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sources can vary greatly depending on the speci�c data sources accessed and the current state ofthe network at the time that such access is attempted.The query processing problems resulting from heterogeneity have been the subject of muchattention in recent years (e.g., [SAD+95, BE96, TRV96]). In contrast, the impact of unpredictableresponse time on wide-area query processing has received relatively little attention. The workpresented here is an initial exploration into addressing problems of response-time variability forwide-area data access.1.1 Response Time VariabilityHigh variability makes e�cient query processing di�cult because query execution plans are typicallygenerated statically, based on a set of assumptions about the costs of performing various operationsand the costs of obtaining data (i.e., disk and/or network accesses). The causes of high-variabilityare typically failures and congestion, which are inherently runtime issues; they cannot be reliablypredicted at query optimization time or even at query start-up time. As a result, the execution ofa statically optimized query plan is likely to be sub-optimal in the presence of unexpected responsetime problems. In the worst case, a query execution may be blocked for an arbitrarily long time ifneeded data fail to arrive from remote data sources.The di�erent types of response time problems that can be experienced in a loosely-coupled,wide-area environment can be categorized as follows:� Initial Delay - There is an unexpected delay in the arrival of the �rst tuple from a particularremote source. This type of delay typically appears when there is di�culty connecting to aremote source, due to a failure or congestion at that source or along the path between thesource and the destination.� Slow Delivery - Data is arriving at a regular rate, but this rate is much slower than theexpected rate. This problem can be the result, for example, of network congestion, resourcecontention at the source, or because a di�erent (slower) communication path is being used(e.g., due to a failure).� Bursty Arrival - Data is arriving at an unpredictable rate, typically with bursts of datafollowed by long periods of no arrivals. This problem can arise from uctuating resourcedemands and the lack of a global scheduling mechanism in the wide-area environment.Because these problems can arise unpredictably at runtime, they cannot be e�ectively addressedby static query optimization techniques. As a result, we have been investigating a class of dynamic,runtime query plan modi�cation techniques that we call query plan scrambling. In this approach,a query is initially executed according to the plan and associated schedule generated by the query2



optimizer. If however, a signi�cant unexpected problem arises during the execution, then queryplan scrambling is invoked to modify the execution on-the-y, so that progress to be made on otherparts of the plan. In other words, rather than simply stalling for slowly arriving data, query planscrambling attempts to hide unexpected delays by performing other useful work.There are three possible ways that query plan scrambling can be used to help mask response timeproblems. First, scrambling allows useful work to be done in the hope that the cause of the problemis resolved in the meantime. This approach is useful for all three classes of problems described above.Second, if data are arriving, but at a rate that hampers query processing performance (e.g., in theSlow Delivery or Bursty Arrival cases), then scrambling allows useful work to be performed whilethe problematic data are obtained in a background fashion. Finally, in cases where data are simplynot arriving, or are arriving far too slowly, then scrambling can be used to produce partial resultsthat can then be returned to users and/or used in query processing at a later time [TRV96].1.2 Tolerating Initial DelaysIn this work, we present an initial approach to query plan scrambling that speci�cally addressesthe problem of Initial Delay (i.e., delay in receiving the initial requested tuples from a remote datasource). We describe and analyze a query plan scrambling algorithm that follows the �rst approachoutlined above; namely, other useful work is performed in the hope that the problem will eventuallybe resolved, and the requested data will arrive at or near the expected rate from then on.In order to allow us to clearly de�ne the algorithm and to study its performance, this workassumes an execution environment with several properties. These are:� Our algorithm addresses only response time delays in receiving the initial requested tuplesfrom remote data sources. Once the initial delay is over, tuples are assumed to arrive at ornear the originally expected rate. As stated previously, this type of delay models problemsin connecting to remote data sources, as is often experienced in the Internet.� We focus on query processing using a data-shipping or hybrid-shipping approach [FJK96],where data is collected from remote sources and integrated at the query source. That is, onlyquery processing that is performed at the query source is subject to scrambling. This approachis typical of mediated database systems that integrate data from distributed, heterogeneoussources, e.g., [TRV96].� Query execution is scheduled using an iterator model [Gra93]. In this model every run-timeoperator supports an open() call and a get-next() call. Query execution starts by calling open()on the top most operator of the query execution plan and proceeds by iteratively calling get-next() on the top most operator. These calls are propagated down the tree; each time an3



operator needs to consume data, it calls get-next() on its child (or children) operator(s). Theiterator model imposes a schedule on the operators in the query plan.Query plan scrambling is related to approaches for dynamic and/or parametric query optimiza-tion, and in contingency plan generation for real-time database systems. In Section 4 we outlinerelated work and compare and contrast our approach to the literature. In short, our work has thefollowing characteristics:� It explicitly accounts for variations in response time of a source.� It exploits, where possible, decisions made by the static query optimizer.� It improves the response time of a broad range of plans and run-time scenarios.� It imposes no performance overhead in the absence of unexpected delays.Our work requires signi�cant changes to the run-time system of a distributed heterogeneousdatabase to allow for dynamic modi�cation of query plans and the introduction of new operators.We believe these challenges are a fruitful area of future research.The paper is organized as follows. Section 2 describes the algorithm and gives an extendedexample. Section 3 presents results from a simulation study that demonstrate the properties of thealgorithm. Section 4 describes related work. Section 5 concludes with a summary of the resultsand a discussion of future work.2 Scrambling Query PlansThis section describes our algorithm for scrambling queries to cope with initial delays in obtainingdata from remote data sources. The algorithm consists of two phases | one that changes theexecution order of operations in order to avoid idling, and one that synthesizes new operationsto execute in the absence of other work to perform. We �rst provide a brief overview of thealgorithm and then describe the two phases in detail using a running example. The algorithm isthen summarized at the end of the section.2.1 Algorithm OverviewFigure 1 shows an operator tree for a complex query plan. At the leaves of the tree are base relations.These are assumed to be stored at remote sites. The nodes of the tree are binary operators (i.e.,joins) that are executed at the query source site.11Unary operators, such as selections, sorting, and partitioning are not shown in the �gure.4



As discussed previously, we describe the scrambling algorithm in the context of an iterator-basedexecution model. This model imposes a schedule on the operators of a query. In the �gure, thejoins are numbered according to the order in which they would be completed by an iterator-basedscheduler. Typically, the plan for such a complicated query would be generated by a static queryoptimizer according to its cost model, statistics, and objective functions. Thus, the ordering of theoperations in the initial plan is in some sense a \good" ordering, and should be preserved whereverpossible.
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5 6Figure 1: Initial Query TreeThe schedule implied by the tree in Figure 1 would begin by materializing the left subtree of theroot node. Assuming that hash joins are used and that there is su�cient memory to hold the hashtables (so no partitioning is necessary), this materialization would consist of the following steps:1. Scan relation A and build hash-table HA;2. In a pipelined fashion, probe HA with tuples of B and build a hash-table containing the resultof A1B (HAB);3. Scan C and build hash-table HC ;4. Scan D and build hash-table HD;5. In a pipelined fashion, probe HD, HC and HAB with tuples of E and build a hash-tablecontaining the result of (A1B)1(C1D1E).The execution thus begins by requesting tuples of relation A from a remote site. If there is adelay in accessing that site, (say, due to that site being temporarily down), then the scan of A (i.e.,step 1) is blocked until the site recovers. Under a traditional iterator-based scheduling discipline,this delay of A would result in the entire execution of the query being blocked, pending the recoveryof the remote site.Given that unexpected delays are highly probable in a wide-area environment, such sensitivityto delays is likely to result in unacceptable performance. Our scrambling algorithm addresses thisproblem by attempting to hide such delays by making progress on other parts of the query untilthe problem is resolved. The scrambling algorithm is invoked once a delayed relation is detected(e.g., via a timeout mechanism). The algorithm is iterative; during each iteration it selects part of5



the plan to execute and materializes the corresponding temporary results to be used later in theexecution.The scrambling algorithm executes in one of two phases. During Phase 1, each iteration modi�esthe schedule in order to execute operators that are not dependent on any data that is known to bedelayed. For example, in the query of Figure 1, Phase 1 might result in materializing the join ofrelations C, D and E while waiting for the arrival of A. During Phase 2, each iteration synthesizesnew operators (joins for example) in order to make further progress. In our example, a Phase 2iteration might choose to join relation B with the result of C1D1E as computed previously.At the end of each iteration the algorithm checks to see if any delayed sources have begunto respond, and if so, it stops iterating and returns to normal scheduling of operators, possiblyre-invoking scrambling if additional delayed relations are later detected. If, however, no delayeddata has arrived during an iteration, then the algorithm iterates again. The algorithm moves fromPhase 1 to Phase 2 when it fails to �nd an existing operator that is not dependent on a delayedrelation. If, while in Phase 2, the algorithm is unable to create any new operators, then scramblingterminates and the query simply waits for the delayed data to arrive. In the following sections wedescribe, in detail, the two phases of scrambling and their interactions.2.2 Phase 1: Materializing Maximal Runnable Subtrees2.2.1 De�nitions of Blocked and Runnable OperatorsA query is represented by a tree of query operators that have producer-consumer relationships.Given an operator, its ancestor operator is the operator that consumes its tuples. Conversely, itsdescendant operators are the ones that produce the tuples it consumes. The producer-consumerrelationships create execution dependencies between operators, as one operator can not consumetuples before these tuples have been produced. For example, a select operator can not consumetuples if the corresponding base relation is not available. In that case, the select operator is blocked.If the select can not consume any tuple, it can not produce any tuple. Consequently, the consumerof the select is also blocked. By transitivity, all the ancestors of the unavailable relation are blocked.When the system discovers that a relation is unavailable, query plan scrambling is invoked.Scrambling starts by splitting the operators of the query tree into two disjoint queues: a queue ofblocked operators and a queue of runnable operators. These queues are de�ned as follows:De�nition 2.1 Queue of Blocked Operators: Given a query tree, the queue ofblocked operators contains all the ancestors of each unavailable relation. 2De�nition 2.2 Queue of Runnable Operators: Given a query tree and a queueof blocked operators, the queue of runnable operators contains all the operators thatare not in the queue of blocked operators. 26



Operators are inserted in the runnable and blocked queues according to the order in which theywould be executed by an iterator-based scheduler. This order corresponds to a depth-�rst traversalof the query tree.2.2.2 De�nition of a Maximal Runnable SubtreeEach iteration during Phase 1 of query plan scrambling analyzes the runnable queue in order to�nd a maximal runnable subtree to materialize. A maximal runnable subtree is de�ned as follows:De�nition 2.3 Maximal Runnable Subtree: Given the query tree and thequeues of blocked and runnable operators, a runnable subtree is a subtree in whichall the operators are runnable. A runnable subtree is maximal if its root is the �rstrunnable descendant of a blocked operator. 2None of the operators belonging to a maximal runnable subtree depend on data that is knownto be delayed.2 Each iteration initiates the materialization of the �rst maximal runnable subtreefound. This materialization completes only if no relations used by this subtree are discovered tobe unavailable during the execution. When the execution of a runnable subtree is �nished andits result materialized, the algorithm removes all the operators belonging to that subtree from therunnable queue. It then checks if missing data have begun to arrive. If the missing data are stillunavailable, the �rst phase of query plan scrambling initiates another iteration. The new iterationanalyzes (again) the runnable queue to �nd the next maximal runnable subtree to materialize.2.2.3 Runnable Subtrees and Data UnavailabilityIt is possible that during the execution of a runnable subtree, one of the participating base relationsis discovered to be unavailable. This is because a maximal runnable subtree is de�ned with respectto the current contents of the blocked and runnable queues. The runnable queue is only a guessabout the real availability of relations. When the algorithm inserts operators in the runnablequeue, it does not know if their associated relations are actually available or unavailable. This willbe discovered only when the corresponding relations are requested.In the case where a relation is discovered to be unavailable during the execution of a runnablesubtree, the current iteration �nishes and the algorithm updates the runnable and blocked queues.All the ancestors of the unavailable relation are extracted from the runnable queue and inserted inthe blocked queue. Once the queues are updated, the scrambling of the query plan initiates a newPhase 1 iteration in order to materialize another maximal runnable subtree.2Note that in the remainder of this paper, we use \maximal runnable subtree" and \runnable subtree" inter-changeably, except where explicitly noted. 7



2.2.4 Termination of the First PhaseAt the end of each iteration, the algorithm checks for data arrival. If it is discovered that anunavailable relation has begun to arrive, the algorithm updates the blocked and runnable queues.The ancestors of the relation that is unblocked are extracted from the blocked queue and insertedin the runnable queue. Note that any ancestors of the unblocked relation that also depend onother blocked relations are not extracted from the queue. The �rst phase then terminates and theexecution of the query returns to normal scheduling of operators. Note that if no further relationsare blocked, the execution of the query will proceed until the �nal result is returned to the user.The scrambling algorithm will be re-invoked, however, if the query execution blocks again.Phase 1 also terminates if the runnable queue is empty. In this case, the �rst phase can notperform any other iteration because all remaining operators are blocked. When this happens, queryplan scrambling switches to its second phase. The purpose of the second phase is to process theavailable relations when all the operators of the query tree are blocked. We present the second phaseof query plan scrambling in Section 2.3. First, however, we present an example that illustrates allthe facets of Phase 1 described above.2.2.5 A Running ExampleThis example reuses the complex query tree presented at the beginning of Section 2. To illustratethe behavior of the �rst phase, we follow the scenario given below:1. When the execution of the query starts, relation A is discovered to be unavailable.2. During the third iteration, relation G is discovered to be unavailable.3. The tuples of A show up at the query execution site at the end of the fourth iteration.4. At the time the �rst phase terminates, no tuples of G have been received.
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BlockedFigure 2: Blocked and Runnable Operators with Relation A UnavailableThe execution of the query begins by requesting tuples of relation A from a remote site. Fol-lowing the above scenario, we assume relation A is unavailable. In Figure 2, the thick solid lineindicates that relation A is unavailable. The operators that are blocked by the delay of A aredepicted using a dashed line. 8



The unavailability of A invokes the �rst phase of query scrambling which updates the blockedand runnable queues and initiates the �rst iteration. This iteration analyses the runnable queueand �nds that the �rst3 maximal runnable subtree consists of a unary operator to partition relationB. Once the operator is materialized (i.e., B is partitioned), the algorithm checks for the arrival ofthe tuples of A. Following the above scenario, we assume that the tuples of A are still unavailable,so another iteration is initiated. This second iteration �nds the next maximal runnable subtree tobe the one rooted at operator 3. Note the subtree rooted at operator 2 is not maximal since itsconsumer (operator 3) is not blocked.Figure 3 shows the materialization of the runnable subtrees found by the �rst two iterationsof query scrambling. Part (a) of this �gure shows the e�ect of materializing of the �rst runnablesubtree: the base relation B is now partitioned into B'. It also shows the second runnable subtree(indicated by the shaded grey area). Figure 3(b) shows the query tree after the materialization ofthis second runnable subtree. The materialized result is called X1.
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X1Figure 3: Query Tree Before and After the Execution of the Runnable Subtree Rooted at Op. 3Once X1 is materialized, another iteration starts since, in this example, relation A is stillunavailable. The third iteration �nds the next runnable subtree which is the join F, G, H and I,rooted at operator 7. The execution of this runnable subtree starts by building the left input ofoperator 5 (partitioning F into F'). It then requests relation G in order to probe the tuples of F. Inthis scenario, however, G is discovered to be unavailable, triggering the update of the blocked andrunnable queues. Figure 4(a) shows that operators 5 and 7 are newly blocked operators (operator8 was already blocked due to the unavailability of A). Once the queues of operators are updated,another iteration of scrambling is initiated to run the next runnable subtree, i.e., the one rooted atoperator 6 (indicated by the shaded grey area in the �gure). The result of this subtree executionis called X2.Figure 5 illustrates the next step in the scenario, i.e., it illustrates the case where just after X2is materialized it is discovered that the tuples of relation A have begun to arrive. In this case, the3As stated earlier, operators are inserted into the queues with respect to their execution order.9
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X2Figure 5: Relation A is AvailableAfter X3 is materialized, the query is blocked so the �rst phase of query scrambling is re-invoked. The �rst phase computes the new contents of the runnable and blocked queue. Once thisdone, it discovers that the runnable queue is empty since all remaining operators are ancestors ofG, which is not available. As such, no more iterations can be initiated. The �rst phase terminatesand the scrambling of the query plan enters Phase 2. We describe Phase 2 of the algorithm in thenext section.2.3 Phase 2: Creating New JoinsScrambling moves into its second phase when the runnable queue is empty but the blocked queueis not. The goal of the second phase is to create new operators to be executed. Speci�cally, thesecond phase creates joins between relations that were not directly joined in the original querytree, but whose consumers are blocked (i.e., in the blocked queue) due to the unavailability of someother data.In contrast to Phase 1 iterations, which simply adjust scheduling to allow runnable operators10



to execute, iterations during the second phase of scrambling actually create new joins. Because theoperations that are created during the second phase were not chosen by the query optimizer whenthe original query plan was generated, it is possible that these operations may entail a signi�cantamount of additional work. If the joins created and executed by the second phase are too expensive,query scrambling could result in a net degradation in performance. Thus, unlike Phase 1, wherethe potential overhead due to scrambling is low, Phase 2 has the potential to negate or even reversethe bene�ts of scrambling if care is not taken.One way to ensure that Phase 2 does not generate overly expensive joins is to involve the queryoptimizer in the choice of new joins to execute. While such involvement may be possible in certainarchitectures, the use of the optimizer complicates the scrambling algorithm and adds potentialoverhead. In this paper, therefore, we instead use the simple heuristic of avoiding Cartesian prod-ucts. In Section 3, we analyze the performance impact of varying the cost of created joins relativeto the cost of the joins in the original query plan.2.3.1 Creating New JoinsAt the start of the second phase, the scrambling algorithm constructs a graph G of possible joins.Each node in G corresponds to a relation, and each edge in G indicates that the two connected nodeshave common join attributes, and thus can be joined without causing a Cartesian product. Thereare two types of relations that may appear in G: 1) base relations from the original query that havenot yet been accessed (i.e., direct inputs of blocked binary operators); and 2) temporary resultsthat were materialized earlier in the scrambling process. Unavailable relations are not placed intoG. Once G is constructed, the second phase starts to iteratively create and execute new join oper-ators. Each iteration of the second phase performs the following steps:1. In G, �nd the two leftmost joinable (i.e., connected) relations i and j. The notion of leftmostis with respect to the order in the query plan, or equivalently, to the order of the consumeroperators of the relations in the blocked queue. If there are no joinable relations in G, thenterminate scrambling.2. Create a new join operator i 1 j.3. Attempt to materialize i 1 j. If either of i or j is found to be unavailable then remove theunavailable relations from G, stop the current iteration and begin a new iteration.44. If the materialization completes, update G by replacing i and j with the materialized resultof i 1 j. Update the runnable and blocked queues.4Note that blocking at this point is unlikely as most relations will be materialized results, and hence, stored atthe query source. 11



5. Test to see if any unavailable data has arrived. If so, then terminate scrambling, else begin anew iteration.Figure 6 demonstrates the behavior of Phase 2 by continuing the example of the previoussection. The �gure is divided into three parts. Part (a) shows the query tree at the end of Phase1. In this case, G would contain F', X2, and X3. Assume that, in G, relations F' and X2 aredirectly connected but relation X3 is not connected to either (i.e., assume it shares join attributesonly with the unavailable relation G). In this example, therefore, F' and X2 are the two leftmostjoinable relations; X3 is the leftmost relation, but it is not joinable.
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2.3.3 Physical Properties of JoinsThe preceding discussion focused on restructuring logical nodes of a query plan. The restructuringof physical plans, however, raises additional considerations. First, adding new join operators mayrequire the introduction of additional unary operators to process the inputs of the new join so thatthe join can be correctly processed. For example, a merge join operator requires that the tuples itconsumes are sorted, and thus may require that sort operators be applied to its inputs. Second,deleting operators, as was done in the preceeding example, may also require the addition of unaryoperators. For example, relations may need to be repartitioned in order to be placed as childrenof an existing hybrid hash node. Finally, changing the inputs of an existing join operator may alsorequire modi�cations | if the new inputs are su�ciently di�erent than the original inputs, thephysical join operators may have to be modi�ed. For example, an indexed nested loop join mighthave to be changed to a hash join if the inner relation is replaced by one that is not indexed on thejoin attribute.2.4 Summary and DiscussionOur query plan scrambling algorithm can be summarized as follows:� When a query becomes blocked (because relations are unavailable), the query plan scramblingis initiated. It �rst computes a queue of blocked operators and another queue of runnableoperators. The blocked operators are all the ancestors of the unavailable data.� The �rst phase then analyses the queue of runnable operators, picks a maximal runnablesubtree and materializes its result. This process is repeated until the queue of runnableoperators is empty. At this point, the system switches to the second phase.� The second phase then tries to create a new operator that joins two relations that are availableand joinable. This process is repeated until no more joinable relations can be found.� After each iteration of the algorithm, it checks to see if any unavailable data have arrived,and if so, control is returned to normal scheduling of operators, otherwise another iterationis performed.There are two additional issues regarding the algorithm that deserve mention, here. The �rstissue concerns the knowledge of the actual availability of relations. Instead of discovering, as thealgorithm does now, during the execution of the operations performed by each iteration that somesources are unavailable, it is possible to send some or all of the initial data requests to the datasources as soon as the �rst relation is discovered to be unavailable. Doing so would give thealgorithm immediate knowledge of the availability status of all the sources. Fortunately, using theiterator model, opening multiple data sources at once does not force the query execution site to13



consume all the tuples simultaneously | the iterator model will suspend the ow of tuples untilthey are consumed by their consumer operators.The second issue concerns the potential additional work of each phase. As described previously,the �rst phase materializes existing subtrees that have been optimized prior to runtime by thequery optimizer. During the second phase, however, we create new joins from scratch. In thispaper, the query optimizer is not involved in the choice of the relations to join. Instead, we use thesimple heuristic of avoiding Cartesian products. The advantage of this approach is its simplicity.The disadvantage, however, is the potential overhead caused by the possibly sub-optimal joins. Westudy the performance impact of varying costs of the created joins in the following section. Thisissue raises the possibility of integrating scrambling with an existing query optimizer. Such anintegration, is one aspect of our future work.3 PerformanceIn this section, we examine the main characteristics of the performance of the query scramblingalgorithm. The �rst set of experiments shows the typical performance of any query that is scram-bled. The second set of experiments studies the sensitivity of the second phase of query scramblingto the selectivity of the new joins it creates. We �rst describe the simulation environment used tostudy our algorithm.3.1 Simulation EnvironmentTo study the performance of the query scrambling algorithm, we extended an existing simula-tor [FJK96, DFJ+96] that models a heterogeneous, peer-to-peer database system such as SHORE [CDF+94].The simulator we used provides a detailed model of query processing costs in such a system. Here,we briey describe the simulator, focusing on the aspects that are pertinent to these experiments.More detailed descriptions of the simulator can be found in [FJK96, DFJ+96].Table 1 shows the main parameters for con�guring the simulator, and the settings used for thisstudy. Every site has a CPU whose speed is speci�ed by the Mips parameter, NumDisks disks,and a main-memory bu�er pool. For the current study, the simulator was con�gured to model aclient-server system consisting of a single client connected to seven servers. Each site, except thequery execution site, stores one base relation.In this study, the disk at the query execution site (i.e., client) is used to store temporaryresults. Disks are modeled using a detailed characterization that was adapted from the ZetaSimmodel [Bro92]. The disk model includes costs for physical accesses and also charges for softwareoperations implementing I/Os. The unit of disk I/O for the database and the client's disk cacheare pages of size DiskPageSize. The unit of transfer between sites are pages of size NetPageSize.14



Parameter Value DescriptionNumSites 8 number of sitesMips 30 CPU speed of a site (106 inst/sec)NumDisks 1 number of disks on a siteDiskPageSize 4096 size of one disk data page (bytes)NetBw 1 network bandwidth (Mbit/second)NetPageSize 8192 size of one network data page (bytes)Compare 4 instructions to apply a predicateHashInst 25 instructions to hash a tupleMove 2 instructions to copy 4 bytesClientMemSize Large/Small size of the memory at the clientTable 1: Simulator Model Parameters and Main SettingsThe network is modeled simply as a FIFO queue with a speci�ed bandwidth (NetBw); the detailsof a particular technology (i.e., Ethernet, ATM, etc.) are not modeled. The simulator also chargesCPU instructions for networking protocol operations. The CPU is modeled as a FIFO queue andthe simulator charges for all the functions performed by query operators like hashing, comparing,and moving tuples in memory.In this paper, the simulation is used primarily to demonstrate the properties of our scramblingalgorithm, rather than for a detailed analysis of the algorithm. As such, the speci�c settings usedin the simulator are less important than the way in which delay is either hidden or not hidden bythe algorithm. In the experiments, the various delays were generated by simply requesting tuplesfrom a \unavailable" source at the end of the various iterations of query plan scrambling. Thatis, rather than stochastically generating delays, we explicitly imposed a series of delays in order tostudy the behavior of the algorithm in a controlled manner. For example, to simulate the arrivalof blocked tuples during, say, the third iteration of the �rst phase, we scrambled the query 3 times,and then initiated the transfer of tuples from the \blocked" relation so that the �nal result couldbe computed and to be returned to the \user".3.2 A Query Tree for the ExperimentsFor all the experiments described in this section, we use the query tree represented in Figure 7. Weuse this query tree in order to show a case where the work done during the �rst and the secondphases of query scrambling is balanced.Each base relation has 10,000 tuples of 100 bytes each. We assume that the join graph is fullyconnected, that is, any relation can be joined with any relation. In the �rst set of experiment, westudy the performance of query plan scrambling in the case where all the joins in this query treeproduce the same number of tuple, i.e., 1,000 tuples. As such, 1,000 tuples are returned to theuser. In the second set of experiments, however, we study the case where the joins in the querytree have di�erent selectivities and thus produce results of various sizes.15
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the performance of the unscrambled query, that is, if the execution of the query is simply delayeduntil the tuples of relation A begin to arrive. The distance between these two lines, therefore isconstant, and is equal to the response time for the original (unscrambled) query plan, which is80.03 seconds in this case. In this experiment, the memory size of the query execution site is small.With this setting, the hash-tables for inner relations for joins can not entirely be built in memoryand partitioning is required.The middle line in Figure 8 shows the response time for the scrambled query plans that areexecuted for various delays of A. In this case, there are six possible scrambled plans that could begenerated. As stated in Sections 2.2 and 2.3, the scrambling algorithm is iterative. At the end ofeach iteration it checks to see if delayed data has begun to arrive, and if so, it stops scramblingand normal query execution is resumed. If, however, at the end of the iteration, the delayed datahas still not arrived, another iteration of the scrambling algorithm is initiated. The result of thisexecution model is the step shape that can be observed in Figure 8.The width of each step is equal to the duration of the operations that are performed by thecurrent iteration of the scrambling algorithm, and the height of the step is equal to the responsetime of the query if normal processing is resumed at the end of that iteration. For example, inthis experiment, the �rst scrambling iteration results in the retrieval and partitioning of relationB. This operation requires 12.23 seconds. If at the end of the iteration, tuples of relation A havebegun to arrive then no further scrambling is done and normal query execution resumes. Theresulting execution in this case, has a response time of 80.10 seconds. As a result, the �rst stepshown in Figure 8 has a width of 12.23 seconds and a height of 80.10 seconds. Note that in thiscase, scrambling is e�ective at hiding the delay of A; the response time of the scrambled query isnearly identical to that of original query with no delay of A.If no tuples of A have arrived at the end of the �rst iteration, then another iteration is performed.In this case, the second iteration retrieves, partitions, and joins relations C and D. As shown inFigure 8, this iteration requires an additional 26.38 seconds, and if A begins to arrive during thisiteration, then the resulting query plan has a total response time of 80.90 seconds. Thus, in thisexperiment, scrambling is able to hide delays of up to 38.61 seconds with a penalty of no more than0.80 seconds (i.e., 1%) of the response time of the original query with no delay. This correspondsto an absolute response time improvement of up to 32% compared to not scrambling.If, at the end of the second iteration, tuples of A have still failed to arrive, then the thirditeration is initiated. In this case however, there are no more runnable subtrees, so scramblingswitches to its second phase, which results in the creation of new joins (see Section 2.3). In thisthird iteration, the result of C1D is partitioned and joined with relation B. This iteration has awidth of only 2.01 seconds, because both inputs are already present, B is already partitioned, andthe result of C1D is fairly small. The response time of the resulting plan is 82.22 seconds, which17



again represents a response time improvement of up to 32% compared to not scrambling.Scrambled Performed by Total Response SavingsPlan # Iteration Delay Time1 Partition B 0{12.23 80.10 up to 13.18%2 X1 C1D 12.23{38.61 80.90 12.31{31.81%3 X2 B1X1 38.61{40.62 82.22 30.69{31.85%4 X3 X21E 40.62{50.32 82.51 31.61{36.70%5 X4 X31F 50.32{60.07 83.05 36.28{40.72%6 X5 X41G 60.07{69.79 83.52 40.38{44.21%Table 2: Delay Ranges and Response Times of Scrambled Query PlansThe remaining query plans exhibit similar behavior. Table 2 shows the the additional operationsand the overall performance for each of the possible scrambled plans. In this experiment, the largestrelative bene�t (approximately 44%) over not scrambling is obtained when the delay of A is 69.79seconds, which is the time required to complete all six iterations. After this point, there is nofurther work for query scrambling to do, so the scrambled plan must also wait for A to arrive. Ascan be seen in Figure 8, at the end of iteration six the response time of the scrambled plan increaseslinearly with the delay of A. The distance between the delay of A and the response time of thescrambled plan is the time that is required to complete the query once A arrives.Although it is not apparent in Figure 8, the �rst scrambled query is slightly slower than theunscrambled query plan when A is delayed for a very short amount of time. For a delay below 0.07seconds, the response time of the scrambled query is 80.10 seconds while it is 80.03 seconds forthe non-scrambled query. When joining A and B, as the unscrambled query does, B is partitionedduring the join, allowing one of the partitions of B to stay in memory. Partitioning B before joiningit with A, as the �rst scrambled query plan does, forces this partition to be written back to diskand to be read later during the join with A. When A is delayed by less than the time needed toperform these additional I/O, it is cheaper to stay idle waiting A during such a short time.3.4 Experiment 2: Sensitivity Analysis of the Second PhaseIn the previous experiment all the joins produced the same number of tuples, and as a result, allof the operations performed in the second phase were bene�cial. In this section, we examine thesensitivity of the second phase to changes in the selectivities of the alternative joins it creates.Varying selectivities changes the number of tuples produced by these joins which a�ects the widthand the height of each step.For our test query, the �rst join created in Phase 2 is the join of relation B with the resultof C1D (which was materialized during the �rst phase). In this set of experiments, we vary theselectivity of this new join to create a result of a variable size. The selectivity of this join isadjusted such that it produces from 1,000 tuples up to several thousand tuples. The other joins18



that phase two may create behave like functional joins and they simply carry all the tuples createdby (B1(C1D)) through the query tree. At the time these tuples are joined with A, the numberof tuples carried along the query tree returns to normality and drops down to 1,000. Varying theselectivity of the �rst join produced by the second phase is su�cient to generate a variable numberof tuples that are carried all along the tree by the other joins that Phase 2 may create. We believethis is representative of the potential overhead of created joins.The two next sections present the results of this sensitivity analysis for a small and then alarge memory case. When the memory is small, relations have to be partitioned before joined asmentioned in the previous experiment. This partitioning adds to the potential cost of scrambledplans because it results in additional I/O that would not have been present in the unscrambledplan. When the memory is large, however, hash-tables can be built entirely in memory so relationsdo not need to be partitioned. Thus with large memory, the potential overhead of scrambled plansis lessened.3.4.1 Small Memory CaseFigure 9 shows the response time for several scrambled query plans that di�er by the number oftuples created during the second phase as the delay for relation A increases. In this experiment,we study 3 di�erent selectivities for the �rst join created by the second phase of query scrambling.This delay is, as in the previous experiment, shown along the X-axis, and is also represented asthe lower grey line in the �gure. The higher grey line shows the response time of the unscrambledquery, which as before, increases linearly with the delay of A. The lines for the delay of A and forthe response time of the unscrambled query are exactly the same than the ones presented in theprevious experiments. As such, the distance between these two lines is constant and equal to 80.03seconds and this time, as before, includes the partitioning of the base relations.All the lines in the middle show the response time for the scrambled query plans that areexecuted for various delays of A and for various selectivities. Note all these scrambled query plansshare the exact same response times for the �rst two iterations performed during the �rst phase ofquery scrambling. These two �rst iterations corresponds exactly to the scrambled plans 1 and 2described in the previous experiment. At the end of the second iteration (38.61 seconds), however,if the tuples of A have still failed to arrive, a third iteration is initiated and the query scramblingenters its second phase which creates new joins.The �rst selectivity for this join is such that it produces a result of 1,000 tuples. The corre-sponding line is the lowest dotted line in the �gure. This line is identical to the one showed in theprevious experiment since all the joins were producing 1,000 tuples.With the second selectivity, the �rst join created by the second phase produces 10,000 tuples.If at the end of this iteration, the tuples of A have still not arrived, another iteration is initiated19
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Figure 9: Response Times of Scrambled and Non-Scrambled Queries(Small Memory, Varying Selectivity and Delay.)and this iteration has to process and to produce 10,000 tuples. The corresponding line in the �gureis the lowest dashed line. In this case, where 10 times more tuples have to be carried along thescrambled query plans, each step is higher (roughly 12 seconds) and wider since more tuples haveto be manipulated than in the case where only 1,000 tuples are created. Even with the additionaloverhead of these 10,000 tuples, however, the response times of the scrambled query plans are farbelow the response times of the unscrambled query with equivalent delay.With the third selectivity, this join creates a result of 50,000 tuples. The response time ofthe corresponding scrambled query plans are represented by the higher dashed line made of hugesteps (about 40 additional seconds per step). Note that only the response time of the two �rstiterations performed during the second phase are represented. The overhead of manipulating thislarge number of tuples (50 times the number of tuples planed in the original query tree) makesthe response time of the scrambled plan almost equal or even worse that the one of the originalunscrambled query including the delay for A. It is more costly to carry this large number of tuplesand to join them with A to execute the original but delayed query.This experiment shows that, depending on the number of tuples and the delay, the responsetime of second phase scrambled query plans may stay below the response time of the unscrambledquery (e.g., for 10,000 tuples), may alternate between below and above (e.g., for 50,000 tuples) ormay be completely above (for huge Cartesian products for example).20



The previous observation suggests that it may not be worthy to perform some joins during thissecond phase if they appear to be costly. It may be better, in certain cases, to stop the scramblingright after the end of the �rst phase, to never enter the second phase and just to wait until thetuples of A, in this case, arrive.The performance of a scrambled query plan that follows this behavior is depicted using a solidline on the Figure. This line goes diagonal right after the end of the �rst phase. Intuitively, itis not interesting to perform a second phase for scrambled queries whose total response time islocated above this line and below the line for the original query. Such costly joins consume a lot ofresources for a little improvement. On the other hand, scrambled queries whose response time isfar below this line e�ectively improve the response time since their overhead is small and the gainis large.3.4.2 Large Memory CaseFigure 10 shows the response time for several scrambled query varying the selectivity of the joinsof the second phase in the case where the memory is large enough to allow inner relations for joinsto be built entirely in main memory. With large memory, no partitioning of relations needs to bedone.
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Figure 10: Response Times of Scrambled and Non-Scrambled Queries(Large Memory, Varying Selectivity and Delay.)For the large memory case, the lines showing the increasing delay of A and the response time21



of the unscrambled query when this delay increases are separated by 65.03 seconds and the secondphase starts if A is delayed by more than 18.95 seconds. 4 di�erent selectivities are represented onthis Figure.In contrast to the previous experiment where 50 times more tuples were negating the bene�tsof scrambling, up to 80 times more tuples can be carried by the scrambled query plans before thebene�ts become close to zero. With a large memory, results computed by each iteration need onlybe materialized and can be consumed as is. In contrast, when the memory is small, materializedresults have to be partitioned before being consumed. With respect to a small memory case, notpartitioning the relation when the memory is large reduces the number of I/O and allows thescrambled plans to manipulate more tuples for the same overhead.3.5 DiscussionThe experiments presented in this section have shown that query scrambling can be an e�ectivetechnique that is able to improve the response time of queries when data are delayed. Theseimprovements come from the fact that each iteration of a scrambled query plan can hide thedelay of data. However, depending on the overhead due to materializations and created joins, theimprovement may be small or big.Scrambled plans constructed during the �rst phase are always pro�table. These scrambled plansfollow the directives of the query optimizer since each iteration of the �rst phase only materializesone existing subtree that has been optimized prior to run-time. The size of the result of eachmaterialized subtree is thus minimal, limiting the I/O overhead due to its materialization.Phase 2 is more risky. The algorithm must be careful in choosing the two relations to join inorder to avoid huge temporary results. During each join created by Phase 2, the system may tryto estimate the size of the �nal result during its computation. Sampling each created join andaborting it in case it appears to be too costly can be helpful not to negate or reverse the bene�tsof scrambling.With respect to the Figures 9 and 10 presented above, when many iterations can be doneduring the �rst phase, the point where the second phase starts shifts to the right. This increasesthe distance between the Phase 1 only diagonal line and the response time of the unscrambledquery. In turn, our algorithm can handle a wider range of bad selectivities for the joins it createsduring Phase 2.The improvement that scrambling can bring also depends on the amount of work done in theoriginal query. The bigger (i.e., the longer and the costly it is) the original query is, the moreimprovement our technique can bring since it will be able to hide larger delays by computing costlyoperations. The bigger the query is, the greater the distance between the delay and the responsetime of the query is, and the more iterations can �t in between without crossing the upper response22



time line.4 Related WorkIn this section we consider related work with respect to (a) the point in time that optimizationdecisions are made, i.e., compile time, query start-up time, or query run-time; (b) the variablesused for dynamic decisions, i.e. if the response time of a remote source is considered; (c) the natureof the dynamic optimization, i.e. if the entire query can be rewritten; and (d) the basis of theoptimization, i.e. cost-based or heuristic based.The Volcano optimizer [CG94, Gra93] does dynamic optimization for distributed query process-ing. During optimization, if a cost comparison returns incomparable, the choice for that part of thesearch space is encoded in a choose-plan operator. At query start up time, all incomparable the costcomparisons are re-evaluated. According to the result of the reevaluation, the choose-plan operatorselects a particular query execution plan. All decisions regarding query execution are made at querystart-up time. In contrast, we delay decisions until the middle of query execution. We believe thatour work is complimentary to the Volcano optimizer. That optimizer handles optimization untilquery start-up but can not adapt to changes once the evaluation of the query e�ectively started.Other work in dynamic query optimization either does not consider the distributed case [DMP93,OHMS92] or only optimizes access path selection and cannot reorder joins [HS93]. Thus, directconsiderations of problems with response times from remote sources are not accounted for. However,these articles are a rich source of optimizations which can be carried over into our work.The reference [Ant93] is interesting because multiple di�erent executions of the same logicaloperator occur at the same time. They compete for producing the best execution { when oneexecution of an operator is (probably) better, the other execution is terminated. This techniquehas a similar avor to our work. However, we do not run competing executions of operations, butsimply reschedule operations which are delayed.In reference [DSD95], the response time of queries is improved by reordering left-deep jointrees into bushy join trees. Several reordering algorithms are presented. This work assumes thatreordering is done entirely at compile time. This work cannot easily be extended to handle run-timereordering, since the reorderings are restricted to occur at certain locations in the join tree.The reference [ACPS96] tracks the costs of previous calls to remote sources (in addition tocaching the results) and can use this tracking of costs to estimate the cost of new calls. As inVolcano, this system optimizes a query both at query compile and query start-up time, but doesnot change the query plan during query run-time.The research prototype Mermaid [CBTY89] and its commercial successor InterViso [THMB95]are heterogeneous distributed databases which perform dynamic query optimization. Mermaid23



constructs its query plan entirely at run-time, thus each step in query optimization is based ondynamic information such as intermediate join result sizes and network performance. Mermaidneither takes advantage of a statically generated plan nor does it dynamically account for a sourcewhich does not respond at run-time.The Sage system [Kno95] is an AI planning system for query optimization for heterogeneousdistributed sources. This system interleaves execution and optimization and responds to unavailabledata sources. We believe that our algorithm can be readily included in this system.5 Conclusion and Plan for Future WorkQuery plan scrambling is a novel technique that refers to the design of exible distributed queryprocessing strategies that can dynamically adjust to changes in the run-time environment. Wepresented an algorithm which speci�cally deals with variability in performance of remote datasources and accounts for initial delays in their response times. The algorithm consists of twophases. The �rst phase changes the scheduling of existing operators produced as a result of queryoptimization. This �rst phase is iteratively applied until no more changes in the scheduling arepossible. At this point, the algorithm enters its second phase which creates new operators to furtherprocess available data. New operators are iteratively created until there is no further work for queryplan scrambling to do.The performance experiments demonstrated how the technique hides delays in receiving theinitial requested tuples from remote data sources. They showed that the overhead of each �rst phaseiteration is reasonable since the algorithm strictly follows the directives of the query optimizer. Theyalso showed that the overhead of each second phase iteration is potentially higher and examined thesensitivity the performance of scrambled plans to the selectivity of the joins created in the secondphase.This work represents an initial exploration into the development of exible systems that dynam-ically adapt to the changing properties of the environment. Among our future research plans, weare developing algorithms that can scramble under di�erent failure models to handle environmentswhere data arrives at a bursty rate or at a steady rate that is signi�cantly slower than expected.We are also studying the use of partial results which approximate the �nal results. We also plan tostudy the potential improvements of basing scrambling decisions on cost-based knowledge. Study-ing interaction between the run-time engine and the optimizer may suggest some architecturalchanges that we de�nitely will explore.Finally, Query Plan Scrambling is a promising approach to addressing many of the concernsaddressed by dynamic query optimization. Adapting the query plan at run-time to account forthe actual costs of operations could compensate the often inaccurate and unreliable estimates used24
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