
Improving NFS Performance over Wireless Links�Rohit Dube, Cynthia D. Rais and Satish K. TripathiInstitute for Advanced Computer StudiesDepartment of Computer ScienceUniversity of MarylandCollege Park, MD 20742frohit, cldavis, tripathig@cs.umd.eduDecember 19, 1995AbstractNFS is a widely used remote �le access protocol that has been tuned to perform well ontraditional LANs which exhibit low error rates. Users migrating to mobile-hosts would liketo continue to use NFS for remote �le accesses. However, low bandwidth and high error-rates degrade performance on mobile-hosts using wireless links thus hindering the use ofNFS. In this paper, we present two mechanisms to improve NFS performance over wirelesslinks : an aggressive NFS client and link-level retransmissions. Our experiments show thatthese mechanisms improve throughput by up to 200%, which brings the performance towithin 5% of that obtained in zero error conditions.1 IntroductionMobile computing is increasingly in demand and will be an important part of the computinginfrastructure in the near future. The use of wireless links gives the mobile user new freedomand
exibility. However, most applications and reliable transport protocols have been opti-mized for wired networks and static hosts. These su�er from unacceptable performance whenused on wireless systems. The performance of network protocols and applications over wire-less links is currently limited by low bandwidths, high error rates, temporary disconnections,and high latencies. Protocols and applications must accommodate for these characteristics inorder to provide acceptable performance to mobile users.In addition to transmission limitations, mobile users are constrained by limited disk-space. Unable to store all their data on their local disks, users often must fetch �les fromservers on the wired network via wireless links. The Network File System (NFS) protocol hasbeen widely used on wired LANs to provide a mechanism for remote �le access [WLS+85],[SGK+85], [PJS+94]. Users migrating to mobile-hosts from stationary workstations wantto continue to use NFS to access their �les. However, the bursty and higher error ratesprevalent over wireless media pose performance problems for mobile applications which useNFS mounted �les.NFS was designed for faster physical networks which exhibit rare random errors. There-fore, packet losses were assumed to occur due to either congestion on the network or a server�This work is supported in part by NSF grant CCR 9318933 and IBM equipment grants.1

failure. NFS clients could safely back-o� and retry a request after waiting for some predeter-mined time period. On wireless links, packet losses are usually due to burst errors [BBKT96],rather than network congestion or server failures. These burst periods are of the order ofa hundred milli-seconds. In response to such losses, NFS clients back-o� to unnecessarilylong wait periods, leading to severe performance degradation. This degradation has beenpreviously documented in [RT95].Previous attempts at quantifying and improving performance over wireless links haveconcentrated mostly on TCP [DCY93], [YB94], [BSK95], [BB95b]. Since, most NFS im-plementations are UDP based [Nov89], the results from these TCP studies are not directlyapplicable to NFS. It is the goal of this paper to �nd and quantify mechanisms for improvingNFS performance over wireless links.On our testbed, we implemented an error model to allow us control over the errors on thewireless link. We then studied NFS performance over this wireless link. Based on our studieswe chose to use smaller block sizes and linear back-o�, which result in a more aggressive NFSclient. We also analyzed link-level retransmissions as a mechanism to improve performance.As our results show, these mechanisms reduce response times by upto 53% for reads and 67%for writes (throughput increase of upto 100% for reads and 200% for writes). The modi�ca-tions we made gave us response times within 5% of the zero errors case. The scalability studywe performed showed that the more aggressive NFS client behavior and link-level retransmis-sions, did not have a detrimental e�ect when multiple mobile NFS clients were present. Withmultiple mobile clients running a modi�ed version of NFS, response time decreased by about45% for both reads and writes (throughput increased by 82%).The rest of this paper is organized as follows. Section 2 discusses related work and ourapproach towards improving NFS performance. In section 3 we describe the testbed andthe error model that we use for our experiments, and section 4 present the results of ourexperiments. We propose some ideas for future investigation in section 5. Finally, section 6summarizes this paper and presents our conclusions.2 Related Work and Solution ApproachMuch research has been done to optimize NFS performance on wired LANs [Jus89], [Jus94],[PJS+94]. New �le systems have been developed to support disconnected operation via disk-caching [SK92], [SNKP94], [HHRB92]. For improving application performance over wirelesslinks, an M-RPC system has been proposed [BB95a]. Enhancements have been suggested toimprove TCP performance over wireless links : split connection approaches [BB95b], [YB94],[BSAK95], and the fast retransmission approach [CI94]. Link level retransmissions have alsobeen proposed to improve performance over wireless links [DCY93], [BBKT96], [PAL+95]. Forreasons discussed shortly, most of these results are not directly applicable to improving NFSperformance. Our research is the �rst to combine these issues and investigate performanceimprovements for NFS over wireless links. We use linear back-o� and smaller block sizes onthe NFS client on one hand, and link-layer retransmissions on the other to obtain performanceimprovements.2.1 Related WorkThe performance of NFS over traditional wired LANs has been improved by using aserver reply cache [Jus89], by using write gathering to improve write throughput [Jus94], and2

by allowing larger than 8KB block sizes and allowing asynchronous writes [PJS+94]. Thesemodi�cations improve NFS performance at the NFS server and would not signi�cantly helpthe performance of NFS in a wireless environment because the bottleneck are the mobileNFS client and the transfer over the wireless link. Some of the standard improvements, suchas larger block sizes have a detrimental e�ect on lossy wireless links and will decrease NFSperformance at mobile hosts. Overall, work on improving NFS performance has so far beenlimited to wired networks with a focus on NFS servers. Hence, these studies are orthogonalto ours.Using disk-caching, Coda [SK92], its later version Odyssey [SNKP94], and Little Work[HHRB92] provide mechanisms for disconnected and intermittent operation. However thesesystems are not in wide use. It is possible to borrow ideas from them for use with the NFSclient on a mobile-host. Prefetching and disk-caching decrease the time spent by the userwaiting for �le transfers, but that by itself does not solve the problem of poor throughputand wireless link utilization. We discuss the use of disk caching in Section 5.In the TCP split connection approaches [BB95b], [YB94], [BSAK95], the base-station1bu�ers packets being sent to the mobile hosts in its vicinity. The base-station retransmitsany lost packets to prevent end-to-end retransmission. The M-RPC approach [BB95a],is a variation of the TCP split connection approach. It seeks to improve performance byseparating the connection at the RPC2 level at the base-station. These approaches have thedisadvantage of high bu�er requirement, a complex migration algorithm and increased loadat the base-station. Besides, �le system actions which have high consistency requirementswould be vulnerable under a split connection approach. In addition, the TCP split connectionapproach cannot be directly used as most NFS implementations are UDP based; the M-RPCapproach cannot be used as it would require major modi�cations to the RPC and NFS codeon the client and the server. Our use of link level retransmissions achieves reliability on thewireless link, but at a lower level in the protocol stack, without creating consistency problems.This has the added advantage of providing a common solution to all higher level applicationsand protocols.The fast retransmission approach [CI94], improves TCP performance by notifying thetransport layer prior to mobile host motion to avoid congestion control policies from beinginitiated. This approach does not address the poor performance caused by burst errors onthe wireless link.2.2 Solution ApproachIn the interests of inter-operability with static-hosts, any attempt towards enhancing perfor-mance should be limited to modi�cations made on the base-stations and on the mobile-hosts.This implies that the NFS servers cannot be modi�ed. Our solution approach does not requireany such changes. We suggest modi�cations only at the mobile host and at the base station.In studying NFS over wireless links, we noted several factors that caused poor perfor-mance. First, NFS uses large block sizes (usually 8KB). A large block size decreases theoverhead involved with requesting and sending each block. However, the large blocks mustbe fragmented (at the MAC layer) before being sent onto the link. If any one of the frag-ments is lost, the entire block is discarded and must be retransmitted. For the error prone1A Base-station is a bridge between the wired and the wireless segments of a network.2NFS uses RPC [Gro88] for remote communications.3

wireless links, this leads to many retransmissions. A smaller block size can decrease theseretransmissions.The second NFS feature which causes poor performance is the exponential back-o� algo-rithm which is used by the NFS clients. When the block requested or an acknowledgement islost or delayed, the client assumes that the network is congested or that the server is heavilyloaded or down. Long back-o� periods are appropriate in these cases, so that the client waitsuntil the server is free or the congestion is decreased. In wireless networks, the main cause oflosses and delays is the burst errors on the wireless link. Burst errors are much shorter thanthe typical server failure or congestion period (on the order of 10 to 100 milliseconds). Henceexponential back-o� would constitute an over-reaction; the NFS client would achieve betterperformance using a linear back-o� algorithm.In addition to the NFS client, optimizations can be made at the device driver by using link-level retransmissions. Wireless device drivers don't usually implement a good retransmissionpolicy or a reservation protocol. This leads to bad link utilization and triggers o� unwantedbehavior (back-o�) in the higher level protocol or application involved. Our results show thatlink-level retransmissions improve NFS performance greatly.We considered bu�ering at the IP layer in an attempt to improve performance. We alsoconsidered running a TCP connection from the mobile-host to the the base-station whereUDP packets could be constructed and relayed to the NFS server (and vice-versa). Imple-menting either one of these strategies would mean handling NFS data separately from otherdata
owing between the mobile-host and the base-station and additional bu�ering, segmen-tation and re-assembly complications at the base-station. As in the other split connectionapproaches, guaranteeing consistency would be di�cult if not impossible. Both these ap-proaches would interfere with an aggressive NFS client and link-level retransmissions (whichattempts to provide a reliable link at a lower level in the protocol stack).3 System SetupThe environment we consider is that of a building network with base-stations in designatedplaces to handle tra�c from mobile-hosts.3.1 TestbedThe impact of the wireless burst errors on the higher layers is very complex. The errors onthe wireless link can be modelled, but due to the vertical dependency of the higher layers onthe physical layer, it is impossible to accurately quantify the interactions between the layers.For this reason, it is important to use a real testbed to determine the e�ect of wireless bursterrors on NFS. At the same time, accurate performance evaluation requires us to control theerrors at the wireless link.Figure 1 shows our testbed. The IBM RS6000 (tapti) acts as the NFS server. An IBMRT-PC (notrump) is con�gured as the base-station. There are two mobile NFS clients: anIBM PS/2 (shivalik), and an IBM RT-PC (narmada) which access the NFS server throughthe base-station using a 1 Mbps Infra-Red (IR) link. We use the DEC-ALPHA (congo) tomonitor tra�c on the ethernet by running tcpdump [MJ93].We studied the performance of NFS reads and writes by measuring the response times4

ALPHA RS6000

RT-PC

128.8.128 NET

notrump.cs

congo.cs tapti.cs

Packet Filter NFS Server

Base Station

128.8.130.40

 shivalik.cs

NFS Client NFS Client

Wireless Link

narmada.cs

 128.8.130.166
RT-PCPS / 2Figure 1: Testbed for NFS Performance Evaluationobtained for �le transfers to3 and from4 the local disks of the mobile-hosts. In order to gaincontrol over the error rate on the wireless channel, we placed the IR devices on the base-station and the mobile-hosts in close proximity (to minimize un-controlled error during datatransfer between the mobile-hosts and the base-station). An error model was then introducedinto the device driver of the mobile-hosts as explained below in 3.2. In order to get consistentresults, the ethernet segment holding the static-hosts was isolated from the rest of the buildingnetwork while running experiments.3.2 Error ModelWe use a 2-state error model [BBKT96], [RT95] as shown in Figure 2 to represent the qualityof a channel between the mobile-host and the base-station. The good-state is the normal modeof operation when bits
ow intact between the target and source devices. Every now and thenthe communication channel goes into a bad-state when bits are corrupted or lost (perhaps dueto Null-spaces or Raleigh-fading). The time the channel spends in the bad-state is usuallylong enough to force multiple bits into error. These erroneous bits may span more than oneframe, leading to burst errors on the channel. It should be noted that a temporal model forthe behavior of the communication channel is desired. This is because burst errors exhibitedby the channel are a function of motion and electromagnetic interference which can in turnbe modeled as functions of time. We model the time spent in both the good and bad states as3Copying a �le across the network from an NFS server to the local disk constitutes an NFS read.4Copying a �le across the network from the local disk to the NFS server constitutes an NFS write.5

uniformly distributed periods ([RT95] showed that the degradation of NFS performance withuniformly distributed periods was worse than performance degradation with a deterministicerror model. We chose uniform distributions since they are more realistic.).This error model was incorporated into the output and input routines of the mobile-host's device drivers5. Based on our experience and results from [BBKT96] and [RT95], wechose a mean of 1000 milli-seconds for the good-period (time spent in the good-state) andexperimented with means of 40 and 806 milli-seconds for the bad-period (time spent in thebad-state). The error model was implemented by using the kernel timeoutmechanism on themobile-hosts. The granularity of timeouts signalled by this mechanism was 20 milli-seconds.Hence, we used discrete functions in the range 0 : : :200 for the bad periods and 0 : : :2000 forthe good period for the uniform distributions.
GOOD BADFigure 2: The 2-state Error Model4 Experimental ResultsWe conducted experiments with various �le sizes. For brevity, only the response times forexperiments with 1 MB �les are reported here. Other �les sizes yielded similar results. Eachexperiment was run 10 times7 and the minimum, maximum and average response times wererecorded. All data (response times) is in seconds unless otherwise speci�ed.Our experiments indicate that reads where in general slower than writes. We traced thisproblem to the fact that the mismatch in the bandwidth of the wired and wireless media,causes bu�er over
ow at the receive bu�ers of the mobile-hosts. The output of tcpdumpin Figure 3 shows that because of bu�er over
ows, there were frequent retransmissions forthe read, leading to bad performance. There was some over
ow for the writes too, but theproblem was milder. The bottle-neck therefore was the mobile-host which was unable to copewith the data being dumped on it by the base-station.5Alternatively, we could have put this error model completely into the base-station or distributed it betweenthe input or output routines of the base-station's and the mobile-host's device drivers.The former would bedi�cult to scale as per destination channel status would have to be maintained at the base-station. The laterwould allow us lesser control over the errors introduced into a communication channel as synchronizing thetwo models would be impossible.6Our experiments with other means yielded similar results. We chose to discuss the results for the 1000milli-second good period and the 40 and 80 milli-second bad periods, because these were the most appropriatefor wireless networks in a building environment.7We have also experimented with more number of runs. The results obtained were similar to the ones wepresent. 6

0

200000

400000

600000

800000

1e+06

1.2e+06

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
N

um
be

r

Time (seconds)

Read-Write Discrepancy

"Read_packets"
"Write_packets"

Figure 3: E�ect of bu�er over
ow on reads and writesBad Period Read Write(milli-seconds) Min Avg Max Min Avg Max40 43.3 49.2 51.9 22.5 24.7 27.780 54.8 67.7 78.4 33.4 45.5 54.4Table 1: No Changes; 4096 byte BlockIn the following sections, we look for general trends amongst the data presented. Inter-preting the data literally or analyzing every departure from an expected result is futile becauseof the e�ects of variations on the wired and wireless media, non-uniform disk latencies andbu�er over
ows. We �rst present detailed results for the single mobile-host case (shivalik)and then discuss how these results scale in the presence of multiple mobile-hosts (shivalik +narmada).4.1 E�ect of Block SizeWe �rst studied the e�ect of block size on the response time. As mentioned before, twodi�erent bad-periods, 40 and 80 milli-seconds, were used. The results are shown in Figure 4and Table 1. As can be seen from Figure 4, there is a knee at 4096 bytes for the plots of the40 milli-second read, 40 milli-second write, and the 80 milli-second write case. 80 milli-secondreads show a bell-curve with the best performance at 4096 bytes. Since NFS performance7

20

30

40

50

60

70

80

90

100

0 1024 2048 4096 6144 8192

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Block size (bytes)

Effect of Block Size

"80ms-Read"
"40ms-Read"
"80ms-Write"
"40ms-Write"

Figure 4: E�ect of Block SizeBad Period Read Write(milli-seconds) Min Avg Max Min Avg Max40 42.1 48.0 54.4 21.9 24.6 26.780 43.8 48.7 52.9 22.6 24.4 27.5Table 2: E�ect of Linear Back-o� Algorithm on Response time; 4096 byte Blockwas good with 4096 byte blocks, we ran the rest of the experiments using this block size forboth reads and writes.We expected the best performance to be somewhere between the two extremes of 1024and 8192 bytes. This is because at large block sizes, the number of fragments is more, whichincreases the chance of one of the fragments getting caught in the bad-state. With small block-sizes, more packets need be sent causing overhead due to an increase in hand-shake (requestand acknowledgment messages). The compromise between these two opposing e�ects showsup clearly only in the case of the higher error-rate.4.2 E�ect of Linear Back-o� AlgorithmOur back-o� algorithm is a hybrid of linear and exponential algorithms : for the �rst fewtimeouts, the next timeout value is calculated by adding a small constant to the previoustimeout value (linear back-o�). The next few timeout values are calculated according to an8

Bad Period Read Write(milli-seconds) Min Avg Max Min Avg Max40 35.1 38.3 41.8 14.2 16.9 20.080 31.1 31.7 33.5 15.0 15.3 15.6Table 3: E�ect of Link-level Retransmissions on Response time; 4096 byte Blockexponential back-o� algorithm, upper-bounded by a maximum timeout value. This is doneso that in the case where the wired link is congested, or the server is down, frequent clientretrials due to pure linear back-o�, do not contribute additional un-necessary tra�c. Thusthe over-all e�ect is that of frequent retrials initially (linear timeout values) which get morespaced out (exponential timeout values) in the event that no replies are received.The results obtained by using a linear back-o� instead of the exponential back-o� arepresented in Table 2. In the 40 milli-second case, there is not much improvement in responsetime. However, for the 80 milli-second case, there is a 28% reduction in the read responsetime and 48% reduction in the write response time. In all the results we report, transferswhich took more than 300 seconds were terminated and rerun. An observation which doesnot show up in the tables presented is that such terminations were not required when usinglinear back-o� as the NFS client was able to get (and put) packets across within a reasonabletime. Hence, using a linear back-o� algorithm serves to bound the time required for a reador write operation to complete besides improving performance at the higher error rate.4.3 E�ect of Link-level RetransmissionsWe simulated link-level retransmissions by holding the packets which arrive at the device-driver (both from IP and the device) during the bad-period and pushing them across whenthe switch from bad-state to good-state occurred. Even though the use of this techniquepresents only a best-case for the use of link-level retransmissions, the gains obtained seempromising enough to warrant a complete retransmission protocol implementation.The results obtained by using link-level retransmissions (without enabling the linear back-o� in the NFS client) are presented in Table 3. An improvement of upto 53% is observed forreads and upto 66% for writes with the use of link-level retransmissions.It should be mentioned that since we simulated the use link-level retransmissions over anotherwise real system, bu�er over
ows as mentioned earlier in this section (Figure 3) still takeplace. An implementation of link-level retransmissions would solve this problem, leading tosubstantial performance improvement at least for the reads.4.4 Linear Back-o� + Link-level RetransmissionsWe were apprehensive that the use of linear back-o� and link-level retransmissions simul-taneously would interfere with each other. The results obtained with both these mechanismsenabled are presented in Table 4. The average values gleaned from the Tables 1 to 4 aresummarized in Table 5 for reads and Table 6 for writes. Neither the reads, nor the writes,show any signi�cant interference between client linear back-o� and link-level retransmissions9

Bad Period Read Write(milli-seconds) Min Avg Max Min Avg Max40 34.0 37.0 42.2 15.3 16.7 18.080 31.3 31.9 33.2 14.3 14.8 15.1Table 4: E�ect of Linear Back-o� + Link-level Retransmissions; 4096 byte Block
Bad Period Linear +(milli-seconds) No Changes Linear Retransmit Retransmit40 49.2 48.0 38.3 37.080 67.7 48.7 31.7 31.9Table 5: Average Response times for Reads; 4096 byte Block
Bad Period Linear +(milli-seconds) No Changes Linear Retransmit Retransmit40 24.7 24.6 16.9 16.780 45.5 24.4 15.3 14.8Table 6: Average Response times for Writes; 4096 byte Block10

Operation Min Max AvgRead 30.1 32.2 30.7Write 13.9 14.9 14.2Table 7: Response times with Zero errors; 4096 byte BlockBad Period No Changes Linear + Retransmit(milli-seconds) Min Avg Max Min Avg Max40 50.0 56.1 64.5 30.6 33.4 36.980 52.3 61.9 70.4 32.9 35.2 38.5Table 8: Scalability : Reads with 4096 byte block8. The link-level retransmissions are primarily responsible for the improved performance inthe average case, whereas linear back-o� serves to bound the worst case performance.We ran some additional experiments to obtain the performance assuming zero errors.These results are shown in Table 7. From Tables 5, 6 and 7 it is clear that the modi�cationswe suggest are e�ective and performance approaches that of the zero error case (upto within5%). Read response time reduces by upto 53% with a corresponding increase in throughput ofupto 112%9. Similarly, write response time reduces by upto 67% with a throughput increaseof upto 208%10.4.5 ScalabilitySince it was unclear how a more aggressive NFS client with link-level retransmissionswould compete with other, similar clients, it was necessary to study the scalability of oursystem. We analyzed the performance of our system with two mobile-hosts (shivalik andnarmada) as NFS clients. The response times for shivalik are presented in Tables 8 and 9.8In Tables 5 and 6, No Changes refers to only the error model installed into the device driver; Linear refersto linear back-o� in the NFS client and Retransmit refers to link-level retransmissions.9Bad-period 40 milli-seconds - from 20,325 bytes/sec to 27,027 bytes/sec; Bad-period 80 milli-seconds -from 14,471 bytes/sec to 31,347 bytes/sec10Bad-period 40 milli-seconds - from 40,486 bytes/sec to 59,880 bytes/sec; Bad-period 80 milli-seconds -from 21,978 bytes/sec to 67,568 bytes/secBad Period No Changes Linear + Retransmit(milli-seconds) Min Avg Max Min Avg Max40 35.9 46.1 51.6 20.0 25.3 34.480 31.7 45.0 68.1 20.5 25.5 30.2Table 9: Scalability : Writes with 4096 byte block11

Results for narmada were similar and are hence not presented. Our results show that evenwith multiple mobile-hosts, performance improved substantially. With the changes that wesuggest, read response times reduced by upto 43% (throughput increase of upto 76%) andwrite response times by upto 45% (throughput increase of upto 82%), as compared to thetwo mobile-host system without any of our enhancements.4.6 Summary of ResultsOur experiments show that 4096 byte read and write blocks give good over-all performance.With higher error rates, the optimal block size is likely to be even smaller, but since highererror rates are less likely to occur, 4096 byte blocks are a reasonable size for obtaining goodperformance. We tried some additional experiments with all our modi�cations and 8192 byteblocks. The performance with 4096 byte blocks was in general, better.Linear back-o� was useful as it bounded the maximum transfer times. With exponentialback-o�, we observed several cases where response time exceeded 5 minutes. Replacing ex-ponential back-o� by linear back-o� almost completely eliminated such behavior. At highererror rates, linear back-o� improves performance considerably. This is because at higher errorrates, packet losses are more frequent which increases the probability of a block losing oneof its fragments, leading to substantial di�erence in the timeout values calculated by the twoalgorithms.Link-level retransmissions reduced response times considerably. Although our simulationof link-level retransmissions presents only a best case for link-level retransmissions, the perfor-mance improvement was signi�cant enough to warrant a full-scale implementation with per-haps a reservation protocol and channel state dependent packet scheduling built in [BBKT96].A real implementation of link-level retransmissions would in addition solve the bu�er over
owproblem, leading to further improvement in response time.The response times we obtained were within 5% of the zero error case. The results wepresent show that there was no signi�cant interference between link-level retransmissions andthe NFS clients retry mechanisms. Further the performance improvements scaled well withmultiple mobile-hosts. Hence, our study suggests that link-level retransmissions along withan aggressive NFS client would be a desirable combination on mobile-hosts.5 Future WorkBased on our experiments, we plan to build a reservation protocol (rts-cts-data-ack) withlink level retransmissions and a channel state dependent scheduling policy [BBKT96]. Thiswould solve the bu�er over
ow problem (which is important because there is always goingto be a mismatch in the capabilities of and load on machines used as servers, base-stationsand mobile-hosts). Link-level solutions seem to be promising because they o�er a commonsolution for higher level protocols and applications. However [DCY93] suggests that link-levelretransmissions have an averse e�ect on the performance of TCP. We intend to investigatethis matter further, as we believe it that is possible to come up with an elegant link-levelsolution which improves performance without signi�cantly interfering with the higher layers.Using disk-caching (which has been proven as an e�ective technique in the Coda [SK92],Odyssey [SNKP94] and Little Work [HHRB92] projects) for read-only �les [ZD93], is alsobeing considered. 12

Besides, the linear (followed by exponential) back-o� described in Section 4.3, we need totune the NFS client to behave intelligently during cell-switches (hand-o�s). The informationindicating an imminent cell-switch is usually available to the wireless device driver. Anappropriate, signal (or some other mechanism) needs to be devised to inform the NFS client(and other applications) of the impending cell-switch. The client can appropriately adjustits timeout values preparing for the packet losses which are bound to occur. We are workingtowards providing such a mechanism.6 ConclusionsOur experiments validate our approach of tuning the NFS client and using link-level retrans-missions to improve performance. The data that we gathered suggests that 4096 bytes (4KB)is a reasonable block size for both reads and writes. Linear back-o� (as opposed to exponen-tial back-o�) serves to bound the amount of time taken by a �le transfer, even though byitself, this technique may not improve performance for low error rates. Link-level retransmis-sions on the other hand seem to greatly enhance the average case performance, leading toimprovement in throughput of upto 112% for reads and 208% for writes. The performanceobtained is within 5% of the \zero error on the wireless link" case.AcknowledgementsWe thank Pravin Bhagwat for many related discussions and Alexander Sarris for help withsetting up the testbed. We also thank Pete Keleher's advanced systems class for being acritical audience to this work and Shamik Sharma, Ibrahim Korpeoglu and Sambit Sahu forhelping improve the manuscript at various stages of its conception.References[BB95a] A. Bakre and B. R. Badrinath. M-RPC: A Remote Procedure Call Service forMobile Clients. In First ACM International Conference on Mobile Computingand Networking, November 1995.[BB95b] A. Bakre and B.R. Badrinath. I-TCP: Indirect TCP for Mobile Hosts. In FifteenthInternational Conference on Distributed Computing Systems, May 1995.[BBKT96] P. Bhagwat, P. Bhattacharya, A. Krishna, and S.K. Tripathi. Using ChannelState Dependent Packet Scheduling to improve throughput over Wireless LANs.In IEEE INFOCOM, 1996. Pre-print.[BSAK95] H. Balakrishnan, S. Seshan, E. Amir, and R.H. Katz. Improving TCP/IP Perfor-mance over Wireless Networks. In First ACM International Conference on MobileComputing and Networking, November 1995.[BSK95] H. Balakrishnan, S. Seshan, and R.H. Katz. Improving Reliable Transport andHando� Performance in Cellular Wireless Networks. ACM Wireless Networks,December 1995. Pre-print. 13

[CI94] R. Caceres and L. Iftode. The E�ects of Mobility on Reliable Transport Protocols.In Proceedings of the 14th International Conference on Distributed ComputingSystems, June 1994.[DCY93] A. DeSimone, M.C. Chuah, and O.C. Yue. Throughput Performance of Transport-Layer Protocols over Wireless LANs. In IEEE GLOBECOM, pages 542 { 549,1993.[Gro88] Network Working Group. RPC : Remote Procedure Call Protocol Speci�cation,1988. RFC 1057.[HHRB92] P. Honeyman, L. Huston, J. Rees, and D. Bachmann. The Little Work Project.In Third IEEE Workshop on Workstation Operating Systems, 1992.[Jus89] C. Juszczak. Improving the Performance and Correctness of an NFS Server. InUSENIX Conference Proceedings, pages 53 { 63, January 1989.[Jus94] C. Juszczak. Improving the Write Performance of an NFS Server. In USENIXConference Proceedings, January 1994.[MJ93] S. McCanne and V. Jacobson. The BSD Packet Filter: A New Architecture forUser-Level Packet Capture . In USENIX Winter Conference, January 1993.[Nov89] B. Novicki. Transport Issues in the Network File System. ACM Computer Com-munications Review, 19(2):16 { 20, 1989.[PAL+95] S. Paul, E. Ayanoglu, T.F. LaPorta, K.H. Chen, K.K. Sabnani, and R.D. Gitlin.An Asymmetric Link-layer Protocol for Digital Cellular Communications. In IEEEINFOCOM, 1995.[PJS+94] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and D. Hitz. NFSVersion 3 Design and Implementation. In USENIX Summer Conference, 1994.[RT95] C.D. Rais and S.K. Tripathi. Measuring NFS Performance overWireless Networks.Technical Report CS-TR-3582, University of Maryland, College Park, 1995.[SGK+85] R. Sandberg, D. Goldberg, S. Kleinman, D. Walsh, and B. Lyon. Design andImplementation of the Sun Network File System. In USENIX Summer Conference,1985.[SK92] M. Satyanaraynan and J.J. Kistler. Disconnected Operation in the Coda FileSystem. ACM TOCS, 10(1):3 { 25, 1992.[SNKP94] M. Satyanraynan, B. Noble, P. Kumar, and M. Price. Application-Aware Adapta-tion for Mobile Computing. In 6th ACM SIGOPS European Workshop, September1994.[WLS+85] D. Walsh, B. Lyon, G. Sager, J.M. Chang, D. Goldberg, T. Lyon, R. Sandberg,and P. Weis. Overview of the Sun Network File System. In USENIX WinterConference, 1985. 14

[YB94] R. Yavatkar and N. Bhagwat. Improving End-to-End Performance of TCP overMobile Internetworks. In Mobile 94 Workshop on Mobile Computing Systems andApplications, December 1994.[ZD93] E. Zadok and D. Duchamp. Discovery and Hot Replacement of Read-Only FileSystems, with Application to Mobile Computing. In USENIX Summer Conference,pages 69 { 85, 1993.

15

