
Collaborative Multimedia Systems: Synthesis of Media Objects �Kas�m S. Candan, V.S. SubrahmanianDepartment of Computer ScienceUniversity of MarylandCollege Park, Maryland 20742.fcandan; vsg@cs.umd.edu P. Venkat RanganDepartment of Computer ScienceUniversity of California at San DiegoLa Jolla, CA 92093.venkat@cs.ucsd.edu.AbstractWhen a group fI1; : : : ; Ing of individuals wishes to collaboratively construct a complex multi-media document, the �rst requirement is that they be able to manipulate media-objects created byone another. For instance, if individual Ij wishes to access some media objects present at partici-pant Ik's site, he must be able to; (1) retrieve this object from across the network, (2) ensure thatthe object is in a form that is compatible with the viewing/editing resources he has available at hisnode, and (3) ensure that the object has the desired quality (such as image size and resolution).Furthermore, he must be able to achieve these goals at the lowest possible cost. In this paper, wedevelop a theory of media objects, and present optimal algorithms for collaborative object shar-ing/synthesis of the sort envisaged above. We then extend the algorithms to incorporate qualityconstraints (such as image size) as well as distribution across multiple nodes. The theoretical modelis validated by an experimental implementation that supports the theoretical results.1 IntroductionCollaborative multimedia systems consist of collaborators constructing and manipulating various kindsof media objects, such as video-clips, pictures, text �les, or perhaps some complex entity constructedout of these simpler entities. By and large, these collaborators are located at various points across thenetwork. When considering collaborative media systems, a vast number of di�erent factors come intoplay:� First and foremost, each collaborator must have the ability to access and manipulate the objectsthat he needs to access in order to ful�l his role in the collaboration. This simple step involvesfar more than just retrieving the object from a remote node { it involves accessing the object androuting it through a set (possibly empty) of intermediate nodes in such a way that the object,when it arrives, has the desired properties (e.g. be in a format compatible with the resources atthe destination node, having a minimal desired quality, etc.). This may require not only actionsat the remote node and the destination nodes, but the intermediate nodes as well.� Second, when multiple collaborators are working together, in a collaborative group-session, thenthe sharing of these objects must be done in real-time, and editing changes made by one col-laborator must be re
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devices of others. Most current systems that implement such schemes (e.g. the Sun ShowMerepertoire of products) require that all nodes in the collaborative enterprise have certain commonproducts available on them, (viz. the Sun ShowMe system).The �rst step listed above is a criticial pre-cursor to the second step. There is, after all, little pointin synchronizing the transmission of objects if one of the collaborators cannot view the object in itscurrent form (e.g. he may lack a given video player required to present a video object). In this paper,we focus in on one aspect of collaborative multimedia systems, viz. the �rst point listed above. Theprimary contributions we make are the following:1. We provide a formal declarative de�nition of a media-object and use this as the basis of a formalde�nition of a collaborative media system (COMS) that involves multiple collaborators located atdispersed sites on a network such as the Internet. This de�nition includes not just a declarativespeci�cation of the location of di�erent media-objects, but also of the capabilities available atthese locations.2. We provide a formal declarative de�nition of an object synthesis sequence that may be used by agiven collaborator to obtain an object from another node in a form that he can use at his localnode. This form may include not just a format speci�cation, but also quality speci�cations. Thisis particularly important in the case of multimedia data where lossy compression techniques arefrequently used, as well as where conversions from one format to another may degrade quality.3. We provide a declarative framework for associating costs with such object synthesis sequences {this automatically induces a de�nition of an optimal synthesis sequence.4. The declarative speci�cations listed above provide a formal speci�cation againstwhich the correctness and optimality of algorithms can be measured.5. Subsequently, we develop two algorithms to construct synthesis sequences { the OSA algorithmwhich computes a syntheseis sequence, but not necessarily an optimal one, and the OptOSAalgorithm that is guaranteed to compute an optimal synthesis sequence. We formally prove thatthese algorithms are sound, complete and optimal (in the case of OptOSA).6. Both the OSA and the OptOSA algorithms assume that all object synthesis is done within asingle node. We then de�ne the notion of a distributed synthesis sequence and develop twoalgorithms, the DOSA and DOptOSA algorithms that extend the OSA and the OptOSA algorithmsto the distributed case.7. The OSA, OptOSA, DOSA and DOptOSA algorithms have all been fully implemented in C ona SUN/Unix workstation. We report on experiments that we have conducted to determine thetrade-o�s made when we use OSA vs. OptOSA and DOSA vs. DOptOSA.2 Media ObjectsIn most multimedia systems, the primitive entities that are being constructed and/or being manip-ulated are called media objects (or multimedia objects, or sometimes, just plain objects.) However,exactly what constitutes a media-object has often been de�ned on a case-by-case basis. Intuitively,a media-object could be a video-clip, or a picture, or a text �le, or perhaps some complex entity2



constructed out of these simpler entities. In this section, we will provide a formal, mathematicalde�nition of a media-object. As di�erent media-objects have di�erent types of attributes as well asdi�erent properties, we classify all media-objects into three types:1. Static: Intuitively, a static media object is an object that does not change when it is presented.Examples of static media-objects include .gif �les and ordinary text �les that do not changewhen presented to the user (though of course they may change as a result of editing by a human).2. Quasi-Static: A quasi-static media-object is one which may be broken up into a contiguoussequence of chunks of information, each of which is presented to the user sequentially, one afteranother. However, it is upto the individual viewing the quasi-static object to determine howlong to spend in browsing one such chunk of information. A good example of a quasi-staticmedia-object is a postscript �le. A user browsing a postscript document through a postscriptviewer such as ghostview may move from one page of the postscript �le to another at hisdiscretion/leisure.3. Temporal: A temporal media-object is one which may be broken up into a contiguous sequenceof chunks of information, each of which is presented to the user sequentially, one after another.In temporal objects, we asssume that the display time of each \chunk" in the afore-mentionedsequence of contiguous chunks is the same. An example of a temporal media-object is audio,where an analog audio stream may be broken up into 5 millisecond frames for sampling/analysispurposes.4. Quasi-Temporal: A quasi-temporal media object is similar to a temporal media-object; theonly di�erence is that the display time of di�erent chunks in the afore-mentioned sequence ofcontiguous chunks may vary. An example of quasi-temporal media-objects could be video wheredi�erent frames may be of di�erent lengths { this is particularly useful in annotating the video(by hand or otherwise).De�nition 2.1 A media-object o is a 5-tuple consisting of:1. A data type ds(o) { e.g. the data structure speci�cation may be a :ps �le or a :gif �le orsomething else that is completely application-speci�c.2. A name, name(o), of the form <string>.<type> where <type> is the data type in the precedingitem. For example, if the data type is ps, then the name of such an object may be zzz.ps.3. An object-type, ot(o), which is either temporal, quasi-temporal , static or quasi-static.4. An object-characteristic, oc(o), that has the following form:(a) If a given media-object is of type temporal, then the object characteristic is a pair (n;�t)specifying that the media-object consists of n \chunks" of data, each having duration �t.(b) If the given media-object is of type quasi-temporal, then the object characteristic is a pair(n;  o) where  o is a function from f1; : : : ; ng ! N . Intuitively, this means that themedia-object o has n \chunks" of data, and that chunk i lasts for time  o(i) time units.(c) If the given media-object is of type quasi-static, then the object characteristic is a pair(n;?) denoting that the object has n \chunks" of information where the time taken byeach chunk is unpredictable and is determined by the user.3



(d) If the given media-object is of type static, then the object characteristic is of type (?;?)specifying that the object characteristic is not predictable { neither the number of chunks,nor the time taken in viewing the chunks is predictable and are user-dependent.5. A component size(o) specifying the size requirements of o.The reader will observe that the above de�nition is very robust. For example, we may have twodi�erent objects o1 = (ds(o1); name(o1); ot(o1); oc(o1); size(o1))o2 = (ds(o1); name(o1); ot(o1); oc(o1); size(o2))In this example, objects o1 and o2 are identical except for their size attribute. Such an example mayoccur, for instance, if a utility such as xv is used to re-size an image.Example 2.1 (Text Object) One of the simplest types of media-objects is a textual object. Forexample, a �le of the form a.txt is a textual object having the following properties:1. Name: a.txt2. Data Structure Speci�cation: .txt3. Object Type: static4. Object-Characteristic: (?;?),5. Size: 500 (Kbytes) 2Example 2.2 (GIF Object) A slightly more complex media-object is a pictorial object. For exam-ple, a �le of the form p.gif is a pictorial media-object having the following properties:1. Name: p.gif2. Data Structure Speci�cation: .gif3. Object Type: static4. Object-Characteristic: (?;?)5. Size: 580 (Kbytes) 2Note that a picture �le using a di�erent format (e.g. .ti�) would be de�ned in a way similar to theabove format.Example 2.3 (Audio Object) Consider, on the other hand, an audio media-object b.avi contain-ing 5000 frames, each of length 2 milliseconds. This media-object is characterized by the followingproperties:1. Name: b.avi2. Data Structure Speci�cation: .avi3. Object Type: temporal 4



4. Object-Characteristic: (5000; 2)5. Size: 1 Mbyte 2Example 2.4 (Video Object) Consider a slightly more complex situation where we have a videomedia-object containing 10000 frames, the �rst 5000 of which are of 2 millisecond duration, the next2000 of which are of 1 millisecond duration, and the last 3000 of which are of 3 millisecond duration.This media-object is characterized by the following properties:1. Name: c.avi2. Data Structure Speci�cation: .avi3. Object Type: quasi-temporal4. Object-Characteristic: (5000;  ) where  is the function:  (n) = 2 if 1 � n � 5000; 1 if5001 � n � 7000 and 3 if 7000 � n � 10000.5. Size: 3 MBytes. 2Certain kinds of objects could be declared in many ways depending upon their intended use. Forexample, consider a 25 page postscript document (the same comments apply to many other typesof documents). This could be declared as a static object (which indicates that the collaborativemultimedia system we de�ne will not attempt to automatically have its pages scroll through) or itcould be viewed as a temporal object (where each page is displayed for �t time units), or it couldbe viewed as a quasi-static object where the user scrolls through it at his/her leisure. It is entirelypossible that some postscript documents in a collaborative environment are described as temporalobjects, while others are de�ned to be of temporal or quasi-temporal types.3 Collaborative Multimedia SystemsHaving de�ned the concept of a media-object in Section 2, we are now in a position to start workon de�ning a collaborative multimedia system. Intuitively, such a formal de�nition should take intoaccount, the following aspects of any collaborative endeavor:1. Collaborators: First and foremost, we consider a single collaborative e�ort where there are kcollaborators. Each of these collaborators may be located at di�erent locations on the network.2. Host Capabilities: The site/machine hosting a given collaborator may have a set of capabili-ties. Such capabilities correspond to the system functionalities available at that host node.3. Distributed Media Objects: We assume that the purpose of the collaboration is to developa multimedia-document (a concept to be de�ned below) that composes together a given set ofmedia-objects. For example, a multimedia-document may be composed of a sequence of videoclip v1 followed by video clip v2 followed by a presentation slide (e.g. .dvi �le) followed by anaudio �le. At any given point in time, a multimedia document may consist of various media-objects, located at di�erent sites on the network. These di�erent media-objects may be linkedtogether by various constraints expressing spatial/temporal layout constraints.In this section, we will provide a formal de�nition of collaborative multimedia systems.5



3.1 Simple Collaborative Multimedia SystemsThis section presents the \basic" notion of a collaborative multimedia system. When studying col-laboration systems, it is important for the members of the collaboration to be aware of each otherscapabilities. For the purposes of multimedia collaborations, we will study three types of capabilities:De�nition 3.1 A display capability is a function that maps media-objects to ftrue; falseg.For example, the Unix utility ghostview may be thought of as a display capability that maps allobjects of the form X:ps to true (indicating that it can display them) and all other objects to falseindicating that it cannot display them.De�nition 3.2 An edit capability is a function that maps media-objects to ftrue; falseg.For example, if we have a special image editor called ed tiff to edit .tiff �les, then this is anedit-capability that assigns true to all �les of the form X.tiff and assigns false to all other objects.De�nition 3.3 A conversion capability is a function that takes as input, a media-object o, and returnsas output, a media-object o0.For example, the standard Unix utility, dvips may be viewed as a conversion capability that convertsdvi �les to postscript �les.We now de�ne the concept of a simple collaborative multimedia system.De�nition 3.4 A simple collaborative multimedia system (s-COMS for short) consists of:� an un-directed, weighted graph G = (V;E;}) where V is the set of nodes in the graph (repre-senting sites where a member of the collaboration team is located), E refers to the connectivityof the graph, and } : E ! R+ speci�es the cost of sending a byte of information along an edgein the graph.� a set Obj of media-objects,� a function loc : Obj ! V specifying where the media-objects are located.� A set HC specifying a set of host capabilities { these may not be an exhaustive list of capabilitiesof participating nodes, but just a list of those capabilities that are of interest for the particularapplication being developed.� a function CAP : V ! 2HC specifying what capabilities are available at a given node. (As usual,if X is any set, 2X denotes the power set of X).Example 3.1 (Motivating Example) Figure 1 shows a diagrammatic representation of a collabo-rative multimedia system that involves 5 participating entities. The entities are hosts in Seattle, SanDiego, Chicago, Ithaca, and College Park. The numbers marked along the edges in the graph showsthe weights associated with the edges. A COMS involving the graph of Figure 1 may be described byspecifying the values of the di�erent components described in de�nition 3.4.1. The undirected weighted graph G = (V;E;}) is shown in Figure 1.6



Seattle
San Diego College ParkIthacaChicago70 90 25 30100 120130Figure 1: Network for COMS of Motivating Example.2. The set Obj of media-objects involved is shown in the table below:o ds(o) Type Characteristic size(o)f1.gif .gif static (?;?) 250f2.txt .txt static (?;?) 45f3.avi .avi temporal (5000; 10) 975f4.avi .avi quasi-temporal (4000;  f4) where 950 f4(i) = � 5 if 1 � i � 30008 if 3001 � i � 4000f5.ti� .ti� static (?;?) 300f6.vid .vid temporal (1000; 4) 800f7.vid .vid temporal (2000; 15) 1200f8.ti� .ti� static (?;?) 900f9.gif .gif static (?;?) 450f10.ps .ps quasi-static (25;?) 100f11.ps .ps static (?;?) 140f12.dvi .dvi static (14;?) 100f13.avi .avi quasi-temporal (2000;  f13) where 1500 f13(i) = � 2 if 1 � i � 10004 if 1001 � i � 20003. The function loc specifying the locations of objects is shown in the table below:
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Object Locationf1.gif Seattlef2.txt College Parkf3.avi Ithacaf4.avi San Diegof5.ti� Chicagof6.vid San Diegof7.vid San Diegof8.ti� Chicagof9.gif Seattlef10.ps College Parkf11.ps College Parkf12.dvi Ithacaf13.avi Chicago4. The set HC of host capabilities consists of the following:Capability Name Input Outputtiff2bmp File.ti� File.bmptiff2gif File.ti� File.gifgif2tiff File.gif File.ti�dvips File.dvi File.pscapture image (File.vid,integer) File.gifaudio2text File.avi File.txtghostview File.ps display(�le.ps)xtex File.dvi display(�le.dvi)xv1 File.ti� display(File.ti�)xv2 File.gif display(File.gif)showvid File.vid display(File.vid)showavi File.avi display(File.avi)ed tiff File.ti� File.ti�5. The mapping CAP is de�ned as shown below:V CAP(V )Seattle fxv1; dvips; xtex; gif2tiff; tiff2bmpgSan Diego fcapture image; audio2text; showavigChicago fcapture image; gif2tiff;dvips; showavigIthaca fxv1; xv2; gif2tiff;tiff2gif;ghostview; xtexgCollege Park fed tiff; tiff2gif; audio2text;ghostviewg 23.2 Collaboration in an s-COMS: An Informal DescriptionCollaboration in an s-COMS is accomplished through read-write requests made by the di�erent col-laborators involved. For example, consider the example s-COMS given in Section 3.1. The individual8



located in College Park may wish to work on the image �le f1:gif located in Seattle. For the time be-ing, we assume that all partners participating in an s-COMS have full read/write access to all objectsin Obj. What happens when the College Park collaborator wishes to work on �le f1:gif ?Checkout: First of all, the College Park collaborator must send a request to a server in Seattlerequesting the desired �les. The server in Seattle must try to send the documents to the College Parkcollaborator, keeping in mind the fact that the person in College Park must be able to edit the .gif�le. However, we know that the College Park collaborator cannot edit .gif �les as he has no .gifeditor. Therefore either the server in Seattle or the client in College Park must �nd a \loop" in thegraph/network such that:� The loop is of the form `1; : : : ; `i; : : : ; `n where `1 = Seattle = `n and `i = College Park.� There is some j, 1 � j � i such that HC(`j) achieves the goal of converting the .gif �le toan image �le that can be edited using the a.tiff editor that the College Park site has. Theconversion does not need to be done on a single node on the path. Instead, each node can helpto the process of conversion by performing subconversions.� Once the College Park collaborator has completed his/her work on the .tiff �le, he must returnthe �le to Seattle in .gif format { the format the Seattle site expects the �le to be returnedin. This means that there must be some k, i � k � n such that HC(`k) achieves the goal ofconverting the .tiff �le to a .gif �le.� Finally, the total network cost should be minimized, i.e. the cost of sending the �le across thedi�erent links on the network must be minimized.In general, it is preferable if the client speci�es the loop to be used { as the server may be servicingmultiple clients, passing this responsibility onto the server may lead to an unacceptable load on theserver. Furthermore, a server may decline to compute such a path, and hence, the client should beresponsible for specifying the path by which the desired object is routed.If we examine the example in Section 3.1, then the desired loop is:Seattle! CollegePark! Ithaca! CollegePark! Seattle:This means that when Seattle is initially requested for the .gif �le by College Park, it sends it directlyto College Park who passes in to Ithaca which in turn converts it (using gif2tiff) to tiff format andpasses it back to College Park who edits the ti� �le using ed tiff and then converts it to .gif formatat College Park itself using tiff2gif and sends the result back directly to Seattle. If we assume thatthe cost is independent of the size of the objects, then the total cost of this operation is(130 + 30 + 30 + 130)� 250 = 80000:The reader may easily verify that this total cost is the cheapest possible total cost possible, eventhough other loops may be used to satisfy the same objective.3.3 Collaboration in an s-COMS: A Formal DescriptionConsider an s-COMS � = (G;Obj; loc;HC; CAP) where G = (V;E). Suppose N 2 V is a node in thenetwork and o is an object that we wish to create from existing objects.9



De�nition 3.5 A capability cmay be applied to object o just in case o is of the input-type of capabilityc. If c is a conversion capability, then the result of applying capability c to object o is c(o0). This isdenoted by o c�! o0:3.3.1 Synthesizing Objects within a NodeWe will �rst consider the case when objects are constructed within a single node, using only the objectsand capabilities contained within that node. It will turn out that once we know how to synthesizeobjects within a given node, then we may use this solution to solve the problem of synthesizing objectsin a network of nodes.De�nition 3.6 An object om may be synthesized entirely within nodeN just in case there is a sequenceof objects o1; : : : ; om such that:1. N 2 loc(o1), i.e. object o1 is available to node N and2. For all 1 < i � m, there is a conversion capability ci�1 2 HC(N) such thatoi�1 ci�1�! oiholds.We will call o1 c1�! o2 c2�! o3 c3�! � � �om�1 cm�1�! oma synthesis sequence for object om within node N .De�nition 3.7 An object o may be displayed (resp. edited) entirely within node N if there is asynthesis sequence for object o within node N and there is a display (resp. edit capability) capability,D 2 HC(N) such that D(o) = true:We now present an algorithm that solves the following problem:Object Synthesis Problem. Given a node N , and an object o, determine if o can besynthesized entirely within node N . If yes, return a synthesis sequence for object o withinnode N .Algorithm 1 (Object Synthesis Algorithm (OSA))Input:� A COMS � = (G;Obj; loc;HC; CAP) where G = (V;E)� A node N in V and� An object o to be synthesized entirely within node N .Tried: A global set variable initialized to ;.1. Let Name(o) be of the form str.type.2. Let X = f(c;Ob:type1) j c is a conversion capability in HC(N ) and Name(c(Ob:type1)) = str:typeg. (�Note that Ob may not necessarily be such that N 2 loc(Ob) *).10



3. if f(c;Ob:type1) j (c;Ob:type1) 2 X &(c;Ob:type1) =2 Triedg = ; then return failure and halt.4. Otherwise (* i.e. X still has something in it that can be processed *)5. if there exists a (c;Ob) 2 X such that (c;Ob) =2 Tried and such that N 2 loc(Ob) then returnSOL = Ob:type1 c�! str:typeand halt.6. Otherwise, non-deterministically select a pair (c;Ob) 2 X.7. Set X to X � f(c;Ob)g and set Tried to Tried [ f(c;Ob)g.8. If the call OSA(�; N;Ob) succeeds and returns SOL1, thenSOL = SOL1 c�! str:type:Return SOL. Halt with success.9. Otherwise, goto Step 3.To see how the above algorithm works, let us return to the motivating example COMS discussedin Section 3.1.Example 3.2 Suppose we wish to synthesize the object named f1:bmp in Seattle. In other words, forwhatever reason, the site at Seattle wishes to obtain a bitmapped version of f1.gif. In this case, wecall the OSA algorithm with the example COMS, the node Seattle and the object f1:bmp that wewish to synthesize.� In step 2 of the OSA algorithm, we setX = f(tiff2bmp; f1:tiff)g:This indicates that:� One way to synthesize f1.bmp is by �rst synthesizing a �le f1.tiff and then by applying theoperator tiff2bmp to convert it into a bitmapped �le.� The test in Step 3 succeeds, but that in Step 5 fails, and control passes to Step 6. The onlytriple that can be selected is (tiff2bmp,f1.tiff), so it is selected and in Step 7, we resetX to; and Tried is set to f(tiff2bmp; f1:tiff)g.� In step 8, we call the OSA algorithm recursively with a request to synthesize f1.tiff.� This latter request succeeds immediately via step 5, leading to SOL1 = f1:gif gif2tiff�! f1:tiff.� In step 8 of the original call, we now returnSOL = f1:gif gif2tiff�! f1:tiff tiff2bmp�! f1:bmp:� The algorithm now halts. 2Example 3.3 A slightly more egregious example shows what can happen when a node contains\reversible" actions. For instance, suppose � is a COMS containing just one node having the objecto1:fmt1 and having two conversion functions: 11



1. c1 that converts X:fmt1 to X:fmt2;2. c2 that converts X:fmt2 to X:fmt1;Suppose we wish to create an object o2:fmt2. The OSA algorithm terminates because the globalvariable Tried in it is initially empty; after executing step 3, X = f(c1; o2:fmt1)g; however, afterstep 7, X = ; and Tried = f(c1; o2:fmt1)g; in step 8, we recursively call the OSA algorithm witharguments (�; N; o2:fmt1). In step 3 of the recursive call, X = f(c2; o2:fmt2)g; in Step 7, X = ;and Tried = f(c1; o2:fmt1); (c2; o2:fmt2)g. In Step 8, we recursively call the OSA algorithm witharguments (�; N; o2:fmt2). In Step 3 of the recursive call, we return with failure, cuasing the initialinvocation of the OSA algorithm to terminate with failure. 2The following result tells us that the OSA algorithm is sound and complete, and terminates in linear-time (proofs have been omitted for brevity).Theorem 3.1 (Soundness and Completeness of the OSA Algorithm) Suppose � = (G;Obj; loc;HC; CAP) is a COMS, G = (V;E), N is a node in V , and o is an object we wish to synthesize.1. If SS is a synthesis sequence for object o within node N , then there exists a way of selectingpairs in Step 6 of the OSA algorithm such that the OSA algorithm terminates with success andreturns SOL = SS.2. If the OSA algorithm terminates with failure, then there is no synthesis sequence for object owithin node N .3. If the OSA algorithm terminates with success and returns SOL, then SOL is a synthesis sequencefor object o within node N .4. The OSA algorithm is guaranteed to terminate in time O(card(HC(N)) � card(ObjN)) whereObjN = fo jN 2 loc(o)g.3.3.2 Optimally Synthesizing Objects within a NodeThe OSA algorithm assumes that any way of synthesizing an object is acceptable. However, in practice,di�erent ways of synthesizing objects may lead to very di�erent results. For example, a synthesissequence SS1 to synthesize an object may involve invoking various expensive conversion methods. Incontrast, a di�erent synthesis sequence SS2 may achieve the desired synthesis in a \much cheaper"way. In this subsection, we will de�ne the \cost" of a synthesis sequence and then develop a techniquecalled the OptOSA technique that is always guaranteed to optimally synthesize objects within a givennode.Let us suppose that each conversion capability ci has an associated cost rate, cost rate(ci), and anassociated size ratio, size ratio(ci). Intuitively, if the cost rate of ci is 24, then this means that the costof converting an object o of size size(o) bytes is 24� size(o). Similarly, if the the size ratio of ci is 1:6,then this means that the size of the object ci(o) is 1:6 times the size of object o. Therefore, ifSS = o1 c1�! o2 c2�! o3 c3�! � � �om�1 cm�1�! om12



is a synthesis sequence for object o within node N , then the total cost of synthesizing o entirely withinnode N is given by: TotCost(SS) = m�1Xi=1 cost rate(ci)� size(oi):As size(oi) = size(oi�1)� size ratio(ci�1) for i > 1, it follows thatsize(oi) = size(o1)� i�1Yj=1 size ratio(cj) when i > 1Thus, TotCost(SS) = m�1Xi=1 0@cost rate(ci)� 0@size(o1)� i�1Yj=1 size ratio(cj)1A1A :When attempting to synthesize an object entirely within a given node, we would like to �nd asynthesis sequence SS that has the least possible total cost TotCost(SS). Obviously, we would like todo this without explicitly constructing all possible synthesis sequences for object o within node N .Optimal Object Synthesis Problem. Given a node N , and an object o, �nd theminimal cost (if one exists) synthesis sequence for object o within node N .Before developing an algorithm to e�ciently compute optimal ways of synthesizing objects, we presenta couple of examples to illustrate the basic ideas.Example 3.4 Suppose we consider a very simple COMS � containing a node N that has �ve conver-sion functions c1; : : : ; c5 described below.Capability Name Input Output Cost Ratec1 X.f1 X.f2 10c2 X.f2 X.f3 3c3 X.f2 X.f5 20c4 X.f3 X.f4 4c5 X.f4 X.f5 7Suppose node N has one object named o:f1 of size 50 Kbytes and suppose we wish to synthesize theobject o:f5. Furthermore suppose all of transformations c1; : : : ; c5 are size-invariant, i.e. the sizes ofthe objects do not change when these conversions are applied to them. In other words, size ratio(ci) = 1for i = 1; : : : ; 5. There are two synthesis sequences that accomplish the desired goal. They are:SS1 : o:f1 c1�! o:f2 c2�! o:f3 c4�! o:f4 c5�! o:f5SS2 : a:f1 c1�! a:f2 c3�! a:f5:Even though SS1 is a longer sequence (in terms of the number of conversions that must be performed),it turns out, in this example, that the total cost of SS1 is less than the total cost of SS2.TotCost(SS1) = (10� 50) + (3� 50) + (4� 50) + (7� 50) = 1200:TotCost(SS2) = (10� 50) + (20� 50) = 1500: 213



Example 3.5 Suppose we consider another very simple COMS � containing a node N that has fourconversion functions c1; : : : ; c4 described below. Node N has one object named o:f1 of size s Kbytes.Capability Name Input Output Cost Rate Size Ratioc1 X.f1 X.f2 5 2c2 X.f1 X.f3 9 3c3 X.f2 X.f4 8 1c4 X.f3 X.f4 3 1Suppose we are interested in synthesizing the object o:f4. There are two synthesis sequences thataccomplish the desired goal. They are:SS1 : o:f1 c1�! o:f2 c3�! o:f4and SS2 : o:f1 c2�! o:f3 c4�! o:f4:TotCost(SS1) = 5s + 16s = 21s:TotCost(SS2) = 9s+ 9s = 18s:Therefore, SS2 is a cheaper way of synthesizing object o:f4. 2We are now ready to present the OptOSA technique for �nding optimal ways of synthesizing objects.The OptOSA technique for �nding optimal ways of synthesizing objects attempts to �rst construct anobject bottom-up by iteratively computing a function T de�ned below.De�nition 3.8 (Operator T)Input:� A COMS � = (G;Obj; loc;HC; CAP) where G = (V;E)� A node N in V and� An object o of the form X:type that we wish to synthesize in an optimal manner.Output: An optimal synthesis sequence for object o entirely within node N .1. T 0(X:type) = f(X:t; size(X:t); 0; X:t) jN 2 loc(X:t)g.2. T i+1(X:type) = T i(X:type) [ f(X:t; S; C;Seq) j there is a quadruple (X:t0; S1; C1; Seq1) 2T i(X:type) and there exists a c 2 HC(N) such that c(X:t0) = X:t and C = C1+cost rate(c)�S1and S = size ratio(c)� S1 and Seq = Seq1 c�! X:tg.To see how the above de�nition works, consider the following example:14



Example 3.6 Suppose we wish to synthesize the object a:tiff within a node that has the followingcapabilities: dvi2ps; ps2tiff;dvi2tiff;dvi2bmp;bmp2tiff:As is common, x2y indicates a conversion capability that converts �les of type x to one of type y.Furthermore, suppose that the �le a:dvi of size (1000 bytes) is available within node N . In addition,size ratio(ci) and cost rate(ci) are given by:size ratio(dvi2ps) = 3; size ratio(ps2tiff) = 1.4; size ratio(dvi2tiff) = 10; size ratio(dvi2bmp) = 14; size ratio(bmp2tiff)= 1.2;cost rate(dvi2ps) = 20; cost rate(ps2tiff) = 12; cost rate(dvi2tiff) = 16; cost rate(dvi2bmp) = 2; cost rate(bmp2tiff)= 9;There are three synthesis sequences that can be used to synthesize object a:tiff. These sequencesare: SS1 : a:dvi dvi2ps�! a:ps ps2tiff�! a:tiff:SS2 : a:dvi dvi2tiff�! a:tiff:SS3 : a:dvi dvi2bmp�! a:bmp bmp2tiff�! a:tiff:The operator T works in the following way:� T 0(a:tiff) = f(a:dvi; 1000;0; a:dvi)g:� T 1(a:tiff) = T 0(a:tiff) [ f(a:ps; 3000; 20000; a:dvi dvi2ps�! a:ps),(a:tiff; 10000; 16000;a:dvi dvi2tiff�! a:tiff)SS1,(a:bmp; 14000; 2000; a:dvi dvi2bmp�! a:bmp)g.� T 2(a:tiff) = T 1(a:tiff) [ f(a:tiff; 4200; 56000;a:dvi dvi2ps�! a:ps ps2tiff�! a:tiff)SS2.(a:tiff; 16800; 128000;a:dvi dvi2bmp�! a:bmp bmp2tiff�! a:tiff)SS3:It is easy to see that T 2(a:tiff) = T 3(a:tiff) and hence, T 2(a:tiff) is a �xpoint of the operator T .Each of the marked quadruples in this �xpoint encodes one of the sequences SS1; SS2; SS3 togetherwith the cost of that synthesis sequence. The reader will easily observe that the cheapest cost sequenceis SS1 whose total cost is only 16000. Figure 2 shows a diagrammatic rendering of the sequencesinvolved.The reader will notice that each and every possible synthesis sequence for the object a:tiff is presentin the �xpoint T 2(a:tiff) in the above example, and furthermore, that this �xpoint enumerates eachand every \path" between a.dvi and a.tiff in Figure 2. The OptOSA algorithm will in many cases,never explore many of these paths by optimizing the computation of the �xpoint of T 2(a:tiff) so asto eliminate paths that are not likely to lead to a low cost. However, before developing the OptOSAalgorithm, we present some elementary properties of the T operator.Lemma 3.1 (Properties of T Operator) Consider a COMS �, a node N in �, and an object oof the form X:type that we wish to synthesize within node N . For all j, if T j(X:type) contains aquadruple of the form (o0; size(o0); C 0; SS 0), then there is a synthesis sequence SS 0 of object o0 entirelywithin node N . 215



a.dvi a.ps a.ti�a.bmpdvi2ti�dvips ps2ti�bmp2ti�dvi2bmpFigure 2: Synthesis Sequences for ExampleThe main problem with the above lemma is that it computes all synthesis sequences for the object o.However, in practice, we would like to compute an optimal (i.e. least cost) synthesis sequence withoutcomputing all such sequences. We are now ready to de�ne the OptOSA technique which e�cientlycomputes optimal synthesis sequences.Algorithm 2 (Optimal Object Synthesis Algorithm (OptOSA))Input:� A COMS � = (G;Obj; loc;HC; CAP) where G = (V;E)� A node N in V and� An object o = a:type to be synthesized in an optimal manner.Output: An optimal synthesis sequence for object o entirely within node N .1. Our algorithm uses a special node structure that has the following �elds: name, size, cost, seq, overallcost,next { the �rst four of these �elds refer to the four components of the quadruples manipulated in De�-nition 3.8. overallcost refers to the total cost of the sequence associated with a node. In other words, ifa node has SS in its seq �eld, then the overallcost �eld contains the value TotCost de�ned earlier. Thenext �eld is a pointer to another node of the same type.2. SOL := NIL:3. Compute T 0(a:type).4. For each quadruple of the form (a:t; size(a:t); 0; a:t) in T 0(a:type), create a node V havingV:name = a:t;V:size = size(a:t);V:cost = 0;V:seq = a:t;V:overallcost = 0:Let X be a linked list consisting of all these nodes.(* We will always assume that X is sorted in ascending order according to the overallcost �eld. As initiallyall these nodes have their overallcost �eld set to 0, this means that when this step is �rst executed, anyordering will su�ce. *)5. if X = NULL then halt with failure. 16



6. else(a) i. Cur := head(X); X := tail(X);ii. if Cur:name = a:type then return Cur:seq and halt.iii. Cand := f(c; o0) j c 2 HC(N ) and c(Cur:name) = o0 for and N 2 loc(o0)g;iv. For each (c; o0) 2 Cand create a node Vc;o0 with �elds:Vc;o0 :name = o0;Vc;o0 :size = size(o0) = size ratio(c)� size(Cur:name);Vc;o0 :cost = size(Cur:name)� cost rate(c);Vc;o0 :seq = Cur:seq c�! o0;Vc;o0 :overallcost = Cur:overallcost+ cost rate(c) � size(Cur:name).if there is not a node M in Vc;o0 :seq such that Vc;o0 :name = M:name and Vc;o0 :size �M:size then insert Vc;o0 into the list X, keeping X in sorted order w.r.t. the totcost�eld.v. Goto Step 5.To illustrate why the OptOSA algorithm works much more e�ciently than the OSA algorithm, letus return to Example 3.6.Example 3.7 The reader may already have noticed that T 1(a:tiff) contains a synthesis sequencewhich is captured by the quadruple:(a:tiff; 10000; 16000;a:dvi dvi2tiff�! a:tiff):This quadruple says that the object a:tiff may be synthesized by using the synthesis sequence(a:dvi dvi2tiff�! a:tiff)at a total cost of 16,000. Notice that in T 1(a:tiff), we also have the quadruple(a:ps; 3000;20000;a:dvi dvips�! a:ps)which only goes part of the way towards computing a synthesis sequence for a.tiff, but which hasalready incurred a higher cost, viz. 20,000. Furthermore, in the de�nition of the T operator, thisquadruple leads to the generation of the new quadruple(a:tiff; 4200;56000; a:dvi dvips�! a:ps ps2tiff�! a:tiff)in T 2(a:tiff) even though there is already a better solution. The OptOSA algorithm would eliminatesuch redundant possibilities. To see how, let us now apply the OptOSA algorithm to the case ofExample 3.6. Here is what happens:� Initially, T 0(a:tiff) = f(a:dvi; 1000;0;a:dvi)g: X points to a list of one node containign thequadruple ((a.dvi,1000,0,a.dvi). 17



� Step 6(a) of the OptOSA algorithm now leads to the following quadruples stored in the orderlisted below (the order is signi�cant).(a:bmp; 14000; 2000; a:dvi dvi2bmpf�! a:bmp).(a:tiff; 10000; 16000;a:dvi dvi2tiff�! a:tiff),(a:ps; 3000; 20000; a:dvi dvips�! a:ps).� The �rst element in this list is the quadruple(a:bmp; 14000;2000;a:dvi dvi2bmp�! a:bmp):Note that at this stage, it is still possible that there is a cheap synthesis sequence which �rstconverts a.dvi to a.tiff via an intermediate conversion to a.bmp. That is why the solution ofcost 16000 in the above list of quadruples is not returned immediately.� At the next stage, X now points to the ordered list:(a:tiff; 10000; 16000;a:dvi dvi2tiff�! a:tiff),(a:ps; 3000; 20000; a:dvi dvips�! a:ps).(a:tiff; 16800; 128000;a:dvi dvi2bmp�! a:bmp bmp2tiff�! a:tiff).� In the next stage, the �rst element of this list, viz. the quadruple(a:tiff; 10000; 16000;a:dvi dvi2tiff�! a:tiff)is returned as the optimal solution.The reader will notice that many quadruples listed in Example 3.6 never occur in this computa-tion, because they have been discarded by the OptOSA algorithm, thus leading to highly improvedperformance (Section 4 reports on experimental results).Theorem 3.2 (Soundness and Completeness of the OptOSA Algorithm) Suppose � = (G;Obj; loc;HC; CAP) is a COMS, G = (V;E),N is a node in V , and o is an object we wish to synthesize. Then:1. If the OptOSA algorithm returns a synthesis sequence, then that synthesis sequence is an optimalsynthesis sequence for object o within node N .2. The OptOSA algorithm returns with failure i� there is no synthesis sequence for object o in nodeN .3. If fSS1; : : : ; SSng, n � 1, is the set of all optimal synthesis sequences for N , then the OptOSAalgorithm is guaranteed to return some SSi.Theorem 3.2 is extremely important for a number of reasons. First and foremost, the theorem saysthat the OptOSA algorithm correctly �nds the optimal synthesis sequence for any object that we wishto construct. Furthermore, it says that the OptOSA algorithm always �nds the optimal solution �rst,without �nding any other solutions at all. In other words, the search strategy used by OptOSA inlooking for an optimal synthesis sequence is perfect { the �rst synthesis sequence it comes up with isguaranteed to be the best one { hence, there is no need to evaluate multiple alternative sequences andpick the best one. 18



3.3.3 Optimal Object Synthesis with Quality ConstraintsOne of the key problems that has not been discussed in the preceding sections is the issue of quality.Many transformations may cause the size of a media-object to decrease, yet these transformationsmay not preserve the quality of the object. For example, utilities like xv in the Unix platform allowus to re-size images (like those in tiff and gif �les). In such cases, we need to know whether thetransformations a�ect the quality of the image { for example, when we reduce an image to 50% ofits original size, this is accompanied by a concomitant loss of quality. Often users not only wish tosynthesize objects, but they wish to synthesize objects with a certain quality measure.In this section, we will study the problem of synthesizing objects in the presence of quality constraints.Even more important is the fact that in many cases, a user may wish to simultaneously achieve twoobjectives:(Objective 1) minimizeSSoverallcost(SS) { i.e. minimize the cost of synthesizing the object, and(Objective 2) maximize quality.However, it is entirely possible that these two goals may con
ict with one another, and we will studyways to deal with such con
icts.Consider an s-COMS � = (G;Obj; loc;HC; CAP) where G = (V;E). A quality-assessment is a functionQA : Obj ! R+ where R+ is the set of non-negative real numbers. Intuitively, QA(o1) = 300 says thatthe quality of object o1 is deemed to be 300 w.r.t. some scale. Thus, if QA(o2) were 200, then o1 wouldbe a \better" quality object than o1.A quality function is a map QF : HC ! [0:0; 1:0]. Intuitively, QF(tiff2gif) = 0:9 says that when ati�-image is converted to gif-format, the resulting gif image is only 90% as good as the original.Suppose SS is a synthesis sequence for an object om, and suppose SS has the formo1 c1�! o2 c2�! o3 c3�! � � �om�1 cm�1�! omThe �nal quality of om w.r.t. SS is de�ned byFinQual(om; SS) = QA(o1)� m�1Yj=1 QF(cj):Given any object o to be synthesized, let us de�ne BestQual(o) = fSS jSS is a synthesis sequence forsynthesizing object o such that FinQual(o; SS) = q and there is no synthesis sequence SS 0 for o suchthat FinQual(o; SS 0) < qg. Thus, BestQual(o) is the set of all synthesis sequences for synthesizingobject o that yield the \highest" possible quality.The �rst problem that an end-user may wish to pose is the following:Maximal Quality at Minimal Cost Object Synthesis Problem (BestQualLstCost.)In this problem, the user wishes to �rst synthesize object o at the maximal quality-levelpossible and subsequently minimize the total cost. In other words, quality is the primaryconcern, while cost is to be minimized only after the optimal quality is achieved.Formally, this problem can be speci�ed as follows: Let BestQualLstCost(o) = fSS jSS 2BestQual(o) and there is no synthesis sequence SS 0 2 BestQual(o) such thatTotCost(SS0) < TotCost(SS)g. 19



For an algorithm to correctly solve this problem, given any object o to be synthesized w.r.t. aCOMS �, the algorithm must return a synthesis sequence in BestQual(o). We show below how boththe OSA and the OptOSA algorithms may be modi�ed to compute synthesis sequences that yieldmaximal quality objects at the minimal possible cost.We �rst replace the operator T by a new operator, TQ. Instead of operating on quadruples as Tdid, TQ operates on 5-tuples obtained by augmenting the quadruples T worked on by a �fth \quality"argument.De�nition 3.9 (Operator TQ)Input: Same as operator T (cf. De�nition 3.8).Output: A member of BestQual(o).1. TQ0(X:type) = f(X:t; size(X:t); 0; X:t; QA(X:t)) j (X:t; size(X:t); 0;X:t) 2 T 0(X:type)g.2. TQi+1(X:type) = TQi(X:type) [ (X:t; S; C;Seq;Q)j there is a 5-tuple (X:t0; S1; C1; Seq1;Q1) 2TQi(X:type) where there exists a c 2 HC(N) such that c(X:t0) = X:t and C = C1+cost rate(c)�S1 andS = size ratio(c)� S1 and Seq = Seq1 c�! X:t and Q = Q1� QF(c)g.Note that the operator TQ is exactly like the operator T except that it deals with 5-tuples instead ofquadruples { the �fth component being a quality component.Algorithm 3 QmaxLcost Algorithm for Computing Maximal Quality, Least Cost Synthesis Se-quences We use the same algorithm as the OptOSA algorithm, with the following modi�cations.1. In Step 1 of the OptOSA algorithm, we assume that nodes have one extra �eld, denoted qual.2. Step 3 of the OptOSA algorithm: replace computation of T 0(a:type) by TQ0(a:type).3. In Step 4 of the OptOSA algorithm, we make one additional Assignment: V:qual := �1. (The reasonV:qual is set to minus 1 is that we will eventually minimize the the minus of quality which is the same asmaximizing quality.)4. Furthermore, in Step 4, we assume that X is sorted in ascending order on two keys: the primary key isthe qual �eld, the secondary key is the overallcost �eld. In particular, note that this means that node V1precedes node V2 only if either:� V1:qual < V 2:qual or� V1:qual = V 2:qual and V1:overallcost � V2:overallcost.5. In Step 6(a)(iv), add an extra assignment statement:Vc;o0 :qual = Cur:qual� QF(c):6. In Step 6(a)(iv), when inserting Vc;o0 into the list X, ensure that X is kept in sorted order w.r.t. theprimary key, qual, and subsequently w.r.t. the secondary key overallcost as outlined in item 4 above.Theorem 3.3 (Soundness and Completeness of the QmaxLcost Algorithm) Suppose � =(G;Obj; loc; HC ; CAP) is a COMS, G = (V;E), N is a node in V , and o is an object we wish tosynthesize. Then: 20



1. If the QmaxLcost algorithm returns a synthesis sequence, then that synthesis sequence is inBestQual(o), i.e. this is an optimal synthesis sequence for object o within node N .2. If BestQual(o) = fSS1; : : : ; SSng, n � 1, then the QmaxLcost algorithm is guaranteed toreturn some SSi.3. The QmaxLcost algorithm returns with failure i� there is no synthesis sequence for object o innode N .4. The �rst solution found by the QmaxLcost algorithm is guaranteed to be an optimal one.One problem with the QmaxLcost algorithm is that it may turn out that the cost of synthesizinga high-quality object may be too much. In such cases, a user may wish to indicate a trade-o� betweencost and quality. To do so, the user may place weights on cost and quality. For instance, the assignmentof weights 5 and 1 to quality and cost, respectively, indicates that the user feels that quality is 5 timesmore important than cost.In general, suppose wc and wq are positive integers denoting the weights assigned by a given userto cost and quality, respectively. Then we may de�ne the badness of a synthesis sequence SS = o1 c1�!o2 c2�! o3 c3�! � � �om�1 cm�1�! om of an object om as follows:BAD(SS) = wc � TotCost(SS)� wq(FinQual(SS):Intuitively, we would like to minimize badness (i.e. minimize cost, maximize quality).Minimizing bad-ness Problem. The user may be interested in �nding a synthesis se-quence SS for object o such that there is no other synthesis sequence SS 0 for o such thatBAD(SS 0) < BAD(SS). This is call the problem of �nding the minimally bad synthesissequence for o.This problem can be easily solved by a small modi�cation of the QmaxLcost algorithm. The nodestructures and all parts of the algorithm remain unchanged except for one item: Instead of the arrayX being sorted according to two keys, we keep it sorted in ascending order w.r.t. the value of theexpression: wc � V:overallcost� wq � V:qual::With this minor change, the QmaxLcost algorithm works and correctly computes minimally badsynthesis sequences for any object.3.4 Collaboration in Distributed-COMSIn this section, we show how the framework for synthesizing objects within a single node may be easilyextended to synthesize objects across a network. We have already shown how an object o may besynthesized entirely within a given node N . Suppose now that node N wishes to synthesize objecto, but instead of doing so entirely within node N , it may access data and/or conversion capabilitieslocated at other nodes. This may be modeled as follows.De�nition 3.10 Suppose � = (G;Obj; loc;HC; CAP) is a COMS where G = (V;E). A send operationis of the form sends(Sender; Object; Recipient) where (Sender; Recipient) 2 E | the statementsends(Sender; Object; Recipient) indicates that Sender is sending the speci�ed object to the recipient.21



De�nition 3.11 (Distributed Synthesis Sequence) Suppose � = (G;Obj; loc;HC; CAP) is aCOMS where G = (V;E). An object om may be synthesized by node N just in case there is asequence(N1; c1; o1); : : : ; (Nm�1; Cm�1; om�1); (Nm; ?; om) such that:1. Nm = N and2. N1 2 loc(o1) and3. For all 1 < i � m:(a) Ni 2 loc(oi) or(b) there exists a j < i cj is a conversion capability in HC(Nj) such that cj(oj) = oi andNi = Nj or(c) there exists a j < i such that (Nj ; Ni) 2 E and ci = sends(Nj ; o; Ni).We will call (N1; o1) c1�! (N2; o2) c2�! (N3; o3) c3�! � � � (Nm�1; om�1) cm�1�! (Nm; om)a distributed synthesis sequence for object om w.r.t. node N .The main idea behind distributed synthesis sequences is that they allow a node to perform an arbitrarysequence of operations within the node on one or more objects and then send the results to anothernode that may then do the same. This process can be continued till the desired object is synthesized.The operator TC described below captures the above process.De�nition 3.12 (Operator TC)Input:� A COMS � = (G;Obj; loc;HC; CAP) where G = (V;E)� A node N in V and� An object o of the form X:type that we wish to synthesize in an optimal manner.Output: An optimal synthesis sequence for object o.1. TC0(X:type) = f(X:t; size(X:t); 0; (X:t;N);N) jN 2 loc(X:t)g.2. TCi+1(X:type) = TCi(X:type)[ f(X:t; S; C;Seq;N1)j there is a 5-tuple (X:t0; S1; C1; Seq1;N2) 2TCi(X:type) and either(a) N1 = N2 and there exists a c 2 HC(N1) such that c(X:t0) = X:t and C = C1+cost rate(c)�S1 and S = size ratio(c)� S1 and Seq = Seq1 c�! (X:t;N1) or(b) (N1; N2)2 E andX:t = X:t0 and C = C1+}(N1; N2)�S1 and Seq = Seq1 sends(N2;X:t0;N1)� �� �!(X:t;N2) g. 22



Intuitively, if the 5-tuple (X:t; size(X:t); S; C; Seq;N1) appears in TCi for some i, then this meansthat node N1 can synthesize object X:t of size size(X:t) using the distributed synthesis sequence Seqand incur a cost of at most C in the process of doing so. Note that it is entirely possible that TCimay contain two or more tuples that are identical in all attributes execept for the cost and distributedsynthesis sequence attributes { these will correspond to two or more ways in which object X:t can besynthesized at node N .Lemma 3.2 (Properties of TC Operator) Consider a COMS �, a node N in �, and an object oof the form X:type that we wish to synthesize w.r.t. node N . For all j, if TCj(X:type) contains a5-tuple of the form (o0; size(o0); C 0; SS 0; N), then there is a distributed synthesis sequence SS 0 of objecto0 w.r.t. node N . 2It is easy to see that we can easily modify both the OSA and the OptOSA algorithms to computeoptimal distributed synthesis sequences.3.4.1 The Distributed OSA Algorithm (DOSA)In this section, we present an algorithm that extends the OSA algorithm to handle the constructionof synthesis sequences across multiple nodes in a COMS.Algorithm 4 (Distibuted Object Synthesis Algorithm (DOSA))Input:� A COMS � = (G;Obj; loc;HC; CAP) where G = (V;E)� A node N in V and� An object o to be synthesized in node N .Tried: A global set variable initialized to ;.1. Let Name(o) be of the form str.type.2. Let X1 = f(c;Ob:type1; N1) j c is a conversion capability in HC(N1) and N1 = N Name(c(Ob:type1)) =str:typeg. (� Note that Ob may not necessarily be such that N1 2 loc(Ob) *).3. Let X2 = f(sends(N1; Ob:type1; N2); Ob:type1; N1) j (N1; N2) 2 E and Name(Ob:type1) = str:typegand N2 = N .4. Let X = X1SX2.5. if fx j x 2 X &x =2 Triedg = ; then return failure and halt.6. Otherwise (* i.e. X still has something in it that can be processed *)7. if there exists a (c;Ob;N1) 2 X such that (c;Ob;N1) =2 Tried and such that N1 2 loc(Ob) then returnSOL = (Ob;N1) c�! (str:type; N1)and halt.8. Otherwise if there exists a (sends(N1; Ob;N2); Ob;N1) 2 X such that (sends(N1; Ob;N2); Ob;N1) =2Tried and such that N1 2 loc(Ob) then returnSOL = (Ob;N1) sends(N1;Ob;N2)�! (str:type; N2);and halt. 23



9. Otherwise, non-deterministically select a pair (oper;Ob;N1) 2 X.10. Set X to X � f(oper;Ob;N1)g and set Tried to Tried [ f(oper;Ob;N1)g.11. If the call OSA(�; N1; Ob) succeeds and returns SOL1, then(a) if oper = c then SOL = SOL1 c�! (str:type; N1):Return SOL. Halt with success.(b) if oper = sends(N1; Ob;N2) thenSOL = SOL1 sends(N1;Ob;N2)�! (str:type; N2):Return SOL. Halt with success.12. Otherwise, goto Step 5.3.4.2 The Distributed OptOSA Algorithm (DOptOSA)In this section, we present an algorithm that extends the DOptOSA algorithm to handle the construc-tion of optimal synthesis sequences across multiple nodes in a COMS.Algorithm 5 (Distributed Optimal Object Synthesis Algorithm (DOptOSA))Input:� A COMS � = (G;Obj; loc;HC; CAP) where G = (V;E)� A node N in V and� An object o = a:type to be synthesized in an optimal manner.Output: An optimal synthesis sequence for object o in node N .1. Our algorithm uses a special node structure that has the following �elds: name, size, cost, seq, overallcost,loc, next.2. SOL := NIL:3. Compute TC0(a:type).4. For each �ve-tuple of the form (a:t; size(a:t); 0; a:t; N1) in T 0(a:type), create a node V havingV:name = a:t;V:size = size(a:t);V:cost = 0;V:seq = a:t;V:overallcost = 0;V:loc = N1:Let X be a linked list consisting of all these nodes.(* We will always assume that X is sorted in ascending order according to the overallcost �eld. As initiallyall these nodes have their overallcost �eld set to 0, this means that when this step is �rst executed, anyordering will su�ce. *)5. if X = NULL then halt with failure.6. else 24



(a) i. Cur := head(X); X := tail(X);ii. if Cur:name = a:type then return Cur:seq and halt.iii. Cand1 := f(c; o0; N ) j c 2 HC(N ) and c(Cur:name) = o0 and N 2 loc(o0) and N = Cur:locg;iv. For each (c; o0; N1) 2 Cand create a node Vc;o0 ;N1 with �elds:Vc;o0;N1 :name = o0;Vc;o0 ;N1 :size = size(o0) = size ratio(c) � size(Cur:name);Vc;o0 ;N1 :cost = size(Cur:name)� cost rate(c);Vc;o0 ;N1 :seq = Cur:seq c�! (o0; N1);Vc;o0 ;N1 :loc = N1;Vc;o0 ;N1 :overallcost = Cur:overallcost+ cost rate(c)� size(Cur:name).if there is not a nodeM in Vc;o0;N1 :seq such that Vc;o0 ;N1 :name = M:name and Vc;o0;N1 :size �M:size then insert Vc;o0 ;N1 into the listX, keepingX in sorted order w.r.t. the totcost�eld.v. Cand2 := f(sends(N1; o0; N2); o0; N1) jCur:name = o0 and (N1; N2) 2 E and N1 2 loc(o0) andN1 = Cur:locg;vi. For each (sends(N1 ; o0; N2); o0; N1) 2 Cand2 create a node Vo0;N2 with �elds:Vo0;N2 :name = o0;Vo0 ;N2 :size = size(o0);Vo0 ;N2 :cost = size(Cur:name)� }(N1; N2);Vo0 ;N2 :seq = Cur:seq sends(N1;o0 ;N2)�! (o0; N2);Vo0 ;N2 :loc = N2;Vo0 ;N2 :overallcost = Cur:overallcost+ size(Cur:name)� }(N1; N2);if there is not a nodeM in Vo0 ;N2 :seq such that Vo0;N2 :name = M:name and Vo0;N2 :size �M:size then insert Vo0;N2 into the list X, keeping X in sorted order w.r.t. the totcost�eld.vii. Goto Step 5.4 Implementation and ExperimentsWe have implemented the OSA, OptOSA, DOSA and DOptOSA algorithms on a SUN workstationrunning Unix. The OSA and OptOSA algorithms included about 1300 lines of C-code. The DOSA andDOptOSA algorithms comprise about 1300 lines of C code as well. We will now describe the experi-ments we conducted. Each point shown in the graphs re
ecting experimental results was obtained byaveraging the results of various runs.4.1 OSA vs. OptOSA: Cost of Synthesis SequenceWe ran experiments to compare the cost of a synthesis sequence computed by the OSA algorithmagainst the cost of a synthesis sequence computed by the OptOSA algorithm. In this experiment, wevaried the number of objects at a given node from 50 to 600 at intervals of 50. The number of typesof these objects were varied from between 5 and 30 at steps of 10.Figure 3 shows the graph describing the costs of synthesis sequences computed by OSA as opposedto the costs of synthesis sequences computed by OptOSA. As can be easily seen, OptOSA performssigni�cantly better than OSA { it consistently yields better results than OSA. Both OSA and OptOSAproduce better and better synthesis sequences as the number of objects is increased. Both algorithms25
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Figure 3: OSA vs. OptOSA: Cost of Synthesis Sequences Generatedappear to reach a \steady state" after 250 objects (in the case of OptOSA) and 500 in the case ofOSA. In this steady state, OptOSA computes synthesis sequences that are about 40% as expensive asthose computed by OSA. Before the steady state, OptOSA computes synthesis sequences that are wellbelow 40% as expensive as those computed by OSA.4.2 OSA vs. OptOSA: Running TimesThe \cheaper" synthesis sequences computed by OptOSA have an attached price tag { OptOSA takeslonger to compute these sequences. As Figure 4 shows, OSA takes signi�cantly less time to computesynthesis sequences than does OptOSA. In fact, OSA exhibits remarkably \constant" behavior in termsof running time { it is largely independent of the number of objects being dealt with and seems totake about 1 millisecond for all the cases we tried. In contrast, OptOSA's computation time increasesas more objects are present. Furthermore, OSA may compute a synthesis sequence in as much as 110 'thto 120 'th the time taken by OptOSA. However, in terms of \absolute times", this is not very much andonly involves a few milliseconds of savings. In contrast, the synthesis sequence computed by OSA maybe inferior to the one computed by OSA in terms of cost.4.3 OSA vs. OptOSA: Impact of Conversion RatioIn the experiments reported thus far, we have reported on the running time taken by and the cost ofthe synthesis sequences computed by the OSA and OptOSA algorithms. However, these factors do nottake into account, the number of conversion functions. Recall that each object has a name of the formname.type. In our experiment, we allowed the number of types considered to vary from 5 to 30 (insteps of 5) and the number of names to also vary from 5 to 30 (also in steps of 5). The total number of26
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Figure 4: OSA vs. OptOSA: Running Timesconversion functions varied from 5 to 275 in steps of 30. For any given number of types numt, numberof names numn, and number of conversion functions numcf , the conversion ratio is de�ned to beConversion Ratio = numt � numnnumcf :In this experiment, we varied the conversion ratio from 2 to 125 { the higher the conversion ratio, thelarger the set of potential objects to the set of actual conversion functions available.4.3.1 Impact of Conversion Ratio on Cost of Synthesis Sequence FoundFigure 5 shows the cost of a synthesis sequence found by the OSA algorithm, while Figure 8 shows thecost of a synthesis sequence found by the OptOSA algorithm.As can be seen from the Figures, as the conversion ratios increase, both algorithms exhibit similarbehavior, and the number of objects participating seems to have less of an impact. In the long run,the OptOSA algorithm seems to �nd solutions that are only half as expensive as the OSA algorithm.4.3.2 Impact of Conversion Ratio on Running TimeFigure 7 shows the time taken by the OSA algorithm to compute a synthesis sequence, while Figure 8shows the time taken by the OptOSA algorithm.It is easy to see from the above �gures that both of the algorithms exhibit some behavioral peakswhen the conversion ratio is 4. What is important is that as the conversion ratios get larger, the e�ectof the number of objects decreases, and each algorithm seems to \settle" down to a steady state. Inthe case of the OSA algorithm, this means that when the conversion ratio is su�ciently high (over 1527
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DOSAFigure 9: DOSA vs. DOptOSA: Cost of Synthesis Sequences Generatedor so), the OSA algorithm seems to �nd solutions in about 0.25 seconds. In the case of the OptOSAalgorithm, again when the conversion ratio is 15 or so, the OptOSA algorithm seems to �nd solutionsin about 2 seconds. This means that in the long run, we seem to be able to say that the OptOSAalgorithm will take about 4 times the time taken by the OSA algorithm, but will �nd a solution thatis half as expensive.4.4 DOSA vs. DOptOSA: Cost of Synthesis SequenceFigure 9 shows the cost of synthesis sequences computed by the DOSA and the DOptOSA algorithms,respectively, as the number of objects is increased from 50 to 600. The graph indicates that DOSAand DOptOSA yield solutions that become progressively \less" expensive as the number of objectsincreases; however, DOptOSA yields synthesis sequences that are only about 14 'the the cost of thesynthesis sequences yielded by DOSA.4.5 DOSA vs. DOptOSA: Running TimesFigure 10 shows the time taken by DOSA and DOptOSA to compute synthesis sequences as the numberof objects increase. As seen, DOSA performs about 30{50 times as fast as DOptOSA; however, onceagain, as in the case of OSA vs. OptOSA, this di�erence is still measured in a few milliseconds (12-24milliseconds). What is more interesting, however, is the fact that the time taken by DOSA to computesynthesis sequences decreases as the number of objects increases, while the corresponding time takenby DOptOSA increases. This suggests that in applications where a very large number of objects (in thethousands) are being worked on collaboratively, it might be wiser to use DOSA rather than DOptOSA.30
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5 Related WorkMultimedia collaboration has been a topic of wide interest. In addition to signi�cant amount of workin the areas of CSCW, recent work in this area includes the hypermedia conversation recording systemof Imai et al.[2], multipoint conferencing system of Gong [3], and Argo [4]. In [2], Imai et al. showhow to record the artifacts of a realtime collaboration so that when the collaboration is concluded,the collaborators have access not only to the �nal document, but also to the artifacts (handwrittennotes, voice annotations etc.) that led them to this document. Gong [3] studies some of the impor-tant issues in multimedia conferencing over packet switched networks, and provides solutions to theproblems that arise in multipoint audio and video control. The Argo system [4] on the other hand,is built to let users collaborate remotely using video, audio, shared applications, and whiteboards.Synchronization has been studied by Manohar [5]. They study methods to enable the faithful replayof multimedia objects under varying system parameters. To accomplish synchronization of di�erentsession objects, they provide an adaptive scheduling algorithm. Wolf et al [6] show how an applicationcan be shared among heterogeneous systems. They compare two methods for heterogeneous sharing:one optimizes transmission in the system and other optimizes conversions between objects. Ahuja'sgroup at AT&T [7] also has had signi�cant contributions in collaborative services. They propose amethod for generating visual representations of recorded histories of distributed collaborations, so thatremote collaborators can easily access information that will let them understand how the collaborativeenvironement evolved to a particular state. Little [8] has presented an elegant document managementsystem for shared data and provided a data model (POM) which permits dynamic compositions ofmixed-media documents. Wray et al. [9] have built an experimental collaborative environment calledMedusa which integrates data from heterogeneous hardware devices. Medusa provides an environmentwhich facilitates rapid prototyping of new applications. Rajan, Vin et al. [10] started some work onformalizing the notion of multimedia collaboration. They provide a basis which can support a widespectrum of structured multimedia collaborations. Their formalization captures the requirements ofvarious types of interactive and non-interactive collaborations. They also implemented a prototypecollaboration management system based on their formalism. However, the papers listed above donot address the complementary problem studied by this paper, viz. arranging for an object to betransmitted (at minimal cost and with the desired quality) to a participant in a collaboration in aform that he can work with.6 ConclusionsIn this paper, we have classi�ed media objects into four broad categories: static, quasi-static, temporal,and quasi-temporal, and developed a theory of media objects in which each media object is representedas a 5-tuple. We have then developed a formal de�nition of a collaborative multimedia system,consisting of collaborators and distributed media objects. We have presented optimal algorithms forcollaborative object synthesis: i.e., for constructing multimedia documents by composing together agiven set of media objects. These algorithms are then extended to incorporate quality constraints (suchas image size) as well as distribution across multiple nodes. We have proved that these algorithms aresound, complete, and optimal (in the case of OptOSA and DOptOSA.) We have implemented thesealgorithms, and evaluated their performance.In future work, we will study the problem of collaborative media systems where multiple collab-orators are working together, in a collaborative group-session. In such cases, the sharing of theseobjects must be done in real-time, and editing changes made by one collaborator must be re
ected,34



in a synchronized fashion, and in real-time, on the screens/output devices of others. Most currentsystems that implement such schemes (e.g. the Sun ShowMe repertoire of products) require that allnodes in the collaborative enterprise have certain common products available on them, (viz. the SunShowMe system). In Part II of this series of papers [1], we will show how we may build upon theframework presented in this paper to solve this important problem.References[1] K.S. Candan, B. Prabhakaran, and V.S. Subrahmanian. (1995) Collaborative Multimedia Sys-tems: Synchronized Document Authoring, draft manuscript.[2] T. Imai, K. Yamaguchi, T. Muranaga, \Hypermedia Conversation Recording to Preserve Infor-mal Artifacts in Realtime", ACM Multimedia 94, Pages 417-424[3] F. Gong, \Multipoint Audio and Video Control for Packet-Based Multimedia Conferencing",ACM Multimedia 94, Pages 425-432[4] H. Gajewska, \Argo: A System for Distributed Collaboration", ACM Multimedia 94, Pages433-440[5] N.R. Manohar and A. Prakash, \Dealing with synchronization and timing variability in theplayback of interactive session recordings", ACM Multimedia 95, Pages 45-56[6] K.H. Wolf, K. Froitzheim and P. Schulthess, \Multimedia Application Sharing in a Heteroge-neous Environment", ACM Multimedia 95, Pages 57-64[7] A. Ginsberg and S. Ahuja, \Automating envisionment of virtual meeting room histories", ACMMultimedia 95, Pages 65-76[8] T.M. Wittenburg and T.D.C. Little, \An Adaptive Document Management System for SharedMultimedia Data", IEEE Intl. Conf. on Multimedia Computing and Systems, 1994, Pages 245-254.[9] S. Wray, T. Glauert, and A. Hopper, \The Medusa Applications Environment", IEEE Intl. Conf.on Multimedia Computing and Systems, 1994, Pages 265-274.[10] S. Rajan, P.V. Rangan, and H.M. Vin, \A Formal Basis for Structured Multimedia Collabora-tions", IEEE Intl. Conf. on Multimedia Computing and Systems, 1995.
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Appendix: Proofs of TheoremsNote to Referees: This section can be removed, for space reasons, when the paper is published. Itis included here so that the referees can verify the claims made in this paper.Proof of Theorem 3.1. (1) Let SS be a synthesis sequence for object o within node N , and let SSbe of the following form: o1 c1�! o2 c2�! ::: cn�1�! on cn�! oSince SS is a synthesis sequence, and since o1, c1, ..., cn are initially in node N , (cn, on) is in X afterthe step 2 of the initial call.If n = 1, then the case is trivial. If OSA chooses (cn, on) in step 6, then SOL = SS = o1 c1�! o.Let us assume that the hypothesis is true for all synthesis sequences of length � n, and let SS be oflength n+ 1, i.e. SS is of the following form:o1 c1�! o2 c2�! ::: cn�1�! on+1 cn+1�! oThere is a way of selecting pairs (o1,c1), ..., (on,cn) at step 6 of the algorithm (since the length of thecorresponding subsequence is equal to n), but since (cn+1, on+1) is in X after the step 2 of the initialcall, there is a way of selecting that pair at step 6.Hence, there is a way of selecting pairs (o1,c1), ..., (on+1,cn+1) for any given synthesis sequence SS.(2) Let us assume the opposite of the hypothesis, i.e. OSA algorithm terminates with failure, butthere is a synthesis sequence SS for object o within node N .From property (1), there is a way of selecting pairs corresponding to the synthesis sequence SS at step6 in a way that SOL will be equal to SS. Besides, the algorithm does not terminate with failure unlessall possible pairs are examined (step 9 and step 3). If all the possible pairs are examined, then thesequence of pairs coresponding to synthesis sequence SS would be found, and SS would be returnedas SOL. This is contradictory to our initial assumption, hence the hypothesis is correct.(3) Let SOL be the sequence returned by the OSA algorithm, and let the size of SOL be n. Hence,SOL is of the following form: o1 c1�! o2 c2�! ::: cn�1�! on cn�! oIf n = 1, SOL must be returned by step 5 of the OSA algorithm. Since, c1 is a conversion capabilityin HC(N) (by step 2) and N 2 loc(o1) (by step 5), o can be synthesized from o1 using c1. Hence, SOLis a sythesis sequence.Now, let us assume that the hypothesis is true for all solutions with length less than or equal to nreturned by the OSA algorithm. Let also SOL be of size n+ 1, i.e SOL is of the following form:o1 c1�! o2 c2�! ::: cn�1�! on cn�! on+1 cn+1�! oThe recursive call at step 8 of the OSA algorithm returns a solution sequence SOL0 for on+1:o1 c1�! o2 c2�! ::: cn�1�! on cn�! on+136



This solution sequence is a synthesis sequence, because its length is equal to n (by the inductivehypothesis).Since, cn+1 is a conversion capability in HC(N) (by step 2), and since SOL0 is a synthesis sequence forobject on+1 (by the inductive hypothesis), SOL is a synthesis sequence for object o within the nodeN .(4) The set Tried can be of size at most card(HC(N))� card(ObjN). Each time step 7 of the OSAalgorithm is executed, the number of elements in Tried increases by 1 { notice that the element beingadded to Tried cannot alread by in Tried because of the test in Step 5. Therefore, Step 7 of thisalgorithm can be executed at most card(HC(N))� card(ObjN). 2Proof of Theorem 3.2. (1) The solution returned by the OptOSA algorithm is a valid synthesissequence. Let solution returned by OptOSA be of the following form:o1 c1�! o2 c2�! ::: cn�1�! on cn�! oThe initial object o1 and all the conversion operators c1,..,cn are available in node N (by steps 3 and6(a)iv). Hence, the solution is a valid synthesis sequence.Now, let the synthesis sequence returned by the OptOSA algorithm be SS, and let SS be a sub-optimalsequence. Hence, there exists a synthesis sequence SS 0 with a lower cost.Let SS be of the following form: o1 c1�! o2 c2�! ::: cn�1�! on cn�! oAnd let SS 0 be of the following form:o01 c01�! o02 c02�! ::: c0m�1�! o0m c0m�! oSince SS is suboptimal, but SS 0 is optimal, cost(SS) > cost(SS 0). Furthermore, since the cost of eachstep in the synthesis is non-negative, the following observations hold:cost(SS) > cost(o01 c01�! ::: c0m�1�! o0m)cost(SS) > cost(o01 c01�! ::: c0m�2�! o0m�1):::::cost(SS) > cost(o01 c01�! o02)Since (o01, c01) is in T 0(o) and it has a lower cost, (o01, c01) is going to be examined before (on, cn). Then,(o02, c02) will be in T 1(o) and it will have a lower cost than (on, cn), hence it will be evaluated before(on, cn). Similarly, (o0m; c0m) will be in Tm�1(o) and it will have a lower cost than (on, cn). So, (o0m; c0m)will be evaluated before (on, cn) and SS 0 will be returned instead of SS. This is a contradiction ofthe initial assumption, hence if OptOSA returns a synthesis sequence, then this sequence is optimal.37



(2) If OptOSA returns failure, it must do so at step 5. Hence, in the case of failure, the linked list Xmust be empty. X becomes empty when every possible sequence is checked and no solution is found.Hence, if OptOSA returns failure, then there is no solution.If there is no synthesis sequence for the requested object, then OptOSA cannot return any solutionexcept failure, because by the previous property, if OptOSA returns a solution, then there exists asynthesis sequence for the requested object.>From the above two paragraphs, we can conclude that, the OptOSA algorithm returns with failurei� there is no synthesis sequence for object o in node N .(3) Property 1 above already shows that if OptOSA returns a solution, then the solution is an optimalone. Hence, showing that if there is a synthesis sequence then OptOSA returns a non-empty solutionsequence is enough to prove our claim.Let us assume that there is a synthesis sequence SS for the object o within the node N , and let SSbe of the following form: o1 c1�! o2 c2�! ::: cn�1�! on cn�! oSince o1 is in node N , there is a quadruple q of the form (o1,size(o1),0,o1) in X after step 4.Let us assume that there are k quadruples in X before q: q1, q2, ... , qk. For the sake of the argument,let us also assume that none of these quadruples leads to a synthesis sequence.q1 will be the �rst quadruple selected in step 6 of the algorithm. q1 will result in at most C newquadruples where C is the number of conversion functions available in node N . In the worst case, Cnew quadruples will get in front of q in the list, and one quadruple (q1), will be deleted. Hence thetotal number of quadruples before q in X is now � k + C. This is obviously larger than the initialvalue k. However, this fact cannot result in an in�nite computation, because of the following:� The sizes of the objects are integers.� The if condition in 6(a)iv prevents objects to be recreated with larger (or same) sizes duringthe synthesis.� There is a �nite number of distinct types.The �rst two properties guarantee that an object o:t can be recreated at most size(o:t) times duringthe synthesis sequence.Let �(t; i) be equal to max(fsize ratio(c)jc 2 HC(N) and c(o:t) = o:ig) (if the set fsize ratio(c)jc 2HC(N) and c(o:t) = o:ig is empty, then let �(t; i) be 0). Let also the number of distinct types be T(by the third property T is �nite). Then, an object o:t can lead to less thanTXi=1 �(t; i)� size(o:t)new objects during the object synthesis.Hence, a quadruple can cause only a �nite amount of quadruples be created and placed in X . Hence,quadruples q1 though qk will cause only a �nite new of new quadruples to be placed before q. Hence,eventually, all those quadruples will be evaluated and consumed and q will be processed, and as a38



result of this q0 =(o2,Size,Cost,o1 c1�! o2) will be placed in X (Size is the size of o2, and Cost is thecost of synthesizing o2).Using the above argument iteratively, it is possible to show that the synthsis sequence SS will even-tually be found and returned by the OptOSA algorithm. 2Proof of Theorem 3.3. Follows along the same lines as the proof of Theorem 3.1.
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