
Interoperability of Data Parallel Runtime Libraries withMeta-Chaos �Guy Edjlali, Alan Sussman and Joel SaltzDepartment of Computer ScienceUniversity of MarylandCollege Park, MD 20742fedjlali,als,saltzg@cs.umd.eduAbstractThis paper describes a framework for providing the ability to use multiple specialized dataparallel libraries and/or languages within a single application. The ability to use multiplelibraries is required in many application areas, such as multidisciplinary complex physicalsimulations and remote sensing image database applications. An application can consist ofone program or multiple programs that use di�erent libraries to parallelize operations ondistributed data structures. The framework is embodied in a runtime library called Meta--Chaos that has been used to exchange data between data parallel programs written usingHigh Performance Fortran, the Chaos and Multiblock Parti libraries developed at Marylandfor handling various types of unstructured problems, and the runtime library for pC++,a data parallel version of C++ from Indiana University. Experimental results show thatMeta-Chaos is able to move data between libraries e�ciently, and that Meta-Chaos providese�ective support for complex applications.1 IntroductionIt is notoriously di�cult to achieve good performance from complex data parallel programsrunning on distributed memory parallel machines. Therefore a number of runtime librariestargeted at particular application domains have been developed over the last several years. Theselibraries often provide capabilities that do not exist in widely available data parallel languages,such as High Performance Fortran (HPF) [14]. Examples of such data parallel runtime librariesinclude AMR++ and P++ [17, 20] for adaptive grid applications, Grids [9] for structured andunstructured grid problems, Multiblock Parti [1] and GMD [11] for multigrid and multiblockcodes, LPARX [15] for codes using adaptive �nite di�erence methods, Chaos [7] and PILAR [16]for unstructured grid problems, GA [18] for computational chemistry and Aztec [12], PETSc [10],ScaLAPACK [5, 6] and Syisda [3] for linear algebra operations.Although this list is not exhaustive, it shows the amount of e�ort that has gone into develop-ing data parallel runtime libraries optimized for various types of applications. However, a major�This research was supported by NASA under grant NASA #NAG-1-1485 (ARPA Project Number 8874),by ARPA under grant #F19628-94-C-0057. The Maryland IBM SP2 and Digital AlphaServer used for theexperiments was provided by NSF CISE Institutional Infrastructure Award #CDA9401151 and grants from IBMand Digital Equipment Corporation. 1

weakness of all these libraries is the inability to communicate with any other of the libraries in ane�cient and user-friendly manner. Interoperability between such libraries is highly desirable forat least two reasons. First, interoperability allows a single application to use multiple librariesfor di�erent data structures within the same program. An example of this scenario would be acomputational uid dynamics (CFD) code that requires both a structured and unstructured gridto model the space around a surface with complex geometry. Di�erent libraries could be usedto e�ciently parallelize the computations on the two grids, but some mechanism is required totransfer data between the grids at their boundaries. We present such a mechanism in this paper.Second, interoperability would allow separate programs, parallelized using di�erent libraries, tocommunicate using either a client-server or peer-to-peer model. One example of a peer-to-peermodel is a complex physical simulation, such as shipboard �re modeling. Such an applicationwould require communication between the di�erent libraries that were used to parallelize thestructural mechanics code used to model the ship walls, the CFD code used to model airowthrough the room with the �re, and the ame code used to provide a detailed simulation of the�re. Again, the framework described in this paper provides the mechanisms needed to performthe communication.Many scenarios can be described for a client, running sequentially or in parallel, that coulduse the services of a parallel server, on the same or another (parallel) machine. Such serverscould provide functionality that is not available in the client (e.g a database, or computationalroutines), or provide additional computational power to make the client run signi�cantly faster.An example of this scenario is an image processing client that wants to access data from oneor more satellite image database parallel servers. The servers could return all the data fora query to the client, with the client computing an output image, or the servers might alsobe used as computational engines to produce a partial output image, with the combination ofpartial output images from the various servers occurring in the client. The framework describedin this paper also provides the mechanisms required for direct communication in client-serverapplications. We will return to a version of the client-server scenario in the experiments describein Section 5.4.This paper addresses the problem of allowing interoperability between various data parallelruntime libraries, and introduces a runtime library called Meta-Chaos that can be used to solvethe problem. The role of Meta-Chaos is to allow e�cient and transparent interoperability be-tween data structures distributed by a user (or compiler) using multiple data parallel librariesand/or data parallel languages. The multiple data parallel libraries can be used within a singleprogram, or can be used in multiple programs. In either case, Meta-Chaos is able to transferdata between the various data parallel libraries directly and e�ciently, as will be shown fromthe experimental results in Section 5.Meta-Chaos hides the distribution of data across the processors by one data parallel libraryfrom other such libraries. The key concept in Meta-Chaos for allowing the data distribution tobe hidden is virtual linearization. Linearization is the method by which Meta-Chaos organizesdata structures into a canonical form, so that any data parallel library that provides functions toorder the individual elements of a data structure (e.g. an array) can communicate with any otherdata parallel library that also provides the functions required by Meta-Chaos. The underlyingcommunication layer required by Meta-Chaos is a point-to-point message passing library, suchas MPI [24] or PVM [8], or a vendor-speci�c library such as MPL for the IBM SP2.The rest of the paper is organized as follows. Section 2 presents an example application thatrequires communication between two data parallel libraries in a single program, while Section 32

discusses several potential solutions to the problem of interoperating data parallel libraries.Section 4 discusses the concepts used both to implement the Meta-Chaos runtime library and toemploy Meta-Chaos in an application. Section 5 presents several experiments both to quantifythe overheads encountered in using Meta-Chaos and to describe the behavior of programs usingMeta-Chaos to structure their computations. We conclude in Section 6.2 A motivating example - interaction between a structuredand an unstructured mesh! Loop 0: timestep loopdo time=time_start,time_stop! Loop 1: sweep over a structured meshforall (i = 2:n1-1:1 , j = 2:n2-1:1)a(i,j) = a(i,j-1)+a(i-1,j)+a(i+1,j)+a(i,j+1)end forall! Loop 2: exchange boundary information! between the structured and unstructured meshforall (i = 1:Reg2IrregDim:1)x(Reg2Irreg_Irreg(i)) = a(Reg2Irreg_Reg1(i),Reg2Irreg_Reg2(i))end forall! Loop 3: sweep over an unstructured meshforall (i = 1:Nedges:1)y(ia(i)) = y(ia(i)) + (x(ia(i))+x(ib(i)))/4y(ib(i)) = y(ib(i)) + (x(ia(i))+x(ib(i)))/4end forall! Loop 4: exchange boundary information! between the unstructured and structured meshforall (i = 1:Reg2IrregDim:1)a(Reg2Irreg_Reg1(i),Reg2Irreg_Reg2(i)) = x(Reg2Irreg_Irreg(i))end forall! end doFigure 1: A program that uses both regularly and irregularly distributed dataIn computational uid dynamics (CFD) ow solvers, di�erent types of meshes may be usedto represent di�erent physical structures. For example, the space around an airplane body maybe modeled with a structured mesh, while the nose, wing and tail may be modeled with anunstructured mesh. The data parallel numerical solution techniques used for the ow �eldsemploy algorithms speci�cally designed for each type of mesh and often use runtime librarysupport optimized for a particular solution technique. To allow interactions between the di�erentmeshes at their shared boundaries, it is necessary for the di�erent parallel libraries that distributethe meshes to exchange data. However, such functionality is not easily achieved for arbitrarylibraries.The HPF-like pseudo-code in Figure 1 represents a simpli�ed version of a code that usestwo interacting meshes. Loops 1 and 3 in the code show sweeps through a structured and anunstructured mesh, respectively. These loops are similar in form to loops found in structured3

and unstructured CFD codes. Loops 2 and 4 in the �gure show the copies of data between thetwo meshes.The structured mesh is represented by array a, and is regularly distributed (e.g. by blocks ineach dimension) across the processors of the parallel machine. The node data in the unstructuredmesh is represented by arrays x and y, which are irregularly distributed across the processors,both with the same distribution. x and y are accessed through the indirection arrays ia and ib.ia and ib are regularly distributed across the processors, and represent the edges connecting thenodes in the unstructured mesh.The interface between the two meshes is de�ned by a mapping between elements of aand elements of x. The mapping is represented in Figure 1 by the arrays Reg2Irreg Irreg,Reg2Irreg Reg1 and Reg2Irreg Reg2. For index i of the mapping, Reg2Irreg Irreg(i) providesthe index of x that corresponds to indexing a with Reg2Irreg Reg1(i) in the �rst dimension andReg2Irreg Reg2(i) in the second dimension.The techniques presented in this paper can be used to describe the mapping de�ned by thevarious Reg2Irreg arrays in the example, and also to copy the data between the a and x arrays.This can be implemented as one data parallel program or can be implemented as two data-parallel programs interacting with one another. This last interaction can utilize a peer to peerinteraction model or a client-server model.3 Mechanisms to support interoperabilityThere are at least three potential solutions to provide a mechanism for allowing data parallellibraries to interoperate. The �rst approach is to identify the unique features provided byall existing data parallel libraries and implement those features in a single integrated runtimesupport library. Such an approach requires extensive redesign and implementation e�ort, butshould allow for a clean and e�cient integrated system. However, existing runtime libraries coveronly a subset of potential application domains, and it would be di�cult to reach a consensus onan exhaustive set of features to provide in an all-inclusive library. Another major problem withsuch an approach is extensibility.A second approach is to use a custom interface between each pair of data parallel librariesthat must communicate. This approach would allow a data copy between two libraries to beexpressed by a call to a speci�c function. However, if there are a large number of libraries thatmust interoperate, say n, this method requires someone to write n2 communication functions.So this approach also has the disadvantage of being di�cult to extend.The third approach is to de�ne a set of interface functions that every data parallel librarymust export, and build a so-called meta-library that uses those functions to allow all the librariesto interoperate. This approach is often called a framework-based solution, and is the one wehave chosen to implement in the Meta-Chaos runtime library. This approach gives the taskof providing the required interface functions to the data parallel library developer (or a thirdparty that wants to be able to exchange data with the library). The interface functions provideinformation that allows the meta-library to inquire about the location of data distributed bya given data parallel library. Providing such functions does not prevent a data parallel librarydeveloper from optimizing the library for domain-speci�c needs.To summarize, we have adopted the framework-based approach for several reasons:� It is very di�cult to de�ne an all-encompassing interface that supports all application4

domains e�ciently.� We expect that interactions between libraries will be relatively infrequent and restrictedto simple coarse-grained operations, such as copying a large section of an array distributedby one library to a section of an array distributed by another library. This encourages theuse of specialized and optimized libraries in the computation portions of an application,to provide the best possible performance.� This approach does not preclude the use of the custom interface method. Whenever acustom interface function is not available for two libraries, the framework-based approachcan be used to perform the communication.� Adding a new data parallel library to interoperate with all existing libraries is relativelysimple, since the code for no other library must be modi�ed. All that is required isto provide the interface functions for the new library. Therefore this approach is easilyextensible.4 Meta-Chaos
Meta−Chaos

LibX

API

Program P1

A distributed using LibX
...
...
call LibX.Fct(A)
...
...
A1=some elements of A
B1=some elements of B
MC_Copy(B1,A1)
...
...
call LibY.Fct(B)
...
...
end

LibX

APIFigure 2: Meta-Chaos for communi-cating between two libraries withinthe same program
Program P1

A distributed using LibX
...
...
call LibX.Fct(A)
...
...
A1=some elements of A
MC_Send(A1)

Program P2

B distributed using LibY

B1=some elements of B
MC_Recv(B)
...
...
call LibY.Fct(B)
...
...
end

LibX

API

API

LibY

Meta−ChaosFigure 3: Meta-Chaos for communicating between li-braries in two di�erent programsThis section is divided into three parts. We �rst describe in detail how Meta-Chaos works,concentrating on the concept of a virtual linearization that completely describes the mappingbetween the source and destination data structures. We then discuss the Meta-Chaos libraryinterface from the viewpoint of a user who wants to use multiple data parallel libraries througheither a compiler or in a hand parallelized application, and �nally provide a short example ofusing Meta-Chaos to copy data between two data parallel programs written in HPF.4.1 Meta Chaos Mechanism OverviewFigures 2 and 3 provide a high-level view of interoperability between two data parallel librariesusing Meta-Chaos, for two di�erent scenarios. Suppose we have programs written using twodi�erent data parallel libraries named libX and libY, and that data structure A is distributed5

by libX and data structure B is distributed by libY. Then the scenario presented in Figure 2consists of copying multiple elements of A into the same number of elements of B, with both Aand B belonging to the same data parallel program. On the other hand, the scenario presentedin Figure 3 copies elements of A into elements of B, but A and B belong to di�erent programs.In either scenario, Meta-Chaos is the glue that binds the two libraries, and performs the copy.The two examples show the main steps needed to copy data distributed using one library todata distributed using another library. More concretely, these steps are:1. Specify the elements to be copied (sent) from the �rst data structure, distributed by libX.2. Specify the elements which will copied (received) into the second data structure, distributedby libY.3. Specify the correspondence (mapping) between the elements to be sent and the elementsto be received.4. Build a communication schedule, by computing the locations (processors and local ad-dresses) of the elements in the two distributed data structures.5. Perform the communication using the schedule produced in step 4.The goal of Meta-Chaos is to allow easy data parallel library interoperability. Meta-Chaosprovides functions that support each of the 5 steps just described. In the following sections,we describe the mechanisms used by Meta-Chaos to specify the data elements involved in thecommunication (steps 1 and 2), the virtual linearization (step 3), and the schedule computation(step 4). Step 5 uses the schedule computed by step 4 to perform data copy, and uses system-speci�c transport routines (e.g. send and receive on a distributed memory parallel machine).4.1.1 Data speci�cationWe de�ne a Region as a compact way to describe a group of elements in global terms for a givenlibrary. A Region is an instantiation of a Region type, which must be de�ned by each dataparallel library.For example, High Performance Fortran (HPF) [14] and Multiblock Parti [1, 25] utilize ar-rays as their main distributed data structure, therefore the Region type for them is a regularlydistributed array section. Chaos [7, 13, 23] employs irregularly accessed arrays as its maindistributed data structure, either through irregular data distributions or accesses through indi-rection arrays. For Chaos a Region type would be a set of global array indices.A Region type is dependent on the requirements of the data parallel library. The librarybuilder must provide a Region constructor to create regions and a destructor to destroy theRegions speci�ed for that library. The library builder also implicitly de�nes a linearization of aRegion, as we will discuss further in Section 4.1.2. Depending on the needs of the data parallellibrary, Regions are allowed to consist of collections of arbitrarily complex objects. However,throughout this paper, we will concentrate on Regions consisting of arrays of objects of basic,language-de�ned types (e.g. integer, real, etc.).Regions are gathered into an ordered group called a SetOfRegions. A mapping betweensource and destination data structures therefore speci�es a SetOfRegions for both the sourceand the destination.Figure 4 shows an array A. For this example, a Region for the array is a regular section. TwoRegions, r1A and r2A are illustrated. Together they de�ne a SetOfRegions SA.6

A = 0BBBBBBBB@ a11 a12 a13 a14 a15 a16 a17 a18 a19a21 a22 a23 a24 a25 a26 a27 a28 a29a31 a32 a33 a34 a35 a36 a37 a38 a39a41 a42 a43 a44 a45 a46 a47 a48 a49a51 a52 a53 a54 a55 a56 a57 a58 a59a61 a62 a63 a64 a65 a66 a67 a68 a69a71 a72 a73 a74 a75 a76 a77 a78 a79 1CCCCCCCCAr1A = 0@ a25 a26 a27a35 a36 a37a45 a46 a47 1A r2A = 0BB@ a32 a33a42 a43a52 a53a62 a63 1CCASA = r1A ; r2A = 0@ a25 a26 a27a35 a36 a37a45 a46 a47 1A ;0BB@ a32 a33a42 a43a52 a53a62 a63 1CCAFigure 4: Regions and SetOfRegions for a distributed array A4.1.2 LinearizationLinearization is the method by which Meta-Chaos de�nes the mapping between the source ofa data transfer distributed by one data parallel library and the destination of the transferdistributed by another library. The source and destination data elements are each described bya SetOfRegions.One view of the linearization is as an abstract data structure that provides a total orderingfor the data elements in a SetOfRegions. For example, the linearization of a Region that is ownedby a single processor would be de�ned by the memory order of the region. More speci�cally,if the Region is an array section, and the array is laid out in row major order (as for C-stylearrays), then the linearization of the section is the row major ordering of the elements of theregular section. This can be extended to a data structure distributed across multiple processorsby viewing the data structure as existing in the memory of a single abstract processor, andproducing the linearization from the viewpoint of that memory.In the example in Figure 4, an array A and two Regions, r1A and r2A were shown. Thelinearizations for r1A and r2A are illustrated in Figure 5 by Lr1A and Lr2A , respectively.To extend the concept of a linearization to a SetOfRegions, we de�ne the linearization of aSetOfRegions as the linearization of the �rst Region in the set followed by the linearization ofthe remaining Regions.In Figure 4, we introduced a SetOfRegions SA that is the aggregation of the two Regions r1Aand r2A. In Figure 5, we represent the linearization of the SetOfRegions SA by LSA .We represent the operation of translating from the SetOfRegions SA of A, to its linearization,LSA , by `, and the inverse operation of translating from the linearization to the SetOfRegions7

Lr1A= a25 a26 a27 a35 a36 a37 a45 a46 a47Lr2A= a32 a32 a42 a42 a52 a52 a62 a62LSA= a25 a26 a27 a35 a36 a37 a45 a46 a47 a32 a33 a42 a43 � � �� � � a52 a53 a62 a63Figure 5: Linearization for Regions and SetOfRegionsas `�1: LSA = `(SA)(SA) = `�1(LSA)Then moving data from the SetOfRegions SA to the SetOfRegions SB can be viewed as athree-phase operation:1. LSA = `(SA)2. LSB = LSA3. (SB) = `�1(LSB)The only constraint on this three-phase operation is to have the same number of elementsin SA as in SB, in order to be able to de�ne the mapping from the source to the destinationlinearization (the second operation).We show in Figure 6 a 2-dimensional arrayB, with 3 Regions. The three Regions are gatheredinto a SetOfRegions SB. LSB is the linearization of SB. Figure 7 shows the result of a data copyoperation applied to source SA and destination SB.The concept of the linearization has several important properties:� It is independent of the structure of the data, and thus very exible. Any data structurecan be transferred to any other data structure, so long as a mapping can be speci�ed.� It does not require the explicit speci�cation of the mapping between the source data anddestination data. The mapping is implicit in the separate linearizations of the source anddestination.� It is only an abstract, not a physical object. No space is allocated for the linearization ofa SetOfRegions in the memory of either the source or destination program. Meta-Chaostransfers data directly from the source SetOfRegions to the destination SetOfRegions, neverbuilding a data structure for the linearization.8

B = 0BBBBBBBBBB@ b11 b12 b13 b14 b15 b16 b17 b18b21 b22 b23 b24 b25 b26 b27 b28b31 b32 b33 b34 b35 b36 b37 b38b41 b42 b43 b44 b45 a46 b47 b48b51 b52 b53 b54 b55 b56 b57 b58b61 b62 b63 b64 b65 b66 b67 b68b71 b72 b73 b74 b75 b76 b77 b78b81 b82 b83 b84 b85 b86 b87 b88 1CCCCCCCCCCAr1B = � b21 b22 b23b31 b32 b33 � ; r2B = � b67 b77 b87 � ; r3B = 0BB@ b14 b15b24 b25b34 b35b44 b45 1CCASB = r1B; r2B; r3BLSB= b21 b22 b23 b31 b32 b33 b67 b77 b87 b14 b15 b24 b25 � � �� � � b34 b35 b44 b45Figure 6: Array B, regions r1B, r2B and r3B , setOfRegion SB , and the linearization of SB, LSB4.1.3 Communication schedule computationThe communication schedule describes the data motion to be performed. Meta-Chaos uses theSetOfRegions speci�ed by the user to determine the elements to be moved, and where to movethem. Meta-Chaos applies the (data parallel library-speci�c) linearization mechanism to thesource SetOfRegions and to the destination SetOfRegions. The linearization mechanism generatesa one-to-one mapping between each element of the source SetOfRegions and the destination Set-OfRegions. The high-level algorithm for computing the communication schedule is shown inFigure 8.The implementation of the schedule computation algorithm requires that a set of proceduresbe provided by both the source and destination data parallel libraries. These procedures areessentially a standard set of inquiry functions that allow Meta-Chaos to perform operations suchas: � dereferencing an object in a SetOfRegions to determine the owning processor and localaddress, and a position in the linearization,� manipulating the Regions de�ned by the library to build a linearization, and� packing the objects of a source Region into a communication bu�er, and unpacking objectsfrom a communication bu�er into a destination Region.A major concern in designing Meta-Chaos was to require that relatively few proceduresbe provided by the data parallel library implementor, to ease the burden of integrating a new9

B=MC Copy(..,A,SA,B,SB ,..)B = 0BBBBBBBBBB@ b11 b12 b13 a32 a33 b16 b17 b18a25 a26 a27 a42 a43 b26 b27 b28a35 a36 a37 a52 a53 b36 b37 b38b41 b42 b43 a62 a63 b46 b47 b48b51 b52 b53 b54 b55 b56 b57 b58b61 b62 b63 b64 b65 b66 a45 b68b71 b72 b73 b74 b75 b76 a46 b78b81 b82 b83 b84 b85 b86 a47 b88 1CCCCCCCCCCAFigure 7: Result of moving data from SA to SBFor each object i in the source SetOfRegions:1. Determine the corresponding object belonging to the destination SetOfRegions using thesource and destination linearizations.Call this object j.2. Determine the owner (processor and local address) of object i, Pi, using the inquiry func-tions provided by the source data parallel library.3. Determine the owner of j, Pj , using the inquiry functions provided by the destination dataparallel library.4. In the schedule for Pi, insert a send of object i to Pj5. In the schedule for Pj , insert a receive into object j from PiFigure 8: Meta-Chaos schedule computation algorithmlibrary into theMeta-Chaos framework. So far, implementations for several data parallel librarieshave been completed, including the High Performance Fortran runtime library, the MarylandCHAOS and Multiblock Parti libraries for various types of irregular computations, and thepC++ [4] runtime library, Tulip, from Indiana University. The pC++ implementation of therequired functions was performed by the pC++ group at Indiana in a few days, using MPI asthe underlying message passing layer, which shows that providing the required interface is nottoo onerous.4.1.4 Moving data using a communication scheduleMeta-Chaos uses the information in the communication schedule in each processor of the sourcedata parallel library to move data into contiguous communication bu�ers. Similarly, Meta--Chaos uses the information in the schedule to extract data from communication bu�ers intothe memory of each processor of the destination data parallel library. The communicationbu�ers are transferred between the source and destination processors using either the native10

message passing mechanism of the parallel machine (e.g. MPL on the IBM SP2), or using astandard message passing library on a network of workstations (e.g. PVM or MPI). Messagesare aggregated, so that at most one message is sent between each source and each destinationprocessor.A set of messages crafted by hand to move data between the source and the destinationdata parallel libraries would require exactly the same number of messages as the set created byMeta-Chaos. Moreover, the sizes of the messages generated by Meta-Chaos are also the sameas the hand-optimized code. The only di�erence between the two set of messages would be inthe ordering of the individual objects in the bu�ers. This ordering depends on the order ofthe bijection between the source objects and the destination objects used by Meta-Chaos (thelinearization), and the order chosen by the hand-crafted procedure.The overhead introduced by using Meta-Chaos instead of generating the message passing byhand is therefore only the computation of the communication schedule. Since the schedule canoften be computed once and reused for multiple data transfers (e.g. for an iterative computation),the cost of creating the schedule can be amortized.4.2 Meta-Chaos applications programmer interface (API)An applications programmer can use Meta-Chaos to copy objects from a source distributeddata structure managed by one data parallel library to a destination distributed data structuremanaged by another data parallel library. The distributions of the two data structures acrossthe processors of the parallel machine or network of workstations are maintained by the twodata parallel libraries.There are four steps that an applications programmer must perform to completely specify adata transfer using Meta-Chaos:1. specify the objects to copy from the source distributed data structure,2. specify the objects in the destination distributed data structure that will receive the objectssent from the source,3. compute the communication schedule to move data from the source to the destinationdistributed data structure, and4. use the communication schedule to move data from the source to the destination dis-tributed data structure.The �rst two steps require the user to de�ne the objects to be sent from the source distributeddata structure and the objects to be received into at the destination. This is done using Regions,as was described in Section 4.1.1. A Meta-Chaos routine is then used to gather multiple Regionsinto a SetOfRegions. The applications programmer must create two SetOfRegions, one for thesource and one for the destination distributed data structure.The third step is to compute the communication schedule, both to send data from thesource data structure and receive data into the destination. Meta-Chaos provides the routine tocompute the schedule for the user, given the source and destination SetOfRegions. The senderSetOfRegions is mapped to the receiver SetOfRegions using the linearization (as described inSection 4.1.2).The �nal step is to use the communication schedule to perform the data copy operation.Meta-Chaos provides functions for e�ciently moving data using the schedule.11

4.3 ExampleFigure 9 illustrates the sequence of calls required to allow two HPF programs to exchange datausing Meta-Chaos.program sourceinteger , dimension(200,100) :: B!hpf$ distribute B (block,block)integer, dimension(2)::Rleft,Rright! define the source array sectionRleft(1) =50 Rleft(2) =50Rright(1) =100 Rright(2) =100regionId=CreateRegion_HPF(2,Rleft(1),Rright(1))src_setOfRegionId=MC_NewSetOfRegion()MC_AddRegion2Set(RegionId,src_setOfRegionId)! compute the scheduleschedId=MC_ComputeSched(HPF,B, src_setOfRegionId)! move data from the source using! the schedule schedIdcall MC_DataMoveSend(schedId,B)
program destinationinteger , dimension(50,60) :: A!hpf$ distribute A (block,block)integer, dimension(2)::Rleft,Rright! define the destination array sectionRleft(1) =1 Rleft(2) =10Rright(1) =50 Rright(2) =60regionId=CreateRegion_HPF(2,Rleft(1),Rright(1))dest_setOfRegionId=MC_NewSetOfRegion()MC_AddRegion2Set(RegionId,dest_setOfRegionId)! compute the scheduleschedId=MC_ComputeSched(HPF,A,dest_setOfRegionId)! move data into the destination using! the schedule schedIdcall MC_DataMoveRecv(schedId,A)Figure 9: Example of HPF inter-program communication using Meta-ChaosTwo programs are shown in Figure 9, a source program and a destination program. Eachowns one HPF distributed array, and the programs use Meta-Chaos to copy an array subsectionfrom the source to the destination. The program performs the following operation, in Fortran90array syntax: A[1 : 50 : 1; 10 : 60 : 1] = B[50 : 100 : 1; 50 : 100 : 1]In the HPF programs, the user de�nes the source and destination array sections with theCreateRegion HPF interface function provided by the implementor of HPF runtime library inter-face functions. The Meta-Chaos functions MC NewSetOfRegion and MC AddRegion2Set are used tocreate the SetOfRegions for the source and destination. Building the communication scheduleis then performed by the call to the Meta-Chaos MC ComputeSched function, which is a collectiveoperation across the processors of both the source and destination program. The Meta-ChaosMC DataMove calls then perform the communication between the source and destination, usingthe schedule. This is also a collective operation across both the source and destination, withthe source program using a call for sending data and the destination program using a call forreceiving data.The communication schedule can be computed once and then reused, for example in aniterative computation. The communication schedule is also symmetric, meaning that it can beused to copy data either from the source program to the destination program, or to copy datafrom the destination to the source. The only change required would be to switch the calls toMC DataMoveSend and MC DataMoveRecv between the programs.12

5 Experimental ResultsWe present two classes of experiments to evaluate the feasibility of using Meta-Chaos for ef-�cient interaction between multiple data parallel libraries. The �rst class of experiments, inSections 5.1, 5.2 and 5.3, provide a set of application scenarios that quantify the overheadsassociated with using Meta-Chaos. We have designed these experiments to allow a comparisonwith the performance of highly optimized and specialized data parallel libraries, in this case theMaryland Chaos and Multiblock Parti libraries. The second class of experiments, in Section 5.4,is designed to show the bene�ts that Meta-Chaos can provide by allowing a sequential or parallelclient program to exploit the services of a parallel server program implemented in a data parallellanguage (HPF).The �rst set of experiments, in Sections 5.1 and 5.2, shows two data parallel libraries exchang-ing data between a structured mesh (distributed by Multiblock Parti [1]) and an unstructuredmesh (distributed by Chaos [7]), both within a single program and between two separate pro-grams. These experiment are designed to quantify the overhead of using Meta-Chaos, �rst bycomparing the cost of exchanging the data using Meta-Chaos vs. using a data parallel library(Chaos) to copy data within a single program (although Chaos is not optimized for movingregular meshes) and second by allowing the program to be split into two separate programs thatexchange data using Meta-Chaos. The next experiment, in Section 5.3, describes a single pro-gram that uses two regular meshes as its main data structures. The two meshes are distributedby the same data parallel library (Multiblock Parti), so that copying data between the meshescan also be performed using only Multiblock Parti. This experiment quanti�es the overhead ofusing Meta-Chaos compared to using the specialized and optimized Multiblock Parti library (inexactly the way the data parallel library was designed to be used). The last set of experiments,in Section 5.4, explores the interaction between two programs, one written in HPF and the otherusing Multiblock Parti. The two programs interact using a client/server programming model,with the HPF program acting as a computational server for the Multiblock Parti program. Theseexperiments show the feasibility of using Meta-Chaos, on a network or in a parallel machine, fordirect data transfers between a (sequential or parallel) client and data parallel programs runningas data or computational servers.5.1 Interaction between a structured and an unstructured mesh in the sameprogramThe program for this experiment iterates over a sweep through a regular mesh followed by asweep through an irregular mesh. Both meshes are de�ned in the same program, but the regularmesh is distributed by the Multiblock Parti library while the irregular mesh is distributed bythe Chaos library. The algorithm is the one shown in the example from Figure 1. The algorithmhas four phases: a sweep through a regular mesh, a remapping from the regular to the irregularmesh, a sweep through the irregular mesh and a remapping back from the irregular to the regularmesh. The four phases are placed inside a time-step loop, as they would be to use an iterativemethod for solving a partial di�erential equation.For each parallel loop in the algorithm, neither the loop bounds nor the communicationpattern change between iterations of the time-step loop. Therefore communication schedulescan be generated before the �rst iteration of the time-step loop and re-used for all time-steps. Toe�ectively parallelize the algorithm, each parallel loop is transformed into two loops, an inspector13

loop and an executor loop [22]. The inspector loop computes a communication schedule and isexecuted only once. The executor loop performs both the computation from the original loopand the communication required by the schedule, for every time-step. All three libraries (Meta-Chaos, Multiblock Parti and Chaos) separate the function of building a communication schedulefrom using one to copy data. Multiblock Parti and Chaos schedules are used to communicatewithin a distributed mesh and Meta-Chaos schedules are used to copy data between the meshes.The data distribution, partitioning of the computation and the communication generationrelated to computation within a mesh are performed by calls to Multiblock Parti and Chaosfunctions. Copying data between the regularly distributed and the irregularly distributed meshesrequires a speci�cation of the points to be redistributed in each mesh, and also a speci�cationof the mapping between the points in the meshes. Meta-Chaos is used to perform the copy, byspecifying the Multiblock Parti SetOfRegions from which the data will be sent and the Chaos Set-OfRegions that will receive the data. The mapping between the two SetOfRegions is provided bythe linearization of the Regions. Meta-Chaos generates a communication schedule by inquiringabout the distribution of data distributed by each of the two data parallel libraries. The scheduleis used multiple times, twice per time-step, to perform the data copies. All that must be doneis to select the proper source and destination of each the data copy, so that Meta-Chaos cangenerate message sends from the source mesh and receives into the destination mesh.It is also possible to compute the communication schedule by treating the regular meshgenerated by Multiblock Parti as an irregular mesh. To do that, a Chaos-style translation tablehas to be created to describe the pointwise data distribution. The translation table can beutilized by Chaos to directly compute a communication schedule for moving data between theregular and irregular meshes. However, the correspondence between the points in the regularmesh and the Chaos representation of the mesh must be stored explicitly.To demonstrate the e�ciency of using Meta-Chaos, we consider the following factors:� the time to compute the schedule to remap the data using Meta-Chaos compared to thetime required using Chaos functions, and� the time to remap data using the schedule generated by Meta-Chaos compared to the timerequired for the schedule generated by Chaos.These comparisons allow us to show the e�ciency of Meta-Chaos as compared to that of theChaos library. Since Chaos has been highly optimized for various types of irregular communica-tion, it should provide a good standard against which to compare the e�ciency of theMeta-Chaoslibrary.For this experiment, the parallel programming environment is a 16 processor IBM SP2. Thedata is a two-dimensional array of double precision oating point numbers of size 256x256,regularly distributed by blocks in both dimensions onto the processors, using the MultiblockParti data distribution routines. The irregular mesh contains 65536 points, stored into a Chaosarray irregularly distributed among the processors. The two data parallel libraries are bothcalled from the same program.The time for the Multiblock Parti and Chaos inspector and executor loops, for the sweepsthrough the regular and irregular meshes, have been totaled and are presented in Table 1.These times are provided to show the cost of performing the mesh sweeps, including intra-meshcommunication, for comparison to the cost of the inter-mesh communication. Table 2 showsthe time required to build the communication schedule for copying data between the regular14

Number of processors2 4 8 16inspector 1533 1340 667 684executor 91 66 65 53Table 1: Inspector time (total) and executor time (per iteration) for regular and irregular meshesin one program on IBM SP2, in msecand irregular meshes, using either Meta-Chaos or Chaos functions. The copy time is the timerequired to copy data using the schedule from the regular mesh to the irregular mesh and back,for one complete time-step.There are two di�erent ways to compute a schedule using Meta-Chaos; in Table 2 they arecalled cooperation and duplication. The terms refer to the way Meta-Chaos computes sched-ules. For cooperation, Meta-Chaos computes ownership of the source objects (processor, localaddress, etc.) in the processors running the source program using the functions provided by thesource data parallel library. That information is sent to the processors running the destinationprogram, which also compute the corresponding information for the destination objects usingthe destination parallel library functions and then compute the complete schedule for both thesource and destination processors. The computed schedule is then sent to the source processors.On the other hand, when Meta-Chaos computes schedules with duplication, the source and des-tination processors �rst exchange data descriptors for both source and destination distributeddata structures. This method assumes that, for two separate programs using Meta-Chaos toexchange data, both the source and destination processors know how to interpret the data de-scriptors (i.e. both sides have the code for both data parallel libraries). With both sets of datadescriptors available, the communication schedule can be computed separately in the processorsrunning the source and destination programs. The duplication method is not practical for somecases, such as when Meta-Chaos is used to communication between two separate programs andat least one of the programs does not have a compact data descriptor (e.g. a Chaos translationtable, which is the same size as the data array).The cost of the schedule computation for Chaos is dominated by the calls to the Chaosdereference function, which performs the translation from a global (sequential) array indexinto a processor number and local address. The Meta-Chaos implementation with cooperationalso uses the same Chaos dereference function, which is why the schedule computation costsfor the two methods are very similar. On the other hand, the Meta-Chaos implementationwith duplication must call the Chaos dereference function twice, which explains why the costof building the schedule with that method costs about twice as much as for the other twoimplementations.The major di�erence in the data copy using Chaos and using Meta-Chaos is that the Chaosimplementation internally requires an extra copy of the data and also an extra level of indirectdata access. These extra operations are necessary to implement the correspondence between15

Number of processors2 4 8 16schedule 1099 830 437 215Chaos copy 64 52 38 33Meta Chaos schedule 1509 832 436 215withcooperation copy 71 50 32 21Meta Chaos schedule 2768 1645 1025 745withduplication copy 70 50 33 21Table 2: Schedule build time (total) and data copy time (per iteration) for regular and irregularmeshes in one program on IBM SP2, in msecthe regular mesh representation of each array element for Multiblock Parti and the pointwiserepresentation of the same element for Chaos. These factors cause the Chaos data copy tousually cost somewhat more than the Meta-Chaos version. However, the actual communicationof the data, in terms of the messages generated by all 3 methods, is essentially identical: all themethods use the same total number of messages and the messages are the same size.From this experiment, we see several advantages of Meta-Chaos over trying to use a singledata parallel library in a manner for which it was not designed:� smaller memory requirements (Meta-Chaos does not have to explicitly maintain the map-ping between the regular mesh representation of an array element and the pointwise rep-resentation - that is done implicitly in the linearization),� ease of use (no extra memory allocation, no explicit mapping between objects in the twodata parallel libraries), and� the data copy performs better (no extra internal copy, no extra indirect access).5.2 Interaction between a structured and an unstructured mesh in two sep-arate programsThe applicability of Meta-Chaos is not limited to communicating between two data parallellibraries in the same program. Meta-Chaos can also be used to communicate between dataparallel libraries in two di�erent programs. Implicitly controlling the coupling between twodata parallel programs, using Meta-Chaos to perform the communication, has been explored inanother recent paper [21]. To show the performance of this feature, the same algorithm thatwas described in the previous section has been implemented in two separate programs. The �rst16

Number of processorsfor Pirreg2 4 8Number 2 1350 726 396ofprocessors 4 1377 738 403forPreg 8 1381 718 398Table 3: Time for Meta-Chaos schedulecomputation for 2 separate programs onIBM SP2, in msec
Number of processorsfor Pirreg2 4 8Number 2 63 61 66ofprocessors 4 55 33 36forPreg 8 61 32 21Table 4: Time for the Meta-Chaos datacopy for 2 separate programs on IBM SP2,in msec per iterationprogram, called Preg , performs the regular mesh computation using Multiblock Parti, while thesecond program, called Pirreg, performs the irregular mesh computation. A data copy betweenthe regular and irregular meshes must be divided into one operation for each program : a sendoperation from the source program and a receive operation into the destination program. In onetime-step, each program acts as the source for one data copy and the destination for anothercopy.The meshes are the same as in the previous example. The two programs were run on non-overlapping nodes of the 16 node IBM SP2, for up to 8 nodes for each program. The timingsfor building the communication schedule and copying the data for each time-step are presentedin Tables 3 and 4, respectively. The Meta-Chaos cooperation implementation for building theschedule is used for the timings, because the duplication method would require transferring aChaos translation table between the programs, which is very expensive.Since the Meta-Chaos schedule computation is done with the cooperation method, most ofthe work is performed in Pirreg . Therefore increasing the number of processors for Preg doesnot decrease the time for computing the schedules. However the time does decrease when usingmore processors for Pirreg, almost linearly for these experiments.First, the time for the data copy is symmetric from the viewpoint of either Preg or Pirreg .That is because in one iteration both programs are both the source and destination for thedata copy. Second, the performance of the data copy operation is limited by whichever programruns on fewer processors, say Pirreg. For a �xed number of processors for Pirreg, increasing thenumber of processors for Preg (for cases in which Preg runs on more processors than Pirreg) doesnot decrease the data copy time. One processor for Pirreg will send and receive the same totalamount of data, no matter how many processors are used by Preg . However, the number ofmessages sent and received will increase, because the communication is all-to-all. But addingmore processors to Preg increases the total bandwidth available for communication on the SP2.For this experiment, these two factors e�ectively canceled each other out, keeping the total timeconstant for increasing numbers of processors for Preg.5.3 Interaction between two structured meshes in the same programThe �rst set of experiments showed that Meta-Chaos is able to copy objects distributed bydi�erent data parallel libraries however they are distributed. However, the high cost of the Chaos17

Number of processors2 4 8 16schedule 19 11 10 9BlockParti copy 467 195 101 53Meta Chaos schedule 29 29 20 25withcooperation copy 396 198 102 52Meta Chaos schedule 24 20 14 13withduplication copy 396 198 102 52Table 5: Schedule build time (total) and data copy time (per iteration) for two structured meshesin one program on IBM SP2, in msecdereference function prevented us from getting a true estimate of the overhead generated whenusing Meta-Chaos. We will now try to evaluate the overhead of using Meta-Chaos with anotherexperiment.In this experiment, there is one program with two regular mesh data structures distributedby Multiblock Parti, and the program copies a section of one mesh to a section of the secondmesh once per time-step. This scenario would occur, for example, in a multiblock computationaluid dynamics code, where inter-block boundaries must be updated at every time-step [2]. Thecopy operation can be completely expressed using Multiblock Parti functions, for both buildingthe communication schedule and moving the data. This allows us to compare both the cost ofcomputing a schedule and moving the data with Meta-Chaos to the cost of computing the sameschedule and moving the data using only one data parallel library.Table 5 shows the times to compute a schedule using Multiblock Parti, and using Meta--Chaos with both the cooperation and duplication implementations. The table also shows thetime required to perform the data copy operation for all three methods. The programs was runon up to 16 processors on an IBM SP2. The two dimensional arrays of double precision oatingpoint numbers for the meshes are each 1000x1000, and each array is distributed by blocks ineach dimension across all the processors. Half of the data in each array was involved in the datacopy.As was explained for the previous experiment, the time to compute the schedule with Meta--Chaos using the cooperation method is around twice the time required when using MultiblockParti. Neither Multiblock Parti nor Meta-Chaos using the duplication method require any com-munication to build a communication schedule for this experiment. The overhead for buildingthe schedule using Meta-Chaos is a little higher than forMultiblock Parti, which is not surprisingsince Multiblock Parti is optimized to build schedules for moving regular sections. On the otherhand, the Meta-Chaos cooperation implementation requires some communication, since parts of18

1 2 4 8 12 16
0

100

200

300

400

500

600

700

T
im

e
(m

se
c)

1 2 4 8 12 16

Number of server processes

send/recv vector
HPF program
send matrix
compute scheduleFigure 10: Total time for a sequential client.The server runs on four nodes, with up to fourprocesses per node (at most one per proces-sor). 1 2 4 8 12 16

0

100

200

300

400

500

600

T
im

e
(m

se
c)

1 2 4 8 12 16

Number of server processes

send/recv vector
HPF program
send matrix
compute scheduleFigure 11: Total time for a two-process clientrunning on two separate nodes. The serverruns on four nodes.the schedule are not computed on the processors that use it, so those parts must be sent to theright processors. Even though the cost of the communication for this method is not large, itstill causes the schedule build to cost more than for the other two methods.Since the data copy operations forMultiblock Parti and for bothMeta-Chaos implementationsare exactly the same (they all e�ectively generate the same schedule), the times for the data copyare essentially the same for all three methods. The only di�erence is that Meta-Chaos handlesdata copies within a processor (when parts of the source and destination mesh are on the sameprocessor) more e�ciently than Multiblock Parti. Meta-Chaos performs a direct copy betweenthe storage for the source and destination, while Multiblock Parti requires an intermediate bu�er.This is only an issue for the two-processor case, because a large percentage of the data is copiedlocally, requiring no communication.These results are encouraging because they show that the more general Meta-Chaos libraryis able to generate a communication schedule with very little extra overhead compared to gen-erating the same schedule using a special-purpose data parallel library that has been optimizedto generate such schedules.5.4 Client/server program interactionThis experiment presents the results of client/server-style program interaction. The interestingpart of such an experiment for Meta-Chaos is that each of the client and server programs canbe run as either a sequential or a parallel program. Such a scenario is important because itshows that Meta-Chaos can be utilized to perform direct communication between a client and aserver program. The structure of the data on the client and the server is completely managed byMeta-Chaos, meaning that neither needs to know anything about the structure of the data (e.g.whether or how it is distributed across multiple processors) in the other program. From thispoint of view, Meta-Chaos provides an analogue of a Unix pipe for the programmer to transferdata between the client and server programs.To illustrate client/server interaction we have chosen a scenario in which the client uses the19

1 2 4 8 12 16
0

100

200

300

400

500

600

T
im

e
(m

se
c)

1 2 4 8 12 16

Number of server processes

send/recv vector
HPF program
send matrix
compute scheduleFigure 12: Total time for a four-process clientrunning on four separate nodes. The serverruns on four nodes. 1 2 4 8 12 16

0

1000

2000

3000

4000

5000

6000

T
im

e
(m

se
c)

1 2 4 8 12 16

Number of server processes

send/recv vector
HPF program
send matrix
compute scheduleFigure 13: Total time for twenty vectors fora one-process client. The server runs on fournodes.server as a high performance computation engine for performing a matrix operation. Speci�cally,the client may be either a sequential or a parallel program, and the server program performs amatrix-vector multiply, with the client sending one matrix to the server, then sending multiplevectors to the server (one at a time) and in return receiving multiple result vectors (also one ata time).Meta-Chaos is used to perform the copy operations for the matrix and the vectors, aftercomputing the required communication schedules. There are three schedules to compute: tocopy the matrix from the client to the server, to copy the operand vector from the client to theserver, and to copy the result vector from the server to the client. These schedules are computedonce and stored for reuse as needed.We have implemented this scenario on an eight-node Digital Alpha farm of four-processorSMPs, connected via OC-3 links to a Digital ATM Gigaswitch. The client program is a Fortranprogram and, if it is parallel, uses Multiblock Parti to distribute the matrix and vectors acrossthe processors. The client program builds the matrix and multiple vectors, then sends datato the server program and receives results. It does none of its own computation. The serverprogram is an HPF matrix-vector multiply program that distributes the matrix and vectoracross the processors, gets a matrix from the client, then repeatedly gets a vector from theclient, computes the result vector and returns it to the client. The client and server are run ondisjoint sets of nodes on the Alpha farm, with each program allocated its own set of up to fournodes (16 processors). Meta-Chaos and Multiblock Parti access the ATM switch via PVM, whileHPF uses a high performance Digital implementation of the UDP protocol.To simplify analysis of the results, the experiment has been performed using a 512x512matrix of double precision oating point numbers. Since the matrix is square and Meta-Chaosschedules are symmetric (i.e. they can be used to copy data either from the source program tothe destination program, or to copy data from the destination to the source), only two schedulesmust be computed: one schedule for copying the matrix from the client to the server, and oneschedule for copying a vector either way between the client and the server.Figures 10, 11 and 12 show the times to: 20

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of vectors

T
im

e
(m

se
c)

send/recv vector
HPF program
send matrix
compute scheduleFigure 14: Total time, broken down by vari-ous functions, for varying numbers of vectorsexchanged between the client and server. Theclient runs sequentially and the server is aneight-process program running on four nodes(using two processors per node).

2 4 8 12 16
0

1

2

3

4

5

6

7

8

B
re

ak
ev

en
 #

 o
f i

te
ra

tio
ns

2 4 8 12 16

Number of server processes

 1 client process
2 client processesFigure 15: Break-even number of exchangedvectors, for a sequential and a two-processclient, with one client process per node. Theserver runs on four nodes, with up to fourprocesses per node (one per processor)� compute the schedules to copy the matrix and the vectors between the client and theserver, measured on the client,� the time to send the matrix from the client to the server, measured on the client,� the time to perform the matrix-vector multiply on the server, measured on the server, and� the time to copy both the operand and the result vectors between the client and the server,computed by measuring in the client the total time to send the operand vector, computein the server, and receive the result vector and subtracting the time spent in the server(from the previous measurement).To smooth out variations in the timings, the programs were run 100 times, and the averagemeasured values were used. The three �gures are for varying numbers of client processes, up tofour (one per node). In all these experiments, the server is running on four nodes, with up tofour processes per node (one per processor).As is shown in the �gures, the best performance is obtained from a server running witheight processes. This is because that con�guration achieves the best balance between commu-nication and computation. The time to compute the communication schedules decreases withincreasing numbers of server processes, up to four server processes and increases thereafter, be-cause of contention for the ATM network among multiple server processes on the same node.In addition, building the schedules requires an all-to-all communication between the client andserver processes, and a relatively small amount of data is sent, so adding more server processesincreases the total number of messages required. The same all-to-all communication is requiredfor copying the matrix and the vectors between the client and server. All these factors lead tothe performance behavior shown, namely that, beyond eight server processes, the speedup fromrunning the matrix-vector multiply on more server processors is o�set by increased communica-21

tion overhead. In addition, the HPF server program does not speed up beyond eight processors,because of increased internal communication costs in performing the matrix-vector multiply.A more realistic determination of the bene�ts that can be achieved fromMeta-Chaos requiresperforming more computation in the server, to amortize the cost of exchanging data betweenthe client and server. Figures 13 and 14 show the results of performing many matrix-vectormultiplies using the same matrix. In that case, the communication schedules must only becomputed once and the matrix is only sent once from the client to the server. The �gures showthe time to compute the schedules to copy the matrix and vector between the client and theserver, to send the matrix to the server, to perform the matrix-vector multiply operation andto copy both the operand and the result vectors between the client and the server for varyingnumbers of vectors and server processes. Figure 13 shows these times for twenty matrix-vectormultiplies, when the client is a sequential program and the server runs on four nodes (up to 16processors). Figure 14 shows total time as a function of the number of matrix-vector multiplieswhen the client is a sequential program and the server is an eight-process program running onfour nodes (the best case for the HPF server). From the results shown in Figure 13, we cancompute that a speedup of 4.5 is achieved when the server is an eight-process program, relativeto performing the same computation in the client. Figure 14 emphasizes the point that, in manycases, much of the overhead from using a computation server (the time to compute schedulesand to send the matrix) can be amortized over multiple computations.Figure 15 provides another view of the results from Figures 10 and 11. The �gure showsthe number of vectors that must be multiplied by the same matrix to amortize the overheadof using a separate server program rather than computing the matrix-vector multiply withinthe client processes (e.g. with a library routine). For example, when the client is running ononly one processor, and when the server is running on 4 processes, the cost of computing theschedule and sending the matrix and vectors is amortized after about two matrix-vector multiplyoperations. This means that, for this con�guration of client and server processes, if more thantwo vectors will be multiplied by the same matrix, it is faster to use Meta-Chaos to copy databetween the client and server and perform the computation in the HPF server program, ratherthan do the computation in the client. No result is shown for the two-process client, two-processserver, because in that case the communication overhead would never be amortized. The bestbreak-even points shown are obtained for an eight-process server, which is not surprising sincethat con�guration provides the best overall server performance.From the results shown in Figure 15, we see that a sequential (or parallel) program couldbene�t greatly from using a parallel server to perform an expensive computation, using Meta--Chaos to do the communication between the programs. In this experiment, the server is notexecuting a particularly expensive computation, but performance gains are still possible afteronly a small number of matrix-vector multiply computations are done to amortize the cost ofsending the matrix.6 Conclusions and Future PlansIn this paper we have addressed the problem of interoperability between di�erent data parallellibraries. With the mechanisms we have described, multiple libraries can exchange data in thesame data parallel program or between separate data-parallel programs. We have introduced theconcept of a virtual linearization that de�nes a canonical form for distributed data structures.Using this canonical form, we can build software to copy data structures between data parallel22

libraries.We have implemented the interoperability mechanism in a library called Meta-Chaos and haveexplored the behavior of the approach for several programs on two di�erent parallel architec-tures. Our experimental results show that our framework-based approach can be implementede�ciently, with Meta-Chaos exhibiting low overheads, even compared to the communicationmechanisms used in two specialized and optimized data parallel libraries. In addition, we exhib-ited the exibility of the approach, and good performance, for applications using a client/serverexecution model.We plan to make Meta-Chaos publicly available and encourage developers of data parallellibraries to provide the interface functions needed forMeta-Chaos to access data distributed usingthose libraries. We plan to apply the framework-based approach to new application areas, andare currently studying ways to incorporate distributed data parallel objects into the CORBA [19]object model, so that data parallel programs could interoperate with distributed object systems.Meta-Chaos could be used as the underlying mechanism for such an extension.References[1] G. Agrawal, A. Sussman, and J. Saltz. An integrated runtime and compile-time approach for paral-lelizing structured and block structured applications. IEEE Transactions on Parallel and DistributedSystems, 6(7):747{754, July 1995.[2] Gagan Agrawal, Alan Sussman, and Joel Saltz. Compiler and runtime support for structured andblock structured applications. In Proceedings Supercomputing '93, pages 578{587. IEEE ComputerSociety Press, November 1993.[3] C. Bischof, S. Huss-Lederman, X. Sun, A. Tsao, and T. Turnbull. Parallel performance of a symmetriceigensolver based on the invariant subspace decomposition approach. In Proceedings of Scalable HighPerformance Computing Conference, 1994.[4] Francois Bodin, Peter Beckman, Dennis Gannon, Srinivas Narayana, and Shelby X. Yang. Dis-tributed pC++: Basic ideas for an object parallel language. Scienti�c Programming, 2(3), Fall1993.[5] J. Choi, J. Dongarra, L. Ostrouchov, A. Petitet, D. Walker, and R. Whaley. The design andimplementation of the ScaLAPACK, LU, QR, and Cholesky factorization routines. Scienti�c Pro-gramming, 1995.[6] Jaeyoung Choi, David W. Walker, and Jack J. Dongarra. The design of scalable software librariesfor distributed memory concurrent computers. In Proceedings of the Eighth International ParallelProcessing Symposium, pages 792{799. IEEE Computer Society Press, April 1994.[7] Raja Das, Mustafa Uysal, Joel Saltz, and Yuan-Shin Hwang. Communication optimizations for irreg-ular scienti�c computations on distributed memory architectures. Journal of Parallel and DistributedComputing, 22(3):462{479, September 1994.[8] Al Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM 3 user's guideand reference manual. Technical Report ORNL/TM-12187, Oak Ridge National Laboratory, May1993.[9] U. Geuder, M. Hardtner, B. Worner, and R. Zin. Scalable execution control of grid-based scien-ti�c applications on parallel systems. In Proceedings of the Scalable High Performance ComputingConference (SHPCC-94). IEEE Computer Society Press, 1994.[10] W. Gropp and B. Smith. Scalable, extensible, and portable numerical libraries. In Proceedings ofthe 1994 Scalable Parallel Libraries Conference, pages 60{67. IEEE Computer Society Press, 1994.23

[11] Rolf Hempel and Hubert Ritzdorf. The GMD communications library for grid-oriented problems.Technical Report 589, GMD, November 1991.[12] S. Hutchinson, J. Shadid, and R. Tuminaro. Aztec user's guide, version 1.0. Technical ReportSAND95-1559, Sandia National Laboratories, Oct 1995.[13] Yuan-Shin Hwang, Bongki Moon, Shamik D. Sharma, Ravi Ponnusamy, Raja Das, and Joel H. Saltz.Runtime and language support for compiling adaptive irregular programs. Software{Practice andExperience, 25(6):597{621, June 1995.[14] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel. The High Performance FortranHandbook. MIT Press, 1994.[15] S.R. Kohn and S.B. Baden. A robust parallel programmingmodel for dynamic non-uniform scienti�ccomputations. In Proceedings of the Scalable High Performance Computing Conference (SHPCC-94),pages 509{517. IEEE Computer Society Press, May 1994.[16] Antonio Lain and Prithviraj Banerjee. Exploiting spatial regularity in irregular iterative applications.In Proceedings of the Ninth International Parallel Processing Symposium, pages 820{826. IEEEComputer Society Press, April 1995.[17] M. Lemke and D. Quinlan. P++, a C++ virtual shared grids based programming environment forarchitecture-independant development of structured grid applications. In Proceedings of the SecondJoint International Conference on Vector and Parallel Processing (CONPAR'92 - VAPP V), 1992.[18] J. Nieplocha, R. Harrison, and R. Little�eld. Global arrays: a portable shared-memory programmingmodel for distributed memory computers. In Proceedings Supercomputing '94, 1994.[19] Object Management Group. The Common Object Request Broker: Architecture and Speci�cation,1995.[20] R. Parsons. A++/P++ array classes for architecture independant �nite di�erence computations.In Proceedings of OONSKI'94, The Object-Oriented Numerics Conference, April 1994.[21] M. Ranganathan, A. Acharya, G. Edjlali, A. Sussman, and J. Saltz. Runtime coupling of data-parallel programs. In Proceedings of the 1996 International Conference on Supercomputing. ACMPress, May 1996. To appear.[22] Joel Saltz, Kathleen Crowley, Ravi Mirchandaney, and Harry Berryman. Run-time scheduling andexecution of loops on message passing machines. Journal of Parallel and Distributed Computing,8(4):303{312, April 1990.[23] Joel Saltz, Ravi Ponnusamy, Shamik D. Sharma, Bongki Moon, Yuan-Shin Hwang, Mustafa Uysal,and Raja Das. A manual for the CHAOS runtime library. Technical Report CS-TR-3437 andUMIACS-TR-95-34, University of Maryland, Department of Computer Science and UMIACS, March1995.[24] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Dongarra. MPI:The Complete Reference. Scienti�c and Engineering Computation Series. MIT Press, 1996.[25] Alan Sussman, Gagan Agrawal, and Joel Saltz. A manual for the Multiblock PARTI runtimeprimitives, revision 4.1. Technical Report CS-TR-3070.1 and UMIACS-TR-93-36.1, University ofMaryland, Department of Computer Science and UMIACS, December 1993.24

