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Abstract

We address the problem of measuring the degree of hemispheric organization and
asymmetry of organization in a computational model of a bihemispheric cerebral cor-
tex. A theoretical framework for such measures is developed and used to produce
algorithms for measuring the degree of organization, symmetry, and lateralization in
topographic map formation. The performance of the resulting measures is tested for
several topographic maps obtained by self-organization of an initially random net-
work, and the results are compared with subjective assessments made by humans. It
is found that the closest agreement with the human assessments is obtained by using
organization measures based on sigmoid—type error averaging. Measures are developed
which correct for large constant displacements as well as curving of the hemispheric
topographic maps.
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1 Introduction

Qualitative factors leading to topographic and computational map formation in neural net-
works have been studied previously [5]. Work has also been done concerning the quantitative
measurement of the degree of topographic map formation [2]. We are interested in the special
issues that arise in measuring hemispheric organization and lateral asymmetry of organiza-
tion in computational models of topographic map development in a bihemispheric system.
These issues are of concern in any study on cerebral lateralization. While there has been
extensive work regarding lateralization in humans [3], the computational modelling of the de-
velopment and measurement of lateralization has to our knowledge not yet been undertaken
in any systematic fashion.

In this report we develop a theoretical framework for the construction of such performance
measures. We show that heuristic suggestions made by others (e.g., [4] ) for the measurement
of lateral asymmetry arise as special cases of our general framework, thus providing these past
measures with a rigorous theoretical foundation. This introductory section contains some
basic background information concerning our bihemispheric computational cortex models as
well as the notion of topographic map used in our studies. Subsequent sections describe the
development of our theoretical framework, culminating in the definition of our measures, and
examples of the performance of the measures as judged by human subjects provided with
pictures of bihemispheric topographic maps. We conclude the paper with a discussion of the
results and a description of work in progress.

1.1 Bihemispheric Cortex Model

We have interconnected two computational models of sensory cortex via a simulated corpus
callosum, and provided sensory connections from a simulated sensory surface as shown in
Figure 1. Fach hemisphere of this system models a small patch of sensory cortex. The model
cortices are two—dimensional, with individual elements of the model representing cortical
columns in the actual sensory cortex. These elements tessellate the cortex in a regular
hexagonal fashion, with each element connected to its nearest neighbors. Connections in
the model represent multiple synaptic interactions in the actual cortex. Connections to the
nearest neighbors are excitatory, while potentially inhibitory connections are allowed to the
next—nearest elements. The intrahemispheric interconnection pattern is hexagonal, as shown
in Figure 2.

Connections are provided between the hemispheres. Each element connects to those lying
within a certain radius of the element homotopic to it in the opposite hemisphere. This radius
of divergence may be varied, leading to different behaviors during self-organization.

The sensory surface is two—dimensional as well. Each sensory element connects symmet-
rically to the two elements homotopic to it, one in each of the two cortical hemispheres.
Sensory elements are indexed by a pair of integers denoting the elements’ spatial location
within the regular two—dimensional lattice modelling the sensory surface. Cortical elements
inherit the index of their homotopically located sensory elements.

To avoid edge effects, the top and bottom edges of the sensory surface and of each hemi-
sphere are identified, as are the left and right edges. Thus, the sensory surface and the
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Figure 1: The bihemipheric cortex model

hemispheres are actually two—dimensional tori rather than planar rectangles or parallelo-
grams.

A real-valued activation value a;(t) is associated with the i—th element in continuous
time ¢. The activation dynamics are governed by:

dai
dt

= inH (M — a;) + csa; — in; (1)

int = Z Cija; + €; (2)

iny =Y cija (3)

+ ranges over elements in the same cortical hemisphere as the :~th element, as

The sum for in;
well as over those in the sensory surface. The sum for ¢n;” ranges over elementsin the opposite
cortical hemisphere, representing inhibitory signals acting through the corpus callosum. In
both cases, only elements lying within a certain radius of the (element homotopic to) the
1—th element yield non—zero contributions to the corresponding sum.

It is known that lateral inhibition is necessary to allow development of structured to-
pographic maps [5]. In our model, all cortical afferent and intrahemispheric connections
are excitatory. Virtual inhibition is achieved by having each sensory element competitively
distribute its output among the receiving cortical elements in proportion to their activation

levels:
= ¢, uilai T 9) (4)
PO wji(a]‘ +q)

Cortical elements competitively distribute their activation among their neighbors also. Such

Ck;

competitive activity distribution has been shown in the past to produce peristimulus in-
hibition similar to that produced by actual inhibitory connections, and topographic map
formation in systems with competitive activity distribution has been demonstrated.



Figure 2: Intrahemispheric connection pattern. Fach point where lines intersect corresponds
to a cortical element, and the six line segments radiating from it indicate its immediate
neighbor elements.

Sensory stimuli are applied to drive the self-organization of the bihemispheric cortex
model. Self-organization proceeds according to the rule:

Aw;; = e(a; —wji)a; (5)

By stimulating sensory elements at random according to a uniform probability distribution,
the average response of each cortical element to stimuli from different sensory elements
can be established. This allows one to define a receptive field for each cortical element,
consisting of those sensory elements to which the given cortical element responds significantly.
FEach receptive field is defined by the horizontal () and vertical (y) offsets of its center
relative to the expected location at the homotopically positioned sensory element, and its
x and y radii. Dual to the notion of receptive field, we have for each sensory element an
associated response field, consisting of those cortical elements which respond significantly to
the given sensory element. Further details about the single hemisphere version of the model,
including the activation dynamics, competitive activity distribution, and the rule used for
self-organization, are available in [7] and [8].

1.2 Topographic Maps

The two—dimensional topology of the model sensory surface and hemispheres allows one to
consider the topographic maps defined by association of cortical elements with the corre-
sponding receptive field centers in the sensory surface. Figure 3 provides an example. One
may also consider the “inverse maps” obtained by associating sensory elements with their



response field centers. For simplicity, the discussion below deals only with the first type of
map, although clearly the statements may be applied to the inverse maps as well, essentially
by interchanging the word “sensory” by the word “cortical”, and the word “receptive” by
the word “response”.

We are interested here mainly in providing a quantitative measurement of the quality
of the resulting maps and of hemispheric asymmetry. A very simple working definition
of a topographic map suffices for our present needs. By a topographic map we mean a
representation of the organization, or lack thereof, in our computational model of a single
cortical hemisphere. We choose a rectangular matrix M;; whose entries consist of quadru-
plets (ca; ;, cyi j, ra; j,ry; ;) indexed by the location coordinates 7, j of the associated cortical
elements, and indicating, respectively, the = and y offsets of the receptive field center of
cortical node (¢,7), and the = and y radii of the receptive field. This is the information
available to compute the desired measures of organization.
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Figure 3: Visual representation of topographic map formation in the bthemispheric compu-
tational model. The ellipses represent the receptive fields. The left hemisphere has developed
a rather organized topographic map, while the right hemisphere remains fairly random, with
large receptive fields and irreqularly located receptive field centers.

1.3 Measures to be computed
We now describe the measures that we wish to compute. The theoretical development leading

to the actual definitions of the measures is undertaken in the next section.

For each map M:

e a family of entropy measures, ||[M||, defined as distances, in the abstract space of
topographic maps, between the given topographic map M and an “ideal” or reference
topographic map, the latter typically meaning a completely uniform topographic map.



Each entropy measure is a non—negative number, with the value 0 indicating complete
agreement with the chosen reference map (“organization”) and larger values indicating
an increasingly large deviation from the reference map (“disorganization”).

e an organization measure ranging between 0 and 1, with 0 representing no topographic
map formation and 1 representing a very highly organized topographic map. The
organization measure is obtained from the entropy by a simple transformation.

e the mean and variance of each of the attributes cx, cy, ra, ry, tr.

To compare hemispheres L and R:

a family of lateralization metrics, which indicate the difference in the total level of
organization (map formation) between the two hemispheres; their values range between
—1 for total left hemisphere dominance and +1 for total right hemisphere dominance.

e an interhemispheric correlation measure, which assesses the degree of mirror symmetry
of the topographic maps for the two hemispheres after normalizing them to have the
same total level of organization; its values range between —1 for total antisymmetry
between the two hemispheres and +1 for total mirror symmetry between the two
hemispheres.

e the standard statistical correlation between like attributes cx, ¢y, rz, ry,tr in the two
hemispheres.

e the difference in means between hemispheres for each of cx, cy, ra, ry, tr.

2 Theoretical framework

In this section we present a theoretical framework for the development of organization, later-
alization, and correlation measures. There has been considerable research in morphometrics
addressing the comparison of shapes by techniques such as Procrustean analysis [2], and it
is natural to approach the problem of comparing the organization of the two hemispheres in
this way, by selecting certain “landmarks” which define corresponding map locations in the
hemispheres. This approach is promising, and we will pursue it below with one small caveat.
A noteworthy difference between standard Procrustean analysis and our current problem of
hemispheric comparison is that, for the purpose of measuring organization and lateralization,
we do not wish to allow the figures being compared to be scaled before being matched, as
this operation affects the overall organization levels. On the other hand, the measurement
of interhemispheric correlation in the case in which the two hemispheres are of different sizes
may require a preliminary step in which the hemispheres are scaled to a common size.

One is tempted to select the landmarks in such a way that the associated geometrical
regions coincide approximately with the “organized regions” of the hemispheres. Indeed,
our experiment with human test subjects suggests that humans assess organization level and
hemispheric asymmetry of organization by first identifying these organized regions (see the



Experimental Comparison section below). This is reasonable in measuring the interhemi-
spheric correlation. On the other hand, in measuring the net degree of lateralization the
geometric similarities between figures defined by the organized regions are of little direct
concern. It is easy to find pairs of topographic maps having approximately the same level
of individual organization, and thus producing a bihemispheric map with no lateralization,
which nonetheless are considerably different in appearance when viewed purely as geometric
entities associated with the locations of the receptive field centers in the organized regions.
For example, the shapes of the organized regions in the two maps might be radically different
geometrically even though these regions occupy the same fraction of the total area in both
cases. Thus, for the purpose of measuring total lateralization with Procrustean methods
it is best to avoid restricting attention to the organized regions. As landmarks one could
then use all receptive field centers in the hemispheres. The mean square error of the best fit
between the landmark collections of the two hemispheres may then be used as a measure of
total lateralization. This is one of the approaches described below.

Another way to measure lateral asymmetry is to first measure the performance of each
hemisphere separately, then measure the performance of the bihemispheric system, and fi-
nally combine these measurements to obtain a measure of the relative difference in the level
of performance between hemispheres. The following version of this idea has been used be-
fore [4]: abbreviating the left and right hemispheric performances as py, pr, and letting
pr.r measure the performance of the combined bihemispheric system, one can consider the
number

PR — PL
R (6)

to be a measure of lateralization. Negative values of this measure indicate dominance of the
left hemisphere, and positive values indicate right dominance, assuming the value of py, g is
non—negative.

This latter particular form has heuristic merit but it needs a solid theoretical foundation.
Below we propose three properties that we believe should be satisfied by any good measures
of lateralization. We then proceed to show that a certain general form for the lateralization
metrics can be derived from these abstract properties. It turns out that the heuristic form of
the metric mentioned above, with p;, p = pr + pr, may be recovered from the general form
by an appropriate choice of the functional parameter.

Since at the present stage we are interested in measuring asymmetries in topographic map
formation only rather than actual asymmetries of function, we will assume that the desired
lateralization metric depends only on performance measures py, pr for the individual hemi-
spheres, and not on any correlational information involving both hemispheres simultaneously
such as might potentially be incorporated in the measure p;, . A measure of bihemispheric
correlation 1s, however, computed by our measurement program and is briefly described in
the section following the current one.

We begin by proposing properties for the monohemispheric performance measures. Our
measures actually judge the degree of hemispheric disorganization. By analogy with ther-
modynamics we therefore refer to them as entropies. These measures may be interpreted
as Procrustean measures if we consider all receptive field centers in each hemisphere to be



landmarks. Motivated in part by the desire to allow meaningful comparisons to be made
between hemispheres with unequal numbers of elements, we normalize the entropies with
respect to the total number of processing elements in the measured hemisphere. A measure
of organization on a scale from 0 to 1 is then computed from the entropy according to a
formula described below.

2.1 Single hemisphere metrics

For theoretical reasons, we split the development of the monohemispheric measure into two
stages. In the first stage we produce a disorganization measure, or entropy, which indicates
the degree of disorganization per processing element of the given topographic map relative
to a certain predefined reference organization pattern. For map M, we designate the value
of this disorganization measure as ||M||. The disorganization value 0 indicates a completely
organized topographic map, while larger values indicate increasing values of disorganization.
One reason for normalizing the entropy with respect to the total number of elements is to
allow meaningful comparisons to be made between hemispheres with unequal numbers of
elements.

The second stage in the construction of the monohemispheric measure consists simply
of rescaling the entropy measure to yield an organization measure org(M) taking values
between 0 and 1, with the organization value 0 indicating a totally disorganized map and
the value 1 indicating a completely organized map.

In general, one may consider as the organization measure

org(M) = f([[M]]) (7)

where f is a decreasing function transforming the range of the given disorganization measure
|| || into the interval [0, 1].

The information used in computing the disorganization measure is that which is coded in
the measured hemisphere’s topographic map. Recall that our working representation of the
organization (or lack thereof) in our computational model of a single cerebral hemisphere’s
map is a 2-D matrix M. Each matrix entry M; ; consists of a quadruplet (cx, j, ey, j, ra; i, ryi ;)
indicating respectively the @ and y offsets of the receptive field center of cortical node (¢, ),
and the = and y radii of the receptive field center. Geometrically, each topographic map
corresponds to a torus obtained by identifying opposite edges of the rectangular array of
processing elements. Notice that, in accordance with our definition, two topographic maps
may be added by adding the corresponding matrices.

2.1.1 Unnormalized versions of the disorganization metrics.

The following are desirable properties for the monohemispheric disorganization metric || |].
We use the term “reference location” to refer to the coordinates (¢,7) of node M; ;.

1. size independence: only the disorganization per processing element is measured, so
that one controls for differing hemispheric sizes.



2. spatial homogeneity: If amap M is given and a new map M’ is obtained from M by any
distance—preserving geometric transformation of the torus associated with the reference
locations of the elements of M, then M and M’ have the same unit disorganization
measure.

3. metric property: the disorganization measure behaves like a distance function, i.e. it
satisfies the triangle inequality

|M = M| < ||[M — M"|| + |[M" — M| (8)

Next, three specific options are given for the unit disorganization measure.

Basic root mean square measure. We choose the unit disorganization metric || || to
be an average over all the processing elements of a distance function |(cz, cy, ra, ry)| in the
space R? of node entries (cx,cy,rz,ry). We have chosen a standard weighted Euclidean, or
root mean square, distance for | |:

|(Cl’, €Y, 1T, Ty)| - \/ch0$2 + acycy2 + Clmﬂ“l'z + aryry2 (9)

The entropy measure becomes

1
||M||RMSI = \l ﬁ Z acxcw2 —I_ acycy2 —I— aTxrxz _I_ aTyryz (10)
all M-nodes

Shift-independent root mean square measure. As an improvement, we consider an
entropy measure based on the statistical variances of the node entries:

1M |lrais = y/as0™(e) + aey0(ey) + ar0*(r) + aryo?(ry) (11)

This measure is obtained from the first version of the root mean square measure || ||rms1
defined above in Eq.( 10), by eliminating the dependence on mean shifts of the nodal attribute
values. In the remainder of this paper, except where noted explicitly, we will use the term
“root mean square measure” to refer to the shift-independent version || M ||gms defined here,
and not to the measure ||[M||gms1 defined above.

Differential root mean square measure. To reduce the effect of slowly spatially varying
map deformations, such as slight curving of the maps, the following measure is considered.
Notice that mean shifts in the various attributes are also eliminated.

We define the differential square distance between neighboring nodes n,n’ to be:

|(n7n/)|?1iﬂRMS = (12)

ter(cx(n) — cx(n))” + aey(cy(n') — ey(n))® + ar(ra(n’) — rz(n))* + ary (ry(n') — ry(n))”



and then we define the differential root mean square measure as follows. The square of the
measure is given below for typographical convenience.

1
||M||?liffRMS = N Z Z |(nvn/)|?liﬁRMS

all M-nodes n  all neighbors n’ of n

Various parameter choices (e, tey, Grgy @ry) bring out different aspects of hemispheric
activity with the measures defined above. For example, the choice (1,1,0,0) considers only
the location cx, cy of the receptive field centers, while (0,0, 1, 1) causes the measurements to
depend exclusively on the receptive field radii rx,ry. We have obtained good results with
the parameter vector choice (1,1,1,1).

Proposition 2.1. The disorganization measures || ||rmss, || ||rms, and || ||sigrms defined
above satisfy the properties 1)-3).

Proof. Size independence is enforced in the definitions of the measures. The first and third
measures involve an explicit division by N, and the second is defined in terms of the vari-
ances, which are size independent as well. Spatial homogeneity follows from the fact that the
measures involve only the values of the various attributes at individual elements of the mea-
sured topographic map. Any permutation of the elements leaves these measures unchanged.
The metric property is a consequence of the Cauchy-Schwarz-Buniakowski inequality. []

Standard statistical measures. Finally, we compute means and standard deviations of
the attributes cx, cy,rz,ry in a given topographic map M. These measures are standard;
they are defined as follows, where X denotes any one of the attributes:

)= T (X0 (13)
aM<X>=Jﬁ S (X (M) (X)) (1)

The above measures provide alternative information sources for organization assessments.
Highly organized topographic maps are associated with small values for the variances of the
various attributes.

2.1.2 Normalizing the disorganization metrics.

Having identified three potentially useful measures || ||jgms1, || ||rms and || ||aigrvs, we
proceed to normalize them to a 0 to 1 range which is more convenient for the computation
of the corresponding organization measures.



The transformation from unnormalized to normalized measures is performed by the sig-
moid, or logistic, function defined by

1 1
SingidT7s($) = 5 (1 —|— tanh(s(:z; — T))) = m, (15)
Applying the sigmoid function to each unnormalized entropy measure || || defined in the
preceding section, we obtain the corresponding normalized measure
||M|]sigmoia = sigmoid, (|| M]]) (16)

The sigmoid function involves two parameters 7 and s, the threshold and the steepness,
respectively. Increasing the value of 7 increases the hemispheric disorganization level re-
quired to produce a given value of the disorganization measurement. Increasing s decreases
the width of the transition region allowed by the measure between organization and disorga-
nization. As s approaches co, the sigmoid function approaches a simple threshold detector,
which returns the value 1 for inputs greater than the threshold 7, and the value 0 for inputs
less than this threshold. Finite values of s yield continuous approximations to this threshold
detecting behavior.

2.1.3 Sigmoid activation measures.

Motivated by the desire to mimic humans’ lateralization judgments more closely (see the
Experimental Comparison section below), we have considered the following two additional
ways to compute entropy functions in addition to the three described above. The additional
measures are normalized from the outset, so no additional normalizing transformation is
needed. The difference between the new measures and those described above is that in the
new measures, the sigmoid function is applied locally, at each node, and the result is averaged
over all nodes, while in the measures defined above the sigmoid is applied after the average
has been computed.

Sigmoid RMS measure.

1 . .
||M||sigmoidRMS = a7 Z SlngIdT 5(|(C:1;,cy,r:1;,ry)|) (17)
N all M-nodes 7

Here, | | is the weighted Euclidean distance (Eq. 9) described above when considering the
unnormalized versions of the entropy measures, and the sigmoid function is as in Eq. 15. 2

20One observes that the function sigmoid(z) is commonly used in neural modelling to compute nodal
activation from total nodal input. Thus, the sigmoid-based entropy may be interpreted as the output
produced by a neural network having the nodes of the measured topographic map as inputs, and one
sigmoid processing element per input connected to a common linear output node via identical weights equal
to 1/N. This suggests the idea that a neural network might be constructed which can learn to compute
an organization measure producing results similar to those given by the test subjects, using, e.g., error
backpropagation. We have not yet attempted to implement this idea.
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Sigmoiddiff measure. By combining the differential RMS measure Eq. 13 with the sig-
moid as in Eq. 17, the following measure is obtained.

2

1 . .
||M||sigmoiddiff = N Z Slgm()ldT,s ( Z |(n7n/)|?1iﬁRMS)

all M-nodes n all neighbors n’ of n

2.1.4 Organization from normalized disorganization.

Given any one of the measures || ||, of disorganization defined above, which has been scaled
to take values between 0 and 1, we compute the associated organization measure org, as:

org.(M) =1 — [[M]], (18)

2.1.5 Organized area measure.

Another approach to the measurement of organization is to measure the fraction of the
sensory area that is covered by a well-formed topographic map. The above sigmoid-based
organization measures may be viewed as producing only an approximation to this area. Such
a measure can be obtained by computing, for each sensory node, the perimeter of the triangles
formed by the arcs connecting the corresponding cortical node with its immediate neighbors
in the topographic map. If this perimeter is below a certain threshold, and if the node’s
receptive field radii are less than other threshold values, and if the node’s total response is
above a third threshold, then the given node is considered to form part of the organized
region; otherwise, it is considered to lie outside this region. The resulting organization
measure is

Ol8area( M) = Z I{perimeter < 7,, re < 7y, 1Y < Try, tr > 74} a(triangle)
all M—triangles (19)

Here, the numbers 7,, 7,,, 7., T4 are the thresholds referred to above, which are used to
decide, for each triangle, if it belongs to the organized region or not. The symbol a(triangle)
denotes the sensory area of the given triangle. The sum includes one term for each sensory
triangle whose vertices are all immediate neighbors of each other. The function I(¢) equals 1
if the condition ¢ holds and 0 if ¢ fails. Thus, only triangles which simultaneously have small
perimeter, small receptive field radii, and a significant total response effectively contribute
to the sum.

Proposition 2.2. The size independence and spatial homogeneily properties for monohemis-
peric measures hold for the sigmoid-based entropies and for the organized area measure as
well. However, the metric property does not hold in the form stated.

Proof. The named measures are explicitly defined as averages over all nodes of the measured
topographic map. This guarantees size independence. Spatial homogeneity follows from the
fact that the expression which is averaged is independent of the node’s location, depending

11



only on the values of the attributes cx, ¢y, rz, ry. The failure of the metric property for the
sigmoid and organized area measures is roughly due to their threshold—detecting behavior.

U

One should note that while the motivation underlying the organized area measure is to
measure the “organized area”, the choice of small perimeter as a criterion to identify the
organized regions is rather ad hoc, based on observations of receptive field map behavior
which suggest that map regularity is correlated with small perimeter. Indeed, the perfor-
mance of this measure for receptive field maps is reasonably good, as shown in the Examples
in the Appendix. However, in the case of the “inverse maps” corresponding to response fields
instead of receptive fields, situations arise in which the most regular regions in a map have
the triangles with the largest perimeter; see the first two Examples. In other examples, the
measure yields better results. The organized area measure thus does not produce consistent
results for response field maps.

2.2 Lateralization metrics

We now address the issue of extracting lateral asymmetry information from the organization
values for the two hemispheres’ maps. We seek a function lat(org(L),org(R)) measuring the
degree of directional preference in the total degree of organization (map formation) of the
bihemispheric system, with a value of —1 indicating total left dominance, and +1 indicating
total right dominance. We assume the measurements org(L),org(R) are organization values
indicating the average degree of organization per processing element of the respective left
and right hemispheres as described in the preceding section. If these organization values
have been obtained from disorganization metrics, or entropies, ||L||, || R||, then we will refer
to the quantities log || L], log || R|| as “log entropies”; their use will simplify the analysis to
follow in one of the subsections below.

2.2.1 Simple difference lateralization.

One can simply subtract the organization values for the two hemispheres to obtain a later-
alization value between —1 and +1. The resulting measure is given by:

lat(org(L),org(R)) = org(R) — org(L) (20)

In fact, this simple idea has been used by other authors. However, after some experimentation
and comparison with human lateralization assessments, it has become clear to us that the
lateralization values so obtained fail to agree with the intuitively satisfying judgements made
by the human subjects (see the Experimental Comparison section). This has motivated us
to define improved lateralization metrics, which we will now describe.

2.2.2 Lateralization via steepening.

We can improve the simple difference lateralization measure by applying a steepening trans-
formation f:

lat _steep (org(L),org(R)) = f (org(R) — org(L)) (21)

12
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Figure 4: Graph of the steepening function, Fq. 23

where
f : [_171] - [_171]7 (22)
is defined by

(L+ap — (1w
(o) + (o)

flx) = (23)

A graph of the function f for s = 2 is shown here. In this way, we obtain the following
steepened lateralization measure:

(1 + org(R) —org(L))* — (1 — (org(R) — org(L)))’

tat-steep (ora (L), oral ) = (70 a(R) — ora(L)) + (1 = (ora(R) — ora(L)))" (21)

2.2.3 Lateralization via an intermediate unbounding transformation.

In this subsection we obtain an alternative measure of lateralization by first transforming any
given organization measures into unnormalized measures of disorganization, and then seeking
a measure of lateralization which can be computed from these unnormalized disorganization
metrics. Some of the entropies discussed above were derived from unnormalized versions, so
the latter may be used in the formation of lateralization measures below. The unnormalizing
procedure may seem circuitous, and in fact the lateralization measure obtained via this route
involves only the original normalized organization measures, so the unnormalizing procedure
is really just an intermediate technical stage which allows us to scale the resulting metrics
by arbitrary numbers without leaving the allowed range.

Lateralization in terms of unnormalized disorganization metrics. We assume to
begin that the unnormalizing procedure has been completed, and we seek a lateralization
metric computable from unnormalized disorganization metrics. Thus, we assume that we
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are given an unnormalized version || || of a disorganization measure, and we seek to pro-
duce a satisfactory lateralization metric lat(||L||, || R||). We propose the following desirable
properties for the lateralization metric lat(||L]], || R]]):

1. scale invariance: laterally symmetric scale changes do not affect the metric, i.e.

lat(ax,ay) = lat(x,y) for all scalars a (25)

2. antisymmetry: exchanging the hemispheres only changes the sign of the metric, i.e.

lat(y,z) = —lat(x,y) (26)

3. monotonicity: measurably greater relative degrees of disorganization of the left hemi-
sphere yield measurably greater values for the metric, i.e.

lat(x,y) is an increasing function of z if y remains fixed. (27)

4. metric property: the absolute value of the lateralization metric behaves like a distance
function, i.e. it satisfies the triangle inequality

[lat(x, z)| < |lat(x,y)| + |lat(y, 2)| (28)

Proposition 2.3. In order to satisfy properties 25— 28, it is necessary and sufficient that

the lateralization metric lat be of the form lat(||L||, || R||) = h(log(%)), where h is a strictly

increasing odd positively subadditive function from the real numbers onto the interval (—1,1).

Proof. Choosing a = i in property 1), we obtain lat(z,y) = lat(i,l). Thus, lat(x,y) =
g(x/y) for some function g. We now write the candidate lateralization metric in terms of
the log entropies log ||L]|, log || R||:

[IL]]

tat(1L 1L 1R = gL IIRID = b (1og (W)) (20)

This does not constitute a restriction on the metric lat, since any function g may be expressed
as g(x) = g(exp(log x)), so that one may take h(y) = g(exp(y)). Property 1) therefore says
that our metric lat is a function (h) of the difference in log entropies between the hemispheres.
Property 2) translates to the following statement about h:

h(logx —logy) = —h(logy — log z) (30)
This is equivalent to saying that h is an “odd” function, satisfying h(—u) = —h(u). Property

3) simply says that ¢g(x/y) is a strictly increasing function of x/y, or, equivalently, A is a
strictly increasing function. Property 4) requires ¢ to satisfy

l9(z/2)] < lg(=/y)| + 19(y/2)| (31)
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In terms of &, this requirement becomes

|h(log z — log 2)| < |h(log x — logy)| + [h(logy — log 2)] (32)
By property 2) we can rewrite this as

h(|logx —log z|) < h(|logz — logy|) + A(|logy — log z|) (33)

Thus, if we are given positive numbers a, b, we can define x = exp(a),z = exp(—b),y = 1,
so that then ¢ = logz,b = —log 2,0 = logy, and we will conclude that we have the positive
subadditivity property:

h(a+b) < h(a) 4+ h(b) whenever a,b> 0 (34)

Conversely, if positive subadditivity holds then given arbitrary positive numbers z,y, z we
have using the monotonicity property 3)

h(|(logz —logy) + (logy —logz)l)

h(|logx —logz|) =
< h(|logz —logy| + [logy —logz|)

and by subadditivity we obtain the desired property 4). []

Our current choice for A is

h(y) = tanh((s/2)y) (35)

Thus, the chosen lateralization metric is given by

lat_unbdd(||L]|, ||B|) = tanh (flog (M)) (36)
2 12|
Since
e _ T
tanh(z) = ——
anh(x) e
and since
< 1og (||L||)§
28RN = (120
12|
the lateralization metric in Eq.( 36) can also be expressed as:
L1 — 1R
lat_unbdd(||L||, || R|]) = 7+rn—=1— 37
LR =z o

Larger values of s in the lateralization metric yield measurements which are more sensitive
to lateral asymmetry, while smaller values of s decrease the sensitivity.

Notice that our current choice reduces to a version of the lateralization metric given in
Eq. 6, where we interpret pp as ||L||™°, pr as ||R||7%, and ppg as ||L]|7° + || R]|~°.
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Unnormalized disorganization from normalized metrics. In order to express our
conclusions concerning lateralization measures in terms of normalized organization or disor-
ganization metrics, we must transform the normalized metrics to obtain unnormalized met-
rics, and then apply the previously chosen lateralization formula to the resulting metrics.
The simplest way to obtain an unnormalized disorganization metric from a given normalized
disorganization value ||M|| is to take the reciprocal of the corresponding organization value:

1

org(M) (38)

| |M| |unnormalized -

By substituting the resulting unnormalized disorganization into the expression for lateral-
ization from Eq. ( 37), one obtains the corresponding lateralization metric:

[IL[3 tized — || B3 lzea  Org(R)* —org(L)?
lat_UHbdd ||L||7 ||R|| — unnormalize unnormalized __
( ) || L||? |R||? org(R)* + org(L)*

unnormalized + | unnormalized

(39)

As usual, the parameter s controls the steepness of the metric. Observe that the resulting
lateralization metric depends only on the organization values, and therefore may be used
independently of any intermediate disorganization metrics.

2.3 Correlation metrics

In addition to a lateralization metric, which measures the difference in the total level of orga-
nization between the hemispheres, we also seek a measure of the similarity in their patterns
of organization. Similarity may be interpreted as referring to the degree of coincidence of the
organized regions in the hemispheres being compared, or, in a more abstract sense, to the
degree of parallelism of the vectors representing the hemispheric maps. We call the measure
of similarity the bihemispheric correlation. The correlation takes values between —1 and +1,
where —1 indicates total bilateral symmetry in the organization patterns, and +1 indicates
total antisymmetry. We let ¢(M, M") denote the correlation value associated with the maps

M, M.

The desired properties of the correlation are the following. It is assumed here that the two
hemispheres whose correlation is to be computed have the same number of nodes. The case
of hemispheres of different sizes is addressed briefly in the final subsection of the current
section on correlation metrics.

1. lateral symmetry: The correlation is invariant under left—right interchange, i.e.

(M, N) = ¢(N, M) (40)

2. scale invariance: Only the direction of organization matters:

e(M,uN) =¢(M,N) for all positive scalars p. (41)
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3. monohemispheric directional antisymmetry: If N’ is obtained from N by changing
the sign of the entries cz,cy at all nodes of N, then:

(M, N') = —¢(M, N) (42)

4. normalization:

(M, M) = 1 (43)

5. random decorrelation: If M and N are independent random maps (variables), then
the expected value of their correlation is zero:

E[e(M,N)] =0 (44)

2.3.1 Root mean square correlation.

We may easily define an interhemispheric correlation measure by simple geometrical consid-
erations. Namely, the inner product associated with the weighted Euclidean metric used to
construct the organization measure || ||gms1 in the preceding section produces an abstract
geometrical structure in the space of topographic maps, and we use this abstract geometry
to measure the angle  between the vectors representing the given topographic maps. By
the parallelogram rule, the cosine of this angle is given by:

ILI]* + R = [IL — RIJ*
2|[LII[|&]]

CRMS(L7 R) == (45)
(Recall that the difference between two topographic maps is simply the difference between
two matrices. This requires further explanation if the two hemispheres have different numbers
of nodes; this is addressed below in a separate subsection.) This is our basic root mean
square correlation measure. Its values vary between —1 and +1, with —1 indicating total
antisymmetry in the topographic maps being compared, and +1 indicating total mirror
symmetry. Observe that the disorganization measure used to construct the root mean square
correlation is not the usual root mean square measure || ||gms, but rather the shift-dependent
version || ||rms1-

Proposition 2.4. The measure of correlation defined above satisfies properties 1),2),4),5),
and property 3) also if one chooses the parameter vector a = (1,1,0,0) in the definition of
the weighted Fuclidean distance in Eq. 9.

Proof.  All properties follow from the fact that the correlation as defined is the cosine of
the angle between the abstract vectors representing the hemispheric maps L,R. Property 1)
is clear, as the angle between two vectors does not depend on the order in which they are
considered. Property 2) follows from the fact that the angle is independent of the lengths
of the vectors. Property 3) is simply the trigonometric identity cos(f + ) = —cos(8),
property 4) says cos(0) = 1, and property 5) is the standard definition of independence used
in probability and statistics. [
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2.3.2 Steepened root mean square correlation.

A variant of the basic root mean square measure is obtained by introducing a steepness
parameter as for the lateralization metrics described above. The resulting root mean square
correlation measure is given as follows. We refer to this measure as the steepened root mean
square correlation, abbreviated as sRMS correlation.

[ILI[* + [1R]* — IIL—RIP)
2|[LII[|&]]

cs(LoR) = ( (46)

where the steepening function f is as in Eq.( 23).

2.3.3 Map overlap symmetry measure.

In terms of the sensory regions oreg(M) and oreg(M’) corresponding to the organized regions
in the individual hemispheric maps, and in terms of the set-theoretic operation A of sym-
metric difference, we define a measure of correlation, which we refer to as the map overlap
measure, as follows:

map_overlap(L, R) = area(oreg(M) Noreg(M')) — area(oreg( M )Aoreg(M')) .
47

The intersection term measures the overlap of the organized regions, while the symmetric
difference term measures the discrepancy between these regions. The map overlap measure
associates the maximum value 1 to a bihemispheric map if and only if each hemisphere covers
the entire sensory surface with a well-formed map. The value —1 corresponds to the case in
which the two sensory regions covered by the two hemispheric maps are completely disjoint
and together cover the entire sensory surface.

A variant of the above measure is obtained by dividing by the area of the union of
the organized regions. The resulting measure is the normalized map overlap measure. The
extreme values +1,—1 for the normalized map overlap measure are attained, respectively,
when the two maps cover the same sensory region, and when they cover disjoint regions. It
is no longer relevant whether or not the entire sensory surface is covered by each map or by
their union, as in the case of the unnormalized map overlap measure.

2.4 Standard statistical measures.

As we did in the case of organization measures, we may now compute means and standard
deviations of the differences in the attributes cx, cy,ra, ry between the two hemispheres.
Letting X denote any one of the attributes:

pan(X) = S (X (L) = X () (43)
aLR<X>=Jﬁ S (X () = XA (X)) (19)
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These measures provide alternative information sources for organization and symmetry as-
sessments. Highly organized topographic maps are associated with small values for the
variances of the various attributes. Small values of the variance indicate a high degree of
transhemispheric symmetry in the associated attribute.

2.5 Correlation measures in the case of unequal hemispheric sizes.

If the two hemispheres have different numbers of nodes, then the arrays L and R representing
the hemispheric maps have different sizes. This precludes consideration of the standard
matrix difference L — R, as required, for example, in Eq.( 45). The standard statistical
measures, as in Eqs. (1 48), (49), and in the definition of the random decorrelation property
at the beginning of the current section, are also undefined unless the hemispheric sizes
coincide.

One way to deal with this difficulty is to first represent the map S of the smaller hemi-
sphere as a larger map S of size equal to the size of the larger hemisphere. This rescaling
process is performed in such a way that the resulting map S’ represents the original smaller
map S as faithfully as possible. Once the rescaled map has been obtained, the measures of
correlation defined above are used to compare the rescaled map with the original map of the
larger hemisphere.

Thus, given a measure of correlation ¢(L, R) defined for the case in which the sizes of L
and R coincide, the measure is extended to apply in the case of unequal hemispheric sizes
by letting

c(L,R) :=c(L', R,

where the smaller hemispheric map has been scaled as described above, and the larger
hemispheric map has been left unchanged.

The rescaling process itself is simple. If the smaller hemisphere has size n x m, and if the
larger hemisphere has size N x M, where we assume n < N and m < M, then given “large”
coordinates ([,.J), with 1 < I < N and 1 < J < M, we obtain corresponding “small”
coordinates (¢, j) by letting

i =|In/N|
j =1[Jm/M]

The rescaled map S is then obtained from the original map S by using the rescaled
indices:

S'(I,J) = 5(i,7)

The above rescaling idea is not without problems, however. As a direct consequence of
the rescaling process, the resulting map S’ is constant on blocks of average size |N/n| x
| M/m]. This tends to produce significant cancellations in the sums involved in computing
the correlation measures and therefore adversely affects the measurement values.
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3 Experimental Comparison

We asked 8 researchers (mostly graduate students) at the University of Maryland familiar
with the concept of a topographic map to participate in a simple experiment. Each subject
was asked to give his or her subjective measurements of organization and lateralization of
representative pictures of topographic map formation obtained in our simulations using the
bihemispheric cortex model. We discuss the results below. See the Appendix for graphical
views of the maps used, and for complete lists of the measurement values given by a program
implementing the measures described above as well as those provided by the human test
subjects.

Comparing the root mean square and sigmoid organization measures, we see that the
latter produces values closer to the human values. This is most noticeable in the random
starting frames in Examples 1 and 3, where the root mean square measure yields positive
organization values. The starting frame from Example 1 is shown below, together with the
measurement values produced by the program and the human subjects.

Figure 5: Example 1, frame #1

frame # 1 (receptive field)

Measure org lat lat_steep lat_unbdd
L R
RMS 0.11 0.13 0.02 0.03 0.12
sigmoidRMS 0.00 0.00 -0.00 -0.00 0.00
diffRMS 0.04 0.06 0.01 0.03 0.30
sigmoiddiff 0.01 0.01 0.00 0.00 0.00
area 0.04 0.04 -0.00 -0.00 0.00
subjective 0.01 0.01 0.00 0.00 0.00
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subjective lateralization 0.00 +-.00

c_RMS -0.06
c_sRMS -0.11
map_overlap -0.08
normalized_map_overlap -0.99
subjective correlation 0.00 +-.00

The “reason” for this behavior for the random frames is that the root mean square
measure requires an infinite variance in order to produce zero as the organization value,
while human subjects assign the value 0 to even moderate variances. People seem to mentally
divide a graphical view of a given topographic map into two parts: an “organized” part and a
“disorganized” part, irrespective of moderate quantitative variations within these parts, and
then attempt to assess the fraction of the total area which corresponds to the organized part.
Root mean square measures simply average local deviations from uniformity, and are quite
sensitive to moderate quantitative variations, i.e. they do care about the quantitative degree
of disorganization present in a given region, and not just whether or not it is disorganized
in some qualitative way. The sigmoid and sigmoiddiff measures, on the other hand, seem
better able to mimic humans’ apparent establishment of a disorganization threshold which
separates organization from disorganization in a given topographic map.

The various measures agree reasonably well with the test subjects in all of the examples
with the following exceptions. In Example 4 (see Appendix), several of the organization
measures produce values that are considerably smaller than those given by the subjects.
Only the area and sigmoiddiff measures come close to the human ability to focus on the
regularity of the map, ignoring the curvature of the lines joining receptive field centers.
Frame #5 from Example 4 is shown below, together with the corresponding measurement
values.

frame # 5 (receptive field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.32 0.35 0.03 0.06 0.07

sigmoidRMS 0.31 0.35 0.04 0.09 0.09

diffRMS 0.88 0.86 -0.02 -0.03 -0.02

sigmoiddiff 0.82 0.80 -0.02 -0.04 -0.02

area 1.00 0.95 -0.05 -0.09 -0.04

subjective 0.88 0.83 -0.05 -0.10 -0.04

subjective lateralization -0.04 +-.05

c_RMS -0.82

c_sRMS -0.98
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Figure 6: Example 4, frame #5

map_overlap 0.91
normalized_map_overlap 0.91
subjective correlation -.83 +-.05

The area measure, however, overestimates the level of organization in Example 3a. Thus,
overall, the best performance is obtained with the sigmoiddiff measure.

As for lateralization, we observe that the simple difference measure lat produces values
that are not satisfactory from the point of view of the test subjects. The steepened lat-
eralization measure lat_steep provides a considerable improvement, as does the logarithmic
measure lat_log. The latter measure performs counter—intuitively in situations such as frame
3 of Example 3, when both hemispheres are highly organized. This is because log_lat is
sensitive only to the relative magnitudes of the disorganization values, and so produces large
lateralization values when both hemispheres have organization values close to 1, if the orga-
nization values of the two hemispheres differ from 1 by amounts which, though small, have
a ratio which is not close to unity.

Our limited human correlation assessments suggest that the values produced by the
current correlation measures are quite appropriate. The best correlation values are produced
by the steepened root mean square measure. We are aware of the fact that the small sample
size used to obtain the subjective measurements of organization, lateralization, and mirror
symmetry makes it difficult to obtain good confidence limits for the resulting estimates of
means and variances. We merely wish to present examples of human judgments of the various
measures. Assuming normally distributed measurements, y—squared and Student ¢ analysis
shows that with a probability of at least .95, the true population means and variances are
within approximately 40% of the sample values.
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4 Discussion

In summary, we have developed measures of organization and lateralization which are sup-
ported by a good theoretical foundation and whose values agree well with test subjects’
assessments based on graphical views of bihemispheric topographic map formation. We have
also defined satisfactory measures of mirror symmetry or bihemispheric correlation. Our
measures are normalized with respect to hemispheric size, so that hemispheres of different
sizes can be meaningfully compared. Also, the measures correct for various distortions of the
topographic maps, such as mean shifts and global curving, which should not greatly affect
the associated measurement values.

Simple root mean square and sigmoid organization measures attempt to determine the
deviation of the measured topographic maps relative to completely uniform, hexagonal lattice
topographic maps, while human subjects are less restrictive in their judgment of organization.
Another option suggested here is to have a neural network find an appropriate measure via
supervised learning using error backpropagation. The current sigmoid—based organization
measure corresponds to a single layer network, and already yields a considerable improvement
over the root mean square measure. In our opinion the best performance has been obtained
with the differential root mean square and sigmoiddiff measures. These measures allow
significant global distortions for a given value of organization, focussing on local regularity
of maps, as humans seem to do.

In work in progress, we are simulating the bihemispheric cortex model with various
parameter values to gain insight into the factors affecting the development of organization
and asymmetry.
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Appendix

Results obtained in our simulations with the bihemispheric cortex model are presented here,
and comparisons are provided between the output produced by a program implementing the
measures we have developed and the assessments made by human test subjects.

In all of the examples, the attribute parameter vector is (1,1,0,0) for the root mean
square (RMS) correlation measurement, and (1, 1,1, 1) for the RMS, differential RMS, sig-
moid, and sigmoiddiff organization measurements, as well as for the sigmoiddiff correlation.
In other words, RMS correlation is judged solely on the basis of the displacements of the
receptive field centers, while the remaining judgments take the receptive field radii into ac-
count as well. The threshold and steepness for the sigmoid function are 7 = 1.15 and s = 5,
respectively, in the case of the sigmoid organization measure, and 7 = 1.05 and s = 2.5 for
the sigmoiddiff measure.

First, a tabular summary of results is given, followed by graphical views of the topo-
graphic maps used as examples, together with detailed measurement values given by both
the program and by humans.

Measures computed

In the examples below, the values listed correspond to the measures defined above, as indi-
cated in the following list of equation numbers:

e root mean square (RMS) organization: orgpms, with the choice ¢ = (1,1,1,1) in
Eq.( 11)

e sigmoid organization: orgssmoidRMs
e differential RMS organization: orgairms, with the choice a = (1,1,1,1) in Eq.( 13)

e sigmoiddiff organization: orgsgmoiddifr ; With || ||sigmoia replaced by || ||sigmoiddir from Eq.

(18)

o difference lateralization: lat, Eq.( 20) with the appropriate disorganization metric
|| ||airrms and || ||sigmoiddisr in each case

e steepened lateralization: lat_steep, Eq.( 24), with s = 2 and the appropriate disorga-
nization metric || ||aigrms and || ||sigmoidaisr in each case

e lateralization via unbounded disorganization: lat_unbdd, Eq.( 39), with s = 1.5 and
the appropriate disorganization metric || ||aigrms and || ||sigmoiadir in each case

e RMS correlation: cgms, Eq.( 45), with the choice a = (1,1,0,0) in Eq.( 10)

e sRMS correlation: ¢rums, Eq.( 46), with the choice @ = (1,1,0,0) in Eq.( 10) and the
steepness value s = 2 in Eq.( 23)
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e map overlap symmetry measure: map-overlap, Eq.( 47)

e normalized map overlap symmetry measure: as in Eq.( 47), dividing the right hand
side by the area of the union of the organized regions in the two hemispheres

Summary of the results

In the table of organization values below, only the means of the test subjects’ measurements
are given. The lateralization table includes columns for mean + standard deviation values
as well as minimum and maximum values. Graphical views of selected frames from receptive
field data files used to produce the preceding data tables are presented following the tables,
together with the measurement program output and the means of the human measurements.

Organization

# org_RMS org_sigmoidRMS org_area org_diffRMS org_sigmoiddiff people

la .11 .13 .00 .00 .04 .04 .04 .06 .01 .01 0.01 0.01

ib .34 .26 .39 .37 .26 .22 .36 .22 .36 .27 0.44 0.38

1c .48 .46 .60 .58 .38 .36 .62 .b4 .62 .64 0.60 0.60

2b .33 .75 .41 .75 .06 .B3 .29 .74 .19 .70 0.16 0.79

2¢ .19 .67 .26 .77 .20 .67 .46 .79 .47 .78 0.39 0.71

3a .66 .69 .00 .00 .b1 .64 .56 .b9 .29 .32 0.29 0.28

3b .95 .96 .96 .96 1.0 1.0 .97 .97 .97 .97 0.93 0.93

3c .96 .98 .96 .97 1.0 1.0 .99 .99 .98 .99 0.99 0.99

4b .15 .09 .37 .15 .73 .B7 .27 .24 .59 .b2 0.79 0.74

4c .32 .35 .31 .35 1.0 .95 .88 .86 .82 .80 0.88 0.83

b .86 .36 .79 .00 .96 .00 .86 .22 .83 .03 0.83 0.07

bc .97 .28 .97 .00 1.0 .00 .98 .17 .98 .02 0.98 0.03

Unbounded Lateralization

# lat_RMS lat_area lat_diffRMS lat_sigmoiddiff from_human people people(min,max)
la .12 .00 .30 .00 .00 0.00 +-.00 .00 .00
ib -.20 -.12 -.33 -.19 -.11 -0.16 +-.21 -.60 .00
1lc -.03 -.04 -.10 .02 .00 -0.03 +-.05 -.15 .00
2b .55 .93 .61 .75 .83 0.79 +-.12 .60 .95
2¢ .74 .72 .38 .36 .42 0.44 +-.20 .10 .75
3a .03 .17 .04 .07 -.03 0.01 +-.03 .00 .10
3b .01 .00 .00 .00 .00 0.00 +-.00 .00 .00
3c .02 .00 .00 .01 .00 0.00 +-.00 .00 .00
4b -.37 -.18 -.09 -.09 -.05 -0.07 +-.05 -.15 .00
4c .07 -.04 -.02 -.02 -.04 -0.04 +-.05 -.10 .00
Bb -.57 -1.0 =77 -.99 -.95 -0.92 +-.07 -1.0 -.80
be -.73 -1.0 -.87 -.99 -.99 -1.00 +-.00 -1.0 -1.0
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Steepened Lateralization

# lat_RMS lat_area lat_diffRMS lat_sigmoiddiff from_human people people(min,max)
la .03 -.00 .03 .00 .00 0.00 +-.00 .00 .00
ib -.15 -.09 -.26 -.15 -.12 -0.16 +-.21 -.60 .00
1lc -.05 -.03 -.17 .02 .00 -0.03 +-.05 -.15 .00
2b .71 LT .74 .81 .90 0.79 +-.12 .60 .95
2¢ .78 LT .60 .56 .58 0.44 +-.20 .10 .75
3a .07 .26 .06 .07 -.02 0.01 +-.03 .00 .10
3b .02 -.00 -.00 -.00 .00 0.00 +-.00 .00 .00
3c .03 -.00 .00 .00 .00 0.00 +-.00 .00 .00
4b -.11 -.32 -.05 -.13 -.10 -0.07 +-.05 -.15 .00
4c .06 -.09 -.03 -.04 -.10 -0.04 +-.05 -.10 .00
b -.80 -1.0 -.91 -.97 -.96 -0.92 +-.07 -1.0 -.80
bc -.94 -1.0 -.98 -1.0 -1.0 -1.00 +-.00 -1.0 -1.0

Correlation and Map Overlap

# c_RMS c_sRMS map_overlap map_overlap people people(min,max)
(normalized)
la -.086 -.11 -.08 -.99 .00 +-.00 .00 .00
1b -.29 -.54 -.48 -1.0 -.77 +-.19 -.90 -.50
ic -.52 -.82 -.74 -1.0 -.92 +-.08 -1.0 -.80
2b -.17 -.34 -.59 -1.0 -.80 +-.08 -.90 -.70
2c -.54 -.84 -.86 -1.0 -.90 +-.00 -.90 -.90
3a .03 .05 -.21 -.25 .30 +-.186 .10 .50
3b .40 .69 1.0 1.0 .87 +-.09 .80 1.0
3c .67 .93 1.0 1.0 .97 +-.05 .90 1.0
4b -.72 -.95 -.21 -.22 -.63 +-.12 -.80 -.50
4c -.82 -.98 .91 .91 -.83 +-.05 -.90 -.80
5b .01 .01 -.96 -1.0 .03 +-.05 .00 .10
5c -.05 -.10 -1.0 -1.0 .00 +-.00 .00 .00
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Example 1

frame # 1 (receptive field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.11 0.13 0.02 0.03 0.12

sigmoidRMS 0.00 0.00 -0.00 -0.00 0.00

diffRMS 0.04 0.06 0.01 0.03 0.30

sigmoiddiff 0.01 0.01 0.00 0.00 0.00

area 0.04 0.04 -0.00 -0.00 0.00

subjective 0.01 0.01 0.00 0.00 0.00

subjective lateralization 0.00 +-.00

c_RMS -0.06

c_sRHMS -0.11

map_overlap -0.08

normalized_map_overlap -0.99

subjective correlation 0.00 +-.00

Measure org lat lat_steep lat_unbdd
L R

RMS 0.01 0.01 0.00 0.00 0.00
sigmoidRMS 0.02 0.04 0.02 0.03 0.48
diffRMS 0.00 0.00 0.00 0.00 0.00
sigmoiddiff 0.00 0.00 0.00 0.00 0.00
area 0.00 0.00 0.00 0.00 0.00
c_RMS -0.75

c_sRHMS -0.96

map_overlap -0.00
normalized_map_overlap -1.00
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frame # 2 (receptive field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.34 0.26 -0.08 -0.15 -0.20

sigmoidRMS 0.39 0.37 -0.02 -0.05 -0.04

diffRMS 0.35 0.22 -0.13 -0.26 -0.33

sigmoiddiff 0.35 0.27 -0.08 -0.15 -0.19

area 0.26 0.22 -0.05 -0.09 -0.12

subjective 0.44 0.38 -0.06 -0.12 -0.11

subjective lateralization -0.16 +-.21

c_RMS -0.29

c_sRHMS -0.54

map_overlap -0.48

normalized_map_overlap -1.00

subjective correlation -.77 +-.19

frame # 2 (response field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.29 0.27 -0.02 -0.04 -0.05
sigmoidRMS 0.41 0.39 -0.02 -0.03 -0.04
diffRMS 0.18 0.14 -0.04 -0.07 -0.19
sigmoiddiff 0.14 0.10 -0.04 -0.07 -0.25
area 0.07 0.04 -0.03 -0.07 -0.40
c_RMS -0.25

c_sRHMS -0.47

map_overlap -0.11
normalized_map_overlap -1.00
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frame # 9 (receptive field)

Measure

RMS
sigmoidRMS
diffRMS
sigmoiddiff
area
subjective

.48
.60
.62
.62
.38
.60

©C O OO OO

subjective lateralization

c_RMS

c_sRMS

map_overlap
normalized_map_overlap
subjective correlation

e

=
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KA NN
¥ gﬂglg AV!A"VA

frame # 9 (response fi

Measure

RMS
sigmoidRMS
diffRMS
sigmoiddiff
area

c_RMS

c_sRMS

map_overlap
normalized_map_overlap

|

i
ol

eld)

0.64
0.70
0.63
0.43
0.07

org lat
R

0.46 -0.03
0.58 -0.02
0.54 -0.08
0.64 0.01
0.36 -0.02
0.60 0.00
-0.03 +-
-0.52
-0.82
-0.74
-1.00

- 92 +-

.05

lat_steep

-0.05
-0.03
-0.17
0.02
-0.03
0.00

lat_unbdd

-0.03
-0.03
-0.10
0.02
-0.04
0.00

org

0.63
0.70
0.64
0.44
0.00
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lat

-0.
-0.
.01
.01
-0.

-0.
-0.
-0.
-0.

01
00

o7

38
66
o7
96

lat_steep

-0.02
-0.00
0.02
0.02
-0.14

lat_unbdd

-0.01
-0.00
0.01
0.02
-1.00



Example 2
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frame # 2 (receptive field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.33 0.75 0.42 0.71 0.55

sigmoidRMS 0.41 0.75 0.34 0.61 0.42

diffRMS 0.29 0.74 0.44 0.74 0.61

sigmoiddiff 0.19 0.70 0.51 0.81 0.75

area 0.06 0.53 0.47 0.77 0.93

subjective 0.16 0.79 0.63 0.90 0.83

subjective lateralization 0.79 +-.12

c_RMS -0.17

c_sRHMS -0.34

map_overlap -0.59

normalized_map_overlap -1.00

subjective correlation -.80 +-.08

[+]
frame # 2 (response field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.47 0.70 0.23 0.43 0.29
sigmoidRMS 0.53 0.77 0.25 0.47 0.27
diffRMS 0.34 0.61 0.27 0.51 0.41
sigmoiddiff 0.17 0.54 0.37 0.65 0.70
area 0.01 0.34 0.32 0.58 0.99
c_RMS -0.08

c_sRHMS -0.16

map_overlap -0.35
normalized_map_overlap -0.99
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frame # 5 (receptive field)

Measure org
L
RHS 0.19 0
sigmoidRMS 0.26 O
diffRMS 0.46 O
sigmoiddiff 0.47 O
area 0.20 0
subjective 0.39 O

subjective lateralization

c_RMS

c_sRMS

map_overlap
normalized_map_overlap
subjective correlation
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SR

frame # 5 (response field)

Measure org
L

RHS 0.37 0
sigmoidRMS 0.49 O
diffRMS 0.42 O
sigmoiddiff 0.25 O
area 0.00 O
c_RHS

c_sRHMS

map_overlap
normalized_map_overlap

AN

s
vt
&""‘(A'A'A‘K‘NAVAVA

lat lat_steep
.67 0.48 0.78
77 0.51 0.81
.79 0.33 0.60
.78 0.31 0.56
.67 0.47 0.77
.71 0.32 0.58
0.44 +-.20
-0.54
-0.84
-0.86
-1.00
-.90 +-.00

L

.75
.84
.80
.74
.43
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lat lat_steep
0.38 0.67
0.35 0.63
0.38 0.67
0.49 0.79
0.43 0.72
-0.44

-0.74

-0.43

-1.00

P o
SO

lat_

©C OO OO0

lat_

= O O OO

unbdd

.74
.67
.38
.36
.72
.42

unbdd

.49
.38
.45
.67
.00



frame # 1 (receptive field)

Measure

RMS
sigmoidRMS
diffRMS
sigmoiddiff
area
subjective

O OO OO0

.66
.00
.56
.29

51

.29

subjective lateralization

c_RMS

c_sRMS

map_overlap
normalized_map_overlap
subjective correlation

Example 3

org

O OO OO0

.69
.00
.59
.32
.64
.28

lat

.04
.00
.03
.03
.13
.01

.03
.05
.21
.25
+-.16

lat_steep

0.07
-0.00
0.06
0.07
0.26
-0.02

lat_unbdd

.03
.00
.04
.07
.17

o O O OO

frame # 1 (response field)

Measure

RMS
sigmoidRMS
diffRMS
sigmoiddiff
area

c_RMS

c_sRMS

map_overlap
normalized_map_overlap

o O O OO

.47
.01
.27
.05
.17

org

o O O OO

.47
.01
.25
.05
.18
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lat

.00
.00
.02
.01
.01

.04
.08
.30
.89

lat_steep

-0.00
-0.00
-0.03
0.01
0.01

lat_unbdd

-0.00
-0.00
-0.06
0.00
0.04
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frame # 2 (receptive field)
Measure org lat lat_steep lat_unbdd
L R
RMS 0.95 0.96 0.01 0.02 0.01
sigmoidRMS 0.96 0.96 0.00 0.00 0.00
diffRMS 0.97 0.97 -0.00 -0.00 0.00
sigmoiddiff 0.97 0.97 -0.00 -0.00 0.00
area 1.00 1.00 -0.00 -0.00 0.00
subjective 0.93 0.93 0.00 0.00 0.00
subjective lateralization 0.00 +-.00
c_RMS 0.40
c_sRHMS 0.69
map_overlap 1.00
normalized_map_overlap 1.00
subjective correlation 0.87 +-.09
VAN TRV, vy VAVNAYE
SRS F AN,
AVATAYAVa T N N YAV AVAY oY)
_ X O IREARIENA
SRR PR
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¥, ; Fal ! VATAY. b
RV, AT RTATS T AT ana P A TAYar. Lo A ta s TaS
frame # 2 (response field)
Measure org lat lat_steep lat_unbdd
L R
RMS 0.93 0.94 0.01 0.03 0.01
sigmoidRMS 0.96 0.96 0.00 0.00 0.00
diffRMS 0.94 0.94 0.00 0.00 0.00
sigmoiddiff 0.95 0.95 0.00 0.00 0.00
area 1.00 1.00 0.00 0.00 0.00
c_RMS 0.42
c_sRHMS 0.71
map_overlap 1.00
normalized_map_overlap 1.00
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frame # 6 (receptive field)

Measure org lat lat_steep lat_unbdd
L R
RMS 0.96 0.98 0.02 0.03 0.02
sigmoidRMS 0.96 0.97 0.00 0.01 0.01
diffRMS 0.99 0.99 0.00 0.00 0.00
sigmoiddiff 0.98 0.99 0.00 0.00 0.01
area 1.00 1.00 -0.00 -0.00 -0.00
subjective 0.99 0.99 0.00 0.00 0.00
subjective lateralization 0.00 +-.00
c_RMS 0.67
c_sRHMS 0.93
map_overlap 1.00
normalized_map_overlap 1.00
subjective correlation 0.97 +-.05
VAV AY VA VovaVivieaVaY AVAYAYAY AVAVAVAVAY VAV A aN Ny Y AV
A‘v‘&aeaﬁv‘é:ﬁﬁﬁiﬁﬁlﬂﬂ KRR EATF AN AL
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frame # 6 (response field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.96 0.97 0.02 0.03 0.01
sigmoidRMS 0.96 0.97 0.00 0.01 0.01
diffRMS 0.98 0.98 0.00 0.00 0.00
sigmoiddiff 0.98 0.98 0.00 0.00 0.00
area 1.00 1.00 0.00 0.00 0.00
c_RMS 0.71

c_sRHMS 0.94

map_overlap 1.00
normalized_map_overlap 1.00
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Example 4
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frame # 2 (receptive field) W’;’?‘_’Zzn%"“!‘

Measure org lat lat_steep lat_unbdd
L R

RMS 0.15 0.09 -0.05 -0.11 -0.37

sigmoidRMS 0.37 0.15 -0.21 -0.41 -0.59

diffRMS 0.27 0.24 -0.03 -0.05 -0.09

sigmoiddiff 0.59 0.52 -0.06 -0.13 -0.09

area 0.73 0.57 -0.16 -0.32 -0.18

subjective 0.79 0.74 -0.05 -0.10 -0.05

subjective lateralization -0.07 +-.05

c_RMS -0.72

c_sRHMS -0.95

map_overlap -0.21

normalized_map_overlap -0.22

subjective correlation -.63 +-.12

frame # 2 (response field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.23 0.13 -0.10 -0.20 -0.40
sigmoidRMS 0.41 0.19 -0.21 -0.41 -0.52
diffRMS 0.44 0.36 -0.08 -0.17 -0.15
sigmoiddiff 0.56 0.45 -0.11 -0.23 -0.16
area 0.66 0.49 -0.16 -0.32 -0.22
c_RMS -0.87

c_sRHMS -0.99

map_overlap -0.38
normalized_map_overlap -0.43
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frame # 5 (receptive field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.32 0.35 0.03 0.06 0.07

sigmoidRMS 0.31 0.35 0.04 0.09 0.09

diffRMS 0.88 0.86 -0.02 -0.03 -0.02

sigmoiddiff 0.82 0.80 -0.02 -0.04 -0.02

area 1.00 0.95 -0.05 -0.09 -0.04

subjective 0.88 0.83 -0.05 -0.10 -0.04

subjective lateralization -0.04 +-.05

c_RMS -0.82

c_sRHMS -0.98

map_overlap 0.91

normalized_map_overlap 0.91

subjective correlation -.83 +-.05
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frame # 5 (response field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.30 0.33 0.03 0.06 0.07
sigmoidRMS 0.28 0.34 0.06 0.11 0.14
diffRMS 0.85 0.85 -0.01 -0.02 0.00
sigmoiddiff 0.80 0.78 -0.02 -0.04 -0.02
area 0.98 0.97 -0.01 -0.02 -0.01
c_RMS -0.97

c_sRHMS -1.00

map_overlap 0.90
normalized_map_overlap 0.90
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Example 5
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frame # 2 (receptive field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.86 0.36 -0.50 -0.80 -0.57

sigmoidRMS 0.79 0.00 -0.79 -0.97 -1.00

diffRMS 0.86 0.22 -0.64 -0.91 -0.77

sigmoiddiff 0.83 0.03 -0.80 -0.97 -0.99

area 0.96 0.00 -0.96 -1.00 -1.00

subjective 0.83 0.07 -0.76 -0.96 -0.95

subjective lateralization -0.92 +-.07

c_RMS 0.01

c_sRHMS 0.01

map_overlap -0.96

normalized_map_overlap -1.00

subjective correlation 0.03 +-.05
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frame # 2 (response field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.83 0.19 -0.64 -0.91 -0.80
sigmoidRMS 0.80 0.00 -0.80 -0.98 -1.00
diffRMS 0.78 0.05 -0.73 -0.95 -0.97
sigmoiddiff 0.69 0.00 -0.68 -0.93 -1.00
area 0.86 0.00 -0.86 -0.99 -1.00
c_RMS -0.02

c_sRHMS -0.03

map_overlap -0.86
normalized_map_overlap -1.00
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frame # 11 (receptive field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.97 0.28 -0.69 -0.94 -0.73

sigmoidRMS 0.97 0.00 -0.97 -1.00 -1.00

diffRMS 0.98 0.17 -0.82 -0.98 -0.87

sigmoiddiff 0.98 0.02 -0.96 -1.00 -0.99

area 1.00 0.00 -1.00 -1.00 -1.00

subjective 0.98 0.03 -0.95 -1.00 -0.99

subjective lateralization -1.00 +-.00

c_RMS -0.05

c_sRHMS -0.10

map_overlap -1.00

normalized_map_overlap -1.00

subjective correlation 0.00 +-.00
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frame # 11 (response field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.96 0.19 -0.78 -0.97 -0.84
sigmoidRMS 0.97 0.00 -0.96 -1.00 -1.00
diffRMS 0.97 0.06 -0.91 -1.00 -0.97
sigmoiddiff 0.97 0.01 -0.97 -1.00 -1.00
area 1.00 0.00 -1.00 -1.00 -1.00
c_RMS -0.10

c_sRHMS -0.19

map_overlap -1.00
normalized_map_overlap -1.00
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Measure

RMS
sigmoidRMS
diffRMS
sigmoiddiff
area

c_RMS

c_sRMS

map_overlap
normalized_map_overlap

frame # 1 (response field)

Measure

RMS
sigmoidRMS
diffRMS
sigmoiddiff
area

c_RMS

c_sRMS

map_overlap
normalized_map_overlap

o O O OO

(el el ol el

.14
.00
.07
.01
.01

.00
.00
.00
.00
.00

org

Example 6
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lat
.60 0.46
.00 0.00
15 0.08
.15 0.14
.56 0.55
0.00
0.00
-0.56
-0.99

lat
.00 -0.00
.00 0.00
.00 -0.00
.00 -0.00
.01 0.01
-0.80
-0.98
-0.01
-1.00

lat_steep

.76
.00
.17
.27
.84

o O O OO

lat_steep

-0.00
0.00
-0.00
-0.00
0.02

lat_unbdd

.80
.00
.52
.97
.00

= O O O O

lat_unbdd

-0.00
0.00
-0.00
-0.00
1.00



frame # 3 (receptive field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.00 0.12 0.12 0.24 1.00
sigmoidRMS 0.00 0.11 0.11 0.22 1.00
diffRMS 0.02 0.02 0.00 0.01 0.00
sigmoiddiff 0.25 0.22 -0.03 -0.07 -0.10
area 0.34 0.23 -0.11 -0.22 -0.29
c_RMS -0.34

c_sRHMS -0.61

map_overlap -0.34
normalized_map_overlap -0.69
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frame # 3 (response field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.00 0.00 0.00 0.00 0.00
sigmoidRMS 0.00 0.00 -0.00 -0.00 -0.00
diffRMS 0.08 0.09 0.01 0.01 0.09
sigmoiddiff 0.16 0.12 -0.03 -0.07 -0.21
area 0.32 0.19 -0.12 -0.25 -0.37
c_RMS -0.90

c_sRHMS -0.99

map_overlap -0.31
normalized_map_overlap -0.70
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frame # 10 (receptive field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.01 0.35 0.34 0.61 0.99
sigmoidRMS 0.06 0.46 0.40 0.69 0.91
diffRMS 0.11  0.27 0.16 0.31 0.59
sigmoiddiff 0.52 0.55 0.04 0.07 0.04
area 0.58 0.44 -0.14 -0.27 -0.20
c_RMS -0.60

c_sRHMS -0.88

map_overlap -0.16
normalized_map_overlap -0.21
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frame # 9 (response field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.02 0.03 0.01 0.02 0.30
sigmoidRMS 0.13 0.06 -0.07 -0.15 -0.52
diffRMS 0.25 0.31 0.06 0.11 0.16
sigmoiddiff 0.44 0.27 -0.17 -0.33 -0.35
area 0.52 0.27 -0.25 -0.47 -0.46
c_RMS -0.94

c_sRHMS -1.00

map_overlap -0.41
normalized_map_overlap -0.62
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Example 7

frame # 1 (receptive field)

Measure

RMS
sigmoidRMS
diffRMS
sigmoiddiff
area

c_RMS

c_sRMS

map_overlap
normalized_map_overlap

o O O OO

.74

15

.63
.38
.51

org

o O O OO

.85

12

.64
.70
.75

lat

11
.02
.02
.33
.24

.01
.01
.17
.19

lat_steep

0.22
-0.05
0.04
0.59
0.46

lat_unbdd

0.10
-0.17
0.01
0.43
0.28

frame # 1 (response field)

Measure

RMS
sigmoidRMS
diffRMS
sigmoiddiff
area

c_RMS

c_sRMS

map_overlap
normalized_map_overlap

(el el ol el

.48
.24
.26
.05
.16

org

(el el ol el

.25
.05
.08
.00
.01
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lat

.23
.19
.18
.04
.15

.00
.00
.17
.99

lat_steep

-0.43
-0.37
-0.35
-0.09
-0.29

lat_unbdd

-0.45
-0.83
-0.71
-1.00
-0.97



frame # 7 (receptive field)

Measure

RMS
sigmoidRMS
diffRMS
sigmoiddiff
area

c_RMS

c_sRMS

map_overlap
normalized_map_overlap

org

frame # 7 (response field)

Measure

RMS
sigmoidRMS
diffRMS
sigmoiddiff
area

c_RMS

c_sRMS

map_overlap
normalized_map_overlap

lat lat_steep
R
1.00 -0.00 -0.00
0.99 0.02 0.04
0.99 -0.00 -0.01
1.00 0.01 0.01
1.00 0.00 0.00
0.34
0.61
1.00
1.00
vrqnunmthr R/ V7
AN cmv‘mmuu
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lat

.01
11
.02
.01
.00

.29
.53
.00
.00

lat_steep

-0.03
-0.21
-0.03
-0.02
-0.00

lat_unbdd

-0.00
0.02
-0.01
0.01
0.00

lat_unbdd

-0.02
-0.08
-0.02
-0.01
-0.00



Example 8

frame # 1

Measure

RMS
sigmoidRMS
diffRMS
sigmoiddiff
area

c_RMS

c_sRMS

map_overlap
normalized_map_overlap

o O O OO

.57
.00
.42
.18
.47

(receptive field)

org

o O O OO

.71
.00
.39
.32
.56

lat

.14
.00
.03
.14
.08

.08
.16
.26
.33

lat_steep

.27
.01
.05
.27
.16

lat_unbdd

0.16
0.00
-0.06
0.41
0.13

frame # 1 (response field)
Measure
L

RHMS 0.34
sigmoidRMS 0.04
diffRMS 0.13
sigmoiddiff 0.01
area 0.21
c_RHMS

c_sRMS

map_overlap
normalized_map_overlap

org

(el el ol el

.15
.00
.03
.01
.01
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lat

.19
.03
.10
.00
.20

.29
.54
.21
.00

lat_steep

.37
.07
.20
.01
.39

lat_unbdd

-0.55
-1.00
-0.80

0.00
-0.98



AV Ty, AL VAYAVL YA
SRS ATD
B S
SRR LES

frame # 11 (receptive field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.80 0.07 -0.74 -0.96 -0.95
sigmoidRMS 0.88 0.00 -0.88 -0.99 -1.00
diffRMS 0.88 0.01 -0.88 -0.99 -1.00
sigmoiddiff 0.86 0.02 -0.84 -0.99 -0.99
area 0.98 0.02 -0.96 -1.00 -0.99
c_RMS -0.52

c_sRHMS -0.82

map_overlap -0.98
normalized_map_overlap -0.99

S vav. o S0 &
WIEEA2 IS D
.Ah‘eggegm;‘gv

WaVAY4)

! v JORVUS
XA N A A
Gl Pl
T
R F =5={ "y
E SR S
RS %‘:su‘\?‘\"l“g'

frame # 11 (response field)

Measure org lat lat_steep lat_unbdd
L R

RMS 0.78 0.14 -0.64 -0.91 -0.86
sigmoidRMS 0.87 0.00 -0.87 -0.99 -1.00
diffRMS 0.85 0.26 -0.58 -0.87 -0.71
sigmoiddiff 0.80 0.07 -0.73 -0.95 -0.95
area 0.96 0.00 -0.96 -1.00 -1.00
c_RMS -0.55

c_sRHMS -0.85

map_overlap -0.96
normalized_map_overlap -1.00
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Example 9

Measure org lat lat_steep lat_unbdd
L R

RMS 0.00 0.85 0.85 0.99 1.00
sigmoidRMS 0.00 0.07 0.07 0.14 1.00
diffRMS 0.00 0.64 0.64 0.91 1.00
sigmoiddiff 0.00 0.69 0.69 0.94 1.00
area 0.00 0.94 0.94 1.00 1.00
c_RMS -0.03

c_sRHMS -0.05

map_overlap -0.94
normalized_map_overlap -1.00

Measure org lat lat_steep lat_unbdd
L R

RMS 0.00 0.32 0.32 0.58 1.00
sigmoidRMS 0.02 0.04 0.02 0.04 0.48
diffRMS 0.00 0.12 0.12 0.24 1.00
sigmoiddiff 0.00 0.02 0.02 0.04 1.00
area 0.00 0.02 0.02 0.03 1.00
c_RMS -0.35

c_sRHMS -0.62

map_overlap -0.02
normalized_map_overlap -1.00
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VAVAVAVAVAVAVAVAVAVAVAN
AVAVAVAVAVAVAVAVAVAVAVA
FAVAVAVAVAVAVAVAVAVAVAN

Measure org lat lat_steep lat_unbdd
L R

RMS 0.00 1.00 1.00 1.00 1.00
sigmoidRMS 0.00 0.98 0.98 1.00 1.00
diffRMS 0.00 0.99 0.99 1.00 1.00
sigmoiddiff 0.00 1.00 1.00 1.00 1.00
area 0.00 1.00 1.00 1.00 1.00
c_RMS 0.07

c_sRHMS 0.13

map_overlap -1.00
normalized_map_overlap -1.00

AR AVATAVAVAYAY AVaVaYi
\CAVAVAVAVAVAVAN VAVANAVIVAVA
VAVAVAY . VAVAVLY, QN

YAVAY, N7

Measure org lat lat_steep lat_unbdd
L R

RMS 0.00 0.98 0.98 1.00 1.00
sigmoidRMS 0.00 0.82 0.82 0.98 1.00
diffRMS 0.00 0.97 0.97 1.00 1.00
sigmoiddiff 0.00 0.97 0.97 1.00 1.00
area 0.00 1.00 1.00 1.00 1.00
c_RMS -0.31

c_sRHMS -0.56

map_overlap -1.00
normalized_map_overlap -1.00
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