
Carry-Over Round Robin: A Simple Cell Scheduling Mechanismfor ATM Networks �Debanjan Sahay Sarit Mukherjeez Satish K. TripathixAbstractWe propose a simple cell scheduling mechanism for ATM networks. The proposed mechanism,named Carry-Over Round Robin (CORR), is an extension of weighted round robin scheduling.We show that albeit its simplicity, CORR achieves tight bounds on end-to-end delay and nearperfect fairness. Using a variety of video tra�c traces we show that CORR often outperformssome of the more complex scheduling disciplines such as Packet-by-Packet Generalized ProcessorSharing (PGPS).

�This work is supported in part by NSF under Grant No. CCR-9318933 and Army Research Laboratory underCooperative Agreement No. DAAL01-96-2-0002. A short version of the paper appeared in the proceedings of IEEEInfocom'96.yIBM T.J. Watson Research Center, Yorktown Heights, NY 10598. Email:debanjan@watson.ibm.com.zDept. of Computer Science & Engg. University of Nebraska, Lincoln, NE 68588. Email:sarit@cse.unl.edu.xDept. of Computer Science, University of Maryland, College Park, MD 20742. Email:tripathi@cs.umd.edu.

1 IntroductionThis paper presents a simple yet e�ective cell multiplexing mechanism for ATM networks. Theproposed mechanism, named Carry-Over Round Robin (CORR), is a simple extension of weightedround robin scheduling. It provides each connection a minimum guaranteed rate of service at thetime of connection setup. The excess capacity is fairly shared among active connections. CORRovercomes a common shortcoming of most round robin and frame based scheduler, that is, couplingdelay performance and bandwidth allocation granularity. We show that despite its simplicity, CORRoften outperforms some of the more sophisticated schemes, such as Packet-by-Packet GeneralizedProcessor Sharing (PGPS) in terms of delay performance and fairness.Rate based service disciplines for packet switched network is a well studied area of research [1, 2,4, 7, 11, 8]. Based on bandwidth sharing strategies, most of the proposed schemes can be classi�edinto one of the two categories { (1) fair queuing mechanisms, and (2) frame-based or weightedround robin policies. Virtual clock [11], packet-by-packet generalized processor sharing (PGPS) [3,7], self clocked fair queueing (SFQ) [6], are the most popular examples of schemes that use fairqueueing strategies to guarantee a certain share of bandwidth to a speci�c connection. The mostpopular frame-based schemes are Stop-and-Go (SG) [4, 5] and Hierarchical-Round-Robin (HRR) [2].While fair queueing policies are extremely exible in terms of allocating bandwidth in very �negranularity and fair distribution of bandwidth among active connections, they are expensive interms of implementation. Frame-based mechanisms on the other hand are inexpensive in terms oftheir implementation. However, they su�er from many shortcomings, such as ine�cient utilizationof bandwidth, coupling between delay performance and bandwidth allocation granularity, unfairallocation of bandwidth.CORR strives to integrate the exibility and fairness of the fair queueing strategies with the sim-plicity of frame-based/round robin mechanisms. The starting point of our algorithm is a simplevariation of round robin scheduling. Like round robin, CORR divides the time-line into allocationcycles, and each connection is allocated a fraction of the available bandwidth in each cycle. However,unlike slotted implementations of round robin schemes where bandwidth is allocated as a multipleof a �xed quantum, in our scheme bandwidth allocation granularity can be arbitrarily small. Thishelps CORR to break the coupling between framing delay and granularity of bandwidth allocation.Another important di�erence between CORR and frame based schemes, such as SG and HRR isthat CORR is a work conserving service discipline. It does not waste the spare capacity of thesystem, rather share it fairly among active connections. A recent paper [10] proposed a similar ideafor e�cient implementation of fair queuing. However, the algorithm proposed in [10] has not beenanalyzed for delay and other related performance metrics.We have presented detailed analysis of CORR and derived tight bounds on end-to-end delay. Ourderivation of delay bounds does not assume a speci�c tra�c arrival pattern. Hence, unlike PGPS(for which delay bound is available only for leaky bucket controlled sources) we can derive end-to-enddelay bounds for CORR for a variety of tra�c sources. Using tra�c traces from real life video sourceswe have shown that CORR often performs better than PGPS in terms of the size of the admissible1

region. We have also analyzed the fairness properties of CORR under the most general scenariosand have shown that it achieves nearly perfect fairness.The rest of this paper is organized as follows. In section 2 we present the intuition behind CORRand its algorithmic description. We discuss the properties of the algorithm in section 3. Section 4 isdevoted to the analysis of the algorithm and its evaluation in terms delay performance and fairness.In section 5 we compare the end-to-end performance of CORR with PGPS and SG using a varietyof tra�c traces. We conclude the paper in section 6.2 Scheduling AlgorithmLike round robin scheduling, CORR divides the time line into allocation cycles. The maximum lengthof an allocation cycle is T . Let us assume that the cell transmission time is the basic unit of time.Hence, the maximum number of cells (or slots) transmitted during one cycle is T . At the time ofadmission, each connection Ci is allocated a rate Ri expressed in cells per cycle. Unlike simple roundrobin schemes, where Ris have to be integers, CORR allows Ris to be real. Since Ris can take realvalues, the granularity of bandwidth allocation can be arbitrarily small, irrespective of the length ofthe allocation cycle. The goal of the scheduling algorithm is to allocate each connection Ci close toRi slots in each cycle and exactly Ri slots per cycle over a longer time frame. It also distributes theexcess bandwidth among the active connections Cis in the proportion of their respective Ris.The CORR scheduler (see �gure 1) consists of three asynchronous events | Initialize, Enqueue,and Dispatch. The event Initialize is invoked when a new connection is admitted. If a connection isadmissible 1, it simply adds the connection to the connection-list fCg. The connection-list is orderedin the decreasing order of Ri�bRic, that is, the fractional part of Ri. The event Enqueue is activatedat the arrival of a packet. It puts the packet in the appropriate connection queue and updates thecell count of the connection. The most important event in the scheduler is Dispatch. The eventDispatch is invoked at the beginning of a busy period. Before explaining the task performed byDispatch, let us introduce the variables and constants used in the algorithm and the basic intuitionbehind it.The scheduler maintains separate queues for each connection. For each connection Ci, ni keepsthe count of the waiting cells, and ri holds the number of slots currently credited to it. Note thatris can be real as well as negative fractions. A negative value of ri signi�es that the connectionhas been allocated more slots than it deserves. A positive value of ri reects the current legitimaterequirement of the connection. In order to allocate slots to meet the requirement of the connectionas closely as possible, CORR divides each allocation cycle into two sub-cycles | a major cycle anda minor cycle. In the major cycle, integral requirement of each connection is satis�ed �rst. Slotsleft over from major cycle are allocated in minor cycle to connections with still unful�lled fractionalrequirements. Obviously, a fraction of a slot cannot be allocated. Hence, eligible connections areallocated a full slot each in the minor cycle whenever slots are available. However, all the connections1We discuss admission control later. 2

ConstantsT : Cycle length.Ri: Slots allocated to Ci.VariablesfCg: Set of all connections.t: Slots left in current cycle.ni: Number of cells in Ci.ri: Current slot allocation of Ci.EventsInitialize(Ci) /* Invoked at connection setup time. */add Ci to fCg; /* fCg is ordered in decreasing order of Ri � bRic. */ni 0; ri 0;Enqueue() /* Invoked at cell arrival time. */ni = ni + 1add cell to connection queue;Dispatch() /* Invoked at the beginning of a busy period. */8Ci:: ri 0;while not end-of-busy-period dot T ;1. Major Cycle:for all Ci 2 fCg do /* From head to tail. */ri min(ni; ri +Ri); xi min(t; bric);t t� xi; ri ri � xi; ni ni � xi;dispatch xi cells from connection queue Ci;end for2. Minor Cycle:for all Ci 2 fCg do /* From head to tail. */xi min(t; drie);t t� xi; ri ri � xi; ni ni � xi;dispatch xi cells from connection queue Ci;end forend whileFigure 1: Carry-Over Round Robin Scheduling.with fractional requirements may not be allocated a slot in the minor cycle. The connections thatget a slot in the minor cycle over-satisfy their requirements and carry a debit to the next cycle. Theeligible connections that do not get a slot in the minor cycle carry a credit to the next cycle. The3

allocations for the next cycle are adjusted to reect this debit and credit carried over from the lastcycle. Following is a detailed description of the steps taken in the Dispatch event.At the beginning of a busy period, all ris are set to 0 and a new cycle is initiated. The cyclescontinue until the end of the busy period. At the beginning of each cycle, the current number ofunallocated slots t is initialized to T , and the major cycle is initiated. In the major cycle, thedispatcher cycles through connection-list and, for each connection Ci, updates ri to ri + Ri. If thenumber of cells queued in the connection queue, ni, is less than the updated value of ri, ri is setto ni. This is to make sure that a connection cannot accumulate credits. The minimum of t andbric cells are dispatched from the connection queue of Ci. The variables are appropriately adjustedafter dispatching the cells. A minor cycle starts with the slots left over from preceding major cycle.Again, the dispatcher walks through the connection-list. As long as there are slots left, a connectionis deemed eligible for dispatching i� 1) it has queued packets, and 2) its ri is greater than zero. Ifthere is no eligible connection or if t reaches zero, the cycle ends. Note that the length of the majorand minor cycles may be di�erent in di�erent allocation cycles.Example: Let us consider a CORR scheduler with cycle length T = 4 and serving three connectionsC1, C2, and C3 with R1 = 2, R2 = 1:5, and R3 = 0:5, respectively. In an ideal system wherefractional slots can be allocated, slots can be allocated to the connections in a fashion shown in�gure 2, resulting in full utilization of the system. CORR also achieves full utilization, but with adi�erent allocation of slots.For ease of exposition, let us assume that all three connections are backlogged starting from thebeginning of the busy period. In the major cycle of the �rst cycle, CORR allocates C1, C2, and C3,bR1c = 2, bR2c = 1, and bR3c = 0 slots, respectively. Hence, at the beginning of the �rst minorcycle, t = 1, r1 = 0:0, r2 = 0:5, and r3 = 0:5. The only slot left over for the minor cycle goes toC2. Consequently, at the end of the �rst cycle, r1 = 0:0, r2 = �0:5, and r3 = 0:5, and the adjustedrequirements for the second cycle arer1 = r1 +R1 = 0:0 + 2:0 = 2:0r2 = r2 +R2 = �0:5 + 1:5 = 1:0r3 = r3 +R3 = 0:5 + 0:5 = 1:0Since all the ris are integral, they are all satis�ed in the major cycle.The main attraction of CORR is its simplicity. In terms of complexity, CORR is comparable toround robin and frame based mechanisms. However, CORR does not su�er from the shortcomings ofround robin and frame based schedulers. By allowing the number of slots allocated to a connectionin an allocation cycle to be a real number instead of an integer, we break the coupling between theservice delay and bandwidth allocation granularity. Also, unlike frame based mechanisms, such asSG and HRR, CORR is a work conserving discipline capable of exploiting the multiplexing gains ofpacket switching. In the following section we discuss some of its basic properties.4

r =2.0

r =1.5

r

R = 0.5

R = 2.01 1 =0.0 =2.01 r =0.01

R = 1.52 2 =0.5r2 r =1.02 r =0.02

3
r = 0.53 r = 0.53

r =1.03 r =0.03

Connection 1 Connection 2 Connection 3

Cycle 1 Cycle 2

Major Cycle Major Cycle MinorMinor
Cycle Cycle

Ideal

r1

Figure 2: An Example Allocation.3 Basic PropertiesIn this section, we discuss some of the basic properties of the scheduling algorithm. Lemma 3.1 de�nesan upper bound on the aggregate requirements of all streams inherited from the last cycle. This resultis used in lemma 3.2 to determine the upper and lower bounds on the individual requirements carriedover from the last cycle by each connection.Lemma 3.1 If P8Ci2fCgRi � T then at the beginning of each cycle P8Ci2fCg ri � 0:Proof: We will prove this by induction. We will �rst show that it holds at the beginning of a busyperiod, and then we will show that if it hold in the kth cycle, it also holds in the (k + 1)th cycle.Base Case: From the allocation algorithm we observe that at the beginning of a busy period ri = 0for all connection Ci. Hence, X8Ci2fCg ri = 0Thus, the assertion holds in the base case.Inductive Hypothesis: Assume that the premise holds in the kth cycle. We need to prove that italso holds in the (k + 1)th cycle. We use superscript for cycles in the following proof.X8Ci2fCg rk+1i = X8Ci2fCg rki + X8Ci2fCgRi � T � 0 + T � T � 0:5

This completes the proof.Henceforth we assume that the admission control mechanism makes sure that P8Ci2fCgRi � T atall nodes. This simple admission control test is one of the attractions of the CORR scheduling.Lemma 3.2 If P8Ci2fCgRi � T then at the beginning of each cycle�1 < ��i � ri � �i < 1;where �i = maxkfkRi � bkRicg; k = 1; 2; : : :Proof: To derive the lower bound on ri, observe that in each cycle no more than drie slots areallocated to connection Ci. Also, note that ri is incremented in steps of Ri. Hence, the lowest ri canget to is, ��i = maxkfkRi � dkRieg; k = 1; 2; : : :1= �maxkfkRi � bkRicg; k = 1; 2; : : :1Derivation of the upper bound is little more complex. Let us assume that there are n connectionsCi, i = 1; 2; : : : ; n. With no loss of generality we can renumber them, such that Ri � Rj, when i < j.For the sake of simplicity, let us also assume that all the Ris are fractional. We show later that thisassumption is not restrictive. To prove the upper bound we �rst prove that ri never exceeds 1, forall connections Ci. Now, since Rn is the lowest of all Ris, i = 1; 2; : : : ; n, Cn is the last connection inthe connection list. Consequently, Cn is the last connection considered for a possible cell dispatch inboth major and minor cycles. Hence, if we can prove that rn never exceeds 1, so is true for all otherris. We will prove this by contradiction.Let us assume that Cn enters a busy period in allocation cycle 1. Observe, that Cn experiences theworst case allocation when all other connections also enter their busy period in the same cycle. Letus assume that rn exceeds 1. This would happen in the allocation cycle d1=Rne. Since rn exceeds1, Cn is considered for a possible dispatch in the major cycle. Now, Cn is not scheduled during themajor cycle of the allocation cycle d1=Rne if and only if the following is true at the beginning of theallocation cycle, n�1Xi=1 bri +Ric � TFrom lemma 3.1 we know that,Pni=1 ri � 0 at the beginning of each cycle. Since rn > 0,Pn�1i=1 ri < 0at the beginning of the allocation cycle d1=Rne. But,n�1Xi=1 bri +Ric � n�1Xi=1 (ri +Ri) < 0 + n�1Xi=1 Ri < T6

This contradicts our original premise. Hence, rn cannot exceed 1. Noting that rn is incremented insteps of Rn the bound follows.We have proved the bounds under the assumption that all Ris are fractional. If we relax thatassumption, the result still holds. This is due to the fact that the integral part of Ri is guaranteedto be allocated in each allocation cycle. Hence, even when Ris are not all fractional, we can reducethe problem to an equivalent one with fractional Ris using the transformationR̂i = Ri � bRic and T̂ = T � nXi=1bRic:This completes the proof.4 Quality of Sevice EnvelopeIn this section we analyze the worst-case end-to-end delay performance of CORR. Other measuresof performance such as delay jitter and bu�er size at each node can also be found from the resultsderived in this section. In order to �nd the end-to-end delay, we have �rst derived delay bounds for asingle node system. We then show that the end-to-end delay for a multi-node system can be reducedto delay encountered in an equivalent single node system. Hence, the delay bounds derived for singlenode system can be substituted to �nd the end-to-end delay. We have also presented a comprehensiveanalysis of CORR's fairness. We de�ne a fairness index to quantify how fairly bandwidth is allocatedamong active connections, and show that the fairness index of CORR is within a constant factor ofany scheduling discipline.4.1 Delay AnalysisIn this section we derive the worst case delay bounds of a connection spanning single or multiplenodes, each employing CORR scheduling to multiplex tra�c from di�erent connections. We assumethat each connection has an associated tra�c envelope that describes the characteristics of the tra�cit is carrying, and a minimum guaranteed rate of service at each multiplexing node. Our goal is todetermine the maximum delay su�ered by any cell belonging to the connection. We start with asimple system consisting of a single multiplexing node, and �nd the worst case delay for di�erenttra�c envelopes.Single-node CaseLet us consider a single server employing CORR scheduling to service tra�c from di�erent connec-tions. Since we are interested in the worst case delay behavior, and each connection is guaranteed aminimum rate of service, we can consider each connection in isolation. Our problem then is to �ndthe maximum di�erence between the arrival and the departure times of any cell, assuming that the7

cells are serviced using CORR scheduling with a minimum guaranteed rate of service. The arrivaltime of a cell can be obtained from the tra�c envelope de�ned by the tra�c envelope associatedwith a connection. Tra�c envelope associated with a connection depends on the shaping mechanism(see Appendix) used at the network entry point. In this paper we have considered leaky bucket andmoving window shapers.Following, we derive the worst case departure time a cell in terms of the service rate allocated tothe connection and the length of the allocation cycle. Knowing both the arrival and the departurefunctions, we can compute the worst case delay bound. Before presenting the results let us �rstformally introduce the de�nition of a connection busy period and a system busy period.
Arrival Function

Departure Function

i

t

backlog at time t

delay encountered by cell i

Time

C
el

l I
nd

ex

Figure 3: Computing delay and backlog from the arrival and departure functions.De�nition 4.1 A connection is said to be in the busy period if connection queue is non-empty. Thesystem is said to be in the busy period if at least one of the active connection is in the its busy period.Note, that a particular connection can switch between busy and idle periods even when the systemis in the same busy period. The following theorem determines the departure time of a speci�c cellbelonging to a particular connection.Theorem 4.1 Assume that a connection enters a busy period at time 0. Let d(i) be the latest timeby which the ith cell, starting from the beginning of the current busy period, departs the system. Thend(i) can be expressed as, d(i) = � i+ 1 + �R �T; i = 0; 1; : : : ;1:where R is the rate allocated to the connection and T is the maximum length of the allocation cycle.Proof: Since a cell may leave the system any time during an allocation cycle, to capture the worstcase we assume that all the cells served during an allocation cycle leave at the end of the cycle. Now,8

when a connection enters a busy period, in the worst case, r = ��. If cell i departs at the end ofthe allocation cycle L, the number of slots allocated by the scheduler is L � R+ � and the numberof slots consumed is i+ 1 (since packet number starts from 0). In the worst case,1 > L�R� � � (i+ 1) � 0:This implies that, i+ 1 + � + 1R > L � i+ 1 + �R :From the above inequality and noting that L is an integer and d(i) = L� T , we getd(i) = � i+ 1 + �R �T:Theorem 4.1 precisely characterizes the departure function d(�) associated with a connection. Asmentioned earlier, the arrival function a(�) associated with a connection is determined by the tra�cenvelope and has been characterized for di�erent composite shapers in the Appendix. Knowing botha(i) and d(i), the arrival and departure time of the ith cell in a busy period, delay encountered by theith cell can be computed as d(i)� a(i) (see �gure 3). Note that this is really the horizontal distancebetween the arrival and departure functions at i. Hence, the maximum delay encountered by any cellis really the maximum horizontal distance between the arrival and the departure functions. Similarly,the vertical distance between these functions represents the backlog in the system. Unfortunately,�nding the maximum delay, that is the maximum horizontal di�erence between the arrival and thedeparture functions, is a di�cult task. Hence, instead of �nding the maximum delay directly bymeasuring the horizontal distance between these functions, we �rst determine the point at whichthe maximum backlog occurs and the index i of the cell which is at the end of the queue at thatpoint. The worst case delay is then computed by evaluating d(i)� a(i). Following we carry out thisprocedures for a(i) de�ned by composite leaky bucket, and moving window shapers.Lemma 4.1 Consider a connection shaped using an n-component moving window shaper and passingthrough a single multiplexing node employing CORR scheduling with an allocation cycle of length T 2.If the connection is allocated a service rate of R, then the worst case delay encountered by any cellbelonging to the connection is upper bounded by,DCORR=MW � 8>>>><>>>>: �mj + �R �T � nXl=j+1�ml�1ml � 1�wl; � R+ �wj (R=T �mj=wj)� = 1�2mj + �R �T � wj � nXl=j+1�ml�1ml � 1�wl; � R+ �wj (R=T �mj=wj)� > 1when mjwj < RT < mj+1wj+1 ; j = 1; 2; : : : ; n� 1:2We assume that the cycle length is smaller than the smallest window period.9

Proof: First we will show that under the conditions stated above the system is stable. That is, thelength of the busy period is �nite. To prove that, it is su�cient to show that there exists a positiveinteger k such that, the number of cells serviced in kwj time is more than equal to kmj. In otherwords, we have to show that there exists a k such that the following holds,kwj � d(kmj � 1)kwj � �(kmj � 1) + 1 + �R �Tkwj � �(kmj � 1) + 1 + �R + 1�Tk � R+ �wj (R=T �mj=wj)Clearly, for there to exists a positive integer k so that the above equality is satis�ed, the followingcondition needs to hold. R=T �mj=wj > 0 or R=T > mj=wjBy our assumption, R=T > mj=wj. Hence, the system is stable. Now, we need to determine thepoint at which the maximum backlog occurs. Depending on the value of k, the maximum backlogcan occur at one of the two places.Case 1: k = 1. If k = 1, that is, when tra�c coming in during a time window of length wj departsthe system in the same window, the maximum backlog occurs at the arrival instant of the (mj� 1)thcell 3. Clearly, the index of the cell at the end of the queue at that instant is (mj � 1)th. Hence,the maximum delay encountered by any cell under this scenario is the same as the delay su�ered bythe (mj � 1)th cell, and can be enumerated by computing d(mj � 1)� a(mj � 1). We can evaluatea(mj � 1) as following,a(mj � 1) = nXl=1 ��mj � 1ml � � �mj � 1ml�1 � ml�1ml �wl= jXl=1 ��mj � 1ml � � �mj � 1ml�1 � ml�1ml �wl+ nXl=j+1��mj � 1ml �� �mj � 1ml�1 � ml�1ml �wl= nXl=j+1�mjml � 1� � mjml�1 � 1�ml�1ml �wl (since ml�1 > ml)3Note that cells are numbered from 0. Since R can be non-integral, we can choose T arbitrarily small withouta�ecting the granularity of bandwidth allocation 10

= nXl=j+1�ml�1ml � 1�wl:Therefore, the worst case delay is bounded by,DCORR=MW � d(mj � 1)� a(mj � 1)� �mj + �R �T � nXl=j+1�ml�1ml � 1�wl:Case 2: k > 1. When k is greater than 1, the connection busy period continues beyond the �rstwindow of length wj. Since R=T > mj=wj, the rate of tra�c arrival is lower than the rate ofdeparture. Still, in this case, not all cells that arrive during the �rst window of length wj are servedduring that period and the left over cells are carried over into the next window. This is due to the factthat unlike the arrival curve, the departure function does not start at time 0 but at time d(1+�)=Re.This is the case when k = 1 also. However, in that case, the rate of service is high enough to serveall the cells before the end of the �rst window. When k > 1 the backlog carried over from the�rst window is cleared in portions over the next k � 1 windows. Clearly, the backlogs carried overinto subsequent windows diminish in size and is cleared completely by the end of the kth window.Hence, second window is the one where the backlog inherited from the last window is the maximum.Consequently, absolute backlog in the system reaches its maximum at the arrival of the 2mj � 1cell. Hence, the maximum delay encountered by any cell under this scenario is the same as the delaysu�ered by the (2mj � 1)th cell, and can be enumerated by computing d(2mj � 1)� a(2mj � 1). Wecan evaluate a(2mj � 1) as following,a(2mj � 1) = nXl=1 ��2mj � 1ml �� �2mj � 1ml�1 � ml�1ml �wl= j�1Xl=1 ��2mj � 1ml �� �2mj � 1ml�1 � ml�1ml �wl+��2mj � 1mj �� �2mj � 1mj�1 �mj�1mj �wj+ nXl=j+1��2mj � 1ml � � �2mj � 1ml�1 � ml�1ml �wl= 0 + wj + nXl=j+1�2mjml � 1� � 2mjml�1 � 1�ml�1ml �wl (since ml�1 � 2ml)= wj + nXl=j+1�ml�1ml � 1�wl:Therefore the worst case delay is bounded by,DCORR=MW � d(2mj � 1)� a(2mj � 1)11

� �2mj + �R �T � wj � nXl=j+1�ml�1ml � 1�wl:Lemma 4.2 Consider a connection shaped by an n-component leaky bucket shaper and passingthrough a single multiplexing node employing CORR scheduling with an allocation cycle of maxi-mum length T . If the connection is allocated a service rate of R, then the worst case delay su�eredby any cell belonging to the connection is upper bounded by,DCORR=LBmax � �Bj + 1 + �R �T � (Bj � bj + 1) tj ;when 1tj < RT < 1tj+1 ; j = 1; 2; : : : ; n:Proof: In order to identify the point where maximum the backlog occurs, observe that the rateof arrivals is more than the rate of service until the slope of the tra�c envelope changes from 1tj+1to 1tj . This change in the slope occurs at the arrival of the Bjth cell in the worst case. Hence, themaximum delay encountered by any cell is at most as large as the delay su�ered by Bjth cell. Wecan compute a(Bj) as following,a(Bj) = n+1Xl=1 (Bj � bl + 1) tl [U(Bj � Bl)� U(Bj �Bl�1)]= j�1Xl=1(Bj � bl + 1) tl [U(Bj �Bl)� U(Bj � Bl�1)]+(Bj � bj + 1) tj [U(Bj �Bj)� U(Bj �Bj�1)]+ n+1Xl=j+1(Bj � bl + 1) tl [U(Bj � Bl)� U(Bj �Bl�1)]= (Bj � bj + 1) tj :Now d(Bj)� a(Bj) yields the result.The results derived in this section de�ne tight upper bounds for delay encountered in a CORRscheduler under di�erent tra�c arrival patterns. The compact closed form expressions make thetask of computing the numerical bounds for a speci�c set of parameters very simple. We would alsolike to mention that compared to other published works, we consider a much larger and general setof tra�c envelopes in our analysis. Although simple closed form bounds under very general arrivalpatterns is an important contribution of this work, bounds for a single node system is not very usefulin a real life scenario. In most real systems, a connection spans multiple nodes and the end-to-enddelay bound is what is of interest. In the following section we derive bounds on end-to-end delayusing the results presented in this section. 12

Multiple-node CaseIn the last section we derived worst case bounds on delay for di�erent tra�c envelopes for a singlenode system. In this section, we derive similar bounds for a multi-node system. We assume thatthere are n multiplexing nodes between the source and the destination, and at each node a minimumavailable rate of service is guaranteed.We denote by ak(i) the arrival time of cell i at node k. The service time at node k for cell i is denotedby sk(i). We assume that the propagation delay between nodes is zero4. Hence, the departure timeof cell i from node k is ak+1(i). Note, that a1(i) is the arrival time of the ith cell in the system andan+1(i) is the departure time of the ith cell from the system.Let us denote by Sk(p; q) = Pqi=p sk(i). This is nothing but the aggregate service times of cells pthrough q at node k. In other words, Sk(p; q) is the service time of the burst of cells p through q atnode k.The following theorem expresses the arrival time of a particular cell at a speci�c node in termsof the arrival times of the preceding cells at the system and their service times at di�erent nodes.This is a very general result, and is independent of the particular scheduling discipline used at themultiplexing node and tra�c envelope associated with the connection. We will use this result laterto derive the worst case bound on end-to-end delay.Theorem 4.2 For any node k and for any cell the i, the following holds:ak(i) = max1�j�i(a1(j) + maxj=l1�l2�����lk=i k�1Xh=1Sh(lh; lh+1)!) :Proof: We will prove this theorem by induction on k and i.Induction on k:Base Case: When k = 1,a1(i) = max1�j�i(a1(j) + maxj=l1�l2�����lk=i 0Xh=1Sh(lh; lh+1)!)= a1(i)Clearly, the assertion holds.Inductive Hypothesis: Let us assume that the premise holds for all m � k. In order to prove thatthe hypothesis is correct, we need to show that it holds for m = k + 1.ak+1(i) = max fak+1(i� 1) + sk(i); ak(i) + sk(i)g4This assumption does not a�ect the generality of the results, since the propagation delay at each stage is constantand can be included in sk(i). 13

= max(max1�j�i�1"a1(j) + maxj=l1�l2�����lk+1=i�1 kXh=1Sh(lh; lh+1)!# + sk(i);max1�j�i"a1(j) + maxj=l1�l2�����lk=i k�1Xh=1Sh(lh; lh+1)!#+ sk(i))= max(max1�j�i�1"a1(j) + maxj=l1�l2�����lk+1=i�1 kXh=1Sh(lh; lh+1)!+ sk(i)# ;max1�j�i�1"a1(j) + maxj=l1�l2�����lk=i k�1Xh=1Sh(lh; lh+1)!+ Sk(i; i)# ;a1(i) + iXh=1Sh(i; i))= max(max1�j�i�1"a1(j) + maxj=l1�l2�����lk<lk+1=i kXh=1Sh(lh; lh+1)!# ;max1�j�i�1"a1(j) + maxj=l1�l2�����lk=lk+1=i kXh=1Sh(lh; lh+1)!# ;a1(i) + kXh=1Sh(i; i))= max(max1�j�i�1"a1(j) + maxj=l1�l2�����lk�lk+1=i kXh=1Sh(lh; lh+1)!# ;a1(i) + iXh=1Sh(i; i))= max1�j�i(ak(j) + maxj=l1�l2�����lk�lk+1=i kXh=1Sh(lh; lh+1)!)Induction on i:Base Case: When i = 1,ak(1) = max1�j�1(a1(j) + maxj=l1�l2�����lk=1 k�1Xh=1Sh(lh; lh+1)!)= a1(1) + k�1Xh=1Sh(1; 1)= a1(1) + k�1Xh=1 sh(1)Hence, the assertion holds in the base case.Inductive Hypothesis: Let us assume that the premise holds for all n � i. In order to prove that thehypothesis is correct, we need to show that it holds for n = i+ 1.14

ak(i+ 1) = max fak(i) + sk�1(i+ 1); ak�1(i+ 1) + sk�1(i+ 1)g= max(max1�j�i"a1(j) + maxj=l1�l2�����lk=i k�1Xh=1Sh(lh; lh+1)!#+ sk�1(i+ 1);max1�j�i+1"a1(j) + maxj=l1�l2�����lk�1=i+1 k�2Xh=1Sh(lh; lh+1)!#+ sk�1(i+ 1))= max(max1�j�i"a1(j) + maxj=l1�l2�����lk=i k�1Xh=1Sh(lh; lh+1)!+ sk�1(i+ 1)# ;max1�j�i"a1(j) + maxj=l1�l2�����lk�1=i+1 k�2Xh=1Sh(lh; lh+1)!+ Sk�1(i+ 1; i+ 1)# ;a1(i+ 1) + k�1Xh=1Sh(i+ 1; i+ 1))= max(max1�j�i"a1(j) + maxj=l1�l2�����lk�1<lk=i+1 k�1Xh=1Sh(lh; lh+1)!# ;max1�j�i"a1(j) + maxj=l1�l2�����lk�1=lk=i+1 k�1Xh=1Sh(lh; lh+1)!# ;a1(i+ 1) + iXh=1Sh(i+ 1; i+ 1))= max(max1�j�i"a1(j) + maxj=l1�l2�����lk�1�lk=i+1 k�1Xh=1Sh(lh; lh+1)!# ;a1(i+ 1) + kXh=1Sh(i+ 1; i+ 1))= max1�j�i+1(ak(j) + maxj=l1�l2�����lk�1�lk=i+1 k�1Xh=1Sh(lh; lh+1)!)The result stated in the above theorem determines the departure time of any cell from any node inthe system in terms of the arrival times of the preceding cells and the service times of the cells atdi�erent nodes. This is the most general result known to us on the enumeration of end-to-end delayin terms of service times of cells at intermediate nodes. We believe, this result will prove to be apowerful tool in enumerating end-to-end delay for any rate based scheduling discipline and will bean e�ective alternative for the ad hoc techniques commonly used for end-to-end analysis.Although the result stated in theorem 1 is very general, it is di�cult to make use of it in its mostgeneral form. In order to �nd the exact departure time of any cell from any node we need to knowboth the arrival times of the cells and their service times at di�erent nodes. Arrival times of di�erentcells can be obtained from the arrival function, but computing service times for di�erent cells at each15

node is a daunting task. Hence, computing precise departure time of a cell from any node in thesystem is often quite di�cult. However, accurate departure time of a speci�c cell is rarely of criticalinterest. More often we are interested in other metrics, such as worst case delay encountered by acell. Fortunately, computing the worst case bound on the departure time, and then the worst casedelay is not that di�cult. The following corollary expresses the worst case delay su�ered by a cellin terms of the worst case service times at each node.Corollary 4.1 Consider a connection passing through n multiplexing nodes. Assume that thereexists a Sw such that Sw(p; q) � Sh(p; q) for all q � p and h = 1; 2; : : :n. Then, in the worst case,delay D(i) su�ered by the cell i belonging to the connection can be upper bounded byD(i) � max1�j�i(a1(j) + maxj=l1�l2�����ln+1=i(nXh=1Sw(lh; lh+1))) � a1(i)Proof: Follows trivially from theorem 1 by substituting Shs, h = 1; 2; : : :n by Sw.Corollary 4.1 expresses the worst case delay encountered by any cell under the assumption thatfor any p and q there exists a function Sw such that Sw(p; q) � Sh(p; q), for h = 1; 2; : : : ; n. Thecloser Sw is to Sh, the tighter is the bound. The choice of Sw depends on the particular schedulingdiscipline used at the multiplexing nodes. In case of CORR it is simply the service time at theminimum guaranteed rate of service. Following corollary instantiates the delay bound for CORRservice discipline.Corollary 4.2 Consider a connection traversing n nodes, each of which employs CORR schedulingdiscipline. Let Rw be the minimum rate of service o�ered to a connection at the bottleneck node, andT be the maximum length of the allocation cycle. Then the worst case delay su�ered by the ith cellbelonging to the connection is bounded by,DCORR(i) � �n + (n� 1)2 + �wRw �T + max1�j�ifa1(j) + Sw(j; i)g� a1(i)Proof: This follows from corollary 4.1 by replacingmaxj=l1�l2�����ln+1=i(nXh=1Sw(lh; lh+1)) with �n+ (n� 1)2 + �wRw �T + Sw(j; i)Following steps explain the details,nXh=1Sw(lh; lh+1) = nXh=1 � l(h+1 � lh + 1) + 1 + �wRw � (from theorem 4:1)� nXh=1 � lh+1 � lh + 2 + �wRw + 1�T16

� �n+ (n� 1)2 + �wRw �T + �(ln+1 � l1 + 1) + 1 + �wRw �T� �n+ (n� 1)2 + �wRw �T + Sw(l1; ln+1) (from theorem 4:1)� �n+ (n� 1)2 + �wRw �T + Sw(j; i) (putting l1 = j and ln+1 = i)The �nal result follows immediately.The expression for DCORR derived above consists of two main terms. The �rst term is a constantindependent of the cell index. If we observe the second term carefully, we realize that it is no otherthan the delay encountered by the ith cell at CORR server with a cycle time T and a minimum rateof service Rw. Hence, end-to-end delay reduces to the sum of the delay encountered in a single nodesystem and a constant. By substituting the delay bounds for the single-node system derived in thelast section we can enumerate end-to-end delay in a multi-node system for di�erent tra�c envelopes.4.2 Fairness AnalysisIn the last section we analyzed some of the worst case behavior of the system. In the worst caseanalysis it is assumed that the system is fully loaded and each connection is served at the minimumguaranteed rate. However, that is often not the case. In a work conserving server, when the systemis not fully loaded the spare capacity can be used by the busy sessions to achieve better performance.One of the important performance metric of a work conserving scheduler is the fairness of the system.That is how fair is the scheduler in distributing the excess capacity among the active connections.Let us de�ne by Dp(t), the number of packets of connection p transmitted during [0,t). We de�nethe normalized work received by a connection p as wp(t) = Dp(t)=Rp. Accordingly, wp(t1; t2) =wp(t2)� wp(t1), where t1 � t2 is the normalized service received by connection p during (t1; t2).In an ideally fair system, the normalized service received by di�erent connections in their busy stateincrease at the same rate. For sessions that are not busy at t, normalized service stays constant.If two connections p and q are both in their busy period during [t1; t2), we can easily show thatwp(t1; t2) = wq(t1; t2).Unfortunately, the notion of ideal fairness is only applicable to hypothetical uid ow model. Ina real packet network, a complete packet from one connection has to be transmitted before serviceis shifted to another connections. Therefore, it is not possible to satisfy equality of normalized rateof services for all busy sessions at all times. However, it is possible to keep the normalized servicesreceived by di�erent connections close to each other. The Packet-by-Packet Generalized ProcessorSharing (PGPS) and the Self-Clocked-Fair-Queuing (SFQ) are close approximations to ideal-fair-queuing in the sense that they try to keep the normalized services received by busy sessions closeto that of an ideal system. Unfortunately, the realization of PGPS and SFQ are quite complex.In the following we will show that the CORR scheduling is almost as fair as PGPS and SFQ,albeit its simplicity in terms of implementation. For reasons of simplicity we will assume that our17

sampling points coincide with the beginning of the allocation cycles only. If frame sizes are small,this approximation is quite reasonable.Lemma 4.3 If a connection p is in a busy period during the cycles c1 through c2, where c2 � c1, theamount of service received by the connection during [c1; c2] is bounded bymaxf0; b(c2� c1)Rp � �pcg � Dp(c1; c2) � d(c2 � c1)Rp + �peProof: Follows directly from lemma 3.2.Corollary 4.3 If a connection p is in a busy period during the cycles c1 through c2, where c2 � c1,the amount of normalized service received by the connection during [c1; c2] is bounded bymax�0; b(c2 � c1)Rp � �pcRp � � wp (c1; c2) � d(c2 � c1)Rp + �peRpProof: Follows directly from lemma 4.3 and the de�nition of normalized service.Theorem 4.3 If two connections p and q are in their busy periods during the cycles c1 through c2,where c2 � c1, then �(p; q) = jwp(c1; c2)� wq(c1; c2)j � 1 + �pRp + 1 + �qRqProof: From the last corollary we get,�(p; q) = jwp(c1; c2)� wq(c1; c2)j� max�����d(c2 � c1)Rp + �peRp � b(c2 � c1)Rq � �qcRq ���� ;����d(c2 � c1)Rq + �qeRq � b(c2 � c1)Rp � �pcRp ������ max8<:������l�[c2 � c1] + �pRp �RpmRp � j�[c2 � c1]� �qRq�RqkRq ������ ;������l�[c2 � c1] + �qRq�RqmRq � j�[c2 � c1]� �pRp�RpkRq ������9=;� max������[c2 � c1] + 1 + �pRp �� �[c2 � c1]� 1 + �qRq ����������[c2 � c1] + 1 + �qRq �� �[c2 � c1]� 1 + �pRp ������� max�1 + �pRp + 1 + �qRq ; 1 + �qRq + 1 + �pRp �18

This completes the proof.To compare fairness of CORR with other schemes, such as PGPS and SFQ, we can use �(p; q) asthe performance metric. As discussed earlier, �(p; q) is the absolute di�erence in normalized workreceived by two sessions over a time period where both of them were busy. We proved earlier that ifour sample points are at the beginning of the allocation cycles,�CORR(p; q) � 1 + �pRp + 1 + �qRq :Under the same scenario described in the last section, it can be proved that in the SFQ scheme thefollowing holds at all times, �SFQ(p; q) � 1Rp + 1RqDue to di�erence in the de�nition of busy periods in PGPS similar result is di�cult derive. However,Golestani [6] has shown that the maximum permissible service disparity between a pair of busyconnections in the SFQ scheme is never more than two times the corresponding �gure for any realqueueing scheme. This proves that, �PGPS(p; q) � 12�SFQ(p; q)Note that, 0 � �i � 1 for all connection i. Hence, the fairness index of CORR is within two timesthat of SFQ and at most four times that of any other queuing discipline including PGPS.5 Numerical ResultsIn this section we compare the performance of CORR with PGPS and SG using a number of MPEGcoded video traces with widely varying tra�c characteristics. We used four 320�240 video clips (seeTable 1), each approximately 10 minutes long in our study. The �rst video is an excerpt from a veryfast scene changing basketball game. The second clip is a music video (MTV) of the rock groupREM. It is composed of rapidly changing scenes in tune with the song. The third sequence is a clipfrom CNN Headline news where the scene alternates between the anchor reading news and di�erentnews clips. The last one is a lecture video with scenes alternating between the speaker talking andthe viewgraphs. The only moving objects here are the speaker's head and hands. Figure 4 plotsframe sizes against frame number (equivalently time) for all four sequences for an appreciation of theburstiness in di�erent sequences. In all traces, frames are sequenced as IBBPBB and frame rate is30 frames/sec. Observe that, in terms of the size of GoP 5 and that of an average frame, BasketBalland Lecture videos are at the two extremes (the largest and the smallest, respectively), with theother two videos in between.5The repeating sequence (IBBPBB in this case) is called a GoP or Group of Pictures.19

Traces Type of Maximum Minimum Average VariationFrame Frame Size Frame Size Frame Size (Std. Dev)I 41912 8640 26369.14 4672.12P 40128 6400 15570.31 1846.77Basketball B 35648 4288 11137.18 2856.51Avg. Frame 14414.69GoP 215232 59008 86488.12 6284.27I 34496 8512 21770.88 4808.31P 28544 9152 15833.20 1437.66MTV Video B 32640 4608 12211.39 3123.87Avg. Frame 14408.27GoP 146304 65472 86443.91 4017.07I 43200 17144 27728.71 3537.86P 20160 11392 16025.23 547.62News Clip B 26304 6208 10643.04 2691.66Avg. Frame 14387.68GoP 118464 81664 86326.10 839.50I 13504 5312 10956.67 1498.87P 13312 2048 4673.82 642.53Lecture B 6592 768 3292.95 617.45Avg. Frame 4800.38GoP 33984 23424 28802.33 555.95Table 1: Characteristics of the MPEG traces. Size is in bytes and frame sequence is IBBPBB.Results presented in the rest of the section demonstrate (1) CORR achieves high utilization irrespec-tive of the shaping mechanism used, (2) when used in conjunction with composite shapers CORRcan exploit the precision in tra�c characterization and can achieve even higher utilization.CORR and PGPSPGPS is a packet-by-packet implementation of the fair queuing mechanism. In PGPS, incomingcells from di�erent connections are bu�ered in a sorted priority queue and is served in the orderin which they would leave the server in an ideal fair queueing system. The departure times ofcells in the ideal system is enumerated by simulating a reference uid ow model. Simulation ofthe reference system and maintenance of the priority queue are both quite expensive operations.Hence, the implementation of the PGPS scheme in a high-speed switch is di�cult, to say the least.Nevertheless, we compare CORR with PGPS to show how it fares against an ideal scheme.In the results presented below we consider a system con�guration where all connections from thesource to the sink pass through �ve switching nodes connected via T3 (45 Mb/s) links (see �gure 5).We also assume that each switch is equipped with 2000 cell bu�ers on each output port. As shownin �gure 5 tra�c from a source passes through shaper(s) before entering the network. For the results20

0 2500 5000 7500 10000 12500
Frame Number

0

5

10

15

20

25

30

35

40

F
ra

m
e

S
iz

e
(K

by
te

s)

BasketBall

I Frame
P Frame
B Frame

0 2500 5000 7500
Frame Number

0

5

10

15

20

25

30

35

F
ra

m
e

S
iz

e
(K

by
te

s)

MusicVideo

I
P
B

0 2500 5000 7500 10000 12500
Frame Number

0

5

10

15

20

25

30

35

F
ra

m
e

S
iz

e
(K

by
te

s)

NewsClip

I Frame
P Frame
B Frame

0 2500 5000 7500 10000 12500
Frame Number

0

5

10

15
F

ra
m

e
S

iz
e

(K
by

te
s)

Lecture

I
P
B

Figure 4: MPEG compressed video traces. Frame sequence is IBBPBB.reported in this section we assume that the shapers used at the network entry point employ leakybucket shaping mechanism.In �gures 6,7,8, and 9 we compare the number of connections admitted by CORR and PGPS fordi�erent tra�c sources, end-to-end delay requirements, and shaper con�gurations. In order to makethe comparison fair, we have chosen the leaky bucket parameters for di�erent sources in such a waythat it maximizes the number of connections admitted by PGPS given the end-to-end delay, andbu�er sizes in the switch and the shaper. This is a tricky and time consuming process (we use21

Source Shaper(s) Switch 1 Switch 2 Switch 3 Switch 4 Switch 5 SinkFigure 5: Experimentation model of the network. All the links are 45 Mbps. Both the shapers areused for CORR. Only one shaper is used for other scheduling disciplines.
0.0 100.0 200.0 300.0 400.0 500.0

Delay (ms)

0.0

2.0

4.0

6.0

8.0

10.0

R
at

io
 o

f N
o.

 o
f C

on
ne

ct
io

ns

CORR vs PGPS: BasketBall
(Shaper Buffer = 100 ms)

Single Shaper & T = 1
Dual Shaper & T = 1
Single Shaper & T = 10
Dual Shaper & T = 10
Single Shaper & T = 20
Dual Shaper & T = 20

0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms)

0.0

2.0

4.0

6.0

8.0

10.0

R
at

io
 o

f N
o.

 o
f C

on
ne

ct
io

ns

CORR vs PGPS: BasketBall
(Shaper Buffer = 200 ms)

Single Shaper & T = 1
Dual Shaper & T = 1
Single Shaper & T = 10
Dual Shaper & T = 10
Single Shaper & T = 20
Dual Shaper & T = 20

Figure 6: Relative performance of CORR and PGPS on BasketBall video with di�erent shaperbu�ers.linear programming techniques) and requires a full scan of the entire tra�c trace for each source.For a description of this procedure please refer to [9]. We have plotted the ratio of the number ofconnections admitted by CORR used in conjunction with single and dual leaky bucket shapers withthat of PGPS under this best case scenario.In �gure 6 we have compared the number of connections admitted by CORR and PGPS for theBasketBall video. The two sets of graphs correspond to two di�erent sizes of shaper bu�ers, 100msand 200ms in this case. Quite expectedly PGPS outperforms CORR for delay bounds less than150ms when CORR is used in conjuction with a single leaky bucket. Note however that the ratio ofthe number of connections is very close to 1 and approaches 1 for higher delay bounds. This is dueto the �xed frame synchronization overhead in CORR that is more conspicuous in low delay regions.The e�ect of this �xed delay fades for higher end-to-end delays. We also observe that the lower theframe size(T), the more competitive CORR is to PGPS in terms of number of connections admitted.22

0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms)

0.0

2.0

4.0

6.0

8.0

10.0

R
at

io
 o

f N
o.

 o
f C

on
ne

ct
io

ns

CORR vs PGPS: MusicVideo
(Shaper Buffer = 100 ms)

Single Shaper & T = 1
Dual Shaper & T = 1
Single Shaper & T = 10
Dual Shaper & T = 10
Single Shaper & T = 20
Dual Shaper & T = 20

0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms)

0.0

2.0

4.0

6.0

8.0

10.0

R
at

io
 o

f N
o.

 o
f C

on
ne

ct
io

ns

CORR vs PGPS: MusicVideo
(Shaper Buffer = 200 ms)

Single Shaper & T = 1
Dual Shaper & T = 1
Single Shaper & T = 10
Dual Shaper & T = 10
Single Shaper & T = 20
Dual Shaper & T = 20

Figure 7: Relative performance of CORR and PGPS on MusicVideo with di�erent shaper bu�ers.
0.0 100.0 200.0 300.0 400.0 500.0

Delay (ms)

0.0

2.0

4.0

6.0

8.0

10.0

R
at

io
 o

f N
o.

 o
f C

on
ne

ct
io

ns

CORR vs PGPS: NewsClip
(Shaper Buffer = 100 ms)

Single Shaper & T = 1
Dual Shaper & T = 1
Single Shaper & T = 10
Dual Shaper & T = 10
Single Shaper & T = 20
Dual Shaper & T = 20

0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms)

0.0

2.0

4.0

6.0

8.0

10.0

R
at

io
 o

f N
o.

 o
f C

on
ne

ct
io

ns

CORR vs PGPS: NewsClip
(Shaper Buffer = 200 ms)

Single Shaper & T = 1
Dual Shaper & T = 1
Single Shaper & T = 10
Dual Shaper & T = 10
Single Shaper & T = 20
Dual Shaper & T = 20

Figure 8: Relative performance of CORR and PGPS on NewsClip video with di�erent shaper bu�ers.For traditional frame based (or round robin) scheduling a small size frame (short cycle time) leadsto large bandwidth allocation granularity and hence is not useful in practice. CORR however doesnot su�er from this shortcoming and can use very small cycle time.23

0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms)

0.0

2.0

4.0

6.0

8.0

10.0

R
at

io
 o

f N
o.

 o
f C

on
ne

ct
io

ns

CORR vs PGPS: Lecture
(Shaper Buffer = 100 ms)

Single Shaper & T = 1
Dual Shaper & T = 1
Single Shaper & T = 10
Dual Shaper & T = 10
Single Shaper & T = 20
Dual Shaper & T = 20

0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms)

0.0

2.0

4.0

6.0

8.0

10.0

R
at

io
 o

f N
o.

 o
f C

on
ne

ct
io

ns

CORR vs PGPS: Lecture
(Shaper Buffer = 200 ms)

Single Shaper & T = 1
Dual Shaper & T = 1
Single Shaper & T = 10
Dual Shaper & T = 10
Single Shaper & T = 20
Dual Shaper & T = 20

Figure 9: Relative performance of CORR and PGPS on Lecture video with di�erent shaper bu�ers.When used in conjunction with dual leaky bucket shapers, CORR outperforms PGPS irrespectiveof delay bounds, shaper bu�er sizes, and cycle times. PGPS cannot take advantage of multi-rateshaping. So, no matter what the delay bound is, the number of connections admitted by PGPSdepends only on the leaky bucket parameters. CORR on the other hand can choose the lowest rateof service su�cient to guarantee the required end-to-end delay bound. The bene�ts of this exibility isreected in �gure 6 where the connections admitted by CORR outnumbers the connections admittedby PGPS by more than 4:1 margin. For a shaper bu�er size of 100ms the ratio of number ofconnections admitted by CORR and that by PGPS is around 8 for end-to-end delay bound of 20ms.The ratio falls sharply and attens out at around 4 for end-to-end delay of 100ms or more. Thehigher gain seen by CORR for lower end-to-end delay budget can be explained by its by e�ectiveuse of shaper and switch bu�ers. Unlike PGPS, CORR uses a much lower service rate, just enoughto guarantee the required end-to-end delay. It e�ectively uses the bu�ers in the switches and theshaper to smooth out the burstiness in the tra�c. As delay budget increases, PGPS uses a lowerrate of service. Consequently, gain seen by CORR decreases and eventually stabilizes around 4.A trend similar to the one seen in �gure 6 is observed in �gures 7,8,and 9. In all cases PGPSoutperforms CORR (used in conjuction with single leaky bucket) for low end-to-end delay. Forhigher delays the ratio of number of connections admitted by CORR and PGPS is practically 1.When used in conjunction with two leaky buckets, CORR outperforms PGPS by a margin higherthan 4:1. We also observe that gain seen by CORR when used with two leaky buckets is higherfor lower delays. Careful observation reveals that gain also depends on the size of the shaper bu�erused and the tra�c pattern of the source. The smaller is the shaper bu�er, the higher is the gain.24

0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms)

0.0

4.0

8.0

12.0

16.0

20.0

R
at

io
 o

f N
o.

 o
f C

on
ne

ct
io

ns

CORR vs SG: BasketBall
(Shaper Buffer = 100 ms)

Single Shaper & T = 1
Dual Shaper & T = 1
Single Shaper & T = 10
Dual Shaper & T = 10
Single Shaper & T = 20
Dual Shaper & T = 20

0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms)

0.0

4.0

8.0

12.0

16.0

20.0

R
at

io
 o

f N
o.

 o
f C

on
ne

ct
io

ns

CORR vs SG: BasketBall
(Shaper Buffer = 200 ms)

Single Shaper & T = 1
Dual Shaper & T = 1
Single Shaper & T = 10
Dual Shaper & T = 10
Single Shaper & T = 20
Dual Shaper & T = 20

Figure 10: Relative performance of CORR and SG on BasketBall video with di�erent shaper bu�ers.Similarly, the more bursty is the tra�c, the higher is the gain. This is due to the fact that unlikePGPS, CORR can exploit the multi-rate shaping of tra�c by choosing a rate of service that is lowerthan the peak rate of tra�c generation. The gain due to this exibility is more conspicuous whendelay budget is tighter. It is also evident from the graphs that the e�ect of cycle time has minimalimpact on the performance of CORR, especially for higher delay budget or when tra�c is shapedusing multi-rate shapers.CORR and SGThe purpose of these comparison is to demonstrate that (unlike PGPS and SG) CORR is notconstrained to be used in conjunction with a speci�c tra�c shaping mechanism. It works equallywell with moving window shapers as it does with leaky bucket shapers. In the last section we haveseen how the performance of CORR compares with that of PGPS for leaky bucket shapers. In thissection we compare the performance of CORR with that of SG for moving window shapers. AsPGPS is constrained to work with only leaky bucket shapers, the use of SG is restricted to movingwindow 6 shapers only.We use the same system con�guration as shown in �gure 5 and described in the last section. As inthe case of PGPS, we choose moving window parameters that maximizes the number of connectionsadmitted by SG given the tra�c trace, size of the shaper bu�er, and the end-to-end delay. Figures 10,6Although in the original description of SG does not use moving window shapers to smooth the tra�c, the (r; T)smoothness de�ned in [5] can be exactly modelled by a moving window with m = r and w = T .25

0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms)

0.0

4.0

8.0

12.0

16.0

20.0

R
at

io
 o

f N
o.

 o
f C

on
ne

ct
io

ns

CORR vs SG: MusicVideo
(Shaper Buffer = 100 ms)

Single Shaper & T = 1
Dual Shaper & T = 1
Single Shaper & T = 10
Dual Shaper & T = 10
Single Shaper & T = 20
Dual Shaper & T = 20

0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms)

0.0

4.0

8.0

12.0

16.0

20.0

R
at

io
 o

f N
o.

 o
f C

on
ne

ct
io

ns

CORR vs SG: MusicVideo
(Shaper Buffer = 200 ms)

Single Shaper & T = 1
Dual Shaper & T = 1
Single Shaper & T = 10
Dual Shaper & T = 10
Single Shaper & T = 20
Dual Shaper & T = 20

Figure 11: Relative performance of CORR and SG on MusicVideo with di�erent shaper bu�ers.
0.0 100.0 200.0 300.0 400.0 500.0

Delay (ms)

0.0

4.0

8.0

12.0

16.0

20.0

R
at

io
 o

f N
o.

 o
f C

on
ne

ct
io

ns

CORR vs SG: NewsClip
(Shaper Buffer = 100 ms)

Single Shaper & T = 1
Dual Shaper & T = 1
Single Shaper & T = 10
Dual Shaper & T = 10
Single Shaper & T = 20
Dual Shaper & T = 20

0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms)

0.0

4.0

8.0

12.0

16.0

20.0

R
at

io
 o

f N
o.

 o
f C

on
ne

ct
io

ns

CORR vs SG: NewsClip
(Shaper Buffer = 200 ms)

Single Shaper & T = 1
Dual Shaper & T = 1
Single Shaper & T = 10
Dual Shaper & T = 10
Single Shaper & T = 20
Dual Shaper & T = 20

Figure 12: Relative performance of CORR and SG on NewsClip video with di�erent shaper bu�ers.11, 12 and 13 plot the ratio of the number of connections admitted by CORR and SG for di�erentend-to-end delay and shaper con�gurations.In general we observe similar trends in the plots as in the previous section, except that CORR26

0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms)

0.0

4.0

8.0

12.0

16.0

20.0

R
at

io
 o

f N
o.

 o
f C

on
ne

ct
io

ns

CORR vs SG: Lecture
(Shaper Buffer = 100 ms)

Single Shaper & T = 1
Dual Shaper & T = 1
Single Shaper & T = 10
Dual Shaper & T = 10
Single Shaper & T = 20
Dual Shaper & T = 20

0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms)

0.0

4.0

8.0

12.0

16.0

20.0

R
at

io
 o

f N
o.

 o
f C

on
ne

ct
io

ns

CORR vs SG: Lecture
(Shaper Buffer = 200 ms)

Single Shaper & T = 1
Dual Shaper & T = 1
Single Shaper & T = 10
Dual Shaper & T = 10
Single Shaper & T = 20
Dual Shaper & T = 20

Figure 13: Relative performance of CORR and SG on Lecture video with di�erent shaper bu�ers.outperforms SG in most cases even when used in conjuction with a single moving window. Theobservations can be summarized as follows:When used with single moving window, CORR outperforms SG for all delay requirements andall shaper con�gurations except for a few instances requiring low end-to-end delay.When used with single moving window, CORR performs better when the cycle time is smaller.In all frame based or round robin scheduler, the smaller the frame size (or cycle time) betteris the delay performance. The di�erence in the case of CORR is that a lower cycle time doesnot constrain the bandwidth allocation granularity.CORR, used in conjuction with two moving windows, always con�guration SG. The perfor-mance gap is higher for smaller shaper bu�er, smaller delay budget, and more bursty tra�csources. When used with dual moving windows, cycle time has very little impact on the numberof connections admitted by CORR.Smaller is the end-to-end delay requirement higher is the gain seen by CORR when used withtwo moving windows. However, when used with single moving window, the gain seen by CORRis lower for tighter delay requirements and increases as the delay requirements loosen.The results presented in this section demonstrate that despite its simplicity (1) CORR is verycompetitive with PGPS and almost always out performs SG when used in conjunction with simpleshapers, (2) CORR performs equally well with leaky bucket as well as moving window shapers,27

(3) when used in conjunction with multi-rate shapers CORR outperforms both PGPS and SG bysigni�cant margins. The results are consistent across tra�c traces of wide variability and shows thee�ectiveness of CORR as a multiplexing mechanism.6 Concluding Remarks

28

References[1] C. M. Aras, J. F. Kurose, D. S. Reeves, and H. Schulzrinne. Real-Time Communication inPacket-Switched Networks. IEEE Transsactions on Information Theory, 82(1), January 1994.[2] S. Keshav C. R. Kalmanek, H. Kanakia. Rate Controlled Servers for Very High Speed Networks.In Proceedings, GLOBECOM, December 1990.[3] A. Demers, S. Keshav, and S. Shenkar. Anslysis and Simulation of Fair Queuing Algorithm. InProceedings, SIGCOMM, 1989.[4] S. J. Golestani. A Framing Strategy for Congestion Management. IEEE Journal on SelectedAreas of Comminication, 9(7), September 1991.[5] S. J. Golestani. Congestion Free Communication in High-Speed Packet Networks. IEEE Trans-action on Comminication, 32(12), December 1991.[6] S.J. Golestani. A Self-Clocked Fair Queuing Scheme for Broadband Applications. In Proceedings,INFOCOM, June 1993.[7] A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach to Flow Control inIntegrated Services Network: The Single Node Case. IEEE/ACM Transactions on Networking,1(3), June 1993.[8] D. Saha, S. Mukherjee, and S. K. Tripathi. Carry-over Round Robin: A Simple Cell Schedul-ing Mechanism for ATM Networks. In Proceedings, INFOCOM. Extended version available asTechnical Report CS-TR-3658/UMIACS-TR-96-45, University of Maryland, March 1996.[9] D. Saha, S. Mukherjee, and S.K. Tripathi. Multirate Scheduling of VBR Video Tra�c in ATMNetworks. Technical Report CS-TR-3657/UMIACS-TR-96-44, University of Maryland, May1996.[10] M. Shreedhar and George Varghese. E�cient Fair Queuing using De�cit Round Robin.IEEE/ACM Transsactions on Networking, 4(3), June 1996.[11] L. Zhang. Virtual Clock: A New Tra�c Control Algorith for Packet Switching Networks. InProceedings, SIGCOMM, 1990.
29

A Appendix: Shaping MechanismsA.1 Simple ShapersSeveral shaping mechanisms de�ning various types of shaping envelopes have been proposed in theliterature. The most popular among them are leaky bucket, and moving window. Following we brieydescribe their working principles and the shaping envelope they enforce on a tra�c ow.Leaky Bucket Shapers: A leaky bucket regulator consists of token counter and a timer. Thecounter is incremented by one each t time and can reach a maximum value b. A cell is admitted intothe system/network if and only if the counter is positive. Each time a cell is admitted, the counter isdecremented by one. The tra�c generated by the leaky bucket regulator consists of a burst of uptob cells followed by a steady stream cells with a minimum inter-cell time of t. The major attraction ofthe leaky bucket is its simplicity. A leaky bucket regulator can be implemented with two counters,one to implement the token counter and the other to implement the timer.Moving Window Shapers: The moving window mechanism divides the time line into �xed sizewindows of length w. The number of arrivals in a window is limited to a maximum number m. Eachcell is remembered for exactly one window width. That is, if we slide a window of size w on thetime axis, the number of cells admitted within a window period would never exceed m irrespectiveof the position of the window. Hence, the worst case burst size in moving window never exceedsm. Since the departure time of each cell is remembered for a duration of one window period, theimplementation complexity depends on m, the maximum number of cells admitted within a windowperiod.A.2 Composite ShapersSimplicity is the main attraction of the shapers described in the last section. They all are quiteeasy to implement, and de�ne tra�c envelopes that are easily amenable to analytical treatment.Unfortunately, they are often too simple to capture the true characteristics of the real-life sources[9, 8]. All the shapers described in the previous section enforce a speci�c rate constraint on a source,typically a declared peak or average rate. However, most applications generate inherently burstytra�c. Hence, enforcing an average rate results in a higher delay in the shaper bu�er, and a peakrate enforcement leads to an over allocation of system resources, and consequently lower utilizationof the system. To alleviate this problem, or in other words, to enforce a shaping envelope that isclose to the original shape of the tra�c, yet simple to specify and monitor, we can use multipleshapers arranged in series. That is, we can choose multiple leaky buckets or moving windows withdi�erent parameters enforcing di�erent rate constraints over di�erent time intervals. Compositeshapers provide us with a much richer and larger set of tra�c envelopes with marginal increase incomplexity.In the rest of the section we derive the exact shapes of the tra�c envelopes when multiple leakybuckets and moving windows regulators are arranged in cascade. Our objective is to determine thei

worst case bursty behavior of the tra�c generated by the shaper. That is, tra�c is generated by theshaper at the maximum rate permitted by the shaping envelope. These results are used in section 4to �nd the worst case bounds on end-to-end delay.Multiple Leaky BucketsThe shaping envelope de�ned by a composite leaky bucket is the intersection of the shaping envelopesof constituent leaky buckets. In �gure 14 a composite leaky bucket consisting of leaky buckets LB1,LB2, LB3 and LB4 is shown 7. The shaping envelope is the thick line. The exact shape of theenvelope depends on the number of shapers and the associated parameters. Inappropriate choice ofshaper parameters may give rise to redundant components which may not have any role in de�ningthe shaping function. For example, LB4 is a redundant component in the composite shaper shownin �gure 14. We call a set of leaky buckets an essential set if none of the buckets is redundant.Let us consider n leaky buckets (bi; ti), i = 1; 2; : : : ; n. Without loss of generality we number thebuckets in such a fashion so that ti � tj, for i < j. We can show that if these leaky buckets from anessential set then bi � bj, for i < j.
LB 1LB2LB3LB 4

Shaping Envelope

Time

C
el

l
In

de
x

Figure 14: Shaping with multiple leaky buckets.De�nition A.1 An n-component composite leaky bucket is an essential set of n leaky buckets (b1; t1); (b2; t2); : : : ; (bn; tn),where bi > bj and ti > tj for i < j. For the purpose of mathematical convenience we assume that then-component shaper includes another pseudo leaky bucket (bn+1; tn+1) where bn+1 = 0 and tn+1 = 0.7Precisely speaking the shaping function due to each leaky bucket is a burst followed by a stair case function. For easeof exposition we have approximated the stair case function by a straight line with the same slope. This simpli�cationis only for the purpose of explanation. The results derived later takes the stair case function into consideration.ii

bm+1

b m

Time
Shaping envelope with m+1 leaky buckets

Portion of the saping envelope excluded
after the m+1 bucket is addedth .

.

LBm

LBm+1

LBm−1 LBm−2

Bm
Bm−1 Bm−2

C
el

l
In

de
x

Figure 15: Departure function after adding m+ 1th bucket.The following theorem determines the shaping function of a composite shaper consisting of anessential set of leaky buckets.Theorem A.1 Consider an n-component composite leaky bucket. De�neBk = 8>>>>>>>><>>>>>>>>: 1 k = 0;�bktk � bk+1tk+1tk � tk+1 � k = 1; 2; : : : ; n;0 k = n + 1:Then the departure time of the ith cell from the composite shaper, denoted by a(i) is,a(i) = n+1Xk=1(i� bk + 1) tk [U(i� Bk)� U(i� Bk�1)]; i = 0; 1; : : : ;1where U(x) is the unit step function de�ned as,U(x) = (0 x < 0;1 x � 0:Proof: We will prove this theorem by induction.Base Case: For n = 1, we have B0 = 1, B1 = b1, and B2 = 0. Therefore,a(i) = (i� b1 + 1) t1 U(i� b1):iii

This allows a burst of size b1 to depart at time 0 and a cell after every t1 henceforth. Clearly, thetra�c envelope de�ned by the shaping function conforms to the tra�c generated by a leaky bucketwith parameters b1 and t1. Hence the hypothesis holds in the base case.Inductive Hypothesis: Assume that the premise holds for all n � m. To prove that it holds for all n,we need to show that it holds for n = m+ 1.Figure 15 shows the cumulative departure function before and after the addition of the (m + 1)thbucket. Since the set of buckets constitute an essential set, bi+1 < bi for i = 1; 2; : : :m. Therefore,the e�ect of (m + 1)th bucket is observed from time 0 to the time when the shaping function ofbucket m+ 1 intersects the composite shaping function before the addition of the (m+ 1)th bucket(see �gure 15). We observe that this cross over point is really the point of intersection between theshaping functions of themth and the (m+1)th leaky buckets. Using simple geometry we can �nd thatthese shaping functions intersects at the departure instant of the b(bmtm�bm+1tm+1)=(tm� tm+1)cthcell, which, by de�nition, is Bm.In other words, the bucket m+1 excludes the segment marked by the solid shadow from the shapingenvelope as shown in �gure 15. The new segment of the shaping function can be de�ned as,(i� bm+1 + 1) tm+1 [U(i� Bm+1)� U(i� Bm)]After some algebraic manipulation, we can write the entire shaping function as,a(i) = m+1Xk=1 (i� bk + 1) tk [U(i�Bk)� U(i�Bk�1)]+ (i� bm+1 + 1) tm [U(i� Bm+1)� U(i� Bm)]= m+2Xk=1 (i� bk + 1) tk [U(i�Bk)� U(i�Bk�1)]This completes the proof.Multiple Moving WindowsA composite moving window shaper smooths the tra�c over multiple time windows. Figure 16shows the shaping envelope of a composite shaper consisting of moving windows MW1 = (w1; m1),MW2 = (w2; m2), MW3 = (w3; m3), where w1 = 3�w2, w2 = 4�w3 and m1 = 2�m2, m2 = 2�m3.The shaping envelope shown in �gure 16 captures the worst case bursty behavior of the tra�cgenerated by a composite moving window. The worst case occurs when s burst of cells are generatedat the earliest instant satisfying the regulator constraints. In this particular example tra�c is shapedover three di�erent time windows. The �rst moving window limits the number of cells dispatchedin any time window of size w1 to m1. However, MW1 does not impose any restriction on how thesem1 cells are dispatched. In the worst case, they may be dispatched as a single burst of size m1.iv

1

1

2

2
3

3

Time

m

w

w

w

m
C

el
l

 In
de

x

mFigure 16: Shaping envelope of a composite moving window.The moving window MW2 determines the burst size distribution within w1. The window w1 can bebroken down into three windows of duration w2 each. The maximum amount of tra�c that can bedispatched during any time interval of w2 is limited to m2 by MW2. Hence, m2 cells are dispatchedin each of the �rst two w2 intervals. Since m1 = 2 � m2 no cells are dispatched in the third w2window to satisfy the constraint imposed by the �rst moving window. Similarly, w2 = 4 � w3, butm2 = 2�m3. Hence, m3 cells are dispatched in each of the �rst two w3 windows within a w2 window.In the remaining two w3 windows no cells are dispatched to satisfy the constraint imposed by MW2.In the following, we formally de�ne a composite moving window shaper and characterize its tra�cenvelope.De�nition A.2 An n-component composite moving window shaper consists of n simple moving win-dows (wk; mk), k = 1; : : : ; n, where wi � wj, mi � mj, and mi=wi � mj=wj, for 1 � i < j � n. Forthe sake of mathematical convenience we assume that an n-component composite shaper also includeanother pseudo moving window (m0; w0) such that m0=m1 = 0. We also assume for the simplicityof exposition that mi+1 divides mi and wi+1 divides wi, for i = 1; 2; : : : ; n� 1.Theorem A.2 Consider an n-component moving window shaper. If a(i) is the departure time ofthe ith cell from the shaper then,a(i) = nXk=1�� imk�� � imk�1� mk�1mk �wk; i = 0; 1; : : : ;1Proof: We will prove this by induction.Base Case: For n = 1, we have a(i) = j im1 kw1. This means that a burst of size m1 appears at timekw1, k = 0; 1; : : : ;1. Clearly, this represents the shaping function due to a single moving windowwith parameters (w1; m1). Hence, the premise holds in the base case.Inductive Hypothesis: Assume that the premise holds for all n � l. To prove that it holds for all n,we need to show that it holds for n = l+ 1. v

m

w l

wl

w
l+1

m l+1

w l+1

l

Time

C
el

l
In

de
x

Figure 17: Shaping envelope after adding the (l+ 1)th moving window.Consider the e�ect of adding (l + 1)th moving window. In the worst case, the burst always comesat the beginning of a window. Therefore, as shown in �gure 17, bursts of size ml cells appear at thebeginning of each window of length wl, for ml�1=ml windows. Now, from the hypothesis, the arrivaltime of the ith cell is given by,a(i) = lXk=1�� imk �� � imk�1�mk�1mk �wk:If a new shaper (wl+1; ml+1) is added, the burst appearing at the beginning of each wl window willspread out into ml=ml+1 bursts of size ml+1 each and separated by wl+1 as shown in �gure 17. Duethis spreading out of the bursts, the arrival time of the ith cell will be postponed by,�� imk+1�� � imk� mkmk+1� :Hence the arrival time of the ith cell after the addition of the (l+ 1)th moving window is,a(i) = lXk=1�� imk �� � imk�1� mk�1mk �wk+�� imk+1�� � imk� mkmk+1�= l+1Xk=1�� imk �� � imk�1� mk�1mk �wk:vi

