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Approximation algorithms for the basic K-center problem have been very well studied andare known to be optimal [7, 9, 10, 11]. These schemes present natural methods for obtainingan approximation factor of 2. Several approximation algorithms are known for interestinggeneralizations of the basic K-center problem as well [3, 10, 16]. The generalizations includecases when each node has an associated \cost" for placing a center on it, and rather thanlimiting the number of centers, we have a limited budget [10, 16]. Other generalizations includecases where the vertices have weights and we consider the weighted distance from a node to itsclosest center [3, 16].Recently, a very interesting generalization that we call the capacitated K-center problemwas studied by Bar-Ilan, Kortsarz and Peleg [1]. The input speci�es an upper bound on thenumber of centers K, as well as a maximum load L. We have to output a set of at mostK centers, as well as an assignment of vertices to centers. No more than L vertices may beassigned to a single center. Under these constraints we wish to minimize the maximum distancebetween a vertex u and its assigned center �(u).minS�V maxu2V d(u; �(u))such that jfu j �(u) = vgj � L 8v 2 Swhere � : V ! S:Bar-Ilan, Kortsarz and Peleg [1] gave the �rst polynomial time approximation algorithm forthis problem with an approximation factor of 10. Various applications for capacitated centerswere �rst mentioned in [14, 15]. A slightly di�erent problem, where the radius is �xed, and onehas to minimize the number of centers, shows up in the Sloan digital sky survey project [13].1.1. Our ResultsIn Section 2 we discuss a simpli�cation of the problem where a node may appear multipletimes in S (i.e. more than one center can be put at a node). We will refer to this problem asthe capacitated multi-K-center problem. By introducing some new ideas and using the basicapproach proposed in [1], we are able to give a polynomial time algorithm that achieves anapproximation factor of 5. In Section 3 we show how to solve the problem when we are allowedonly one center at a vertex. The high level structure of the algorithm is the same, but theassignment of centers to vertices has to be done extremely carefully. This problem will bereferred to as the capacitated K-center problem. For this version of the problem we obtain anapproximation factor of 6. It is worth noting that in fact we prove that our solution is at most6 times an optimal solution that is allowed to put multiple centers at a single vertex. Thisclearly indicates that there is room for further improvement, since a better lower bound on theoptimal should be possible when at most one center may be placed at a vertex.The algorithm can be easily extended to the more general case when each vertex has ademand di, and multiple centers may be used to satisfy its demand. The total demand assignedto any center should not exceed L. Using the method in [1], we can obtain an approximation2



factor of 13 for the version with costs. (Each vertex has a cost for placing a center on it, and weare working with a �xed budget.) In Section 4 we study some other variants of this problem.Let a (c1K; c2L; c3R) solution denote a solution using at most c1K centers, each with a load ofat most c2L, which assigns every node to a center at distance at most c3R, where R is the radiusof the optimal solution. For any x � 1, we obtain a �2cK; cL; 2R� solution for the capacitatedmulti-K-center problem, and a �2cK; cL; 4R� solution for the capacitated K-center problem,where c = x+1x .2. Algorithm for Capacitated Multi-K-CentersWe �rst give a high-level description of the algorithm. We may assume for simplicity that Gis a complete graph, where the edge weights satisfy the triangle inequality. (We can alwaysreplace any edge by the shortest path between the corresponding pair of vertices.)High-Level DescriptionThe algorithm uses the threshold method introduced by Edmonds and Fulkerson in [4] andused for the K-center problem by Hochbaum and Shmoys [9, 10]. Sort all edge weights in non-decreasing order. Let the (sorted) list of edges be e1; e2; : : :em. For each i, let the thresholdgraph Gi be the subgraph obtained from G by including edges of weight at most w(ei). Run thealgorithm below for each i from 1 to m, until a solution is obtained. (Hochbaum and Shmoys[10] suggest using binary search to speed up the computation. If running time is not a factor,however, it does appear that to get the best solution (in practice) we should run the algorithmfor all i, and take the best solution.) In each iteration, we work with the subgraph Gi and viewit as an unweighted graph. Since Gi is an unweighted graph, when we refer to the distancebetween two nodes, we refer to the number of edges on a shortest path between them. Initeration i, we �nd a solution using some number of centers. If the number of centers exceedsK, we prove that there is no solution with cost at most w(ei). If the number of centers is atmost K, we show that the maximum distance in Gi between a vertex and its assigned center isat most �ve. This gives an approximation factor of 5.First �nd a maximal independent set I in G2i . (G2i is the graph obtained by adding edges toGi between nodes that have a common neighbor.) This technique was introduced by Hochbaumand Shmoys [9, 10] and has been used extensively to solve K-center problems. We refer to anode in the maximal independent set as a monarch. The algorithm also constructs a \tree"of monarchs which will be used to assign vertices to centers. There are two key di�erencesbetween our algorithm and the one presented in [1]:1. We use a speci�c procedure to �nd a maximal independent set, as opposed to selectingan arbitrary maximal independent set.2. We deal with all monarchs uniformly rather than dealing with the light and heavy1 monar-chs separately as in [1].1These terms will be explained shortly. 3



Each monarch has an empire that consists of a subset of vertices within the immediateneighborhood of the monarch in G2i . When a monarch is added to the maximal independentset, all such vertices that do not currently belong to an empire are added to this monarch'sempire. The algorithm also constructs a tree of monarchs as the monarchs are selected. Thistree has the property that an edge in the tree corresponds to two monarchs whose distance inGi is exactly three. Each monarch then tries to collect a domain of size L| a subset of verticesthat are close to the monarch and assigned to it. In doing so, a monarch may grab verticesfrom other empires if none are available in its own empire. After this process is complete theremay still be unassigned vertices. We then use the tree of monarchs to assign new centers tohandle the unassigned vertices. Nodes that are left unassigned in a particular empire may beassigned to the parent monarch. Eventually, we will put additional centers at the monarchvertices (recall that more than one center may be located at a single vertex).Capacitated-Centers (G = (V;E);K;L).1 Sort all edges in non-decreasing weight order (e1; : : : ; em).2 for i = 1 to m do3 Let Gi = (V;Ei) where Ei = fe1; : : : ; eig.4 Unmark all vertices.5 if AssignCenters(Gi) then exit.6 end-procAssignCenters (Gi).1 successful = true2 Let nci be the number of vertices in connected component Gci .3 if (PcdnciL e) > K then successful = falseelse4 for each connected component Gci of Gi do5 AssignMonarchs(Gci).6 AssignDomains(Gci).7 ReAssign(Gci).8 if total centers used > K then successful = false9 return (successful)10 end-procAssignCenters (Gi) tries to assign centers within each connected component. Each com-ponent is dealt with separately. (This can be done because if there is an optimal solution withmaximum radius w(ei), then no center in the optimal solution will be assigned vertices thatbelong to di�erent connected components of Gi.) A lower bound on the number of centers ineach component is dncL e, where nc is the number of vertices in Gci . If the number of allowedcenters is smaller than PcdncL e then there is no solution.AssignMonarchs(Gci) assigns monarchs (nodes in the independent set) in a BFS manner.After we put a vertex in the independent set, we mark all unmarked nodes within distance twoin Gi. To pick a new vertex to add to the independent set, we pick an unmarked vertex thatis adjacent to a marked vertex. Rather than describing the algorithm in terms of (Gci)2 we4



G1i
123 456 78 9101113 12Figure 1: Example to show execution of AssignMonarchs.work with Gci , to separate the nodes in a monarch's empire into level-1 and level-2 nodes. Thelevel-1 nodes are adjacent to the monarch, and the level-2 nodes are at distance two from themonarch. We de�ne E1(v) and E2(v) to be the level-1 and level-2 nodes, respectively, in v'sempire. Thus the empire of v is E1(v) [E2(v).AssignMonarchs(Gci).1 Pick an arbitrary vertex v 2 Gci and set Q = fvg.2 p(v) = nil.3 while Q has unmarked nodes do4 Remove an unmarked node v from Q.5 Make v a monarch and mark it.6 for all u 2 Adj(v) do7 if u is unmarked then8 Add u to E1(v) and mark u9 for all u 2 Adj(v) do10 for all w 2 Adj(u) do11 if w is unmarked then12 Add w to E2(v) and mark w13 for all u 2 E2(v) do14 for all w 2 Adj(u) do15 if w is unmarked and w =2 Q then16 Set p(w) = v and add w to Q17 end-proc 5



Before discussing the pertinent properties of AssignMonarchs, we show its execution onthe simple example given in Fig. 2. The algorithm starts from vertex 1, which is made amonarch. Vertex 2 is added to E1(1) (level 1 in its empire) and vertices 3 and 4 are added toE2(1). Q currently contains vertices 5, 8 and 10. Vertex 5 is then chosen as a monarch andvertices 6 and 7 are added to E1(5). Vertices 8 and 9 are both added to E2(5). Q now containsvertices 8, 10, 14 and 16. The next vertex chosen from Q is 10 since 8 is marked. Vertices11 and 12 are added to E1(10), and vertex 13 is added to E2(10). Q now contains vertices 8,14 and 16. Vertex 14 is now chosen from Q, and vertices 15 and 16 are added to E1(14) andE2(14), respectively. The algorithm stops since there are no more unmarked vertices in Q.There are a few important properties of the monarchs produced by algorithm Assign-Monarchs.Important Properties:1. The distance between any two monarchs is at least three.2. The distance between a monarch m (except for the root) and its \parent monarch" p(m)in the tree is exactly three.3. The distance between a monarch and any vertex in its empire is at most two.4. Each monarch (except for the root) has at least one edge to a level two vertex in its parentmonarch's empire. Moreover, each such level two vertex has only one such neighbor thatis a monarch. More generally, any vertex can have at most one neighbor that is a monarch(Corollary of property 1).Procedure AssignDomains tries to assign a domain of size at most L to each monarch.The objective is to assign as many vertices to a domain as possible subject to the followingconstraints.1. A vertex may be assigned to a monarch's domain only if it is at distance at most twofrom the monarch.2. A monarch may include in its domain a vertex from another empire only if each vertexin its empire belongs to some domain.One way to implement this procedure is by �nding a min cost maximum 
ow in an appro-priate bipartite graph. The 
ow problem has a very simple structure and there are only twotypes of costs on edges (0 and 1).AssignDomains(Gci).1 Let M be the set of monarchs in Gci .2 Let E 0 = f(m; v) jm 2M , v 2 V , distance from m to v is at most two g.3 Construct a bipartite graph G0 = (M;V;E 0).4 Add vertices s and t. Add edges f(s;m) jm 2Mg and f(v; t) j v 2 V g.5 For m 2M , v 2 V , set capacities u(s;m) = L, u(m; v) = 1 and u(v; t) = 1.6



6 Cost of edge c(m; v) = 1 if v is not in m's empire.Cost of all other edges is 0.7 Compute a min-cost maximum integral 
ow in G0.8 For each monarch m, setdomain(m) = fv j v receives one unit of 
ow from m in G0g.9 For each v, if v 2 domain(m) then de�ne �(v) = m.10 end-procDe�nition 1: A light monarch is one that has a domain of size < L. A heavy monarch is onethat has unassigned vertices in its empire. A full monarch is one that is neither heavy nor light.Lemma 2.1: If m is a heavy monarch then each vertex in m's domain belongs to m's empire.Proof. Assume that there is a vertex u in m's domain that is not in m's empire. Let x be avertex in m's empire that is not assigned to any domain. We can change the 
ow function inG0 and send one unit of 
ow from m to x instead of m to u. This produces a max 
ow in G0of lower cost, a contradiction.If there is no heavy monarch, all vertices belong to a domain and the algorithm haltssuccessfully.Let KL be the number of light monarchs. Let nL be the number of vertices belonging tothe domains of light monarchs, and let n be the total number of vertices.Theorem 2.2: The number of centers required is at least KL + d(n� nL)=Le.The proof is simpler than the proof given in [1]. The following lemmas were established in[1]. We repeat them for completeness.Let E be the set of monarchs as de�ned in [1]. We repeat the de�nition here.Let E0 be the set of light monarchs. Iteratively, add to E0 any monarch that contains avertex in its domain that could have been assigned to a monarch in E0.Ej = Ej�1 [ fm 2M j9v 2 V; 9m0 2 Ej�1; �(v) = m and d(v;m0) � 2 in GigLet E be the largest set Ej obtained in this process. Let F be the set of remaining monarchs.Lemma 2.3: The set E does not contain any heavy monarchs.Proof. Suppose heavy monarch � was added at iteration j. We can transfer a node v to acenter �0 in Ej�1. By a sequence of such transfers, we eventually reach a center in E0 whichhas at most L� 1 nodes in its domain, and can absorb the extra node. This corresponds to ahigher 
ow, since the heavy monarch can absorb an unassigned node, a contradiction.7



Lemma 2.4: Consider a center in an optimal solution that covers a monarch in E . This centercannot be assigned any nodes that are not in the domains of monarchs in E .Proof. Assume for contradiction that � is a center in the optimal solution that covers bothe 2 E and u. If u does not belong to any domain, then since the distance from u to e in Gi isat most two, we can perform a sequence of transfers, eventually reaching a center in E0 whichhas at most L � 1 nodes in its domain, and can absorb the extra node, resulting in a higher
ow, a contradiction. If u belongs to the domain of monarch f , then since the distance from eto u in Gi is at most two, and the distance from u to f in Gi is at most two, it must be thecase that f 2 E as required by the lemma.Proof. (Of Theorem 2.2) Each monarch in E is covered by a distinct center in the optimalsolution, and these centers of the optimal solution cannot cover any other nodes in F . Let nEbe the number of vertices in the domains of monarchs in E . Then we need at least jEj+d(n�nEL )ecenters. This is the same as KL + d(n+(jEj�KL)�L�nEL )e. Since nE = (jEj �KL) � L+ nL we getKL + d(n�nLL )e.We will prove that this is also an upper bound on the number of centers we use. We nowdescribe procedure Reassign.ReAssign(Gci).1 Let M be the set of monarchs in Gci .2 For each monarch m 2M , setunassigned(m) = (fmg [ E1(m) [ E2(m)) n ([u2Mdomain(u)).3 Let T be the tree of monarchs in Gci .4 for all nodes m in T , set passed(m) = ;.5 while T is not empty do6 Remove a leaf node m from T .7 Let junassigned(m)j+ jpassed(m)j = k0L+ �8 Allocate k0 new centers at monarch m and assign k0L of the nodesto them. For each such node v we de�ne �(v) = m.9 Assign the � remaining nodes to monarch m and for each suchnode v de�ne �(v) = m, freeing up to � nodes in domain(m).10 Add the freed nodes to passed(p(m)).11 Delete m from T .12 end-procIn practice, one would pass to the parent monarch p(m) those nodes which are closest top(m).Theorem 2.5: Each vertex is assigned to a center whose distance in Gi is at most 5. Moreover,we use at most KL + d(n� nL)=Le centers.Proof. All centers except possibly light monarchs cover L nodes by construction. The size ofthe domain of a light monarch does not decrease. Therefore the total number of centers usedis at most KL + d(n� nL)=Le. 8



A node is either covered by the node from which it receives 
ow, or by the parent of itsoriginal monarch. In the former case, it is at distance at most two from the center that coversit. In the latter case the passed nodes are always covered by their monarch's parent, i.e., theyare only passed once. Thus the distance from a node to the center that covers it is at most �ve(at most two to its original monarch, and three more to the parent monarch).3. Algorithm for K-CentersWe now consider the version where we are required to pick K distinct vertices as centers. Weuse the same high level approach as in the previous case, but need to pick the centers carefully.We are able to show that the algorithm obtains an approximation factor of 6. (Obtaining afactor of 7 using the previous approach is easy.)The main di�culty lies in allocating centers to cover the vertices left unassigned by As-signDomains. We �rst introduce some new notation.Nodes in a monarch's empire are called its subjects. In AssignMonarchs, each level-2subject w of a monarch is brought in by a node u at distance 1 from the monarch. We de�nelink(w) = u. Each monarch m (except the root) was placed into Q by a unique level-2 subjectof its parent monarch. This node is called the spouse s(m) of monarch m (Fig. 2). Note thateach monarch has a unique spouse, and a node can be the spouse of at most one monarch (byproperty 4).We need to be careful when allocating new centers to cover unassigned nodes. We requirethat: (1) a node can only be allocated as a center once; (2) monarchs have su�cient availablenodes to allocate centers for the nodes passed to them. To ensure this we enforce the followingrule. A monarch may allocate centers of the following types only:1. Nodes in its empire, or2. Nodes at distance 1 from itself (which may not be in its empire), as long as a monarchdoes not allocate its spouse as a center.We de�ne a tree T (m) of height 2 corresponding to each monarch m. The root of T (m) ismonarch m. The leaves of this tree are all the level-2 subjects of m that are the spouse of someother monarch. For any leaf w, we make link(w) the parent of the leaf. These nodes are thechildren of m in the tree T (m).In Fig. 3 we show a monarch m together with all the level-2 subjects of m that are thespouse of some other monarch (for example m0). For each leaf w, we also show link(w). Noticethat link(w) may not be in monarch m's empire.Observe that nodes that are the spouse of some monarch may belong to two trees. Wetherefore specify that a monarch may assign a center to any vertex in its tree T (m) other thanits spouse. This ensures that no vertex is assigned as two centers by two di�erent monarchs.Tree T (m) will be used in assigning vertices that are passed to monarch m. Nodes passedfrom monarch m0 to monarch m are covered by one of �ve nodes: The spouse of monarch9



123 4568 91011link(3) = 2 link(4) = 2s(5) = 4link(9) = 6link(8) = 4link(13) = 11s(10) = 3
G1i 1416 s(14) = 9link(16) = 81513 12 7

Figure 2: Example to illustrate links and spouses.
m s(m)s(m0)m0 n

link(s(m0)) Monarch m's empire
Figure 3: Example to illustrate tree T (m) of a monarch m.10



m0, i.e., s(m0), the spouse's link link(s(m0)), the spouse of a sibling monarch s(n) (wherep(n) = p(m0) = m and link(s(n)) = link(s(m0))), the link of a sibling monarch's spouselink(s(n)) (where p(n) = p(m0) = m), or monarch m.A monarch does not allocate centers at nodes that are passed to it. Because of this, wemay have to allocate centers at vertices that are already assigned to a center. We thereforespecify that in this case the new center does not cover itself, but covers L other vertices. Avertex allocated as a center which is not assigned to a center covers itself as well as L� 1 othervertices.The algorithm given in this section di�ers from that in Section 2 in the selection of newcenters to cover the vertices left unassigned by AssignDomains. We �rst give a high-leveldescription of the new selection scheme and then a new Reassign procedure that implementsthe scheme.High-Level DescriptionWe repeatedly select a leaf monarch in the tree of monarchs and allocate centers to covernodes in its empire as well as nodes passed to it from its children monarchs. Let m be themonarch currently under consideration. If m0 is a child monarch of m, we will assume that m0passes the excess nodes in its empire to m. Each leaf node s(m0) in T (m) is labelled with thenumber of excess nodes that monarch m0 is passing to m.Nodes passed to m are assigned to centers placed on nodes in T (m). There are a fewimportant things to note here. (1) When we begin to process monarch m, no centers arecurrently placed at any nodes in T (m) (except for m itself). (2) Monarch m is responsiblefor allocating centers for all the nodes that are passed to it from its children monarchs. (3)Monarch m is responsible for the free nodes in its empire. However, some of the free nodes atdistance 2 from m may belong to trees of other monarchs, and may have centers already placedon them, in which case we will assume they are assigned to their own centers. If a vertex atdistance 2 is in monarch m's domain, and a center is placed on it by the tree it belongs to, thenit remains in m's domain and does not change its assignment.Monarch m �rst assigns the nodes that are passed to it from children monarchs, using T (m)to place full centers. Any nodes that are left over (at most L� 1), that were not assigned, areassigned to monarch m, displacing vertices that were in m's domain, which become unassigned.At this stage there may be many free nodes in m's empire { nodes that were never part ofa domain, as well as the nodes that were recently displaced from m's domain. Note that thenodes that were never part of a domain do not have a center on them, while the ones that weredisplaced from m's domain could have centers placed on them (since they may belong to othertrees and may have been chosen as centers). However, there are at most L� 1 of these, so anywhich do not get assigned within m's empire can be passed to m's parent monarch. We nowchoose centers from the set of nodes that never belonged to any domain. In doing so, we mayassign some of the displaced nodes as well. The remaining unassigned vertices, including thedisplaced nodes, are passed to m's parent monarch.We now describe in detail how the passed vertices are handled. Group the leaves of T (m),11



placing leaves u and v in the same group i� link(u) = link(v). We process the groups in turn,processing the group whose common link is s(m) last, if such a group exists.We assign passed nodes to centers by processing the groups in order. We process a leaf nodein a group as follows: We start by adding the vertices passed to the leaf node to a list calledpending. Whenever pending has at least L vertices, we create a center and assign vertices to it.There are two things we have to be careful about { if we create a center at a vertex that is free,we have to assign the vertex to its own center. If a center is going to be assigned vertices fromdi�erent groups we move the center up one level, from a leaf node to the link node. Centerschosen in the last group are not assigned any vertices from other groups, and so we never assigna center at s(m), but only at leaf nodes in this group.To ensure that nodes in T (m) do not have centers placed on them, we process the monarchsin T in the reverse of the order in which they were placed in T . Note that if a node v in T (m)belongs to the empire of another monarch m0, then m0 must have been placed in T before m,otherwise m would have placed v in its own empire. We thus process m before m0. If a centeris placed at v by m then v is assigned to itself in case it was free. When we eventually processm0, we are guaranteed that if v is free, it does not have a center placed on it.For the last group, we proceed as above, except that any nodes carried over from the lastgroup are picked up by monarchm, possibly replacing some nodes already assigned tom. Thesereplaced nodes are either passed or allocated a center in E1(m)[E2(m) by monarch m. (Notethat if monarch m is light, then the nodes are passed, if not then it does not grab nodes fromother empires, so it is safe to allocate centers at/for them).ExampleBefore describing the pseudo-code, we discuss the example given in Fig. 4 in detail. Weprocess the leaves from left to right. Each leaf is labeled with the number of vertices that arepassed to it from the corresponding child monarch. Assume that L is 10. After we processu1, pending(m) has size 4, and no centers are allocated. When we process u2, pending hassize 12. Since we can allocate a full center at u2, we do so. Since u2 is free, we assign u2 toitself and assign 9 (= L� 1) vertices from pending(m) to u2. The size of pending(m) is now 3.In processing u3, we add 2 more vertices to pending(m). Before we process the leaves in v2'sgroup, we set X = v1. Observe that vertices passed to nodes in v1's group are going to sharea center with vertices passed to nodes in v2's group, hence we \promote" the center one levelup. When we process u4 and u5, we add 3 more vertices to pending(m) that now has size 8.We then process u6, adding 8 vertices to pending(m). Since we can allocate a full center, weallocate a center at v1 (current value of X). Since v1 is currently unassigned, we assign v1 toitself and assign 9 (= L� 1) vertices from pending(m) to it. The size of pending(m) is now 7.When we process u7, we add 5 vertices to pending. Since we can allocate a full center, we createa center at u7. Since u7 is assigned, we assign 10 vertices from pending(m) to it. This leaves2 vertices in pending(m) that are assigned to monarch m, possibly displacing other assignedvertices.ReAssign(Gci). 12



m s(m) L=104 8 2 1 2 8u5u1 u2 u6 u7u3 u4 5 = unassigned vertexv1 v2 = centersv3Figure 4: Example to illustrate assignment of centers in tree T (m).1 Let M be the set of monarchs in Gci .2 For each monarch m 2M , setunassigned(m) = (fmg [ E1(m) [ E2(m)) n ([u2Mdomain(u)).3 For each monarch m 2M , let pending(m) be an ordered list, initially ;.4 Let T be the tree of monarchs in Gci .5 for all nodes m in T do6 De�ne T (m) such that the group containing s(m) comes last.7 for all leaf nodes v in T (m)) do set passed(v) = ;.8 for all nodes v in Gci , let �(v) = fvg i� v is unassigned and ; otherwise.9 for all nodes m in T , process them in reverse order of their insertion into T :10 Set X = null.11 for all children v of m in T (m) do12 for all children u of v in T (m) do13 Append passed(u) to pending(m).14 if X = null then set X = u.15 if j�(X)j+ jpending(m)j � L then16 Allocate a center at X and assign �(X) to it.17 Assign the �rst L� j�(X)j nodes from pending(m) to X andremove them from pending(m).18 Set X = null.19 else if X = u then set X = null.20 if v 6= s(m) and X = null then21 if j�(v)j+ jpending(m)j = L then22 Allocate a center at v and assign �(v) to it.23 Remove all nodes from pending(m) and assign them to v.24 else set X = v.25 Let displaced(m) = jdomain(m)j+ jpending(m)j � L.26 Assign all nodes in pending(m) to m,possibly displacing nodes in domain(m).27 Let junassigned(m)j+ displaced(m) = k0L+ �.28 Allocate k0 new centers at nodes in unassigned(m).13



29 Assign k0L of the nodes to them, assigning nodes in unassigned(m) �rst.30 Add the � remaining nodes to passed(s(m)).31 Delete m from T .32 end-procLemma 3.1: Each node is allocated as a center at most once.Proof. A node v may be allocated as a center either by its monarch, or by the monarch mwhose tree T (m) it belongs to. If v's monarch allocates v as a center, then it must be the casethat v is unassigned, which means v cannot be currently allocated as a center. If m allocatesv as a center, then since m was processed before v's monarch, v could not have already beenallocated as a center.If v belongs to trees T (m) and T (m0) for two di�erent monarchs, then it must be the casethat for one of the monarchs, say m0, v = s(m0). Then m0 will not allocate v as a center.Lemma 3.2: Each monarchm has su�cient available nodes in its tree T (m) to allocate centersfor nodes passed to it.Proof. Each monarch passes at most L� 1 nodes to its parent. If monarch m has N childrenmonarchs, then it must be the case that each child monarch has a unique spouse in T (m). Inaddition, all these spouses are level-2 nodes in T (m), so they are all available to allocate ascenters.Lemma 3.3: Every node is assigned to a center.Proof. All nodes passed to a monarch m are assigned centers from T (m) [ fmg. Unassignednodes in m's empire are either assigned a center or passed. There are at most L � 1 nodesdisplaced from domain(m), hence they are either allocated a center from m's empire or passedto m's parent.Theorem 3.4: Each vertex is assigned to a center whose distance in Gi is at most 6. Moreover,we use at mose KL + d(n� nL)=Le centers.Proof. All centers except possibly light monarchs cover L nodes by construction. The size ofthe domain of a light monarch does not decrease. Therefore the total number of centers usedis at most KL + d(n� nL)=Le.A node which is not passed is covered either by the monarch from which it receives 
ow or bya node in its monarch's empire. In the former case, it is at distance at most two from the centerthat covers it, and in the latter case it is at distance at most four from the center that coversit. A node which is passed from monarch m0 to monarch m is covered by one of the following:(1) s(m0), (2) link(s(m0)), (3) s(n) where p(n) = p(m0) = m and link(s(n)) = link(s(m0)), (4)link(s(n)) where p(n) = p(m0) = m, or (5) monarch m. The distance bounds are as follows:14



K = 5L = 5= Monarchs= Centers added by Reassign= OPT centers v1 m1 v3v2 v5 v6v4 m2 m3
Figure 5: Example to show that the factor of 6 is tight.Case DistanceCase (1) � 3Case (2) � 4Case (3) � 5Case (4) � 6Case (5) � 5In Fig. 5 we give an example showing that the factor of 6 is tight for our algorithm. Alledges in the example are edges in Gi. In the example, monarchsm2 and m3 pass 2 and 3 nodes,respectively, to their parentm1. Monarchm2 passes itself and v4, and monarch m3 passes itself,v5 and v6. The algorithm assigns all 5 passed nodes to a center which it places at v1, leavingv6 at a distance of 6 from its center. Vertex v3 absorbs the remaining nodes in m1's empire. Itis clear, however, that OPT covers all nodes within distance 1.Running TimeThe bottleneck in the running time of this algorithm is the 
ow computation. If we usebinary search in Capacitated-Centers, the algorithm computes O(logn) maximum 
ows.15



3.1. Capacitated Centers with CostsThe capacitated K-center problem with costs is a generalization of the capacitated K-centerproblem where a cost function is de�ned on the vertices and the objective is to pick a set ofcenters whose total cost is at most K, such that the radius is minimized. (Note that this isequivalent to the weighted capacitated K-center problem in [1]. We use cost here to distinguishfrom weights as de�ned in, for example, [3, 16].) More formally, we are given a cost functionc : V ! R+, and we add the constraint Pv2S c(v) � K to the statement of the capacitatedK-center problem.Bar-Ilan, Kortsarz and Peleg gave the �rst polynomial time approximation algorithm forthis problem with an approximation factor of 21. Their technique, which involves �nding aminimum-cost perfect matching in a bipartite graph, generalizes to �nding a 2� + 1 solutiongiven a �-approximation algorithm for the capacitated K-centers problem. It therefore yields anapproximation algorithm with an approximation factor of 13 when combined with our algorithmfor capacitated K-centers.4. RemarksIt is possible to improve the quality of the approximation if one is willing to allow some slackon the number of centers used and the maximum load. Let a (c1K; c2L; c3R) solution denote asolution using at most c1K centers, each with a load of at most c2L, which assigns every nodeto a center at distance at most c3R, where R is the radius of the optimal solution. Thus thealgorithms given above obtain a (K;L; 5R) solution to the capacitated multi-K-center problemand a (K;L; 6R) solution to the capacitated K-center problem.For the capacitated multi-K-center problem, we can obtain for any x � 1 a �2cK; cL; 2R�solution, where c = x+1x . For example, when x = 1, this gives a (K; 2L; 2R) solution. We canalso achieve a (2K;L; 2R) solution to this problem by always allocating lunassigned(m)L m extracenters in each empire.Tha algorithm works as follows. We modify Reassign to overload centers in some empiresand allocate extra centers in others. Speci�cally, let unassigned(m) = k0L + �. If � � Lx , thenallocate k0 additional centers at monarch m and use the centers at m to cover all nodes inunassigned(m). Clearly, no center at monarch m has to cover more than x+1x L nodes in thiscase. If � > Lx , then allocate k0 + 1 additional centers at monarch m and use them to cover allnodes in unassigned(m). This may cause us to use more than K centers, since we allocate newlightly loaded centers at the end. We show below that we use at most 2xx+1K centers.Theorem 4.1: For any x � 1, the algorithm gives a �2cK; cL; 2R� solution, where c = x+1x .Let the sets E and F be de�ned as before. Let X be the set of monarchs at which an extracenter was allocated to cover � > Lx nodes. Let C1 and C2 be the number of centers used in theoptimal solution to cover nodes in empires in E and F , respectively. Clearly, any extra centers16



we use must be allocated at monarchs in F . Let SL and SF denote the sets of nodes in thedomains of monarchs in E and F , respectively. Let f be the number of full centers allocatedby the algorithm that cover nodes in SF .Lemma 4.2: The number of centers allocated by our algorithm is at most C1 + f + jX j.Proof. No additional centers are used by the algorithm to cover nodes in SL. Therefore thealgorithm uses jEj + f + jX j centers. Because the monarchs form an independent set in G2i ,the optimal solution must use at least jEj centers to cover nodes in SL. Therefore C1 � jEj,implying the lemma.Lemma 4.3: A lower bound on C2 is given by C2 � f + jX jx .Proof. By Lemma 2.4, the centers in the optimal solution which cover nodes in SL cannotcover any nodes not in SL. Therefore the optimal solution uses at least jSF jL centers to covernodes in SF . Since the lightly loaded centers allocated by our algorithm to cover nodes in SFeach cover at least Lx nodes, it follows that fL+ jX jLx � jSF j. Therefore C2 � jSF jL � f + jX jx .Proof. (Of Theorem 4.1) By lemma 4.2, the number of centers used by our algorithm is atmostC1 + f + jX j � C1 + 1 + x1 + xf + 1 + x1 + x jX j� C1 + 1 + x1 + xf + x� 11 + x jX j+ 21 + x jX j� C1 + 1 + x1 + xf + x� 11 + xf + 21 + x jX j (since jX j � f)� C1 + 2x1 + x(f + jX jx )� C1 + 2x1 + xC2 (by Lemma 4.3)� 2xx+ 1(C1 + C2) (since x � 1)� 2xx+ 1K: (because the optimal solution does not overuse centers)For the capacitated K-center problem, the same approach gives a �2cK; cL; 4R� solution.Results of Lund and Yannakakis [12] and Feige [6] imply that no polynomial time(c1K; c2L; (2 � �)R) approximation algorithm is possible unless NP � DTIME(nO(loglogn)),since this would imply a constant-factor approximation algorithm for set cover.Acknowledgements: We thank Robert Pless and Balaji Raghavachari for useful discussions.We thank the ESA referee for helpful comments.17
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