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Abstract

The capacitated K-center problem is a fundamental facility location problem, where we
are asked to locate K facilities in a graph, and to assign vertices to facilities, so as to minimize
the maximum distance from a vertex to the facility to which it is assigned. Moreover, each
facility may be assigned at most L vertices. This problem is known to be NP-hard. We
give polynomial time approximation algorithms for two different versions of this problem
that achieve approximation factors of 5 and 6. We also study some generalizations of this
problem.

1. Introduction

The basic K-center problem is a fundamental facility location problem [17] and is defined as
follows: given an edge-weighted graph G'= (V, F') find a subset 5 C V of size at most K such
that each vertex in V is “close” to some vertex in 5. More formally, the objective function is
defined as follows:

min max min d(u, v)
SCV ueV wes

where d is the distance function. For example, one may wish to install K fire stations and
minimize the maximum distance (response time) from a location to its closest fire station. The
problem is known to be NP-hard [8].

An approximation algorithm with a factor of p, for a minimization problem, is a polynomial
time algorithm that guarantees a solution with cost at most p times the optimal solution.
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Approximation algorithms for the basic K-center problem have been very well studied and
are known to be optimal [7, 9, 10, 11]. These schemes present natural methods for obtaining
an approximation factor of 2. Several approximation algorithms are known for interesting
generalizations of the basic K-center problem as well [3, 10, 16]. The generalizations include
cases when each node has an associated “cost” for placing a center on it, and rather than
limiting the number of centers, we have a limited budget [10, 16]. Other generalizations include
cases where the vertices have weights and we consider the weighted distance from a node to its
closest center [3, 16].

Recently, a very interesting generalization that we call the capacitated K-center problem
was studied by Bar-Ilan, Kortsarz and Peleg [1]. The input specifies an upper bound on the
number of centers K, as well as a maximum load L. We have to output a set of at most
K centers, as well as an assignment of vertices to centers. No more than L vertices may be
assigned to a single center. Under these constraints we wish to minimize the maximum distance
between a vertex u and its assigned center ¢(u).
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where

¢o:V — 5.

Bar-Tlan, Kortsarz and Peleg [1] gave the first polynomial time approximation algorithm for
this problem with an approximation factor of 10. Various applications for capacitated centers
were first mentioned in [14, 15]. A slightly different problem, where the radius is fixed, and one
has to minimize the number of centers, shows up in the Sloan digital sky survey project [13].

1.1. Our Results

In Section 2 we discuss a simplification of the problem where a node may appear multiple
times in 5 (i.e. more than one center can be put at a node). We will refer to this problem as
the capacitated multi- K-center problem. By introducing some new ideas and using the basic
approach proposed in [1], we are able to give a polynomial time algorithm that achieves an
approximation factor of 5. In Section 3 we show how to solve the problem when we are allowed
only one center at a vertex. The high level structure of the algorithm is the same, but the
assignment of centers to vertices has to be done extremely carefully. This problem will be
referred to as the capacitated K-center problem. For this version of the problem we obtain an
approximation factor of 6. It is worth noting that in fact we prove that our solution is at most
6 times an optimal solution that is allowed to put multiple centers at a single vertex. This
clearly indicates that there is room for further improvement, since a better lower bound on the
optimal should be possible when at most one center may be placed at a vertex.

The algorithm can be easily extended to the more general case when each vertex has a
demand d;, and multiple centers may be used to satisfy its demand. The total demand assigned
to any center should not exceed L. Using the method in [1], we can obtain an approximation



factor of 13 for the version with costs. (Each vertex has a cost for placing a center on it, and we
are working with a fixed budget.) In Section 4 we study some other variants of this problem.
Let a (¢1 K, coL, c3R) solution denote a solution using at most ¢; K centers, each with a load of
at most ¢o L, which assigns every node to a center at distance at most c3 R, where R is the radius

of the optimal solution. For any xz > 1, we obtain a (%K, cl, QR) solution for the capacitated

multi- K -center problem, and a (%K, cL,4R) solution for the capacitated K-center problem,

where ¢ = xl,ll

2. Algorithm for Capacitated Multi- A-Centers

We first give a high-level description of the algorithm. We may assume for simplicity that G
is a complete graph, where the edge weights satisfy the triangle inequality. (We can always
replace any edge by the shortest path between the corresponding pair of vertices.)

High-Level Description

The algorithm uses the threshold method introduced by Edmonds and Fulkerson in [4] and
used for the K-center problem by Hochbaum and Shmoys [9, 10]. Sort all edge weights in non-
decreasing order. Let the (sorted) list of edges be ey, €eq,...€,. For each ¢, let the threshold
graph G; be the subgraph obtained from G by including edges of weight at most w(e;). Run the
algorithm below for each 7 from 1 to m, until a solution is obtained. (Hochbaum and Shmoys
[10] suggest using binary search to speed up the computation. If running time is not a factor,
however, it does appear that to get the best solution (in practice) we should run the algorithm
for all ¢, and take the best solution.) In each iteration, we work with the subgraph G; and view
it as an unweighted graph. Since G is an unweighted graph, when we refer to the distance
between two nodes, we refer to the number of edges on a shortest path between them. In
iteration ¢, we find a solution using some number of centers. If the number of centers exceeds
K, we prove that there is no solution with cost at most w(e;). If the number of centers is at
most K, we show that the maximum distance in (; between a vertex and its assigned center is
at most five. This gives an approximation factor of 5.

First find a maximal independent set I in G%. (G? is the graph obtained by adding edges to
(; between nodes that have a common neighbor.) This technique was introduced by Hochbaum
and Shmoys [9, 10] and has been used extensively to solve K-center problems. We refer to a
node in the maximal independent set as a monarch. The algorithm also constructs a “tree”
of monarchs which will be used to assign vertices to centers. There are two key differences
between our algorithm and the one presented in [1]:

1. We use a specific procedure to find a maximal independent set, as opposed to selecting
an arbitrary maximal independent set.

2. We deal with all monarchs uniformly rather than dealing with the light and heavy! monar-
chs separately as in [1].

!These terms will be explained shortly.



Each monarch has an empire that consists of a subset of vertices within the immediate
neighborhood of the monarch in G?. When a monarch is added to the maximal independent
set, all such vertices that do not currently belong to an empire are added to this monarch’s
empire. The algorithm also constructs a tree of monarchs as the monarchs are selected. This
tree has the property that an edge in the tree corresponds to two monarchs whose distance in
G; is ezactly three. Each monarch then tries to collect a domain of size I — a subset of vertices
that are close to the monarch and assigned to it. In doing so, a monarch may grab vertices
from other empires if none are available in its own empire. After this process is complete there
may still be unassigned vertices. We then use the tree of monarchs to assign new centers to
handle the unassigned vertices. Nodes that are left unassigned in a particular empire may be
assigned to the parent monarch. Eventually, we will put additional centers at the monarch
vertices (recall that more than one center may be located at a single vertex).

CAPACITATED-CENTERS (G = (V, E), K, L).

1 Sort all edges in non-decreasing weight order (eq,...,e).
2 for¢=1to mdo

3 Let G; = (V, E;) where F; ={e1,...,¢}.

4 Unmark all vertices.

5 if AssiGNCENTERS(G;) then exit.

6 end-proc

AssiIGNCENTERS (G).
1 SUCCESSFUL = true
2 Let nf be the number of vertices in connected component G¥.
3 if (ZC[TLL—’Q}) > K then successruL = false
else
4 for each connected component G of ¢; do
5 AssiGNMONARCHS(GS).
6 AssIGNDOMAINS(GY).
7 REASSIGN(GE).
8 if total centers used > K then succkssruL = false
9 return (SUCCESSFUL)
10 end-proc

AssIGNCENTERS () tries to assign centers within each connected component. Each com-
ponent is dealt with separately. (This can be done because if there is an optimal solution with
maximum radius w(e;), then no center in the optimal solution will be assigned vertices that
belong to different connected components of ;.) A lower bound on the number of centers in
each component is [%¢], where n. is the number of vertices in G§. If the number of allowed
centers is smaller than )~ [%#] then there is no solution.

AssIGNMONARCHS(GY) assigns monarchs (nodes in the independent set) in a BF'S manner.
After we put a vertex in the independent set, we mark all unmarked nodes within distance two
in G;. To pick a new vertex to add to the independent set, we pick an unmarked vertex that
is adjacent to a marked vertex. Rather than describing the algorithm in terms of (G¢)? we



Figure 1: Example to show execution of ASSIGNMONARCHS.

work with G, to separate the nodes in a monarch’s empire into level-1 and level-2 nodes. The
level-1 nodes are adjacent to the monarch, and the level-2 nodes are at distance two from the
monarch. We define Fq(v) and Ey(v) to be the level-1 and level-2 nodes, respectively, in v’s
empire. Thus the empire of v is Eq(v) U Eq(v).

AssiGNMONARCHS(GY).

1 Pick an arbitrary vertex v € G and set @ = {v}.
2 p(v)=nil.

3 while @ has unmarked nodes do

4 Remove an unmarked node v from ).

5 Make v a monarch and mark it.

6 for all u € Adj(v) do

7 if u is unmarked then

8 Add uw to F4(v) and mark u

9 for all u € Adj(v) do

10 for all w € Adj(u) do

11 if w is unmarked then

12 Add w to Fy(v) and mark w

13 for all v € Ey(v) do

14 for all w € Adj(u) do

15 if w is unmarked and w ¢ () then
16 Set p(w) = v and add w to @

17 end-proc



Before discussing the pertinent properties of AsSIGNMONARCHS, we show its execution on
the simple example given in Fig. 2. The algorithm starts from vertex 1, which is made a
monarch. Vertex 2 is added to £4(1) (level 1 in its empire) and vertices 3 and 4 are added to
F5(1). @ currently contains vertices 5, 8 and 10. Vertex 5 is then chosen as a monarch and
vertices 6 and 7 are added to £y(5). Vertices 8 and 9 are both added to Fy(5). @ now contains
vertices 8, 10, 14 and 16. The next vertex chosen from @ is 10 since 8 is marked. Vertices
11 and 12 are added to £;(10), and vertex 13 is added to F3(10). @ now contains vertices 8,
14 and 16. Vertex 14 is now chosen from ), and vertices 15 and 16 are added to F;(14) and
F5(14), respectively. The algorithm stops since there are no more unmarked vertices in ).

There are a few important properties of the monarchs produced by algorithm AssiGN-
MONARCHS.

Important Properties:

1. The distance between any two monarchs is at least three.

2. The distance between a monarch m (except for the root) and its “parent monarch” p(m)
in the tree is exactly three.

3. The distance between a monarch and any vertex in its empire is at most two.

4. Each monarch (except for the root) has at least one edge to a level two vertex in its parent
monarch’s empire. Moreover, each such level two vertex has only one such neighbor that
is a monarch. More generally, any vertex can have at most one neighbor that is a monarch
(Corollary of property 1).

Procedure AssiGNDOMAINS tries to assign a domain of size at most L to each monarch.
The objective is to assign as many vertices to a domain as possible subject to the following
constraints.

1. A vertex may be assigned to a monarch’s domain only if it is at distance at most two
from the monarch.

2. A monarch may include in its domain a vertex from another empire only if each vertex
in its empire belongs to some domain.

One way to implement this procedure is by finding a min cost maximum flow in an appro-
priate bipartite graph. The flow problem has a very simple structure and there are only two
types of costs on edges (0 and 1).

AsSIGNDOMAINS(GS).

1 Let M be the set of monarchs in Gf.

2 Let B/ ={(m,v)| me M, v eV, distance from m to v is at most two }.
3 Construct a bipartite graph G' = (M, V, E').

4 Add vertices s and t. Add edges {(s,m)|m € M} and {(v,t)|v € V}.

5 Forme M, v eV, set capacities u(s,m)= L, u(m,v) =1 and u(v,?) = 1.



6 Cost of edge ¢(m,v)=1if v is not in m’s empire.
Cost of all other edges is 0.
7 Compute a min-cost maximum integral flow in G’.
8 For each monarch m, set
domain(m) = {v | v receives one unit of flow from m in G'}.
9 For each v, if v € domain(m) then define ¢(v) = m.
10 end-proc

Definition 1: A light monarch is one that has a domain of size < L. A heavy monarch is one
that has unassigned vertices in its empire. A full monarch is one that is neither heavy nor light.

Lemma 2.1: If m is a heavy monarch then each vertex in m’s domain belongs to m’s empire.

Proof. Assume that there is a vertex » in m’s domain that is not in m’s empire. Let = be a
vertex in m’s empire that is not assigned to any domain. We can change the flow function in
G" and send one unit of flow from m to x instead of m to u. This produces a max flow in G’
of lower cost, a contradiction. O

If there is no heavy monarch, all vertices belong to a domain and the algorithm halts
successfully.

Let Ky be the number of light monarchs. Let ny be the number of vertices belonging to
the domains of light monarchs, and let n be the total number of vertices.

Theorem 2.2: The number of centers required is at least Ky, + [(n — ng)/L].

The proof is simpler than the proof given in [1]. The following lemmas were established in
[1]. We repeat them for completeness.

Let & be the set of monarchs as defined in [1]. We repeat the definition here.

Let & be the set of light monarchs. Iteratively, add to & any monarch that contains a
vertex in its domain that could have been assigned to a monarch in &.

=& 1U{me M|FveV,Im' € &1, ¢(v) =m and d(v,m') <2 in G;}
Let £ be the largest set £; obtained in this process. Let F be the set of remaining monarchs.
Lemma 2.3: The set £ does not contain any heavy monarchs.

Proof. Suppose heavy monarch # was added at iteration j. We can transfer a node v to a
center ' in £;_;. By a sequence of such transfers, we eventually reach a center in & which
has at most L — 1 nodes in its domain, and can absorb the extra node. This corresponds to a
higher flow, since the heavy monarch can absorb an unassigned node, a contradiction. O



Lemma 2.4: Consider a center in an optimal solution that covers a monarch in £. This center
cannot be assigned any nodes that are not in the domains of monarchs in £.

Proof.  Assume for contradiction that # is a center in the optimal solution that covers both
e € & and u. If uw does not belong to any domain, then since the distance from u to e in G} is
at most two, we can perform a sequence of transfers, eventually reaching a center in & which
has at most L — 1 nodes in its domain, and can absorb the extra node, resulting in a higher
flow, a contradiction. If u belongs to the domain of monarch f, then since the distance from e
to w in G5 is at most two, and the distance from u to f in G; is at most two, it must be the
case that f € £ as required by the lemma. O

Proof.  (Of Theorem 2.2) Each monarch in & is covered by a distinct center in the optimal
solution, and these centers of the optimal solution cannot cover any other nodes in F. Let ng
be the number of vertices in the domains of monarchs in £. Then we need at least |4 [(#7£)]

It n+(|5|—fz’L)'L—ns 1

centers. This is the same as Ky, + . Since ng = (|€] — K1) - L + ny, we get
K+ [(2520)]. 0

We will prove that this is also an upper bound on the number of centers we use. We now
describe procedure REASSIGN.

REASSIGN(GY).
1 Let M be the set of monarchs in G¥.
2 For each monarch m € M, set
unassigned(m) = ({m} U Ey(m)U Ey(m)) \ (Uyemdomain(u)).
Let T' be the tree of monarchs in Gf.
for all nodes m in T, set passed(m) = 0.
while T is not empty do
Remove a leaf node m from 7.
Let |unassigned(m)| + |passed(m)| = k'L + €
Allocate k' new centers at monarch m and assign k'L of the nodes
to them. For each such node v we define ¢(v) = m.
9 Assign the € remaining nodes to monarch m and for each such
node v define ¢(v) = m, freeing up to € nodes in domain(m).
10 Add the freed nodes to passed(p(m)).
11 Delete m from 7.
12 end-proc

0 ~1 O O k= W

In practice, one would pass to the parent monarch p(m) those nodes which are closest to
p(m).

Theorem 2.5: Fach vertex is assigned to a center whose distance in G; is at most 5. Moreover,
we use at most Ky, + [(n —np)/ L] centers.

Proof. All centers except possibly light monarchs cover L nodes by construction. The size of
the domain of a light monarch does not decrease. Therefore the total number of centers used
is at most Kz, + [(n—ng)/L].



A node is either covered by the node from which it receives flow, or by the parent of its
original monarch. In the former case, it is at distance at most two from the center that covers
it. In the latter case the passed nodes are always covered by their monarch’s parent, i.e., they
are only passed once. Thus the distance from a node to the center that covers it is at most five
(at most two to its original monarch, and three more to the parent monarch). 0

3. Algorithm for K-Centers

We now consider the version where we are required to pick K distinct vertices as centers. We
use the same high level approach as in the previous case, but need to pick the centers carefully.
We are able to show that the algorithm obtains an approximation factor of 6. (Obtaining a
factor of 7 using the previous approach is easy.)

The main difficulty lies in allocating centers to cover the vertices left unassigned by As-
siGNDomAINs. We first introduce some new notation.

Nodes in a monarch’s empire are called its subjects. In AsSIGNMONARCHS, each level-2
subject w of a monarch is brought in by a node u at distance 1 from the monarch. We define
link(w) = u. Each monarch m (except the root) was placed into @ by a unique level-2 subject
of its parent monarch. This node is called the spouse s(m) of monarch m (Fig. 2). Note that
each monarch has a unique spouse, and a node can be the spouse of at most one monarch (by
property 4).

We need to be careful when allocating new centers to cover unassigned nodes. We require
that: (1) a node can only be allocated as a center once; (2) monarchs have sufficient available
nodes to allocate centers for the nodes passed to them. To ensure this we enforce the following
rule. A monarch may allocate centers of the following types only:

1. Nodes in its empire, or

2. Nodes at distance 1 from itself (which may not be in its empire), as long as a monarch
does not allocate its spouse as a center.

We define a tree T'(m) of height 2 corresponding to each monarch m. The root of T'(m) is
monarch m. The leaves of this tree are all the level-2 subjects of m that are the spouse of some
other monarch. For any leaf w, we make link(w) the parent of the leaf. These nodes are the
children of m in the tree T'(m).

In Fig. 3 we show a monarch m together with all the level-2 subjects of m that are the
spouse of some other monarch (for example m'). For each leaf w, we also show link(w). Notice
that link(w) may not be in monarch m’s empire.

Observe that nodes that are the spouse of some monarch may belong to two trees. We
therefore specify that a monarch may assign a center to any vertex in its tree T'(m) other than
its spouse. This ensures that no vertex is assigned as two centers by two different monarchs.

Tree T'(m) will be used in assigning vertices that are passed to monarch m. Nodes passed
from monarch m’ to monarch m are covered by one of five nodes: The spouse of monarch
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Figure 2: Example to illustrate links and spouses.

Monarch m’s empire

Figure 3: Example to illustrate tree T'(m) of a monarch m.
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m’, i.e., s(m’), the spouse’s link link(s(m')), the spouse of a sibling monarch s(n) (where

p(n) = p(m’) = m and link(s(n)) = link(s(m'))), the link of a sibling monarch’s spouse
link(s(n)) (where p(n) = p(m') = m), or monarch m.

A monarch does not allocate centers at nodes that are passed to it. Because of this, we
may have to allocate centers at vertices that are already assigned to a center. We therefore
specify that in this case the new center does not cover itself, but covers L other vertices. A
vertex allocated as a center which is not assigned to a center covers itself as well as L — 1 other
vertices.

The algorithm given in this section differs from that in Section 2 in the selection of new
centers to cover the vertices left unassigned by AssiaGNDowmAInNs. We first give a high-level
description of the new selection scheme and then a new REASSIGN procedure that implements
the scheme.

High-Level Description

We repeatedly select a leaf monarch in the tree of monarchs and allocate centers to cover
nodes in its empire as well as nodes passed to it from its children monarchs. Let m be the
monarch currently under consideration. If m/ is a child monarch of m, we will assume that m’
passes the excess nodes in its empire to m. Fach leaf node s(m') in T'(m) is labelled with the
number of excess nodes that monarch m’ is passing to m.

Nodes passed to m are assigned to centers placed on nodes in T'(m). There are a few
important things to note here. (1) When we begin to process monarch m, no centers are
currently placed at any nodes in T(m) (except for m itself). (2) Monarch m is responsible
for allocating centers for all the nodes that are passed to it from its children monarchs. (3)
Monarch m is responsible for the free nodes in its empire. However, some of the free nodes at
distance 2 from m may belong to trees of other monarchs, and may have centers already placed
on them, in which case we will assume they are assigned to their own centers. If a vertex at
distance 2 is in monarch m’s domain, and a center is placed on it by the tree it belongs to, then
it remains in m’s domain and does not change its assignment.

Monarch m first assigns the nodes that are passed to it from children monarchs, using 7'(m)
to place full centers. Any nodes that are left over (at most L — 1), that were not assigned, are
assigned to monarch m, displacing vertices that were in m’s domain, which become unassigned.
At this stage there may be many free nodes in m’s empire — nodes that were never part of
a domain, as well as the nodes that were recently displaced from m’s domain. Note that the
nodes that were never part of a domain do not have a center on them, while the ones that were
displaced from m’s domain could have centers placed on them (since they may belong to other
trees and may have been chosen as centers). However, there are at most L — 1 of these, so any
which do not get assigned within m’s empire can be passed to m’s parent monarch. We now
choose centers from the set of nodes that never belonged to any domain. In doing so, we may
assign some of the displaced nodes as well. The remaining unassigned vertices, including the
displaced nodes, are passed to m’s parent monarch.

We now describe in detail how the passed vertices are handled. Group the leaves of T'(m),
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placing leaves u and v in the same group iff link(u) = link(v). We process the groups in turn,
processing the group whose common link is s(m) last, if such a group exists.

We assign passed nodes to centers by processing the groups in order. We process a leaf node
in a group as follows: We start by adding the vertices passed to the leaf node to a list called
pending. Whenever pending has at least L vertices, we create a center and assign vertices to it.
There are two things we have to be careful about — if we create a center at a vertex that is free,
we have to assign the vertex to its own center. If a center is going to be assigned vertices from
different groups we move the center up one level, from a leaf node to the link node. Centers
chosen in the last group are not assigned any vertices from other groups, and so we never assign
a center at s(m), but only at leaf nodes in this group.

To ensure that nodes in T'(m) do not have centers placed on them, we process the monarchs
in T in the reverse of the order in which they were placed in 7. Note that if a node v in T'(m)
belongs to the empire of another monarch m/, then m’ must have been placed in 7' before m,
otherwise m would have placed v in its own empire. We thus process m before m/. If a center
is placed at v by m then v is assigned to itself in case it was free. When we eventually process
m’, we are guaranteed that if v is free, it does not have a center placed on it.

For the last group, we proceed as above, except that any nodes carried over from the last
group are picked up by monarch m, possibly replacing some nodes already assigned to m. These
replaced nodes are either passed or allocated a center in Fq(m)U Ey(m) by monarch m. (Note
that if monarch m is light, then the nodes are passed, if not then it does not grab nodes from
other empires, so it is safe to allocate centers at/for them).

Example

Before describing the pseudo-code, we discuss the example given in Fig. 4 in detail. We
process the leaves from left to right. Each leaf is labeled with the number of vertices that are
passed to it from the corresponding child monarch. Assume that L is 10. After we process
w1, pending(m) has size 4, and no centers are allocated. When we process uz, pending has
size 12. Since we can allocate a full center at uy, we do so. Since u; is free, we assign us to
itself and assign 9 (= L — 1) vertices from pending(m) to ug. The size of pending(m) is now 3.
In processing usz, we add 2 more vertices to pending(m). Before we process the leaves in vy’s
group, we set X = v1. Observe that vertices passed to nodes in v;’s group are going to share
a center with vertices passed to nodes in vy’s group, hence we “promote” the center one level
up. When we process us and us, we add 3 more vertices to pending(m) that now has size 8.
We then process ug, adding 8 vertices to pending(m). Since we can allocate a full center, we
allocate a center at v; (current value of X'). Since vy is currently unassigned, we assign v1 to
itself and assign 9 (= L — 1) vertices from pending(m) to it. The size of pending(m) is now 7.
When we process uy, we add 5 vertices to pending. Since we can allocate a full center, we create
a center at uz. Since uy is assigned, we assign 10 vertices from pending(m) to it. This leaves
2 vertices in pending(m) that are assigned to monarch m, possibly displacing other assigned
vertices.

REASSIGN(GY).

12
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Figure 4: Example to illustrate assignment of centers in tree T'(m).

Let M be the set of monarchs in G¥.
For each monarch m € M, set
unassigned(m) = ({m} U E1(m)U Ey(m)) \ (Uyepdomain(u)).
For each monarch m € M, let pending(m) be an ordered list, initially 0.
Let T' be the tree of monarchs in G¥¢.
for all nodes m in T" do
Define T'(m) such that the group containing s(m) comes last.
for all leaf nodes v in T(m)) do set passed(v) = (.
for all nodes v in G¢, let y(v) = {v} iff v is unassigned and () otherwise.
for all nodes m in T, process them in reverse order of their insertion into 71"
Set X = null.
for all children v of m in T'(m) do
for all children u of v in T'(m) do
Append passed(u) to pending(m).
if X = null then set X = u.
if |[x(X)| + |pending(m)| > L then
Allocate a center at X and assign x(X) to it.
Assign the first L — |x(X )| nodes from pending(m) to X and
remove them from pending(m).
Set X = null.
else if X = u then set X = null.
if v # s(m) and X = null then
if |x(v)| + |pending(m)| = L then
Allocate a center at v and assign x(v) to it.
Remove all nodes from pending(m) and assign them to v.
else set X =v.
Let displaced(m) = |domain(m)| + |pending(m)| — L.
Assign all nodes in pending(m) to m,
possibly displacing nodes in domain(m).
Let |unassigned(m)| + displaced(m) = k'L + «.
Allocate k' new centers at nodes in unassigned(m).
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29 Assign k'L of the nodes to them, assigning nodes in unassigned(m) first.
30 Add the € remaining nodes to passed(s(m)).
31 Delete m from 7.

32 end-proc
Lemma 3.1: Fach node is allocated as a center at most once.

Proof. A node v may be allocated as a center either by its monarch, or by the monarch m
whose tree T'(m) it belongs to. If v’s monarch allocates v as a center, then it must be the case
that v is unassigned, which means » cannot be currently allocated as a center. If m allocates
v as a center, then since m was processed before v’s monarch, v could not have already been
allocated as a center.

If v belongs to trees T'(m) and T(m’) for two different monarchs, then it must be the case
that for one of the monarchs, say m’, v = s(m’). Then m' will not allocate v as a center. 0

Lemma 3.2: Fach monarch m has sufficient available nodes in its tree T(m) to allocate centers
for nodes passed to it.

Proof. Fach monarch passes at most L — 1 nodes to its parent. If monarch m has N children
monarchs, then it must be the case that each child monarch has a unique spouse in T'(m). In
addition, all these spouses are level-2 nodes in T'(m), so they are all available to allocate as
centers. |

Lemma 3.3: Every node is assigned to a center.

Proof. All nodes passed to a monarch m are assigned centers from 7'(m) U {m}. Unassigned
nodes in m’s empire are either assigned a center or passed. There are at most L — 1 nodes
displaced from domain(m), hence they are either allocated a center from m’s empire or passed
to m’s parent. O

Theorem 3.4: Fach vertex is assigned to a center whose distance in G; is at most 6. Moreover,
we use at mose Ky, + [(n — ny)/L] centers.

Proof. All centers except possibly light monarchs cover L nodes by construction. The size of
the domain of a light monarch does not decrease. Therefore the total number of centers used
is at most K + [(n —np)/L].

A node which is not passed is covered either by the monarch from which it receives flow or by
a node in its monarch’s empire. In the former case, it is at distance at most two from the center
that covers it, and in the latter case it is at distance at most four from the center that covers
it. A node which is passed from monarch m’ to monarch m is covered by one of the following;:
(1) s(m'), (2) link(s(m)), (3) s(n) where p(n) = p(m') = m and link(s(n)) = link(s(m')), (4)

link(s(n)) where p(n) = p(m') = m, or (5) monarch m. The distance bounds are as follows:
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K =5

@ = Centers added by REASSIGN

[¢] = OPT centers vy
® = Monarchs i

Figure 5: Example to show that the factor of 6 is tight.

Case Distance

Case (1) <3

Case (2) <4

Case (3) <5

Case (4) <6

Case (5) <5
O

In Fig. 5 we give an example showing that the factor of 6 is tight for our algorithm. All
edges in the example are edges in ;. In the example, monarchs mo and ms pass 2 and 3 nodes,
respectively, to their parent my. Monarch ms passes itself and v4, and monarch ms passes itself,
vs and ve. The algorithm assigns all 5 passed nodes to a center which it places at vy, leaving
vg at a distance of 6 from its center. Vertex vs absorbs the remaining nodes in m4’s empire. It
is clear, however, that OPT covers all nodes within distance 1.

Running Time

The bottleneck in the running time of this algorithm is the flow computation. If we use
binary search in CAPACITATED-CENTERS, the algorithm computes O(log n) maximum flows.
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3.1. Capacitated Centers with Costs

The capacitated K-center problem with costs is a generalization of the capacitated K-center
problem where a cost function is defined on the vertices and the objective is to pick a set of
centers whose total cost is at most K, such that the radius is minimized. (Note that this is
equivalent to the weighted capacitated K -center problem in [1]. We use cost here to distinguish
from weights as defined in, for example, [3, 16].) More formally, we are given a cost function
¢:V — R, and we add the constraint ), g c(v) < K to the statement of the capacitated
K -center problem.

Bar-llan, Kortsarz and Peleg gave the first polynomial time approximation algorithm for
this problem with an approximation factor of 21. Their technique, which involves finding a
minimum-cost perfect matching in a bipartite graph, generalizes to finding a 2p + 1 solution
given a p-approximation algorithm for the capacitated K-centers problem. It therefore yields an
approximation algorithm with an approximation factor of 13 when combined with our algorithm
for capacitated K-centers.

4. Remarks

It is possible to improve the quality of the approximation if one is willing to allow some slack
on the number of centers used and the maximum load. Let a (¢ K, ¢3L, c3R) solution denote a
solution using at most ¢ K centers, each with a load of at most ¢y L, which assigns every node
to a center at distance at most ¢z R, where R is the radius of the optimal solution. Thus the
algorithms given above obtain a (K, L, 5R) solution to the capacitated multi- K -center problem
and a (K, L,6R) solution to the capacitated K-center problem.

For the capacitated multi- K'-center problem, we can obtain for any z > 1 a (%K, cl, QR)

solution, where ¢ = xl,ll For example, when z = 1, this gives a (K,2L,2R) solution. We can
also achieve a (2K, L,2R) solution to this problem by always allocating "unassz%ined(m)-‘ extra

centers in each empire.

Tha algorithm works as follows. We modify REASSIGN to overload centers in some empires
and allocate extra centers in others. Specifically, let unassigned(m) = k'L + €. If € < %, then
allocate k' additional centers at monarch m and use the centers at m to cover all nodes in
unassigned(m). Clearly, no center at monarch m has to cover more than %L nodes in this
case. If € > %, then allocate k' + 1 additional centers at monarch m and use them to cover all
nodes in unassigned(m). This may cause us to use more than K centers, since we allocate new

lightly loaded centers at the end. We show below that we use at most ﬁfl K centers.

Theorem 4.1: For any z > 1, the algorithm gives a (%K, cL,QR) solution, where ¢ = xl,ll

Let the sets £ and F be defined as before. Let X’ be the set of monarchs at which an extra
center was allocated to cover ¢ > % nodes. Let C'; and (5 be the number of centers used in the
optimal solution to cover nodes in empires in £ and F, respectively. Clearly, any extra centers
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we use must be allocated at monarchs in F. Let Sy and Sz denote the sets of nodes in the
domains of monarchs in £ and F, respectively. Let f be the number of full centers allocated
by the algorithm that cover nodes in Sr.

Lemma 4.2: The number of centers allocated by our algorithm is at most Cy + f + |X].

Proof. No additional centers are used by the algorithm to cover nodes in §g. Therefore the
algorithm uses |E| + f + |X'| centers. Because the monarchs form an independent set in G2,
the optimal solution must use at least |£] centers to cover nodes in Sg. Therefore Cy > |€],
implying the lemma. O

Lemma 4.3: A lower bound on Cs is given by Cy > [+ |f—|

Proof. By Lemma 2.4, the centers in the optimal solution which cover nodes in &y cannot

S
[87] f' centers to cover

cover any nodes not in §g. Therefore the optimal solution uses at least
nodes in Sr. Since the lightly loaded centers allocated by our algorithm to cover nodes in Sr

each cover at least £ nodes it follows that fIL + |X|L < |8£|. Therefore Cy > |$f| >+ |X| . O

Proof.  (Of Theorem 4.1) By lemma 4.2, the number of centers used by our algorithm is at
most

1+ =z 1+ =z

Cit f+IX] < Crtof+7 XE By
1—|—x 2
< Ci+ X X
< f+ | [+
1—|—ac 2 )
< <
< O+ f—l— f+1+x|X| (since |X] < f)
X
< Sy | 1
< O+ 296 C (by L 1.3)
< Gt 6 y Lemma 4.
< B i+ (sincea > 1)
< e 2 since @ >
2
< flK. (because the optimal solution does not overuse centers)
x

For the capacitated K-center problem, the same approach gives a (%K, cl, 4R) solution.

Results of Lund and Yannakakis [12] and Feige [6] imply that no polynomial time
(1K, eaL, (2 — €)R) approximation algorithm is possible unless NP C DTIM E(nCUoglosn)),
since this would imply a constant-factor approximation algorithm for set cover.

Acknowledgements: We thank Robert Pless and Balaji Raghavachari for useful discussions.
We thank the ESA referee for helpful comments.
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