increasing function. Property 4) requires g to satisfyjg(x=z)j � jg(x=y)j+ jg(y=z)j (31)14



In terms of h, this requirement becomesjh(log x� log z)j � jh(log x� log y)j+ jh(log y � log z)j (32)By property 2) we can rewrite this ash(j log x� log zj) � h(j log x� log yj) + h(j log y � log zj) (33)Thus, if we are given positive numbers a; b, we can de�ne x = exp(a); z = exp(�b); y = 1,so that then a = log x; b = � log z; 0 = log y, and we will conclude that we have the positivesubadditivity property: h(a+ b) � h(a) + h(b) whenever a; b � 0 (34)Conversely, if positive subadditivity holds then given arbitrary positive numbers x; y; z wehave using the monotonicity property 3)h(j log x� log zj) = h(j(log x� log y) + (log y � log z)j)� h(j log x� log yj + j log y � log zj)and by subadditivity we obtain the desired property 4). �Our current choice for h is h(y) = tanh((s=2)y) (35)Thus, the chosen lateralization metric is given bylat unbdd(jjLjj; jjRjj) = tanh s2 log jjLjjjjRjj!! (36)Since tanh(x) = ex � e�xex + e�xand since e s2 log jjLjjjjRjj =  jjLjjjjRjj! s2 ;the lateralization metric in Eq.( 36) can also be expressed as:lat unbdd(jjLjj; jjRjj) = jjLjjs � jjRjjsjjLjjs + jjRjjs (37)Larger values of s in the lateralization metric yield measurements which are more sensitiveto lateral asymmetry, while smaller values of s decrease the sensitivity.Notice that our current choice reduces to a version of the lateralization metric given inEq. 6, where we interpret �L as jjLjj�s, �R as jjRjj�s, and �L;R as jjLjj�s + jjRjj�s.15



Unnormalized disorganization from normalized metrics. In order to express ourconclusions concerning lateralization measures in terms of normalized organization or disor-ganization metrics, we must transform the normalized metrics to obtain unnormalized met-rics, and then apply the previously chosen lateralization formula to the resulting metrics.The simplest way to obtain an unnormalized disorganization metric from a given normalizeddisorganization value jjM jj is to take the reciprocal of the corresponding organization value:jjM jjunnormalized = 1org(M) (38)By substituting the resulting unnormalized disorganization into the expression for lateral-ization from Eq. ( 37), one obtains the corresponding lateralization metric:lat unbdd(jjLjj; jjRjj) = jjLjjsunnormalized� jjRjjsunnormalizedjjLjjsunnormalized+ jjRjjsunnormalized = org(R)s � org(L)sorg(R)s + org(L)s (39)As usual, the parameter s controls the steepness of the metric. Observe that the resultinglateralization metric depends only on the organization values, and therefore may be usedindependently of any intermediate disorganization metrics.2.3 Correlation metricsIn addition to a lateralization metric, which measures the di�erence in the total level of orga-nization between the hemispheres, we also seek a measure of the similarity in their patternsof organization. Similarity may be interpreted as referring to the degree of coincidence of theorganized regions in the hemispheres being compared, or, in a more abstract sense, to thedegree of parallelism of the vectors representing the hemispheric maps. We call the measureof similarity the bihemispheric correlation. The correlation takes values between �1 and +1,where �1 indicates total bilateral symmetry in the organization patterns, and +1 indicatestotal antisymmetry. We let c(M;M 0) denote the correlation value associated with the mapsM ,M 0.The desired properties of the correlation are the following. It is assumed here that the twohemispheres whose correlation is to be computed have the same number of nodes. The caseof hemispheres of di�erent sizes is addressed briey in the �nal subsection of the currentsection on correlation metrics.1. lateral symmetry: The correlation is invariant under left{right interchange, i.e.c(M;N) = c(N;M) (40)2. scale invariance: Only the direction of organization matters:c(M;�N) = c(M;N) for all positive scalars �: (41)16



3. monohemispheric directional antisymmetry: If N 0 is obtained from N by changingthe sign of the entries cx,cy at all nodes of N , then:c(M;N 0) = �c(M;N) (42)4. normalization: c(M;M) = 1 (43)5. random decorrelation: If M and N are independent random maps (variables), thenthe expected value of their correlation is zero:E[c(M;N)] = 0 (44)2.3.1 Root mean square correlation.We may easily de�ne an interhemispheric correlation measure by simple geometrical consid-erations. Namely, the inner product associated with the weighted Euclidean metric used toconstruct the organization measure jj jjRMS1 in the preceding section produces an abstractgeometrical structure in the space of topographic maps, and we use this abstract geometryto measure the angle � between the vectors representing the given topographic maps. Bythe parallelogram rule, the cosine of this angle is given by:cRMS(L;R) = jjLjj2 + jjRjj2 � jjL�Rjj22jjLjjjjRjj (45)(Recall that the di�erence between two topographic maps is simply the di�erence betweentwo matrices. This requires further explanation if the two hemispheres have di�erent numbersof nodes; this is addressed below in a separate subsection.) This is our basic root meansquare correlation measure. Its values vary between �1 and +1, with �1 indicating totalantisymmetry in the topographic maps being compared, and +1 indicating total mirrorsymmetry. Observe that the disorganization measure used to construct the root mean squarecorrelation is not the usual root mean square measure jj jjRMS, but rather the shift{dependentversion jj jjRMS1.Proposition 2.4. The measure of correlation de�ned above satis�es properties 1),2),4),5),and property 3) also if one chooses the parameter vector a = (1; 1; 0; 0) in the de�nition ofthe weighted Euclidean distance in Eq. 9.Proof. All properties follow from the fact that the correlation as de�ned is the cosine ofthe angle between the abstract vectors representing the hemispheric maps L,R. Property 1)is clear, as the angle between two vectors does not depend on the order in which they areconsidered. Property 2) follows from the fact that the angle is independent of the lengthsof the vectors. Property 3) is simply the trigonometric identity cos(� + �) = � cos(�),property 4) says cos(0) = 1, and property 5) is the standard de�nition of independence usedin probability and statistics. � 17



2.3.2 Steepened root mean square correlation.A variant of the basic root mean square measure is obtained by introducing a steepnessparameter as for the lateralization metrics described above. The resulting root mean squarecorrelation measure is given as follows. We refer to this measure as the steepened root meansquare correlation, abbreviated as sRMS correlation.csRMS(L;R) = f  jjLjj2 + jjRjj2 � jjL�Rjj22jjLjjjjRjj ! (46)where the steepening function f is as in Eq.( 23).2.3.3 Map overlap symmetry measure.In terms of the sensory regions oreg(M) and oreg(M 0) corresponding to the organized regionsin the individual hemispheric maps, and in terms of the set{theoretic operation � of sym-metric di�erence, we de�ne a measure of correlation, which we refer to as the map overlapmeasure, as follows:map overlap(L;R) = area(oreg(M) \ oreg(M 0))� area(oreg(M)�oreg(M 0)) (47)The intersection term measures the overlap of the organized regions, while the symmetricdi�erence term measures the discrepancy between these regions. The map overlap measureassociates the maximumvalue 1 to a bihemisphericmap if and only if each hemisphere coversthe entire sensory surface with a well{formed map. The value �1 corresponds to the case inwhich the two sensory regions covered by the two hemispheric maps are completely disjointand together cover the entire sensory surface.A variant of the above measure is obtained by dividing by the area of the union ofthe organized regions. The resulting measure is the normalized map overlap measure. Theextreme values +1,�1 for the normalized map overlap measure are attained, respectively,when the two maps cover the same sensory region, and when they cover disjoint regions. Itis no longer relevant whether or not the entire sensory surface is covered by each map or bytheir union, as in the case of the unnormalized map overlap measure.2.4 Standard statistical measures.As we did in the case of organization measures, we may now compute means and standarddeviations of the di�erences in the attributes cx; cy; rx; ry between the two hemispheres.Letting X denote any one of the attributes:�LR(X) = 1N Xall nodes n (X(L; n)�X(R;n)) (48)�LR(X) = vuut 1N � 1 Xall nodes n(X(L; n) �X(R;n) � �LR(X))2 (49)18



These measures provide alternative information sources for organization and symmetry as-sessments. Highly organized topographic maps are associated with small values for thevariances of the various attributes. Small values of the variance indicate a high degree oftranshemispheric symmetry in the associated attribute.2.5 Correlation measures in the case of unequal hemispheric sizes.If the two hemispheres have di�erent numbers of nodes, then the arrays L and R representingthe hemispheric maps have di�erent sizes. This precludes consideration of the standardmatrix di�erence L � R, as required, for example, in Eq.( 45). The standard statisticalmeasures, as in Eqs. ( 48), ( 49), and in the de�nition of the random decorrelation propertyat the beginning of the current section, are also unde�ned unless the hemispheric sizescoincide.One way to deal with this di�culty is to �rst represent the map S of the smaller hemi-sphere as a larger map S0 of size equal to the size of the larger hemisphere. This rescalingprocess is performed in such a way that the resulting map S 0 represents the original smallermap S as faithfully as possible. Once the rescaled map has been obtained, the measures ofcorrelation de�ned above are used to compare the rescaled map with the original map of thelarger hemisphere.Thus, given a measure of correlation c(L;R) de�ned for the case in which the sizes of Land R coincide, the measure is extended to apply in the case of unequal hemispheric sizesby letting c(L;R) := c(L0; R0);where the smaller hemispheric map has been scaled as described above, and the largerhemispheric map has been left unchanged.The rescaling process itself is simple. If the smaller hemisphere has size n�m, and if thelarger hemisphere has size N �M , where we assume n � N and m �M , then given \large"coordinates (I; J), with 1 � I � N and 1 � J � M , we obtain corresponding \small"coordinates (i; j) by letting i = bI n=Ncj = bJ m=McThe rescaled map S0 is then obtained from the original map S by using the rescaledindices: S0(I; J) := S(i; j)The above rescaling idea is not without problems, however. As a direct consequence ofthe rescaling process, the resulting map S0 is constant on blocks of average size bN=nc �bM=mc. This tends to produce signi�cant cancellations in the sums involved in computingthe correlation measures and therefore adversely a�ects the measurement values.19



3 Experimental ComparisonWe asked 8 researchers (mostly graduate students) at the University of Maryland familiarwith the concept of a topographic map to participate in a simple experiment. Each subjectwas asked to give his or her subjective measurements of organization and lateralization ofrepresentative pictures of topographic map formation obtained in our simulations using thebihemispheric cortex model. We discuss the results below. See the Appendix for graphicalviews of the maps used, and for complete lists of the measurement values given by a programimplementing the measures described above as well as those provided by the human testsubjects.Comparing the root mean square and sigmoid organization measures, we see that thelatter produces values closer to the human values. This is most noticeable in the randomstarting frames in Examples 1 and 3, where the root mean square measure yields positiveorganization values. The starting frame from Example 1 is shown below, together with themeasurement values produced by the program and the human subjects.
Figure 5: Example 1, frame #1frame # 1 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.11 0.13 0.02 0.03 0.12sigmoidRMS 0.00 0.00 -0.00 -0.00 0.00diffRMS 0.04 0.06 0.01 0.03 0.30sigmoiddiff 0.01 0.01 0.00 0.00 0.00area 0.04 0.04 -0.00 -0.00 0.00subjective 0.01 0.01 0.00 0.00 0.0020



subjective lateralization 0.00 +-.00c_RMS -0.06c_sRMS -0.11map_overlap -0.08normalized_map_overlap -0.99subjective correlation 0.00 +-.00The \reason" for this behavior for the random frames is that the root mean squaremeasure requires an in�nite variance in order to produce zero as the organization value,while human subjects assign the value 0 to even moderate variances. People seem to mentallydivide a graphical view of a given topographic map into two parts: an \organized" part and a\disorganized" part, irrespective of moderate quantitative variations within these parts, andthen attempt to assess the fraction of the total area which corresponds to the organized part.Root mean square measures simply average local deviations from uniformity, and are quitesensitive to moderate quantitative variations, i.e. they do care about the quantitative degreeof disorganization present in a given region, and not just whether or not it is disorganizedin some qualitative way. The sigmoid and sigmoiddi� measures, on the other hand, seembetter able to mimic humans' apparent establishment of a disorganization threshold whichseparates organization from disorganization in a given topographic map.The various measures agree reasonably well with the test subjects in all of the exampleswith the following exceptions. In Example 4 (see Appendix), several of the organizationmeasures produce values that are considerably smaller than those given by the subjects.Only the area and sigmoiddi� measures come close to the human ability to focus on theregularity of the map, ignoring the curvature of the lines joining receptive �eld centers.Frame #5 from Example 4 is shown below, together with the corresponding measurementvalues.frame # 5 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.32 0.35 0.03 0.06 0.07sigmoidRMS 0.31 0.35 0.04 0.09 0.09diffRMS 0.88 0.86 -0.02 -0.03 -0.02sigmoiddiff 0.82 0.80 -0.02 -0.04 -0.02area 1.00 0.95 -0.05 -0.09 -0.04subjective 0.88 0.83 -0.05 -0.10 -0.04subjective lateralization -0.04 +-.05c_RMS -0.82c_sRMS -0.9821



Figure 6: Example 4, frame #5map_overlap 0.91normalized_map_overlap 0.91subjective correlation -.83 +-.05The area measure, however, overestimates the level of organization in Example 3a. Thus,overall, the best performance is obtained with the sigmoiddi� measure.As for lateralization, we observe that the simple di�erence measure lat produces valuesthat are not satisfactory from the point of view of the test subjects. The steepened lat-eralization measure lat steep provides a considerable improvement, as does the logarithmicmeasure lat log. The latter measure performs counter{intuitively in situations such as frame3 of Example 3, when both hemispheres are highly organized. This is because log lat issensitive only to the relative magnitudes of the disorganization values, and so produces largelateralization values when both hemispheres have organization values close to 1, if the orga-nization values of the two hemispheres di�er from 1 by amounts which, though small, havea ratio which is not close to unity.Our limited human correlation assessments suggest that the values produced by thecurrent correlation measures are quite appropriate. The best correlation values are producedby the steepened root mean square measure. We are aware of the fact that the small samplesize used to obtain the subjective measurements of organization, lateralization, and mirrorsymmetry makes it di�cult to obtain good con�dence limits for the resulting estimates ofmeans and variances. We merely wish to present examples of human judgments of the variousmeasures. Assuming normally distributed measurements, �{squared and Student t analysisshows that with a probability of at least :95, the true population means and variances arewithin approximately 40% of the sample values.22



4 DiscussionIn summary, we have developed measures of organization and lateralization which are sup-ported by a good theoretical foundation and whose values agree well with test subjects'assessments based on graphical views of bihemispheric topographic map formation. We havealso de�ned satisfactory measures of mirror symmetry or bihemispheric correlation. Ourmeasures are normalized with respect to hemispheric size, so that hemispheres of di�erentsizes can be meaningfully compared. Also, the measures correct for various distortions of thetopographic maps, such as mean shifts and global curving, which should not greatly a�ectthe associated measurement values.Simple root mean square and sigmoid organization measures attempt to determine thedeviation of the measured topographic maps relative to completely uniform, hexagonal latticetopographic maps, while human subjects are less restrictive in their judgment of organization.Another option suggested here is to have a neural network �nd an appropriate measure viasupervised learning using error backpropagation. The current sigmoid{based organizationmeasure corresponds to a single layer network, and already yields a considerable improvementover the root mean square measure. In our opinion the best performance has been obtainedwith the di�erential root mean square and sigmoiddi� measures. These measures allowsigni�cant global distortions for a given value of organization, focussing on local regularityof maps, as humans seem to do.In work in progress, we are simulating the bihemispheric cortex model with variousparameter values to gain insight into the factors a�ecting the development of organizationand asymmetry.
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AppendixResults obtained in our simulations with the bihemispheric cortex model are presented here,and comparisons are provided between the output produced by a program implementing themeasures we have developed and the assessments made by human test subjects.In all of the examples, the attribute parameter vector is (1; 1; 0; 0) for the root meansquare (RMS) correlation measurement, and (1; 1; 1; 1) for the RMS, di�erential RMS, sig-moid, and sigmoiddi� organization measurements, as well as for the sigmoiddi� correlation.In other words, RMS correlation is judged solely on the basis of the displacements of thereceptive �eld centers, while the remaining judgments take the receptive �eld radii into ac-count as well. The threshold and steepness for the sigmoid function are � = 1:15 and s = 5,respectively, in the case of the sigmoid organization measure, and � = 1:05 and s = 2:5 forthe sigmoiddi� measure.First, a tabular summary of results is given, followed by graphical views of the topo-graphic maps used as examples, together with detailed measurement values given by boththe program and by humans.Measures computedIn the examples below, the values listed correspond to the measures de�ned above, as indi-cated in the following list of equation numbers:� root mean square (RMS) organization: orgRMS, with the choice a = (1; 1; 1; 1) inEq.( 11)� sigmoid organization: orgsigmoidRMS� di�erential RMS organization: orgdi�RMS, with the choice a = (1; 1; 1; 1) in Eq.( 13)� sigmoiddi� organization: orgsigmoiddi� , with jj jjsigmoid replaced by jj jjsigmoiddi� from Eq.( 18)� di�erence lateralization: lat, Eq.( 20) with the appropriate disorganization metricjj jjdi�RMS and jj jjsigmoiddi� in each case� steepened lateralization: lat steep, Eq.( 24), with s = 2 and the appropriate disorga-nization metric jj jjdi�RMS and jj jjsigmoiddi� in each case� lateralization via unbounded disorganization: lat unbdd, Eq.( 39), with s = 1:5 andthe appropriate disorganization metric jj jjdi�RMS and jj jjsigmoiddi� in each case� RMS correlation: cRMS, Eq.( 45), with the choice a = (1; 1; 0; 0) in Eq.( 10)� sRMS correlation: csRMS, Eq.( 46), with the choice a = (1; 1; 0; 0) in Eq.( 10) and thesteepness value s = 2 in Eq.( 23) 25



� map overlap symmetry measure: map overlap, Eq.( 47)� normalized map overlap symmetry measure: as in Eq.( 47), dividing the right handside by the area of the union of the organized regions in the two hemispheresSummary of the resultsIn the table of organization values below, only the means of the test subjects' measurementsare given. The lateralization table includes columns for mean � standard deviation valuesas well as minimum and maximumvalues. Graphical views of selected frames from receptive�eld data �les used to produce the preceding data tables are presented following the tables,together with the measurement program output and the means of the human measurements.Organization# org_RMS org_sigmoidRMS org_area org_diffRMS org_sigmoiddiff people1a .11 .13 .00 .00 .04 .04 .04 .06 .01 .01 0.01 0.011b .34 .26 .39 .37 .26 .22 .35 .22 .35 .27 0.44 0.381c .48 .46 .60 .58 .38 .36 .62 .54 .62 .64 0.60 0.602b .33 .75 .41 .75 .06 .53 .29 .74 .19 .70 0.16 0.792c .19 .67 .26 .77 .20 .67 .46 .79 .47 .78 0.39 0.713a .66 .69 .00 .00 .51 .64 .56 .59 .29 .32 0.29 0.283b .95 .96 .96 .96 1.0 1.0 .97 .97 .97 .97 0.93 0.933c .96 .98 .96 .97 1.0 1.0 .99 .99 .98 .99 0.99 0.994b .15 .09 .37 .15 .73 .57 .27 .24 .59 .52 0.79 0.744c .32 .35 .31 .35 1.0 .95 .88 .86 .82 .80 0.88 0.835b .86 .36 .79 .00 .96 .00 .86 .22 .83 .03 0.83 0.075c .97 .28 .97 .00 1.0 .00 .98 .17 .98 .02 0.98 0.03Unbounded Lateralization# lat_RMS lat_area lat_diffRMS lat_sigmoiddiff from_human people people(min,max)1a .12 .00 .30 .00 .00 0.00 +-.00 .00 .001b -.20 -.12 -.33 -.19 -.11 -0.16 +-.21 -.60 .001c -.03 -.04 -.10 .02 .00 -0.03 +-.05 -.15 .002b .55 .93 .61 .75 .83 0.79 +-.12 .60 .952c .74 .72 .38 .36 .42 0.44 +-.20 .10 .753a .03 .17 .04 .07 -.03 0.01 +-.03 .00 .103b .01 .00 .00 .00 .00 0.00 +-.00 .00 .003c .02 .00 .00 .01 .00 0.00 +-.00 .00 .004b -.37 -.18 -.09 -.09 -.05 -0.07 +-.05 -.15 .004c .07 -.04 -.02 -.02 -.04 -0.04 +-.05 -.10 .005b -.57 -1.0 -.77 -.99 -.95 -0.92 +-.07 -1.0 -.805c -.73 -1.0 -.87 -.99 -.99 -1.00 +-.00 -1.0 -1.026



Steepened Lateralization# lat_RMS lat_area lat_diffRMS lat_sigmoiddiff from_human people people(min,max)1a .03 -.00 .03 .00 .00 0.00 +-.00 .00 .001b -.15 -.09 -.26 -.15 -.12 -0.16 +-.21 -.60 .001c -.05 -.03 -.17 .02 .00 -0.03 +-.05 -.15 .002b .71 .77 .74 .81 .90 0.79 +-.12 .60 .952c .78 .77 .60 .56 .58 0.44 +-.20 .10 .753a .07 .26 .06 .07 -.02 0.01 +-.03 .00 .103b .02 -.00 -.00 -.00 .00 0.00 +-.00 .00 .003c .03 -.00 .00 .00 .00 0.00 +-.00 .00 .004b -.11 -.32 -.05 -.13 -.10 -0.07 +-.05 -.15 .004c .06 -.09 -.03 -.04 -.10 -0.04 +-.05 -.10 .005b -.80 -1.0 -.91 -.97 -.96 -0.92 +-.07 -1.0 -.805c -.94 -1.0 -.98 -1.0 -1.0 -1.00 +-.00 -1.0 -1.0Correlation and Map Overlap# c_RMS c_sRMS map_overlap map_overlap people people(min,max)(normalized)1a -.06 -.11 -.08 -.99 .00 +-.00 .00 .001b -.29 -.54 -.48 -1.0 -.77 +-.19 -.90 -.501c -.52 -.82 -.74 -1.0 -.92 +-.08 -1.0 -.802b -.17 -.34 -.59 -1.0 -.80 +-.08 -.90 -.702c -.54 -.84 -.86 -1.0 -.90 +-.00 -.90 -.903a .03 .05 -.21 -.25 .30 +-.16 .10 .503b .40 .69 1.0 1.0 .87 +-.09 .80 1.03c .67 .93 1.0 1.0 .97 +-.05 .90 1.04b -.72 -.95 -.21 -.22 -.63 +-.12 -.80 -.504c -.82 -.98 .91 .91 -.83 +-.05 -.90 -.805b .01 .01 -.96 -1.0 .03 +-.05 .00 .105c -.05 -.10 -1.0 -1.0 .00 +-.00 .00 .00
27



Example 1
frame # 1 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.11 0.13 0.02 0.03 0.12sigmoidRMS 0.00 0.00 -0.00 -0.00 0.00diffRMS 0.04 0.06 0.01 0.03 0.30sigmoiddiff 0.01 0.01 0.00 0.00 0.00area 0.04 0.04 -0.00 -0.00 0.00subjective 0.01 0.01 0.00 0.00 0.00subjective lateralization 0.00 +-.00c_RMS -0.06c_sRMS -0.11map_overlap -0.08normalized_map_overlap -0.99subjective correlation 0.00 +-.00
frame # 1 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.01 0.01 0.00 0.00 0.00sigmoidRMS 0.02 0.04 0.02 0.03 0.48diffRMS 0.00 0.00 0.00 0.00 0.00sigmoiddiff 0.00 0.00 0.00 0.00 0.00area 0.00 0.00 0.00 0.00 0.00c_RMS -0.75c_sRMS -0.96map_overlap -0.00normalized_map_overlap -1.0028



frame # 2 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.34 0.26 -0.08 -0.15 -0.20sigmoidRMS 0.39 0.37 -0.02 -0.05 -0.04diffRMS 0.35 0.22 -0.13 -0.26 -0.33sigmoiddiff 0.35 0.27 -0.08 -0.15 -0.19area 0.26 0.22 -0.05 -0.09 -0.12subjective 0.44 0.38 -0.06 -0.12 -0.11subjective lateralization -0.16 +-.21c_RMS -0.29c_sRMS -0.54map_overlap -0.48normalized_map_overlap -1.00subjective correlation -.77 +-.19
frame # 2 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.29 0.27 -0.02 -0.04 -0.05sigmoidRMS 0.41 0.39 -0.02 -0.03 -0.04diffRMS 0.18 0.14 -0.04 -0.07 -0.19sigmoiddiff 0.14 0.10 -0.04 -0.07 -0.25area 0.07 0.04 -0.03 -0.07 -0.40c_RMS -0.25c_sRMS -0.47map_overlap -0.11normalized_map_overlap -1.0029



frame # 9 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.48 0.46 -0.03 -0.05 -0.03sigmoidRMS 0.60 0.58 -0.02 -0.03 -0.03diffRMS 0.62 0.54 -0.08 -0.17 -0.10sigmoiddiff 0.62 0.64 0.01 0.02 0.02area 0.38 0.36 -0.02 -0.03 -0.04subjective 0.60 0.60 0.00 0.00 0.00subjective lateralization -0.03 +-.05c_RMS -0.52c_sRMS -0.82map_overlap -0.74normalized_map_overlap -1.00subjective correlation -.92 +-.08
frame # 9 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.64 0.63 -0.01 -0.02 -0.01sigmoidRMS 0.70 0.70 -0.00 -0.00 -0.00diffRMS 0.63 0.64 0.01 0.02 0.01sigmoiddiff 0.43 0.44 0.01 0.02 0.02area 0.07 0.00 -0.07 -0.14 -1.00c_RMS -0.38c_sRMS -0.66map_overlap -0.07normalized_map_overlap -0.9630



Example 2
frame # 2 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.33 0.75 0.42 0.71 0.55sigmoidRMS 0.41 0.75 0.34 0.61 0.42diffRMS 0.29 0.74 0.44 0.74 0.61sigmoiddiff 0.19 0.70 0.51 0.81 0.75area 0.06 0.53 0.47 0.77 0.93subjective 0.16 0.79 0.63 0.90 0.83subjective lateralization 0.79 +-.12c_RMS -0.17c_sRMS -0.34map_overlap -0.59normalized_map_overlap -1.00subjective correlation -.80 +-.08
frame # 2 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.47 0.70 0.23 0.43 0.29sigmoidRMS 0.53 0.77 0.25 0.47 0.27diffRMS 0.34 0.61 0.27 0.51 0.41sigmoiddiff 0.17 0.54 0.37 0.65 0.70area 0.01 0.34 0.32 0.58 0.99c_RMS -0.08c_sRMS -0.16map_overlap -0.35normalized_map_overlap -0.9931



frame # 5 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.19 0.67 0.48 0.78 0.74sigmoidRMS 0.26 0.77 0.51 0.81 0.67diffRMS 0.46 0.79 0.33 0.60 0.38sigmoiddiff 0.47 0.78 0.31 0.56 0.36area 0.20 0.67 0.47 0.77 0.72subjective 0.39 0.71 0.32 0.58 0.42subjective lateralization 0.44 +-.20c_RMS -0.54c_sRMS -0.84map_overlap -0.86normalized_map_overlap -1.00subjective correlation -.90 +-.00
frame # 5 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.37 0.75 0.38 0.67 0.49sigmoidRMS 0.49 0.84 0.35 0.63 0.38diffRMS 0.42 0.80 0.38 0.67 0.45sigmoiddiff 0.25 0.74 0.49 0.79 0.67area 0.00 0.43 0.43 0.72 1.00c_RMS -0.44c_sRMS -0.74map_overlap -0.43normalized_map_overlap -1.0032



Example 3
frame # 1 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.66 0.69 0.04 0.07 0.03sigmoidRMS 0.00 0.00 -0.00 -0.00 0.00diffRMS 0.56 0.59 0.03 0.06 0.04sigmoiddiff 0.29 0.32 0.03 0.07 0.07area 0.51 0.64 0.13 0.26 0.17subjective 0.29 0.28 -0.01 -0.02 -0.03subjective lateralization 0.01 +-.03c_RMS 0.03c_sRMS 0.05map_overlap -0.21normalized_map_overlap -0.25subjective correlation 0.30 +-.16
frame # 1 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.47 0.47 -0.00 -0.00 -0.00sigmoidRMS 0.01 0.01 -0.00 -0.00 -0.00diffRMS 0.27 0.25 -0.02 -0.03 -0.06sigmoiddiff 0.05 0.05 0.01 0.01 0.00area 0.17 0.18 0.01 0.01 0.04c_RMS -0.04c_sRMS -0.08map_overlap -0.30normalized_map_overlap -0.8933



frame # 2 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.95 0.96 0.01 0.02 0.01sigmoidRMS 0.96 0.96 0.00 0.00 0.00diffRMS 0.97 0.97 -0.00 -0.00 0.00sigmoiddiff 0.97 0.97 -0.00 -0.00 0.00area 1.00 1.00 -0.00 -0.00 0.00subjective 0.93 0.93 0.00 0.00 0.00subjective lateralization 0.00 +-.00c_RMS 0.40c_sRMS 0.69map_overlap 1.00normalized_map_overlap 1.00subjective correlation 0.87 +-.09
frame # 2 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.93 0.94 0.01 0.03 0.01sigmoidRMS 0.96 0.96 0.00 0.00 0.00diffRMS 0.94 0.94 0.00 0.00 0.00sigmoiddiff 0.95 0.95 0.00 0.00 0.00area 1.00 1.00 0.00 0.00 0.00c_RMS 0.42c_sRMS 0.71map_overlap 1.00normalized_map_overlap 1.0034



frame # 6 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.96 0.98 0.02 0.03 0.02sigmoidRMS 0.96 0.97 0.00 0.01 0.01diffRMS 0.99 0.99 0.00 0.00 0.00sigmoiddiff 0.98 0.99 0.00 0.00 0.01area 1.00 1.00 -0.00 -0.00 -0.00subjective 0.99 0.99 0.00 0.00 0.00subjective lateralization 0.00 +-.00c_RMS 0.67c_sRMS 0.93map_overlap 1.00normalized_map_overlap 1.00subjective correlation 0.97 +-.05
frame # 6 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.96 0.97 0.02 0.03 0.01sigmoidRMS 0.96 0.97 0.00 0.01 0.01diffRMS 0.98 0.98 0.00 0.00 0.00sigmoiddiff 0.98 0.98 0.00 0.00 0.00area 1.00 1.00 0.00 0.00 0.00c_RMS 0.71c_sRMS 0.94map_overlap 1.00normalized_map_overlap 1.0035



Example 4
frame # 2 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.15 0.09 -0.05 -0.11 -0.37sigmoidRMS 0.37 0.15 -0.21 -0.41 -0.59diffRMS 0.27 0.24 -0.03 -0.05 -0.09sigmoiddiff 0.59 0.52 -0.06 -0.13 -0.09area 0.73 0.57 -0.16 -0.32 -0.18subjective 0.79 0.74 -0.05 -0.10 -0.05subjective lateralization -0.07 +-.05c_RMS -0.72c_sRMS -0.95map_overlap -0.21normalized_map_overlap -0.22subjective correlation -.63 +-.12
frame # 2 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.23 0.13 -0.10 -0.20 -0.40sigmoidRMS 0.41 0.19 -0.21 -0.41 -0.52diffRMS 0.44 0.36 -0.08 -0.17 -0.15sigmoiddiff 0.56 0.45 -0.11 -0.23 -0.16area 0.66 0.49 -0.16 -0.32 -0.22c_RMS -0.87c_sRMS -0.99map_overlap -0.38normalized_map_overlap -0.4336



frame # 5 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.32 0.35 0.03 0.06 0.07sigmoidRMS 0.31 0.35 0.04 0.09 0.09diffRMS 0.88 0.86 -0.02 -0.03 -0.02sigmoiddiff 0.82 0.80 -0.02 -0.04 -0.02area 1.00 0.95 -0.05 -0.09 -0.04subjective 0.88 0.83 -0.05 -0.10 -0.04subjective lateralization -0.04 +-.05c_RMS -0.82c_sRMS -0.98map_overlap 0.91normalized_map_overlap 0.91subjective correlation -.83 +-.05
frame # 5 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.30 0.33 0.03 0.06 0.07sigmoidRMS 0.28 0.34 0.06 0.11 0.14diffRMS 0.85 0.85 -0.01 -0.02 0.00sigmoiddiff 0.80 0.78 -0.02 -0.04 -0.02area 0.98 0.97 -0.01 -0.02 -0.01c_RMS -0.97c_sRMS -1.00map_overlap 0.90normalized_map_overlap 0.9037



Example 5
frame # 2 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.86 0.36 -0.50 -0.80 -0.57sigmoidRMS 0.79 0.00 -0.79 -0.97 -1.00diffRMS 0.86 0.22 -0.64 -0.91 -0.77sigmoiddiff 0.83 0.03 -0.80 -0.97 -0.99area 0.96 0.00 -0.96 -1.00 -1.00subjective 0.83 0.07 -0.76 -0.96 -0.95subjective lateralization -0.92 +-.07c_RMS 0.01c_sRMS 0.01map_overlap -0.96normalized_map_overlap -1.00subjective correlation 0.03 +-.05
frame # 2 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.83 0.19 -0.64 -0.91 -0.80sigmoidRMS 0.80 0.00 -0.80 -0.98 -1.00diffRMS 0.78 0.05 -0.73 -0.95 -0.97sigmoiddiff 0.69 0.00 -0.68 -0.93 -1.00area 0.86 0.00 -0.86 -0.99 -1.00c_RMS -0.02c_sRMS -0.03map_overlap -0.86normalized_map_overlap -1.0038



frame # 11 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.97 0.28 -0.69 -0.94 -0.73sigmoidRMS 0.97 0.00 -0.97 -1.00 -1.00diffRMS 0.98 0.17 -0.82 -0.98 -0.87sigmoiddiff 0.98 0.02 -0.96 -1.00 -0.99area 1.00 0.00 -1.00 -1.00 -1.00subjective 0.98 0.03 -0.95 -1.00 -0.99subjective lateralization -1.00 +-.00c_RMS -0.05c_sRMS -0.10map_overlap -1.00normalized_map_overlap -1.00subjective correlation 0.00 +-.00
frame # 11 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.96 0.19 -0.78 -0.97 -0.84sigmoidRMS 0.97 0.00 -0.96 -1.00 -1.00diffRMS 0.97 0.06 -0.91 -1.00 -0.97sigmoiddiff 0.97 0.01 -0.97 -1.00 -1.00area 1.00 0.00 -1.00 -1.00 -1.00c_RMS -0.10c_sRMS -0.19map_overlap -1.00normalized_map_overlap -1.0039



Example 6
frame # 1 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.14 0.60 0.46 0.76 0.80sigmoidRMS 0.00 0.00 0.00 0.00 0.00diffRMS 0.07 0.15 0.08 0.17 0.52sigmoiddiff 0.01 0.15 0.14 0.27 0.97area 0.01 0.56 0.55 0.84 1.00c_RMS 0.00c_sRMS 0.00map_overlap -0.56normalized_map_overlap -0.99
frame # 1 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.00 0.00 -0.00 -0.00 -0.00sigmoidRMS 0.00 0.00 0.00 0.00 0.00diffRMS 0.00 0.00 -0.00 -0.00 -0.00sigmoiddiff 0.00 0.00 -0.00 -0.00 -0.00area 0.00 0.01 0.01 0.02 1.00c_RMS -0.80c_sRMS -0.98map_overlap -0.01normalized_map_overlap -1.0040



frame # 3 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.00 0.12 0.12 0.24 1.00sigmoidRMS 0.00 0.11 0.11 0.22 1.00diffRMS 0.02 0.02 0.00 0.01 0.00sigmoiddiff 0.25 0.22 -0.03 -0.07 -0.10area 0.34 0.23 -0.11 -0.22 -0.29c_RMS -0.34c_sRMS -0.61map_overlap -0.34normalized_map_overlap -0.69
frame # 3 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.00 0.00 0.00 0.00 0.00sigmoidRMS 0.00 0.00 -0.00 -0.00 -0.00diffRMS 0.08 0.09 0.01 0.01 0.09sigmoiddiff 0.16 0.12 -0.03 -0.07 -0.21area 0.32 0.19 -0.12 -0.25 -0.37c_RMS -0.90c_sRMS -0.99map_overlap -0.31normalized_map_overlap -0.7041



frame # 10 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.01 0.35 0.34 0.61 0.99sigmoidRMS 0.06 0.46 0.40 0.69 0.91diffRMS 0.11 0.27 0.16 0.31 0.59sigmoiddiff 0.52 0.55 0.04 0.07 0.04area 0.58 0.44 -0.14 -0.27 -0.20c_RMS -0.60c_sRMS -0.88map_overlap -0.16normalized_map_overlap -0.21
frame # 9 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.02 0.03 0.01 0.02 0.30sigmoidRMS 0.13 0.06 -0.07 -0.15 -0.52diffRMS 0.25 0.31 0.06 0.11 0.16sigmoiddiff 0.44 0.27 -0.17 -0.33 -0.35area 0.52 0.27 -0.25 -0.47 -0.46c_RMS -0.94c_sRMS -1.00map_overlap -0.41normalized_map_overlap -0.6242



Example 7
frame # 1 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.74 0.85 0.11 0.22 0.10sigmoidRMS 0.15 0.12 -0.02 -0.05 -0.17diffRMS 0.63 0.64 0.02 0.04 0.01sigmoiddiff 0.38 0.70 0.33 0.59 0.43area 0.51 0.75 0.24 0.46 0.28c_RMS -0.01c_sRMS -0.01map_overlap -0.17normalized_map_overlap -0.19
frame # 1 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.48 0.25 -0.23 -0.43 -0.45sigmoidRMS 0.24 0.05 -0.19 -0.37 -0.83diffRMS 0.26 0.08 -0.18 -0.35 -0.71sigmoiddiff 0.05 0.00 -0.04 -0.09 -1.00area 0.16 0.01 -0.15 -0.29 -0.97c_RMS 0.00c_sRMS 0.00map_overlap -0.17normalized_map_overlap -0.9943



frame # 7 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 1.00 1.00 -0.00 -0.00 -0.00sigmoidRMS 0.96 0.99 0.02 0.04 0.02diffRMS 1.00 0.99 -0.00 -0.01 -0.01sigmoiddiff 0.99 1.00 0.01 0.01 0.01area 1.00 1.00 0.00 0.00 0.00c_RMS 0.34c_sRMS 0.61map_overlap 1.00normalized_map_overlap 1.00
frame # 7 (response field)Measure org lat lat_steep lat_unbddL RRMS 1.00 0.98 -0.01 -0.03 -0.02sigmoidRMS 0.96 0.86 -0.11 -0.21 -0.08diffRMS 1.00 0.98 -0.02 -0.03 -0.02sigmoiddiff 0.99 0.98 -0.01 -0.02 -0.01area 1.00 1.00 -0.00 -0.00 -0.00c_RMS 0.29c_sRMS 0.53map_overlap 1.00normalized_map_overlap 1.0044



Example 8
frame # 1 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.57 0.71 0.14 0.27 0.16sigmoidRMS 0.00 0.00 -0.00 -0.01 0.00diffRMS 0.42 0.39 -0.03 -0.05 -0.06sigmoiddiff 0.18 0.32 0.14 0.27 0.41area 0.47 0.56 0.08 0.16 0.13c_RMS -0.08c_sRMS -0.16map_overlap -0.26normalized_map_overlap -0.33
frame # 1 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.34 0.15 -0.19 -0.37 -0.55sigmoidRMS 0.04 0.00 -0.03 -0.07 -1.00diffRMS 0.13 0.03 -0.10 -0.20 -0.80sigmoiddiff 0.01 0.01 -0.00 -0.01 0.00area 0.21 0.01 -0.20 -0.39 -0.98c_RMS -0.29c_sRMS -0.54map_overlap -0.21normalized_map_overlap -1.0045



frame # 11 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.80 0.07 -0.74 -0.96 -0.95sigmoidRMS 0.88 0.00 -0.88 -0.99 -1.00diffRMS 0.88 0.01 -0.88 -0.99 -1.00sigmoiddiff 0.86 0.02 -0.84 -0.99 -0.99area 0.98 0.02 -0.96 -1.00 -0.99c_RMS -0.52c_sRMS -0.82map_overlap -0.98normalized_map_overlap -0.99
frame # 11 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.78 0.14 -0.64 -0.91 -0.86sigmoidRMS 0.87 0.00 -0.87 -0.99 -1.00diffRMS 0.85 0.26 -0.58 -0.87 -0.71sigmoiddiff 0.80 0.07 -0.73 -0.95 -0.95area 0.96 0.00 -0.96 -1.00 -1.00c_RMS -0.55c_sRMS -0.85map_overlap -0.96normalized_map_overlap -1.0046



Example 9
frame # 1 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.00 0.85 0.85 0.99 1.00sigmoidRMS 0.00 0.07 0.07 0.14 1.00diffRMS 0.00 0.64 0.64 0.91 1.00sigmoiddiff 0.00 0.69 0.69 0.94 1.00area 0.00 0.94 0.94 1.00 1.00c_RMS -0.03c_sRMS -0.05map_overlap -0.94normalized_map_overlap -1.00
frame # 1 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.00 0.32 0.32 0.58 1.00sigmoidRMS 0.02 0.04 0.02 0.04 0.48diffRMS 0.00 0.12 0.12 0.24 1.00sigmoiddiff 0.00 0.02 0.02 0.04 1.00area 0.00 0.02 0.02 0.03 1.00c_RMS -0.35c_sRMS -0.62map_overlap -0.02normalized_map_overlap -1.0047



frame # 8 (receptive field)Measure org lat lat_steep lat_unbddL RRMS 0.00 1.00 1.00 1.00 1.00sigmoidRMS 0.00 0.98 0.98 1.00 1.00diffRMS 0.00 0.99 0.99 1.00 1.00sigmoiddiff 0.00 1.00 1.00 1.00 1.00area 0.00 1.00 1.00 1.00 1.00c_RMS 0.07c_sRMS 0.13map_overlap -1.00normalized_map_overlap -1.00
frame # 8 (response field)Measure org lat lat_steep lat_unbddL RRMS 0.00 0.98 0.98 1.00 1.00sigmoidRMS 0.00 0.82 0.82 0.98 1.00diffRMS 0.00 0.97 0.97 1.00 1.00sigmoiddiff 0.00 0.97 0.97 1.00 1.00area 0.00 1.00 1.00 1.00 1.00c_RMS -0.31c_sRMS -0.56map_overlap -1.00normalized_map_overlap -1.0048


