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Abstract
When a group {I1,...,I,} of individuals wishes to collaboratively construct a complex multi-

media document, the first requirement is that they be able to manipulate media-objects created by
one another. For instance, if individual I; wishes to access some media objects present at partici-
pant Ii’s site, he must be able to; (1) retrieve this object from across the network, (2) ensure that
the object is in a form that is compatible with the viewing/editing resources he has available at his
node, and (3) ensure that the object has the desired quality (such as image size and resolution).
Furthermore, he must be able to achieve these goals at the lowest possible cost. In this paper, we
develop a theory of media objects, and present optimal algorithms for collaborative object shar-
ing/synthesis of the sort envisaged above. We then extend the algorithms to incorporate quality
constraints (such as image size) as well as distribution across multiple nodes. The theoretical model
is validated by an experimental implementation that supports the theoretical results.

1 Introduction

Collaborative multimedia systems consist of collaborators constructing and manipulating various kinds
of media objects, such as video-clips, pictures, text files, or perhaps some complex entity constructed
out of these simpler entities. By and large, these collaborators are located at various points across the
network. When considering collaborative media systems, a vast number of different factors come into

play:

e First and foremost, each collaborator must have the ability to access and manipulate the objects
that he needs to access in order to fulfil his role in the collaboration. This simple step involves
far more than just retrieving the object from a remote node — it involves accessing the object and
routing it through a set (possibly empty) of intermediate nodes in such a way that the object,
when it arrives, has the desired properties (e.g. be in a format compatible with the resources at
the destination node, having a minimal desired quality, etc.). This may require not only actions
at the remote node and the destination nodes, but the intermediate nodes as well.

e Second, when multiple collaborators are working together, in a collaborative group-session, then
the sharing of these objects must be done in real-time, and editing changes made by one col-
laborator must be reflected, in a synchronized fashion, and in real-time, on the screens/output
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devices of others. Most current systems that implement such schemes (e.g. the Sun ShowMe
repertoire of products) require that all nodes in the collaborative enterprise have certain common
products available on them, (viz. the Sun ShowMe system).

The first step listed above is a criticial pre-cursor to the second step. There is, after all, little point
in synchronizing the transmission of objects if one of the collaborators cannot view the object in its
current form (e.g. he may lack a given video player required to present a video object). In this paper,
we focus in on one aspect of collaborative multimedia systems, viz. the first point listed above. The
primary contributions we make are the following;:

1.

We provide a formal declarative definition of a media-object and use this as the basis of a formal
definition of a collaborative media system (COMS) that involves multiple collaborators located at
dispersed sites on a network such as the Internet. This definition includes not just a declarative
specification of the location of different media-objects, but also of the capabilities available at
these locations.

. We provide a formal declarative definition of an object synthesis sequence that may be used by a

given collaborator to obtain an object from another node in a form that he can use at his local
node. This form may include not just a format specification, but also quality specifications. This
is particularly important in the case of multimedia data where lossy compression techniques are
frequently used, as well as where conversions from one format to another may degrade quality.

. We provide a declarative framework for associating costs with such object synthesis sequences —

this automatically induces a definition of an optimal synthesis sequence.

. The declarative specifications listed above provide a formal specification against

which the correctness and optimality of algorithms can be measured.

. Subsequently, we develop two algorithms to construct synthesis sequences — the OSA algorithm

which computes a syntheseis sequence, but not necessarily an optimal one, and the OptOSA
algorithm that is guaranteed to compute an optimal synthesis sequence. We formally prove that
these algorithms are sound, complete and optimal (in the case of OptOSA).

. Both the OSA and the OptOSA algorithms assume that all object synthesis is done within a

single node. We then define the notion of a distributed synthesis sequence and develop two

algorithms, the DOSA and DOptOSA algorithms that extend the OSA and the OptOSA algorithms
to the distributed case.

. The OSA, OptOSA, DOSA and DOptOSA algorithms have all been fully implemented in C' on

a SUN/Unix workstation. We report on experiments that we have conducted to determine the

trade-offs made when we use OSA vs. OptOSA and DOSA vs. DOptOSA.

2 Media Objects

In most multimedia systems, the primitive entities that are being constructed and/or being manip-
ulated are called media objects (or multimedia objects, or sometimes, just plain objects.) However,
exactly what constitutes a media-object has often been defined on a case-by-case basis. Intuitively,
a media-object could be a video-clip, or a picture, or a text file, or perhaps some complex entity



constructed out of these simpler entities. In this section, we will provide a formal, mathematical
definition of a media-object. As different media-objects have different types of attributes as well as
different properties, we classify all media-objects into three types:

1. Static: Intuitively, a static media object is an object that does not change when it is presented.
Examples of static media-objects include .gif files and ordinary text files that do not change
when presented to the user (though of course they may change as a result of editing by a human).

2. Quasi-Static: A quasi-static media-object is one which may be broken up into a contiguous
sequence of chunks of information, each of which is presented to the user sequentially, one after
another. However, it is upto the individual viewing the quasi-static object to determine how
long to spend in browsing one such chunk of information. A good example of a quasi-static
media-object is a postscript file. A user browsing a postscript document through a postscript
viewer such as ghostview may move from one page of the postscript file to another at his
discretion/leisure.

3. Temporal: A temporal media-object is one which may be broken up into a contiguous sequence
of chunks of information, each of which is presented to the user sequentially, one after another.
In temporal objects, we asssume that the display time of each “chunk” in the afore-mentioned
sequence of contiguous chunks is the same. An example of a temporal media-object is audio,
where an analog audio stream may be broken up into 5 millisecond frames for sampling/analysis
purposes.

4. Quasi-Temporal: A quasi-temporal media object is similar to a temporal media-object; the
only difference is that the display time of different chunks in the afore-mentioned sequence of
contiguous chunks may vary. An example of quasi-temporal media-objects could be video where
different frames may be of different lengths — this is particularly useful in annotating the video
(by hand or otherwise).

Definition 2.1 A media-object o is a 5-tuple consisting of:

1. A data type ds(o) — e.g. the data structure specification may be a .ps file or a .gif file or
something else that is completely application-specific.

2. A name, name(0), of the form <string>.<type> where <type> is the data type in the preceding
item. For example, if the data type is ps, then the name of such an object may be zzz.ps.

3. An object-type, ot(o0), which is either temporal, quasi-temporal , static or quasi-static.
4. An object-characteristic, oc(o), that has the following form:
(a) If a given media-object is of type temporal, then the object characteristic is a pair (n, At)

specifying that the media-object consists of n “chunks” of data, each having duration At.

(b) If the given media-object is of type quasi-temporal, then the object characteristic is a pair
(n,1,) where 1, is a function from {1,...,n} — N. Intuitively, this means that the
media-object o has n “chunks” of data, and that chunk ¢ lasts for time 1,(7) time units.

(c) If the given media-object is of type quasi-static, then the object characteristic is a pair
(n, L) denoting that the object has n “chunks” of information where the time taken by
each chunk is unpredictable and is determined by the user.



(d) If the given media-object is of type static, then the object characteristic is of type (L, L)
specifying that the object characteristic is not predictable — neither the number of chunks,
nor the time taken in viewing the chunks is predictable and are user-dependent.

5. A component size(o0) specifying the size requirements of o.

The reader will observe that the above definition is very robust. For example, we may have two
different objects

o1 = (ds(o;),name(o01),0t(01),0c(01),size(o1))
o2 = (ds(o1),name(o01),0t(01),0c(01),size(0z))

In this example, objects o; and oy are identical except for their size attribute. Such an example may
occur, for instance, if a utility such as xv is used to re-size an image.

Example 2.1 (Text Object) One of the simplest types of media-objects is a textual object. For
example, a file of the form a.txt is a textual object having the following properties:

1. Name: a.txt

2. Data Structure Specification: .txt
3. Object Type: static

4. Object-Characteristic: (L, L),

5. Size: 500 (Kbytes) ]

Example 2.2 (GIF Object) A slightly more complex media-object is a pictorial object. For exam-
ple, a file of the form p.gif is a pictorial media-object having the following properties:

1. Name: p.gif

2. Data Structure Specification: .gif
3. Object Type: static

4. Object-Characteristic: (L, 1)

5. Size: 580 (Kbytes) ]

Note that a picture file using a different format (e.g. .tiff) would be defined in a way similar to the
above format.

Example 2.3 (Audio Object) Consider, on the other hand, an audio media-object b.avi contain-
ing 5000 frames, each of length 2 milliseconds. This media-object is characterized by the following
properties:

1. Name: b.avi
2. Data Structure Specification: .avi

3. Object Type: temporal



4. Object-Characteristic: (5000, 2)
5. Size: 1 Mbyte a

Example 2.4 (Video Object) Consider a slightly more complex situation where we have a video
media-object containing 10000 frames, the first 5000 of which are of 2 millisecond duration, the next
2000 of which are of 1 millisecond duration, and the last 3000 of which are of 3 millisecond duration.
This media-object is characterized by the following properties:

1. Name: c.avi
2. Data Structure Specification: .avi
3. Object Type: quasi-temporal

4. Object-Characteristic: (5000,1)) where 1 is the function: ®(n) = 2 if 1 < n < 5000; 1 if
5001 < n <7000 and 3 if 7000 < n < 10000.

5. Size: 3 MBytes. a

Certain kinds of objects could be declared in many ways depending upon their intended use. For
example, consider a 25 page postscript document (the same comments apply to many other types
of documents). This could be declared as a static object (which indicates that the collaborative
multimedia system we define will not attempt to automatically have its pages scroll through) or it
could be viewed as a temporal object (where each page is displayed for At time units), or it could
be viewed as a quasi-static object where the user scrolls through it at his/her leisure. It is entirely
possible that some postscript documents in a collaborative environment are described as temporal
objects, while others are defined to be of temporal or quasi-temporal types.

3 Collaborative Multimedia Systems

Having defined the concept of a media-object in Section 2, we are now in a position to start work
on defining a collaborative multimedia system. Intuitively, such a formal definition should take into
account, the following aspects of any collaborative endeavor:

1. Collaborators: First and foremost, we consider a single collaborative effort where there are k
collaborators. Each of these collaborators may be located at different locations on the network.

2. Host Capabilities: The site/machine hosting a given collaborator may have a set of capabili-
ties. Such capabilities correspond to the system functionalities available at that host node.

3. Distributed Media Objects: We assume that the purpose of the collaboration is to develop
a multimedia-document (a concept to be defined below) that composes together a given set of
media-objects. For example, a multimedia-document may be composed of a sequence of video
clip vy followed by video clip v, followed by a presentation slide (e.g. .dvi file) followed by an
audio file. At any given point in time, a multimedia document may consist of various media-
objects, located at different sites on the network. These different media-objects may be linked
together by various constraints expressing spatial/temporal layout constraints.

In this section, we will provide a formal definition of collaborative multimedia systems.



3.1 Simple Collaborative Multimedia Systems

This section presents the “basic” notion of a collaborative multimedia system. When studying col-
laboration systems, it is important for the members of the collaboration to be aware of each others
capabilities. For the purposes of multimedia collaborations, we will study three types of capabilities:

Definition 3.1 A display capability is a function that maps media-objects to {true,false}.

For example, the Unix utility ghostview may be thought of as a display capability that maps all
objects of the form X.ps to true (indicating that it can display them) and all other objects to false
indicating that it cannot display them.

Definition 3.2 An edit capability is a function that maps media-objects to {true,false}.

For example, if we have a special image editor called ed tiff to edit .tiff files, then this is an
edit-capability that assigns true to all files of the form X.tiff and assigns false to all other objects.

Definition 3.3 A conversion capabilityis a function that takes as input, a media-object o, and returns
as output, a media-object o'.

For example, the standard Unix utility, dvips may be viewed as a conversion capability that converts
dvi files to postscript files.
We now define the concept of a simple collaborative multimedia system.

Definition 3.4 A simple collaborative multimedia system (s-COMS for short) consists of:

e an un-directed, weighted graph G = (V, F, p) where V' is the set of nodes in the graph (repre-
senting sites where a member of the collaboration team is located), E refers to the connectivity
of the graph, and p : £ — R specifies the cost of sending a byte of information along an edge
in the graph.

o a set Obj of media-objects,
e a function loc : Obj — V specifying where the media-objects are located.

o A set HC specifying a set of host capabilities — these may not be an exhaustive list of capabilities
of participating nodes, but just a list of those capabilities that are of interest for the particular
application being developed.

e a function CAP : V — 27C specifying what capabilities are available at a given node. (As usual,
if X is any set, 2% denotes the power set of X).

Example 3.1 (Motivating Example) Figure 1 shows a diagrammatic representation of a collabo-
rative multimedia system that involves 5 participating entities. The entities are hosts in Seattle, San
Diego, Chicago, Ithaca, and College Park. The numbers marked along the edges in the graph shows
the weights associated with the edges. A COMS involving the graph of Figure 1 may be described by
specifying the values of the different components described in definition 3.4.

1. The undirected weighted graph G' = (V, F, p) is shown in Figure 1.
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Figure 1: Network for COMS of Motivating Example.

2. The set Obj of media-objects involved is shown in the table below:

College Park

|| 0 | ds(o | Type | Characteristic | size(o) ||
f1.gif .gif static (L, 1) 250
2 .txt txt static (L, 1) 45
f3.avi | .avi temporal (5000, 10) 975
f4.avi | .avi quasi-temporal | (4000, ¢74) where 950
. 5 if 1 <4< 3000
¥ya(i) :{ 8 if 3001 < i < 4000
f5.0iff | .tiff | static (L, 1) 300
f6.vid | .vid | temporal (1000 4) 800
f7vid | .vid temporal (2000, 15) 1200
f8.4iff | .tiff | static (L, 1) 900
9. gif .gif static (J_, 1) 450
f10.ps | .ps quasi-static (25,1) 100
fll.ps | .ps static (L, 1) 140
f12.dvi | .dvi static (14, 1) 100
f13.avi | .avi quasi-temporal | (2000, 713) where 1500
2 1f 1 <4¢ <1000
Vris(i) = { 4 if 1001 < i < 2000

3. The function loc specifying the locations of objects is shown in the table below:



|| Object | Location ||

f1.gif Seattle
f2.txt | College Park
f3.avi Ithaca
f4.avi San Diego
5. tff Chicago
f6.vid San Diego
f7.vid San Diego
f8.tiff Chicago
9.gif Seattle
f10.ps | College Park
fl1.ps | College Park
f12.dvi Ithaca
f13.avi Chicago

4. The set HC of host capabilities consists of the following;:

|| Capability Name | Input | Output ||
tiff2bmp File.tiff File.bmp
tiff2gif File.tiff File.gif
gif2tiff File.gif File.tiff
dvips File.dvi File.ps
capture_image (File.vid,integer) | File.gif
audio2text File.avi File.txt
ghostview File.ps display(file.ps)
xtex File.dvi display(file.dvi)
xvi File.tiff display(File.tiff)
xv2 File.gif display(File.gif)
showvid File.vid display(File.vid)
showavi File.avi display(File.avi)
ed tiff File.tiff File.tiff

5. The mapping CAP is defined as

shown below:

LV [ CAP(V) [
Seattle {xv1,dvips, xtex, gif2tiff tiff2bmp}
San Diego {capture_image, audio2text, showavi}
Chicago {capture_image, gif2tiff dvips, showavi}
Ithaca {xvl,xv2 gif2tiff tiff2gif ghostview,xtex}
College Park | {ed_tiff tiff2gif audio2text,ghostview}

3.2 Collaboration in an s-COMS: An Informal Description

Collaboration in an s-COMS is accomplished through read-write requests made by the different col-
laborators involved. For example, consider the example s-COMS given in Section 3.1. The individual



located in College Park may wish to work on the image file £1.gif located in Seattle. For the time be-
ing, we assume that all partners participating in an s-COMS have full read /write access to all objects
in Obj. What happens when the College Park collaborator wishes to work on file £1.gif ?

Checkout: First of all, the College Park collaborator must send a request to a server in Seattle
requesting the desired files. The server in Seattle must try to send the documents to the College Park
collaborator, keeping in mind the fact that the person in College Park must be able to edit the .gif
file. However, we know that the College Park collaborator cannot edit .gif files as he has no .gif
editor. Therefore either the server in Seattle or the client in College Park must find a “loop” in the
graph/network such that:

e The loop is of the form ¢4,...,¢;,...,{, where {; = Seattle = {,, and {; = College Park.

o There is some j, 1 < j < ¢ such that HC({;) achieves the goal of converting the .gif file to
an image file that can be edited using the a.tiff editor that the College Park site has. The
conversion does not need to be done on a single node on the path. Instead, each node can help
to the process of conversion by performing subconversions.

e Once the College Park collaborator has completed his/her work on the .tiff file, he must return
the file to Seattle in .gif format — the format the Seattle site expects the file to be returned
in. This means that there must be some k, i < k < n such that HC({;) achieves the goal of
converting the .tiff file to a .gif file.

o Finally, the total network cost should be minimized, i.e. the cost of sending the file across the
different links on the network must be minimized.

In general, it is preferable if the client specifies the loop to be used — as the server may be servicing
multiple clients, passing this responsibility onto the server may lead to an unacceptable load on the
server. Furthermore, a server may decline to compute such a path, and hence, the client should be
responsible for specifying the path by which the desired object is routed.

If we examine the example in Section 3.1, then the desired loop is:
Seattle — CollegePark — Ithaca — CollegePark — Seattle.

This means that when Seattle is initially requested for the .gif file by College Park, it sends it directly
to College Park who passes in to Ithaca which in turn converts it (using gif2tiff) to tiff format and
passes it back to College Park who edits the tiff file using ed_tiff and then converts it to .gif format
at College Park itself using tiff2gif and sends the result back directly to Seattle. If we assume that
the cost is independent of the size of the objects, then the total cost of this operation is

(130 + 30 4 30 + 130) x 250 = 80000.

The reader may easily verify that this total cost is the cheapest possible total cost possible, even
though other loops may be used to satisfy the same objective.

3.3 Collaboration in an s-COMS: A Formal Description

Consider an s-COMS I' = (G, Obj, loc, HC,CAP) where G = (V, F'). Suppose N € V is a node in the

network and o is an object that we wish to create from existing objects.



Definition 3.5 A capability ¢ may be applied to object o just in case o is of the input-type of capability
c. If ¢ is a conversion capability, then the result of applying capability ¢ to object o is ¢(o’). This is
denoted by

3.3.1 Synthesizing Objects within a Node

We will first consider the case when objects are constructed within a single node, using only the objects
and capabilities contained within that node. It will turn out that once we know how to synthesize
objects within a given node, then we may use this solution to solve the problem of synthesizing objects
in a network of nodes.

Definition 3.6 An object 0, may be synthesized entirely within node N just in case thereis a sequence
of objects o01,..., 0, such that:

1. N € loc(oy), i.e. object oy is available to node N and
2. For all 1 < ¢ < m, there is a conversion capability ¢;—; € HC(N) such that
0;—1 == 0
holds.
We will call

c1 co c3 Cm—1
0 —> 02 —> 03 —= " Op-1 — On

a synthesis sequence for object o, within node N.

Definition 3.7 An object o may be displayed (resp. edited) entirely within node N if there is a
synthesis sequence for object o within node N and there is a display (resp. edit capability) capability,
D € HC(N ) such that D(o0) = true.

We now present an algorithm that solves the following problem:

OBIJECT SYNTHESIS PROBLEM. Given a node N, and an object o, determine if o can be

synthesized entirely within node N. If yes, return a synthesis sequence for object o within
node V.

Algorithm 1 (Object Synthesis Algorithm (OSA))

Input:

e A COMST = (G,0bj,loc, HC,CAP) where G = (V| E)
e A node N in V and
e An object o to be synthesized entirely within node N.

Tried: A global set variable initialized to .

1. Let Name(o) be of the form str.type.

2. Let X = {(¢,Ob.typel) | c is a conversion capability in HC(N) and Name(c(Ob.typel)) = str.type}. (x
Note that Ob may not necessarily be such that N € loc(Ob) *).
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9.

. 1f {(c, Ob.typel) | (¢, Ob.typel) € X & (¢, Ob.typel) & Tried} = § then return failure and halt.

Otherwise (* i.e. X still has something in it that can be processed *)

. if there exists a (¢, Ob) € X such that (¢, Ob) ¢ Tried and such that N € loc(Ob) then return

SOL = Ob.typel —— str.type
and halt.

. Otherwise, non-deterministically select a pair (¢, 0b) € X.

Set X to X — {(c,0b)} and set T'ried to Tried U {(c, Ob)}.

. If the call OSA(T, N, Ob) succeeds and returns SOL1, then

SOL = SOL1 - str.type.

Return SOL. Halt with success.
Otherwise, goto Step 3.

To see how the above algorithm works, let us return to the motivating example COMS discussed
in Section 3.1.

Example 3.2 Suppose we wish to synthesize the object named £1.bmp in Seattle. In other words, for
whatever reason, the site at Seattle wishes to obtain a bitmapped version of £1.gif. In this case, we
call the OSA algorithm with the example COMS, the node Seattle and the object £1.bmp that we
wish to synthesize.

o In step 2 of the OSA algorithm, we set

X = {(tiff2bmp, f1.tiff)}.
This indicates that:

One way to synthesize £1.bmp is by first synthesizing a file £1.tiff and then by applying the
operator tiff2bmp to convert it into a bitmapped file.

The test in Step 3 succeeds, but that in Step 5 fails, and control passes to Step 6. The only
triple that can be selected is (tiff2bmp,f1.tiff), so it is selected and in Step 7, we reset X to
() and Tried is set to {(tiff2bmp, f1.tiff)}.

o In step 8, we call the OSA algorithm recursively with a request to synthesize £1.tiff.
o This latter request succeeds immediately via step 5, leading to SOL1 = f1.gif ST £9 vift,
o In step 8 of the original call, we now return
SOL = £1.gif " g1 viee 22 £1 bup.
e The algorithm now halts. a

Example 3.3 A slightly more egregious example shows what can happen when a node contains

“reversible” actions. For instance, suppose I' is a COMS containing just one node having the object
ol.fmtl and having two conversion functions:

11



1. ¢q that converts X.fmtl to X.fmi2;
2. c¢o that converts X.fmit2 to X.fmtl;

Suppose we wish to create an object 02.fmt2. The OSA algorithm terminates because the global
variable T'ried in it is initially empty; after executing step 3, X = {(c1,02.fmtl)}; however, after
step 7, X = 0 and Tried = {(¢1,02.fmtl)}; in step 8, we recursively call the OSA algorithm with
arguments (I', N, 02.fmt1). In step 3 of the recursive call, X = {(cz,02.fmi2)}; in Step 7, X =0
and Tried = {(c1,02.fmtl),(c3,02.fmt2)}. In Step 8, we recursively call the OSA algorithm with
arguments (I', N, 02. fmt2). In Step 3 of the recursive call, we return with failure, cuasing the initial
invocation of the OSA algorithm to terminate with failure. O

The following result tells us that the OSA algorithm is sound and complete, and terminates in linear-
time (proofs have been omitted for brevity).

Theorem 3.1 (Soundness and Completeness of the OSA Algorithm) Suppose I' = (G, Obj, loc,
HC,CAP) is a COMS, G = (V, F), N is a node in V, and o is an object we wish to synthesize.

1. If 55 is a synthesis sequence for object o within node N, then there exists a way of selecting
pairs in Step 6 of the OSA algorithm such that the OSA algorithm terminates with success and
returns SOL = 55.

2. If the OSA algorithm terminates with failure, then there is no synthesis sequence for object o
within node V.

3. If the OSA algorithm terminates with success and returns SO L, then SO/ is a synthesis sequence
for object o within node N.

4. The OSA algorithm is guaranteed to terminate in time O(card(HC(N)) x card(Objy)) where
Objn = {o| N € loc(o)}.

3.3.2 Optimally Synthesizing Objects within a Node

The OSA algorithm assumes that any way of synthesizing an object is acceptable. However, in practice,
different ways of synthesizing objects may lead to very different results. For example, a synthesis
sequence 557 to synthesize an object may involve invoking various expensive conversion methods. In
contrast, a different synthesis sequence 55, may achieve the desired synthesis in a “much cheaper”
way. In this subsection, we will define the “cost” of a synthesis sequence and then develop a technique
called the OptOSA technique that is always guaranteed to optimally synthesize objects within a given
node.

Let us suppose that each conversion capability ¢; has an associated cost rate, cost_rate(¢;), and an
associated size ratio, size_ratio(¢;). Intuitively, if the cost rate of ¢; is 24, then this means that the cost
of converting an object o of size size(0) bytes is 24 X size(0). Similarly, if the the size ratio of ¢; is 1.6,
then this means that the size of the object ¢;(0) is 1.6 times the size of object o. Therefore, if

c1 co c3 Cm—1
595 = 01 —> 09 —> 03 —> ***Op—1 — Oy,
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is a synthesis sequence for object o within node N, then the total cost of synthesizing o entirely within
node N is given by:
m—1
TotCost(SS) = Z cost_rate(¢;) X size(o;).
=1
As size(o;) = size(0;_1) X size_ratio(¢;_1) for ¢ > 1, it follows that
1—1
size(0;) = size(o0y) X H size_ratio(c¢;) when ¢ > 1
=1

Thus,

m—1 1—1
TotCost(SS) Z (cost rate(c;) x (size(ol) X H size_ratio(Cj))) .

=1 7=1

When attempting to synthesize an object entirely within a given node, we would like to find a
synthesis sequence 55 that has the least possible total cost TotCost (SS). Obviously, we would like to
do this without explicitly constructing all possible synthesis sequences for object o within node N.

OPTIMAL OBJECT SYNTHESIS PROBLEM. Given a node N, and an object o, find the
minimal cost (if one exists) synthesis sequence for object o within node N.
Before developing an algorithm to efficiently compute optimal ways of synthesizing objects, we present

a couple of examples to illustrate the basic ideas.

Example 3.4 Suppose we consider a very simple COMS I' containing a node N that has five conver-
sion functions ¢4, ..., cs described below.

Capability Name | Input | Output | Cost Rate ||

1 X.f1 X.f2 10
ca X.f2 X.f3 3
cs3 X.f2 X.f5 20
c4 X.f3 X.f4 4
s X.f4 X.f5 7

Suppose node N has one object named o. f1 of size 50 Kbytes and suppose we wish to synthesize the
object o.f5. Furthermore suppose all of transformations ¢y, ..., c5 are size-invariant, i.e. the sizes of
the objects do not change when these conversions are applied to them. In other words, size_ratio(¢;) = 1
for i = 1,...,5. There are two synthesis sequences that accomplish the desired goal. They are:

557 : 0.f1 5 0.f2 <% 0.f3 % 0.f4 2 0.5
585 a.fl = a.f2 = a.f5.

Even though 557 is a longer sequence (in terms of the number of conversions that must be performed),
it turns out, in this example, that the total cost of 557 is less than the total cost of 5.55.

TotCost(,551) = (10 x 50) 4 (3 x 50) + (4 x 50) + (7 x 50) = 1200.
TotCost($5%) = (10 x 50) + (20 x 50) = 1500.
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Example 3.5 Suppose we consider another very simple COMS I' containing a node N that has four
conversion functions ¢y, ..., ¢4 described below. Node NV has one object named o.f1 of size s Kbytes.

Capability Name | Input | Output | Cost Rate | Size Ratio ||

1 X.f1 X.f2 5 2
ca X.f1 X.f3 9 3
cs3 X.f2 X.f4 8 1
c4 X.f3 X.f4 3 1

Suppose we are interested in synthesizing the object o.f4. There are two synthesis sequences that
accomplish the desired goal. They are:

557 : 0.f1 "% 0.f2 =2 0.4
and
585 0.f1 =% 0.f3 =L o.f4.
TotCost(557) = bs 4 16s = 21s.
TotCost(552) = 95 + 9s = 18s.
Therefore, 555 is a cheaper way of synthesizing object o. f4. a

We are now ready to present the OptOSA technique for finding optimal ways of synthesizing objects.
The OptOSA technique for finding optimal ways of synthesizing objects attempts to first construct an
object bottom-up by iteratively computing a function T defined below.

Definition 3.8 (Operator T)

Input:

e A COMS T = (G, 0bj,loc, HC,CAP) where G = (V, E)
e A node Nin V and

e An object o of the form X.type that we wish to synthesize in an optimal manner.

Output: An optimal synthesis sequence for object o entirely within node N.

L. T X.type) = {(X.t,size( X .1),0, X.t)| N € loc(X.t)}.

2. T (X.type) = T(X.type) U {(X.t,5,C,Seq)| there is a quadruple (X.t',51,C1,Seql) €
T'(X.type) and there exists a ¢ € HC(N ) such that ¢(X.t') = X.t and C' = C'1 4 cost_rate(c¢) x 51
and 9 = size_ratio(c) x S1 and Seq = Seql —— X.t}.

To see how the above definition works, consider the following example:
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Example 3.6 Suppose we wish to synthesize the object a.tiff within a node that has the following
capabilities:
dvi2ps,ps2tiff,dvi2tiff,dvi2bmp, bmp2tiff.

As is common, x2y indicates a conversion capability that converts files of type x to one of type y.
Furthermore, suppose that the file a.dvi of size (1000 bytes) is available within node N. In addition,
size_ratio(¢;) and cost_rate(¢;) are given by:
size_ratio(dvi2ps) = 3; size_ratio(ps2tiff) = 1.4; size_ratio(dvi2tiff) = 10; size_ratio(dvi2bmp) = 14; size_ratio(bmp2tiff)
=1.2
cost_rate(dvi2ps) = 20; cost_rate(ps2tiff) = 12; cost_rate(dvi2tiff) = 16; cost_rate(dvi2bmp) = 2; cost_rate(bmp2tiff)
=9
There are three synthesis sequences that can be used to synthesize object a.tiff. These sequences
are:
. dvi2ps ps2tiff .
SSy:advi — aps — a.tiff.

. dvi2tiff .
5SSy ra.dvi VI A tiff.

. dvi2bmp bnp2tiff .
SSz3:a.dvi —  abmp — a.tiff.

The operator T works in the following way:
o T°(a.tiff) = {(a.dvi, 1000,0,a.dvi)}.

o T'(a.tiff) = T%(a.tiff) U {
dvi?2
(a.ps,3000,20000, a.dvi ﬂs.a.ps),
(a.tiff, 10000, 16000, a.dvi TV 5 £i£)SS1,
dvi2b
a.bmp, 14000, 2000, a.dvi  —— © a.bmp)}.
p7 ? ? p

o T%(a.tiff) = T (a.tiff) U {
. . dvi2ps ps2tiff . 33
a.tiff,4200,56000,a.dvi — a.ps’ — a.tiff)>"2.

(
dvi2b bmp2tiff
(a.tiff, 16800,128000,a.dvi —— " abmp = = a.tiff)5ss.

It is easy to see that T?(a.tiff) = T3(a.tiff) and hence, T?(a.tiff) is a fixpoint of the operator 7.
Each of the marked quadruples in this fixpoint encodes one of the sequences 557,553,553 together
with the cost of that synthesis sequence. The reader will easily observe that the cheapest cost sequence
is 557 whose total cost is only 16000. Figure 2 shows a diagrammatic rendering of the sequences
involved.

The reader will notice that each and every possible synthesis sequence for the object a.tiff is present
in the fixpoint 7?(a.tiff) in the above example, and furthermore, that this fixpoint enumerates each
and every “path” between a.dvi and a.tiff in Figure 2. The OptOSA algorithm will in many cases,
never explore many of these paths by optimizing the computation of the fixpoint of T?(a.tiff) so as
to eliminate paths that are not likely to lead to a low cost. However, before developing the OptOSA
algorithm, we present some elementary properties of the T" operator.

Lemma 3.1 (Properties of 7" Operator) Consider a COMS I', a node N in I', and an object o
of the form X.type that we wish to synthesize within node N. For all j, if T7(X.type) contains a
quadruple of the form (o', size(0’),C’, 55”), then there is a synthesis sequence 55" of object o' entirely
within node V. a
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dvi2tiff

dvips ps2tiff
a.dvi a.ps a.tiff
a.bmp

Figure 2: Synthesis Sequences for Example

The main problem with the above lemma is that it computes all synthesis sequences for the object o.
However, in practice, we would like to compute an optimal (i.e. least cost) synthesis sequence without
computing all such sequences. We are now ready to define the OptOSA technique which efficiently
computes optimal synthesis sequences.

Algorithm 2 (Optimal Object Synthesis Algorithm (OptOSA))

Input:

e A COMST = (G,0bj,loc, HC,CAP) where G = (V| E)
e A node N in V and

e An object 0o = a.type to be synthesized in an optimal manner.

Output: An optimal synthesis sequence for object o entirely within node N.

1. Our algorithm uses a special node structure that has the following fields: name, size, cost, seq, overallcost,
next — the first four of these fields refer to the four components of the quadruples manipulated in Defi-
nition 3.8. overallcost refers to the total cost of the sequence associated with a node. In other words, if
a node has 55 in its seq field, then the overallcost field contains the value TotCost defined earlier. The
next field is a pointer to another node of the same type.

2. SOL := NIL.
3. Compute T%(a.type).
4. For each quadruple of the form (a.t,size(a.t),0,a.t) in T°(a.type), create a node V having

V.name = a.t; Visize = size(a.t);

V.cost = 0; V.seq = a.t; V.overallcost = 0.
Let X be a linked list consisting of all these nodes.
(* We will always assume that X is sorted in ascending order according to the overallcost field. As initially

all these nodes have their overallcost field set to 0, this means that when this step is first executed, any
ordering will suffice. *)

5. 1if X = NULL then halt with failure.
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(a) 1. Cur:= head(X); X = tail(X);
il. if Cur.name = a.type then return Cur.seq and halt.
iii. Cand := {(¢,0') | ¢ € HC(N) and ¢(Cur.name) = o for and N € loc(o')};
iv. For each (c¢,0o') € Cand create a node V. .+ with fields:

V. ot .name = o';
Ve o .size = size(o’) = size_ratio(c) x size(Cur.name);
Ve o .cost = size(C'ur.name) x cost_rate(c);
c
Ve or.5eq = Cur.seq — o;
Ve o .overallcost = C'ur.overallcost + cost_rate(c) x size(C'ur.name).
if there is not a node M in V. . .seq such that V., .name = M .name and V, , .size >

M .size then insert V. . into the list X, keeping X in sorted order w.r.t. the totcost
field.

v. Goto Step 5.

To illustrate why the OptOSA algorithm works much more efficiently than the OSA algorithm, let
us return to Example 3.6.

Example 3.7 The reader may already have noticed that T'(a.tiff) contains a synthesis sequence
which is captured by the quadruple:

dvi2tiff
-

(a.tiff, 10000, 16000, a.dvi a.tiff).

This quadruple says that the object a.tiff may be synthesized by using the synthesis sequence

dvi2tiff
-

(a.dvi a.tiff)

at a total cost of 16,000. Notice that in 7T (a.tiff), we also have the quadruple

ips

. dvip
(a.ps,3000,20000,a.dvi — a.ps)
which only goes part of the way towards computing a synthesis sequence for a.tiff, but which has
already incurred a higher cost, viz. 20,000. Furthermore, in the definition of the T operator, this
quadruple leads to the generation of the new quadruple

d 2tiff
(a.tiff,4200,56000,a.dvi —% aps’ —=  a.tiff)

in T%(a.tiff) even though there is already a better solution. The OptOSA algorithm would eliminate
such redundant possibilities. To see how, let us now apply the OptOSA algorithm to the case of
Example 3.6. Here is what happens:

e Initially, 7°%a.tiff) = {(a.dvi, 1000,0,a.dvi)}. X points to a list of one node containign the
quadruple ((a.dvi,1000,0,a.dvi).
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e Step 6(a) of the OptOSA algorithm now leads to the following quadruples stored in the order

listed below (the order is significant).

dvi2bmpf
(a.bmp, 14000, 2000, a.dvi = —" a.bmp).

(a.tiff, 10000, 16000, a.dvi V12T 5 tiff),
d
(a.ps, 3000, 20000, a.dvi 2 a.ps).

e The first element in this list is the quadruple

. dvi2bmp
(a.bmp, 14000,2000,a.dvi — = a.bmp).
Note that at this stage, it is still possible that there is a cheap synthesis sequence which first
converts a.dvi to a.tiff via an intermediate conversion to a.bmp. That is why the solution of
cost 16000 in the above list of quadruples is not returned immediately.

o At the next stage, X now points to the ordered list:

(a.tiff, 10000, 16000, a.dvi VT 5 tiff),

-
(a.ps, 3000, 20000, a.dvi 2 a.ps).

dvi2b bmp2tiff
(a.tiff, 16800, 128000, a.dvi —— " abmp  —— = a.tiff).

o In the next stage, the first element of this list, viz. the quadruple

. dvi2tiff
-

(a.tiff, 10000, 16000, a.dvi a.tiff)

is returned as the optimal solution.

The reader will notice that many quadruples listed in Example 3.6 never occur in this computa-
tion, because they have been discarded by the OptOSA algorithm, thus leading to highly improved
performance (Section 4 reports on experimental results).

Theorem 3.2 (Soundness and Completeness of the OptOSA Algorithm) Suppose I' = (G, Obj, loc,
HC,CAP) is a COMS, G = (V,E), N is anode in V, and o is an object we wish to synthesize. Then:

1. If the OptOSA algorithm returns a synthesis sequence, then that synthesis sequence is an optimal
synthesis sequence for object o within node N.

2. The OptOSA algorithm returns with failure iff there is no synthesis sequence for object o in node
N.

3. If {551,...,58,}, n > 1, is the set of all optimal synthesis sequences for N, then the OptOSA
algorithm is guaranteed to return some 5'5;.

Theorem 3.2 is extremely important for a number of reasons. First and foremost, the theorem says
that the OptOSA algorithm correctly finds the optimal synthesis sequence for any object that we wish
to construct. Furthermore, it says that the OptOSA algorithm always finds the optimal solution first,
without finding any other solutions at all. In other words, the search strategy used by OptOSA in
looking for an optimal synthesis sequence is perfect — the first synthesis sequence it comes up with is
guaranteed to be the best one — hence, there is no need to evaluate multiple alternative sequences and
pick the best one.
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3.3.3 Optimal Object Synthesis with Quality Constraints

One of the key problems that has not been discussed in the preceding sections is the issue of quality.
Many transformations may cause the size of a media-object to decrease, yet these transformations
may not preserve the quality of the object. For example, utilities like xv in the Unix platform allow
us to re-size images (like those in tiff and gif files). In such cases, we need to know whether the
transformations affect the quality of the image — for example, when we reduce an image to 50% of
its original size, this is accompanied by a concomitant loss of quality. Often users not only wish to
synthesize objects, but they wish to synthesize objects with a certain quality measure.

In this section, we will study the problem of synthesizing objects in the presence of quality constraints.
Even more important is the fact that in many cases, a user may wish to simultaneously achieve two
objectives:

(Objective 1) minimizeggoverallcost(,59) — i.e. minimize the cost of synthesizing the object, and
(Objective 2) maximize quality.

However, it is entirely possible that these two goals may conflict with one another, and we will study
ways to deal with such conflicts.

Consider an s-COMS I' = (G, 0bj,loc, HC,CAP) where G = (V, F). A quality-assessment is a function
QA : Obj — RT where RT is the set of non-negative real numbers. Intuitively, QA(o;) = 300 says that
the quality of object o is deemed to be 300 w.r.t. some scale. Thus, if QA(02) were 200, then o; would
be a “better” quality object than oq.

A quality function is a map QF : HC — [0.0,1.0]. Intuitively, QF(tiff2gif) = 0.9 says that when a
tiff-image is converted to gif-format, the resulting gif image is only 90% as good as the original.

Suppose 55 is a synthesis sequence for an object o0,,, and suppose 55 has the form

c1 c2 c3 Cm—1
0 —> 02 —> 03 —= " Op-1 — On
The final quality of o, w.r.t. 55 is defined by
m—1
FinQual(o,,55) = QA(or) x [] QF(c;).
7=1

Given any object o to be synthesized, let us define BestQual(o) = {5555 is a synthesis sequence for
synthesizing object o such that FinQual(o,55) = ¢ and there is no synthesis sequence 55’ for o such
that FinQual(o,55’) < ¢}. Thus, BestQual(o) is the set of all synthesis sequences for synthesizing
object o that yield the “highest” possible quality.

The first problem that an end-user may wish to pose is the following:

MAXIMAL QUALITY AT MINIMAL CosT OBJECT SYNTHESIS PROBLEM (BestQualLstCost.)
In this problem, the user wishes to first synthesize object o at the maximal quality-level
possible and subsequently minimize the total cost. In other words, quality is the primary
concern, while cost is to be minimized only after the optimal quality is achieved.

Formally, this problem can be specified as follows: Let BestQualLstCost(o) = {55]595 €
BestQual(o) and there is no synthesis sequence 55" € BestQual(o) such that
TotCost(SS') < TotCost(SS)}.
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For an algorithm to correctly solve this problem, given any object o to be synthesized w.r.t. a
COMS T, the algorithm must return a synthesis sequence in BestQual(o). We show below how both
the OSA and the OptOSA algorithms may be modified to compute synthesis sequences that yield
maximal quality objects at the minimal possible cost.

We first replace the operator T by a new operator, T(Q). Instead of operating on quadruples as T
did, T'Q) operates on b-tuples obtained by augmenting the quadruples T" worked on by a fifth “quality”
argument.

Definition 3.9 (Operator 7'Q)

Input: Same as operator T’ (cf. Definition 3.8).
Output: A member of BestQual(o).
1. TQ% X .type) = {(X ., size( X.1),0, X.t,QA(X 1)) | (X .1, size(X.1),0,X.1) € T°(X.type)}.

2. TQH (X .type) = TQ'(X .type) U (X.1,5,C, Seq,Q)| there is a 5-tuple (X.t', 51,C1, Seql, Q1) €
TQ'(X .type) where there exists a ¢ € HC(N ) such that ¢(X.t') = X.tand C = C'1+cost_rate(c) x
51 and
S = size_ratio(c) x S1 and Seq = Seql —— X.t and @ = Q1 x QF(c)}.

Note that the operator T'Q) is exactly like the operator T" except that it deals with 5-tuples instead of
quadruples — the fifth component being a quality component.

Algorithm 3 QmaxLcost Algorithm for Computing Maximal Quality, Least Cost Synthesis Se-
quences We use the same algorithm as the OptOSA algorithm, with the following modifications.

1. In Step 1 of the OptOSA algorithm, we assume that nodes have one extra field, denoted qual.

2. Step 3 of the OptOSA algorithm: replace computation of T°(a.type) by TQ°(a.type).

3. In Step 4 of the OptOSA algorithm, we make one additional Assignment: V.qual := —1. (The reason
V.qual is set to minus 1 is that we will eventually minimize the the minus of quality which is the same as
maximizing quality.)

4. Furthermore, in Step 4, we assume that X is sorted in ascending order on two keys: the primary key is
the qual field, the secondary key is the overallcost field. In particular, note that this means that node 1}
precedes node V5 only if either:

o Vi.qual < V2.qual or

o Vi.qual = V2.qual and V;.overallcost < Vi.overallcost.

5. In Step 6(a)(iv), add an extra assignment statement:

Ve or.qual = C'ur.qual x QF(¢).

6. In Step 6(a)(iv), when inserting V. ., into the list X, ensure that X is kept in sorted order w.r.t. the
primary key, qual, and subsequently w.r.t. the secondary key overallcost as outlined in item 4 above.

Theorem 3.3 (Soundness and Completeness of the QmaxLcost Algorithm) Suppose I' =

(G,0bj,loc, HC,CAP) is a COMS, G = (V,F), N is a node in V, and o is an object we wish to
synthesize. Then:
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1. If the QmaxLcost algorithm returns a synthesis sequence, then that synthesis sequence is in
BestQual(o), i.e. this is an optimal synthesis sequence for object o within node N.

2. If BestQual(o) = {551,...,599,}, n > 1, then the QmaxLcost algorithm is guaranteed to
return some 55;.

3. The QmaxLcost algorithm returns with failure iff there is no synthesis sequence for object o in
node V.

4. The first solution found by the QmaxLcost algorithm is guaranteed to be an optimal one.

One problem with the QmaxLcost algorithm is that it may turn out that the cost of synthesizing
a high-quality object may be too much. In such cases, a user may wish to indicate a trade-off between
cost and quality. To do so, the user may place weights on cost and quality. Forinstance, the assignment
of weights 5 and 1 to quality and cost, respectively, indicates that the user feels that quality is 5 times
more important than cost.

In general, suppose w. and w, are positive integers denoting the weights assigned by a given user
to cost and quality, respectively. Then we may define the badness of a synthesis sequence 55 = 0; ——

co c3 Cm—1 .
09 — 03 — +++0,,_1 —— o0, of an object o, as follows:

BAD(S5S) = w. X TotCost(595) — wy(FinQual(Ss).
Intuitively, we would like to minimize badness (i.e. minimize cost, maximize quality).

MINIMIZING BAD-NESS PROBLEM. The user may be interested in finding a synthesis se-
quence S5 for object o such that there is no other synthesis sequence 55’ for o such that
BAD(S55’) < BAD(S5S). This is call the problem of finding the minimally bad synthesis

sequence for o.

This problem can be easily solved by a small modification of the QmaxLcost algorithm. The node
structures and all parts of the algorithm remain unchanged except for one item: Instead of the array
X being sorted according to two keys, we keep it sorted in ascending order w.r.t. the value of the
expression:

w. X V.overallcost — w, x V.qual..

With this minor change, the QmaxLcost algorithm works and correctly computes minimally bad
synthesis sequences for any object.

3.4 Collaboration in Distributed-COMS

In this section, we show how the framework for synthesizing objects within a single node may be easily
extended to synthesize objects across a network. We have already shown how an object o may be
synthesized entirely within a given node N. Suppose now that node N wishes to synthesize object
o, but instead of doing so entirely within node N, it may access data and/or conversion capabilities
located at other nodes. This may be modeled as follows.

Definition 3.10 Suppose I' = (G, 0bj,loc, HC,CAP) is a COMS where G = (V, E). A send operation
is of the form sends(Sender,Object, Recipient) where (Sender, Recipient) € FE — the statement
sends(Sender, Object, Recipient) indicates that Sender is sending the specified object to the recipient.
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Definition 3.11 (Distributed Synthesis Sequence) Suppose I' = (G,0bj,loc, HC,CAP) is a
COMS where G = (V, E). An object o, may be synthesized by node N just in case there is a
sequence

(N1,¢1,01), s (N1, Cr1, 000-1), (N, %, 04,) such that:

1. N,, = N and
2. Ny € loc(o1) and
3. Forall 1 <2< m:

(a) N; € loc(o;) or

(b) there exists a j < 7 ¢; is a conversion capability in HC(N;) such that ¢;(0o;) = o; and
N; = N; or

(c) there exists a j < ¢ such that (N;, N;) € E and ¢; = sends(N;, 0, N;).

We will call
(vaol) i} (N2702) i} (N3703) i} o '(Nm—lvom—l) an;g (vaom)
a distributed synthesis sequence for object o, w.r.t. node N.

The main idea behind distributed synthesis sequences is that they allow a node to perform an arbitrary
sequence of operations within the node on one or more objects and then send the results to another
node that may then do the same. This process can be continued till the desired object is synthesized.
The operator T'C' described below captures the above process.

Definition 3.12 (Operator 7'C')

Input:

e A COMS T = (G, 0bj,loc, HC,CAP) where G = (V, E)
e A node Nin V and

e An object o of the form X.type that we wish to synthesize in an optimal manner.

Output: An optimal synthesis sequence for object o.
1. TCO(X.type) = {(X.t,size( X.1),0,(X.t, N),N)| N € loc(X.t)}.

2. TCHY( X type) = TCH X type) U{(X .1, 5,C, Seq, N1)|thereis a 5-tuple (X.t', S1,C1, Seql, N2) €
TCY(X.type) and either

(a) N1 = N2and thereexists ac € HC(N1)such that ¢(X.t') = X.tand C' = C'l+cost_rate(c)x
51 and S = size_ratio(c) x 51 and Seq = Seql —— (X.t, N;) or

sends(N2,X.t',N1)
(b) (N1,N2)e Fand X.t = X.t' and C = Cl4p(N1,N2)xSland Seq = Seql — — — —

(X.1,N3) }.

22



Intuitively, if the 5-tuple (X.t,size(X.t),S,C, Seq, N1) appears in T'C* for some i, then this means
that node N1 can synthesize object X.t of size size( X.t) using the distributed synthesis sequence Seq
and incur a cost of at most C in the process of doing so. Note that it is entirely possible that 7°C*
may contain two or more tuples that are identical in all attributes execept for the cost and distributed
synthesis sequence attributes — these will correspond to two or more ways in which object X.t can be
synthesized at node V.

Lemma 3.2 (Properties of 7'C’' Operator) Consider a COMS I', a node N in I', and an object o
of the form X.type that we wish to synthesize w.r.t. node N. For all j, if TC7(X.type) contains a
5-tuple of the form (o, size(o),C’, 55, N'), then there is a distributed synthesis sequence 55" of object
o' w.r.t. node N. O

It is easy to see that we can easily modify both the OSA and the OptOSA algorithms to compute
optimal distributed synthesis sequences.

3.4.1 The Distributed OSA Algorithm (DOSA)

In this section, we present an algorithm that extends the OSA algorithm to handle the construction
of synthesis sequences across multiple nodes in a COMS.

Algorithm 4 (Distibuted Object Synthesis Algorithm (DOSA))

Input:

e A COMST = (G,0bj,loc, HC,CAP) where G = (V| E)
e A node N in V and
e An object o to be synthesized in node N.

Tried: A global set variable initialized to .

1. Let Name(o) be of the form str.type.

2. Let X7 = {(¢, Ob.typel, N1) | ¢ is a conversion capability in HC(Ny) and Ny = N Name(c(Ob.typel)) =
str.type}. (* Note that Ob may not necessarily be such that Ny € loc(Ob) *).

3. Let Xo = {(sends(Ny,Ob.typel, No), Ob.typel, Ny1) | (N1,N2) € E and Name(Ob.typel) = str.type}
and N = N.

Let X = X1 UX2
if{z |z € X&ax ¢ Tried} = 0 then return failure and halt.
Otherwise (* i.e. X still has something in it that can be processed *)

if there exists a (¢, Ob, N1) € X such that (¢, Ob, Ny) ¢ Tried and such that Ny € loc(Ob) then return

e o e

SOL = (Ob, N1) —= (str.type, N})
and halt.

8. Otherwise if there exists a (sends(Ny, Ob, N3),0b, N1) € X such that (sends(Ny, Ob, N2),Ob, Ny) ¢
Tried and such that Ny € loc(Ob) then return

sends(N1,0b,N3)
—

SOL = (Ob, Ny) (str.type, N3),

and halt.
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9. Otherwise, non-deterministically select a pair (oper, Ob, N1) € X.
10. Set X to X — {(oper, Ob, N1)} and set T'ried to Tried U {(oper, Ob, N1)}.
11. If the call OSA(T, N1, Ob) succeeds and returns SOL1, then

(a) if oper = ¢ then
SOL = SOL1 — (str.type, N1).

Return SOL. Halt with success.
(b) if oper = sends(Ny,0b, N2) then

SOL = SOL1 sends(&)Ob,NQ)

(str.type, Na).
Return SOL. Halt with success.

12. Otherwise, goto Step 5.

3.4.2 The Distributed OptOSA Algorithm (DOptOSA)

In this section, we present an algorithm that extends the DOptOSA algorithm to handle the construc-
tion of optimal synthesis sequences across multiple nodes in a COMS.

Algorithm 5 (Distributed Optimal Object Synthesis Algorithm (DOptOSA))

Input:

e A COMST = (G,0bj,loc, HC,CAP) where G = (V| E)
e A node N in V and

e An object 0o = a.type to be synthesized in an optimal manner.

Output: An optimal synthesis sequence for object o in node N.

1. Our algorithm uses a special node structure that has the following fields: name, size, cost, seq, overallcost,
loc, next.

2. SOL := NIL.
3. Compute TC%a.type).
4. For each five-tuple of the form (a.t,size(a.t), 0, a.t, N1) in T°(a.type), create a node V having

V.name = a.t; Visize = size(a.t);
V.cost = 0; V.seq = a.t; V.overallcost = 0; V.loc = Ny.

Let X be a linked list consisting of all these nodes.

(* We will always assume that X is sorted in ascending order according to the overallcost field. As initially
all these nodes have their overallcost field set to 0, this means that when this step is first executed, any
ordering will suffice. *)

5. 1if X = NULL then halt with failure.

6. else
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(a) 1. Cur:= head(X); X = tail(X);
il. if Cur.name = a.type then return Cur.seq and halt.
iii. Candy :={(¢,0’, N)|c € HC(N) and ¢(Cur.name) = o' and N € loc(o’) and N = Cur.loc};
iv. For each (¢,0', N1) € Cand create a node V, , n, with fields:

Ve o, N, -name = 0';

Ve ot N, size = size(0') = size_ratio(c) X size(C'ur.name);

Ve ot N, -cost = size(Cur.name) x cost_rate(c);

c

Ve ot N, s8q = Cur.seq — (0, N1);

Ve o, Ny loc = Ny

Ve ot N, -overallcost = C'ur.overallcost 4 cost_rate(c) x size(C'ur.name).
if there is not anode M in V, , N, .seq such that V. ,» y, .name = M .name and V. o/ n, .size >
M .size theninsert V. oy, into the list X, keeping X in sorted order w.r.t. the totcost

field.
v. Candy := {(sends(Ny,0', N2), 0, N1) | Cur.name = o’ and (N1, N2) € E and N; € loc(o') and
Ny = Cur.loc};

vi. For each (sends(Ny,0', N3),0', N1) € Cands create a node V,/ n, with fields:

Vo N, -name = 0';
Vor N, .size = size(0');
Vor N,.cost = size(Cur.name) x p(N1, N2);

sends(Ny,0' ,N2)
Vor N, .5eq = C'ur.seq — (o', Na);
Vor N, loc = Na;

Vo N, .overallcost = C'ur.overallcost + size(Cur.name) x p(N1, N2);

if there is not a node M in V,/ n,.seq such that V, y,.name = M.name and V, y,.size >
M .size then insert V,/ n, into the list X, keeping X in sorted order w.r.t. the totcost
field.

vii. Goto Step b.

4 Implementation and Experiments

We have implemented the OSA, OptOSA, DOSA and DOptOSA algorithms on a SUN workstation
running Unix. The OSA and OptOSA algorithms included about 1300 lines of C-code. The DOSA and
DOptOSA algorithms comprise about 1300 lines of C code as well. We will now describe the experi-
ments we conducted. FEach point shown in the graphs reflecting experimental results was obtained by
averaging the results of various runs.

4.1 OSA vs. OptOSA: Cost of Synthesis Sequence

We ran experiments to compare the cost of a synthesis sequence computed by the OSA algorithm
against the cost of a synthesis sequence computed by the OptOSA algorithm. In this experiment, we
varied the number of objects at a given node from 50 to 600 at intervals of 50. The number of types
of these objects were varied from between 5 and 30 at steps of 10.

Figure 3 shows the graph describing the costs of synthesis sequences computed by OSA as opposed
to the costs of synthesis sequences computed by OptOSA. As can be easily seen, OptOSA performs
significantly better than OSA — it consistently yields better results than OSA. Both OSA and OptOSA
produce better and better synthesis sequences as the number of objects is increased. Both algorithms
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Figure 3: OSA vs. OptOSA: Cost of Synthesis Sequences Generated

appear to reach a “steady state” after 250 objects (in the case of OptOSA) and 500 in the case of
OSA. In this steady state, OptOSA computes synthesis sequences that are about 40% as expensive as
those computed by OSA. Before the steady state, OptOSA computes synthesis sequences that are well
below 40% as expensive as those computed by OSA.

4.2 OSA vs. OptOSA: Running Times

The “cheaper” synthesis sequences computed by OptOSA have an attached price tag — OptOSA takes
longer to compute these sequences. As Figure 4 shows, OSA takes significantly less time to compute
synthesis sequences than does OptOSA. In fact, OSA exhibits remarkably “constant” behavior in terms
of running time — it is largely independent of the number of objects being dealt with and seems to
take about 1 millisecond for all the cases we tried. In contrast, OptOSA’s computation time increases
as more objects are present. Furthermore, OSA may compute a synthesis sequence in as much as ll—o’th
to ;—O’th the time taken by OptOSA. However, in terms of “absolute times”, this is not very much and
only involves a few milliseconds of savings. In contrast, the synthesis sequence computed by OSA may
be inferior to the one computed by OSA in terms of cost.

4.3 OSA vs. OptOSA: Impact of Conversion Ratio

In the experiments reported thus far, we have reported on the running time taken by and the cost of
the synthesis sequences computed by the OSA and OptOSA algorithms. However, these factors do not
take into account, the number of conversion functions. Recall that each object has a name of the form
name.type. In our experiment, we allowed the number of types considered to vary from 5 to 30 (in
steps of 5) and the number of names to also vary from 5 to 30 (also in steps of 5). The total number of
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Figure 4: OSA vs. OptOSA: Running Times

conversion functions varied from 5 to 275 in steps of 30. For any given number of types num;, number
of names num,, and number of conversion functions numcy, the conversion ratio is defined to be
. . nume X numy,
ConversionRatic = ——mW——.
nUMf
In this experiment, we varied the conversion ratio from 2 to 125 — the higher the conversion ratio, the
larger the set of potential objects to the set of actual conversion functions available.

4.3.1 Impact of Conversion Ratio on Cost of Synthesis Sequence Found

Figure 5 shows the cost of a synthesis sequence found by the OSA algorithm, while Figure 8 shows the
cost of a synthesis sequence found by the OptOSA algorithm.

As can be seen from the Figures, as the conversion ratios increase, both algorithms exhibit similar
behavior, and the number of objects participating seems to have less of an impact. In the long run,
the OptOSA algorithm seems to find solutions that are only half as expensive as the OSA algorithm.

4.3.2 Impact of Conversion Ratio on Running Time

Figure 7 shows the time taken by the OSA algorithm to compute a synthesis sequence, while Figure 8
shows the time taken by the OptOSA algorithm.

It is easy to see from the above figures that both of the algorithms exhibit some behavioral peaks
when the conversion ratio is 4. What is important is that as the conversion ratios get larger, the effect
of the number of objects decreases, and each algorithm seems to “settle” down to a steady state. In
the case of the OSA algorithm, this means that when the conversion ratio is sufficiently high (over 15
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Figure 6: Cost of Solution found by OptOSA algorithm with Varying Conversion Ratios
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Figure 9: DOSA vs. DOptOSA: Cost of Synthesis Sequences Generated

or s0), the OSA algorithm seems to find solutions in about 0.25 seconds. In the case of the OptOSA
algorithm, again when the conversion ratio is 15 or so, the OptOSA algorithm seems to find solutions
in about 2 seconds. This means that in the long run, we seem to be able to say that the OptOSA
algorithm will take about 4 times the time taken by the OSA algorithm, but will find a solution that
is half as expensive.

4.4 DOSA vs. DOptOSA: Cost of Synthesis Sequence

Figure 9 shows the cost of synthesis sequences computed by the DOSA and the DOptOSA algorithms,
respectively, as the number of objects is increased from 50 to 600. The graph indicates that DOSA
and DOptOSA yield solutions that become progressively “less” expensive as the number of objects
increases; however, DOptOSA yields synthesis sequences that are only about %’the the cost of the
synthesis sequences yielded by DOSA.

4.5 DOSA vs. DOptOSA: Running Times

Figure 10 shows the time taken by DOSA and DOptOSA to compute synthesis sequences as the number
of objects increase. As seen, DOSA performs about 30-50 times as fast as DOptOSA; however, once
again, as in the case of OSA vs. OptOSA, this difference is still measured in a few milliseconds (12-24
milliseconds). What is more interesting, however, is the fact that the time taken by DOSA to compute
synthesis sequences decreases as the number of objects increases, while the corresponding time taken
by DOptOSA increases. This suggests that in applications where a very large number of objects (in the
thousands) are being worked on collaboratively, it might be wiser to use DOSA rather than DOptOSA.
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Figure 10: DOSA vs. DOptOSA: Running Times

4.6 DOSA vs. DOptOSA: Impact of Conversion Ratio

We also conducted experiments to determine the impact of conversion ratio in the case of DOSA vs.

DOptOSA.

4.6.1 Impact of Conversion Ratio on Cost of Synthesis Sequence

When the conversion ratio was varied from 2 to 125, we observed (cf. Figure 11) that DOSA returned
quickly converged to a stable state when the ratio is around 17. Furthermore, the number of objects
involved did not have a significant impact on the cost of the computed solution. In contrast, DOptOSA
(cf. Figure 12) seemed to compute solutions of more or less the same cost as DOSA when the conversion
ratio was 17 or higher. However, when the conversion ratio is small, DOptOSA yields solutions that
are significantly cheaper.

4.6.2 Impact of Conversion Ratio on Running Time

Finally, in terms of running time, DOSA (cf. Figure 13) quickly reached a steady state when the
conversion ratio was around 17. However, DOptOSA was less predictable (cf. Figure 14). DOptOSA
took about 5-50 times as long as DOSA to find a solution. Again, in absolute terms, this does not
seem to make a big impact, merely adding as much as 10-20 milliseconds to the time required by

DOSA to find a solution.

31



Cost (million)
16 +

+ (16.18)

14 4

10

X 50 objects

+ 600 objects (with 5 runs) DOSA cost

Figure 11: Cost of Solution found by DOSA algorithm with Varying Conversion Ratios
Cost (millon)
14 1
12

10

(with 5 runs) DOptOSA Cost

Figure 12: Cost of Solution found by DOptOSA algorithm with Varying Conversion Ratios

32



miliseconds

4

351

2.5+

154

0.5

DOSA Time
+ 600 objects (with 5 Runs)
Figure 13: Running Time of DOSA algorithm with Varying Conversion Ratios
+ (100.19) _*+ (58.73)
miliseconds Y +. (2285) _--
20 1 S
4——\4/ e
1751 L
15 1 o
125+
10 A
75

25 A

X 50 objects

125 Ratio
(with 5 runs)
+ 600 objects

DOptOSA time
Figure 14: Running Time of DOptOSA algorithm with Varying Conversion Ratios

33



5 Related Work

Multimedia collaboration has been a topic of wide interest. In addition to significant amount of work
in the areas of CSCW, recent work in this area includes the hypermedia conversation recording system
of Imai et al.[2], multipoint conferencing system of Gong [3], and Argo [4]. In [2], Imai et al. show
how to record the artifacts of a realtime collaboration so that when the collaboration is concluded,
the collaborators have access not only to the final document, but also to the artifacts (handwritten
notes, voice annotations etc.) that led them to this document. Gong [3] studies some of the impor-
tant issues in multimedia conferencing over packet switched networks, and provides solutions to the
problems that arise in multipoint audio and video control. The Argo system [4] on the other hand,
is built to let users collaborate remotely using video, audio, shared applications, and whiteboards.
Synchronization has been studied by Manohar [5]. They study methods to enable the faithful replay
of multimedia objects under varying system parameters. To accomplish synchronization of different
session objects, they provide an adaptive scheduling algorithm. Wolf et al [6] show how an application
can be shared among heterogeneous systems. They compare two methods for heterogeneous sharing:
one optimizes transmission in the system and other optimizes conversions between objects. Ahuja’s
group at AT&T [7] also has had significant contributions in collaborative services. They propose a
method for generating visual representations of recorded histories of distributed collaborations, so that
remote collaborators can easily access information that will let them understand how the collaborative
environement evolved to a particular state. Little [8] has presented an elegant document management
system for shared data and provided a data model (POM ) which permits dynamic compositions of
mixed-media documents. Wray et al. [9] have built an experimental collaborative environment called
Medusa which integrates data from heterogeneous hardware devices. Medusa provides an environment
which facilitates rapid prototyping of new applications. Rajan, Vin et al. [10] started some work on
formalizing the notion of multimedia collaboration. They provide a basis which can support a wide
spectrum of structured multimedia collaborations. Their formalization captures the requirements of
various types of interactive and non-interactive collaborations. They also implemented a prototype
collaboration management system based on their formalism. However, the papers listed above do
not address the complementary problem studied by this paper, viz. arranging for an object to be
transmitted (at minimal cost and with the desired quality) to a participant in a collaboration in a
form that he can work with.

6 Conclusions

In this paper, we have classified media objects into four broad categories: static, quasi-static, temporal,
and quasi-temporal, and developed a theory of media objects in which each media object is represented
as a H-tuple. We have then developed a formal definition of a collaborative multimedia system,
consisting of collaborators and distributed media objects. We have presented optimal algorithms for
collaborative object synthesis: i.e., for constructing multimedia documents by composing together a
given set of media objects. These algorithms are then extended to incorporate quality constraints (such
as image size) as well as distribution across multiple nodes. We have proved that these algorithms are
sound, complete, and optimal (in the case of OptOSA and DOptOSA.) We have implemented these
algorithms, and evaluated their performance.

In future work, we will study the problem of collaborative media systems where multiple collab-
orators are working together, in a collaborative group-session. In such cases, the sharing of these
objects must be done in real-time, and editing changes made by one collaborator must be reflected,
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in a synchronized fashion, and in real-time, on the screens/output devices of others. Most current
systems that implement such schemes (e.g. the Sun ShowMe repertoire of products) require that all
nodes in the collaborative enterprise have certain common products available on them, (viz. the Sun
ShowMe system). In Part II of this series of papers [1], we will show how we may build upon the
framework presented in this paper to solve this important problem.
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Appendix: Proofs of Theorems

Note to Referees: This section can be removed, for space reasons, when the paper is published. It
is included here so that the referees can verify the claims made in this paper.

Proof of Theorem 3.1. (1) Let 55 be a synthesis sequence for object o within node N, and let 59
be of the following form:

c1 Cco Cn—1 Cn
0] — 03 —= ... — 0, —> 0
Since S5 is a synthesis sequence, and since 01, ¢1, ..., ¢, are initially in node N, (¢,,, 0,,) is in X after

the step 2 of the initial call.
If n =1, then the case is trivial. If OS'A chooses (¢, 0,) in step 6, then SOL = 55 = 0y “Lo.

Let us assume that the hypothesis is true for all synthesis sequences of length < n, and let 5.5 be of
length n + 1, i.e. 55 is of the following form:

c1 c2 Cn—1 Cn+1
0 — 03 —~ «.. =~ Op41 — O

There is a way of selecting pairs (01,¢1), ..., (04,¢,) at step 6 of the algorithm (since the length of the
corresponding subsequence is equal to n), but since (¢,,41, 0,41) is in X after the step 2 of the initial
call, there is a way of selecting that pair at step 6.

Hence, there is a way of selecting pairs (01,¢1), ..., (0p41,¢n41) for any given synthesis sequence 55.

(2) Let us assume the opposite of the hypothesis, i.e. OSA algorithm terminates with failure, but
there is a synthesis sequence 55 for object o within node N.

From property (1), there is a way of selecting pairs corresponding to the synthesis sequence 95 at step
6 in a way that SOL will be equal to §5. Besides, the algorithm does not terminate with failure unless
all possible pairs are examined (step 9 and step 3). If all the possible pairs are examined, then the
sequence of pairs coresponding to synthesis sequence 5.5 would be found, and 55 would be returned
as SOL. This is contradictory to our initial assumption, hence the hypothesis is correct.

(3) Let SOL be the sequence returned by the OSA algorithm, and let the size of SOL be n. Hence,
SOL is of the following form:

0 20y 2 I 0y
If n =1, SOL must be returned by step 5 of the OSA algorithm. Since, ¢y is a conversion capability
in HC(N) (by step 2) and N € loc(o1) (by step 5), o can be synthesized from oy using ¢;. Hence, SOL
is a sythesis sequence.

Now, let us assume that the hypothesis is true for all solutions with length less than or equal to n
returned by the OSA algorithm. Let also SOL be of size n + 1, i.e SOL is of the following form:

c1 co Cn—1 Cn Cn41
0 — 0 — «o. =~ Oy =7 Opy1 — O

The recursive call at step 8 of the OSA algorithm returns a solution sequence SOL’ for o,41:

c1 [ Cn—1 Cn
01 — 03 — ... = Op — Op41
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This solution sequence is a synthesis sequence, because its length is equal to n (by the inductive
hypothesis).

Since, ¢,41 is a conversion capability in HC(N ) (by step 2), and since SO L’ is a synthesis sequence for
object 0,41 (by the inductive hypothesis), SOL is a synthesis sequence for object o within the node
N.

(4) The set T'ried can be of size at most card(HC(N)) X card(Objn). Each time step 7 of the OSA
algorithm is executed, the number of elements in Tried increases by 1 — notice that the element being
added to Tried cannot alread by in Tried because of the test in Step 5. Therefore, Step 7 of this
algorithm can be executed at most card(HC(N)) X card(Objn). o

Proof of Theorem 3.2. (1) The solution returned by the OptOSA algorithm is a valid synthesis
sequence. Let solution returned by OptOSA be of the following form:

Cn—1

C1 Co n— Cn
0 — 09 — ... — 0, — 0

The initial object 01 and all the conversion operators c,..,c,, are available in node N (by steps 3 and
6(a)iv). Hence, the solution is a valid synthesis sequence.

Now, let the synthesis sequence returned by the OptOSA algorithm be 55, and let S5 be a sub-optimal
sequence. Hence, there exists a synthesis sequence 95’ with a lower cost.

Let 55 be of the following form:

Cc1 Cco Cn—1 Cn
0] — 03 — ... — 0, —> 0
And let 55" be of the following form:
’ / ! /
T ‘m=1 1 ‘m
0] — 0y —— ... — 0, —> 0

Since 95 is suboptimal, but 95" is optimal, cost(5.9) > cost(55"). Furthermore, since the cost of each
step in the synthesis is non-negative, the following observations hold:

! c

cost(S5) > cost(d), — ... 2= o)
cost(85) > cost(d] —= .. e o 1)

cost(S5) > cost(d], — o))

Since (o}, ¢} ) is in T°(0) and it has a lower cost, (o}, c}) is going to be examined before (0, ¢, ). Then,
(ofy, ¢4) will be in T'(0) and it will have a lower cost than (o,, ¢, ), hence it will be evaluated before
(0, ¢n). Similarly, (0!, /) will be in T~ !(0) and it will have a lower cost than (o,, ¢,). So, (0),,c.,)
will be evaluated before (o, ¢,) and S5 will be returned instead of S.5. This is a contradiction of

the initial assumption, hence if OptOSA returns a synthesis sequence, then this sequence is optimal.
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(2) If OptOSA returns failure, it must do so at step 5. Hence, in the case of failure, the linked list X
must be empty. X becomes empty when every possible sequence is checked and no solution is found.
Hence, if OptOSA returns failure, then there is no solution.

If there is no synthesis sequence for the requested object, then OptOSA cannot return any solution
except failure, because by the previous property, if OptOSA returns a solution, then there exists a
synthesis sequence for the requested object.

JFrom the above two paragraphs, we can conclude that, the OptOSA algorithm returns with failure
iff there is no synthesis sequence for object o in node N.

(3) Property 1 above already shows that if OptOSA returns a solution, then the solution is an optimal
one. Hence, showing that if there is a synthesis sequence then OptOSA returns a non-empty solution
sequence is enough to prove our claim.

Let us assume that there is a synthesis sequence 55 for the object o within the node NV, and let 55
be of the following form:

Cc1 Cco Cn—1 Cn
01 —> 0 — ... —> 0Op —> O

Since o7 is in node N, there is a quadruple ¢ of the form (o0q,size(01),0,01) in X after step 4.

Let us assume that there are & quadruples in X before ¢: ¢1, ¢2, ... , gr. For the sake of the argument,
let us also assume that none of these quadruples leads to a synthesis sequence.

g1 will be the first quadruple selected in step 6 of the algorithm. ¢ will result in at most C' new
quadruples where C' is the number of conversion functions available in node N. In the worst case, C'
new quadruples will get in front of ¢ in the list, and one quadruple (¢;), will be deleted. Hence the
total number of quadruples before ¢ in X is now < k + (. This is obviously larger than the initial
value k. However, this fact cannot result in an infinite computation, because of the following:

o The sizes of the objects are integers.

o The if condition in 6(a)iv prevents objects to be recreated with larger (or same) sizes during
the synthesis.

e There is a finite number of distinct types.

The first two properties guarantee that an object 0.t can be recreated at most size(o.t) times during
the synthesis sequence.

Let p(t,¢) be equal to max({size_ratio(c)|c € HC(N)andc(o.t) = o0.i}) (if the set {size_ratio(c)|c €
HC(N) and c(o.t) = o.t} is empty, then let p(¢,7) be 0). Let also the number of distinct types be T
(by the third property 7' is finite). Then, an object 0.t can lead to less than

T

Zp(t, i) X size(o.t)

=1
new objects during the object synthesis.

Hence, a quadruple can cause only a finite amount of quadruples be created and placed in X. Hence,
quadruples ¢; though ¢ will cause only a finite new of new quadruples to be placed before ¢. Hence,
eventually, all those quadruples will be evaluated and consumed and ¢ will be processed, and as a
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result of this ¢/ =(0y,5ize,Cost,0; — 0y) will be placed in X (Size is the size of 0y, and Cost is the
cost of synthesizing oz).

Using the above argument iteratively, it is possible to show that the synthsis sequence 55 will even-
tually be found and returned by the OptOSA algorithm. a

Proof of Theorem 3.3. Follows along the same lines as the proof of Theorem 3.1.
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