
Measuring NFS Performance in Wireless Networks�Cynthia D. Rais and Satish K. TripathiInstitute for Advanced Computer StudiesDepartment of Computer ScienceUniversity of MarylandCollege Park, MD 20742fcldavis, tripathig@cs.umd.eduDecember 18, 1995AbstractTechnological trends suggest that soon communication networks will consist of a high speedwired backbone with numerous wireless Local Area Networks. Mobile computing and wirelesssubnetworks are increasingly in demand. Mobile routing solutions provide wireless LANs withseamless connectivity to backbone wired systems. However, these solutions do not provideacceptable performance. Wireless networks have distinct transmission characteristics whichpresent challenges to achieving e�cient performance. Performance over wireless links is limitedby high error rates, mobility, and low bandwidth. We have studied the performance of TCPand NFS over a wireless network. The prevalence of these protocols means that mobile hostswill frequently use them when communicating with stationary hosts. Measurements have beencollected to determine the response of these protocols in the presence of various error patterns.These measurements show that NFS and TCP performance su�er extreme degradation due tothese wireless link characteristics. Unexpectedly, NFS performance is not better than an TCPFTP �le transfer. NFS performance over wireless links is limited by large packet sizes, longretransmission timeouts, and slow response to losses. Our goal is to understand the e�ects ofwireless communication on these protocols and improve performance without requiring changesto the current network Infrastructure.1 IntroductionThe development of lightweight, battery powered, portable computers and wireless adapter cardshas greatly increased the demand for mobile computers. Mobile users utilize wireless networksto achieve continuous and exible access to the resources of stationary backbone networks. Theadvantages of mobile computers ensure that they will be a pervasive part of the computing infras-tructure in the near future. However, there are many technical challenges to surmount in the designof mobile and wireless systems before the ideal of ubiquitous network access can be realized.Much research has been conducted in recent years to obtain and optimize mobility routingsolutions. The amount of research in this area is indicative of the current demand for mobilecomputing. The Internet Engineering Task Force (IETF) has recently de�ned the Mobile Internet�This work is supported in part by NSF grant CCR 9318933 and IBM equipment grants.1

Protocol (Mobile IP) which provides the necessary routing support for mobile hosts within theInternet Protocol (IP) [Sim94]. Mobile IP incorporates solutions from various mobility supportproposals [IDJ93], [PB94], [Rek94], [TT93], [WYOT93].Although the current routing solutions provide mobility support for wireless systems and giveusers the freedom to move through the network and maintain connectivity, these solutions fail toprovide acceptable performance in the presence of the di�cult characteristics introduced by wirelesslinks and mobility. The high error rates, low bandwidth, and temporary network disconnectionsexperienced by wireless networks all contribute to inferior performance.The technical challenges of mobile computing stem from the di�erences between wired andwireless systems. Unlike wired networks, which are virtually error free, wireless networks are errorprone due to signal propagation characteristics and limitations. Errors on the wireless mediumare often bursty due to signal interference, signal fading, and multipath e�ects. As the relativeposition of corresponding hosts changes, one host is likely to move into a fading zone, to thelimit of propagation range, or into an area of high interference. This bursty error pattern has asigni�cant negative impact on the throughput achieved on wireless links. The bursty nature oferrors causes high packet loss rates and correlated losses, rendering many traditional error recoverypolicies ine�cient.The performance of mobile systems is further limited by low bandwidth and host motion. Thebandwidth on wireless networks (several megabits per second) is much lower than that on wirednetworks. This is due to the power limitations of mobile computers and the limited spectrum avail-able for use in wireless computing. Host migration also limits performance by causing temporarydisconnections and latency periods while rerouting occurs. The Mobile IP solution allows mobilehosts to move transparently within IP, but there is a high performance cost for this mobility and forthe exibility allowed by wireless networks. Improved methods are required to achieve consistentand reliable performance for mobile users.The Transport Control Protocol (TCP) and the Network File System (NFS) are two prevalentprotocols which were optimized for wired networks and therefore su�er performance degradationsin wireless systems. NFS is used throughout industry and academia to provide transparent accessto remote �le systems. These two protocols are so widespread that mobile users will undoubtedlyneed them to communicate with both wired and wireless hosts. Since NFS is prevalent throughoutthe Internet, mobile users will interact with this protocol whenever they access �les available ontraditional wired networks. Mobility and high error rates cause poor performance in both TCPand NFS.Many studies have investigated the performance of TCP over wireless networks [CI94], [YB94],[BB94], but NFS performance has not yet received this attention. We believe that it is importantto study the dynamics of these protocols and determine which features cause the poor performancein the presence of errors. This understanding will allow us to propose solutions which will beapplicable to a variety of environments and not just to our own testbed.Our experiments monitored NFS and TCP connections at the packet level and allowed us tostudy the e�ects of losses on the connection dynamics. We studied the behavior of these protocols invarious error conditions. These studies provided us with throughput information as well as graphsof the distribution of the packets and the acknowledgments. This information provided insight intothe cause of performance limitations and allowed us to study the interaction of the errors, losses,and retransmission patterns.Our experiments demonstrate poor performance of NFS over wireless links. Burst errors signi�-2

cantly degrade the NFS throughput. Unexpectedly, in the presence of burst errors NFS performancewas often worse than that of a TCP �le transfer using the �le transfer protocol (FTP). The NFSperformance degradation results from long idle periods between retransmissions, large packet sizesand fragmentation, and unbalanced speeds between the mobile host and the NFS server. The nextsection reviews related studies on TCP and provides background on the TCP and NFS protocols.Section 3 discusses error characteristics on wireless media and the testbed on which our experimentswere carried out. Section 4 presents measurements, graphs, and data which shows the performanceof TCP and NFS over bursty wireless links. The last section summarizes our results and discussesfuture research directions.2 Background and Review of Related WorkThe performance of TCP over wireless links has been an area of active research recently. TCP isa reliable transport protocol optimized for wired networks and stationary hosts. It uses congestionwindows and round trip timers to control the ow of tra�c into the network. TCP interpretsincreases in round trip times as packet losses due to congestion and then uses back-o� and recoveryalgorithms to slow the ow of messages into the network.The premise underlying these congestion control policies is that packet losses in the typicalwired TCP/IP environment are due primarily to congestion. While this premise is true for manyexisting networks, it is not true for networks with mobile hosts and wireless links. The burst losseson wireless links cause long idle periods when transmissions consistently fail. Since these lossesare not a result of congestion, decreasing the transmission speed causes unnecessary throughputreduction. The losses and delays which occur on wireless systems in combination with TCP'scongestion control algorithms can be detrimental to performance in wireless and mobile networks.Some studies investigate the e�ect of adding link layer retransmissions to improve the through-put of the wireless link [BKT95],[DCY93]. Others propose higher layer methods for improvingthe TCP performance over wireless links, such as partitioning the connection [YB94], [BB94] ornotifying the transport layer of host motion [CI94].2.1 Wireless Link RetransmissionsSelective retransmission can be implemented to react to the high loss rates over the wireless link.One possible approach is the use of a link layer protocol to control retransmissions on the wirelesslink and hide such losses from the higher layers. Since errors occur more frequently on this link,some researchers claim that retransmission over the wired part of the connection waste bandwidthand time. Other researchers argue that competing retransmission schemes in the link and transportlayers will reduce end-to-end throughput even though the link utilization is increased [CI94], [YB94].DeSimone et al. [DCY93] have shown that link layer retransmissions can adversely a�ect the end-to-end mechanisms of reliable transport protocols reducing end-to-end throughput and increasingthe wireless link utilization.One possible method is to introduce a low level protocol, a Channel State Dependent Packetscheduler, to control packet transmission [BKT95]. This method maintains a queue for each desti-nation and switches between these hosts based on the quality of the 'channel' to each host. If onepacket is lost the channel would be assumed to be lossy for some period of time, during which other"good" channels would be given priority to transmit. This would mean that the lost packet would3

be retransmitted only after it was highly likely that the burst error period was over. Determiningthe quality of each wireless channel is a di�cult part of this method. The link transmitters mustbe able to determine when the channel is in a burst period and predict the length of the burst.Studies would have to be conducted in individual environments to determine reasonable burst errorpatterns. This method improves the fairness of the link layer utilization because it prevents head-of-the-line blocking when the packet at the head of the queue has to be repeatedly transmitted overa bad channel. This method could be used in conjunction with all transport layer protocols suchas NFS and TCP.2.2 Partitioned ConnectionTwo studies, [BB94],[YB94], propose a separation of the transport session into the wired portionand the wireless portion to prevent the high loss characteristics of the wireless segment from causingretransmission over the wired network. The base station or router which joins the wired and wirelessnetworks must bu�er the packets transmitted to or from the mobile host.The disadvantages of this approach include lack of continuity on the end-to-end connection anda requirement for a large bu�er space at the base station for each transport session to any of themobile hosts in that cell. The faster speed of the wired network could cause a large accumulationof data at the base station. If the mobile host migrates, it is di�cult and ine�cient to forward thecontents of the bu�er to the new base station. If bu�ered packets have been acknowledged by thebase, then consistency problems could result from disconnection or migration by the mobile host.Bakre and Badrinath consider the performance of TCP in the presence of mobile host cellswitches [BB94] and propose Indirect TCP (I-TCP). This study uses a wireless testbed and simu-lated cell switches. Yavatkar and Bhagawat have studied the performance of TCP in the presenceof wireless links. This study considers the e�ects of both mobility and wireless link characteristics,and uses simulation for the wireless segment of the connections [YB94].Both proposals, [BB94],[YB94], claim dramatic throughput improvement, but only end-to-endthroughput comparisons are given. In the �rst study, throughput values are given for TCP andI-TCP. On a wide area connection, with a cell switch, the I-TCP enables 19.12 KB/s compared to a8.89 KB/s throughput for regular TCP [BB94]. In the second study, the throughput for a wide areaconnection with ten percent loss is 1.8 KB/s originally and 3.6KB/s with the partitioned connection[YB94]. These are very di�erent values and can not be fairly compared since the environment isdi�erent. Both methods show an improvement, but it is not clear how e�ective they would be whenapplied in another wireless network.All of these TCP studies con�rm the premise that the performance of TCP over wireless linksis in much need of improvement. However, these studies fail to indicate which features of theprotocols are responsible for the poor performance. Since these protocols are so complex, it is verydi�cult to determine that a given scenario will apply to a di�erent environment.2.3 Network File SystemThe Network File System (NFS) is a protocol that permits transparent, remote access to �lesystems in a heterogeneous network of machines [Gro89], [WLea85], [PJS+94]. NFS de�nes thetraditional �le system operations, such as reading directories and creating, deleting, writing, andreading �les. Servers provide resources to the network, and clients access resources over the network.Any machine can be a client, a server, or both client and server. NFS servers are stateless, since4

they do not maintain contextual information about clients. The major advantage of this lack ofstate information is robustness against server, client, or network failures and simpli�cation of crashrecovery at the servers. For example, if a server fails, the client simply must repeat the attempt tocomplete the operations until the server is repaired [WLea85].The NFS protocol is implemented using the Remote Procedure Call (RPC) protocol [Gro88].NFS uses RPC to make procedure calls such as read, write, and getattr. Procedures in NFSare synchronous, which means that the client blocks until the server returns the results. Therefore,when a procedure returns, the client can assume that the operation was completed and that alldata reside on stable storage.NFS is usually implemented over the User Data Protocol (UDP), which is an unreliable transportlayer protocol. Since UDP does not provide reliability, NFS must have its own policies to controlacknowledgments and retransmissions. NFS can also be implemented over TCP; in which case,TCP provides the necessary features for retransmission, congestion control, and recovery fromlosses. Nowicki discusses the use of TCP to implement NFS and proposes that NFS improvementscan be obtained through the use of better timer algorithms and transfer size adjustments [Now89].The use of TCP may not always be bene�cial since the round trip TCP timers would also betiming the service time at the �le server. These service times are much less well behaved thanthe round-trip times of a pure transport protocol. Use of TCP to implement NFS also providesinteroperability problems, since clients using TCP could not communicate with server that usedonly UDP and vice versa.NFS is designed to be robust in the presence of failures but not to be e�cient in the presence oferrors. In wired networks, the loss of several contiguous packets usually indicates that the server isdown or disconnected from the network. NFS is designed so that the client will retry until the serveris again accessible. This type of server or network failure is infrequent and may take several hoursto bring the server back on line. During this period NFS clients continue to retransmit �le requests.Further action is e�ectively blocked until the �le request is answered. The retransmission timersare much longer than those in TCP. After each unsuccessful retransmission, the timers increaseup to a maximum of about 2 minutes. Then NFS will retry every 2 minutes until the �le serveris back on-line. These long retransmission periods are not ideal for losses on wireless links, wherethe typical disconnection period is on the order of milliseconds rather than minutes. The longerretransmission wastes seconds of clear channel transmission time. The retransmission policies ofNFS are dependent on the implementation, but all versions have retransmission timers much longerthan optimal for the burst errors of wireless networks.When reading and writing large �les, multiple requests must be sent to the server for a single�le. To improve performance, NFS uses large packets, usually eight kilobytes, and leaves it toIP to perform fragmentation and reassembly. On wired systems, this proved to substantiallyincrease performance [SGK+85]. Wireless systems typically have smaller maximum transmissionunit (MTU) sizes than their wired counterparts [YB94], which causes fragmentation of all large readand write requests. If one fragment is lost, the entire eight kilobyte packet must be retransmitted.This increases retransmissions in wireless systems that already su�er from high loss rates.2.4 NFS Performance on Wired NetworksWe conducted experiments to determine which NFS procedures are most a�ected by the errors onthe wireless media. The procedures executed most frequently or procedures that require the longest5

response time are most susceptible to losses due to burst errors. We focused our study on the mostsusceptible procedures. The nfswatch routine was used to record seventeen hours of NFS activity.Measurements were taken on various weekdays between the hours of 9:00 am and midnight. Lessthan one percent of NFS packets were lost due to bu�er overow at the monitor. Table 1 showsthe top �ve procedures of the sixteen NFS procedures and the percentage of calls to each of theseprocedures. Procedure Percentage calledgetattr 47.79lookup 30.34read 12.60readdir 6.7write 2.04Other 0.56Table 1: Most frequently called NFS ProceduresEighty percent of the calls were to the lookup and getattr procedures. These two proceduresare called prior to most NFS actions. The lookup procedure returns a �le handle and attributes fora speci�ed �le. The getattr procedure returns �le attributes given a �le handle. The executiontimes for these procedures are approximately ten milliseconds. Their execution times are verybrief compared to the read and write procedures. The read and write procedures are calledonly about �fteen percent of the time, but the duration of these calls are the longest of the NFSprocedures. Most read and write packets are eight kilobytes in length. Therefore, to write alarge �le, a write call is executed for each segment of eight kilobytes. The read and write NFSprocedure calls are consequently most susceptible to losses on the wireless medium since they areof the longest duration.3 Experimental EnvironmentOur experiments were conducted on a wireless LAN testbed to study the e�ect of wireless link errorcharacteristics on NFS and TCP performance. The error characteristic of radio frequency links aredistinct in that they are prone to burst errors. In the following, we describe the errors and errormodels of the wireless links and our experimental testbed. Our testbed had to be controlled toavoid interference from other Ethernet tra�c.3.1 Error Characteristics of Wireless MediaUnlike the Ethernet or ATM media which are virtually error free, wireless transmissions are proneto errors and losses due to signal interference, multipath e�ects, fading, and signal propagationlimitations.RF LANs have time varying error characteristics as the relative position of the communicatinghosts changes. Especially at the edge of propagation range, the channel quality is highly unstableand error prone, as shown by [DR94]. The experiment conducted by Duchamp and Reynolds6

examined indoor radio propagation performance and determined that the region just beyond thereliable range is highly unstable and the quality of the channel varies greatly and non-linearly.When unstable conditions occurred, smaller packets were captured much more successfully thanlarger packets [DR94].Mobility causes additional errors not only as hosts move out of range of the base station butalso as they move into fading zones. Fading is a rapid uctuation in the signal strength causedby multipath propagation. When the transmitted signal follows multiple paths to the receiver, thedi�erent lengths of these paths cause wave interference as the signal paths add and cancel. Interfer-ence patterns create zones in which transmission signals are weak and losses frequent. Changes intopography can cause slower changes in signal level as a result of shadowing from objects or signalinterference from neighboring hosts [Fre78]. Frequency hopping wireless LANs are especially proneto burst errors as they may hop onto a frequency which is especially susceptible to interference.This interference is likely to decrease with the next frequency change [BKT95].The performance of RF systems is limited by the frequent periods of burst losses caused byfading, shadowing, and interference. During a period of burst losses a host receives only a weaksignal and all packet transmission attempts to a speci�c destination fail with a very high probability.These burst losses e�ectively create a period of disconnection from the base station. Typicalobserved burst periods on RF wireless LANs are in the range of 100 to 500 milliseconds [BKT95].Several studies have developed �nite state Markovian models to characterize the bit errors ob-served on RF channels [SF94],[WM95],[SKKF93]. In [SKKF93], the burst error channel in speci�edby the three state Markov model. A bit sequence is broken into guard sections and burst sections.The guard sections are error free sections of at least an arbitrarily determined length, and the burstsections are the sections between guard sections. The �rst state represents a guard section. Thesecond state represents the error state. Transitions from the error state to the third state occurwhen error free bits are received. Transitions back to the guard state occur only after the necessaryerror free length has occurred. Together the second and third states represent a burst error.The burst losses can be characterized by a two state Markov error model [BKT95]. The twostates consist of a 'bad' state and a 'good' state. The bad state represents the time a channel is inburst error mode, and the good state represents the time when a channel is error free. A transferfrom the good state to the bad state occurs with some probability, p1. A transfer from the bad stateto the good state occurs with some probability q1. When in the good state, transmitted packetsare received with a high probability. When in the bad state, the majority of transmitted packetsare lost. Note that for most wireless systems a single bit error translates to the loss of an entirepacket. The probabilities p1 and q1 can vary greatly between wireless systems. This approximatecharacterization of the wireless channel is su�cient to illustrate the e�ects of losses on the behaviorof transport sessions.3.2 Testbed EnvironmentOur experiments were run in the Mobile Computing Multimedia Laboratory (MCML). The labnetwork consists of two Ethernet LANs and an Infrared wireless subnet. The wireless subnet isconnected to the Ethernet LAN via a base station which routes tra�c to the wireless subnet.Experiments were conducted using the network monitors, tcpdump and nfswatch, running on aDEC Alpha machine. These monitors collected information about the packets on the EthernetLAN. These monitors provided packet level information with timing accuracy on the order of 107

microseconds.Connections were established between a mobile host on the wireless subnet and stationaryhosts on the Ethernet. These connections were monitored to determine information such as packetretransmission timeouts, losses on the wireless link, and throughput. Random losses on the Infraredlink at close range (5 meters) were rare. An error model was implemented at the kernel level ofthe wireless base station. The model gave us control over the types of losses on the wirelesssubnet. The error model dropped packets to create periods of burst losses on certain wirelesschannels. During a burst period all packets on that wireless channel were dropped. Between oneand �ve connections were established simultaneously with the mobile host. Each connection wasindependently characterized with an error model.Several types of error modes were used in our experiments. The burst periods were either ofa �xed length and at �xed intervals or were at uniformly distributed intervals and of uniformlydistributed lengths. The models used included the following (for the uniform distribution the meanvalue is given):1. Random losses2. 10ms Burst loss period at 200ms intervals, �xed length3. 10ms Burst loss period at 400ms intervals, �xed length4. 100ms Burst loss period at 1 sec intervals, �xed length5. 100ms Burst loss period at 1 sec intervals, uniform distribution6. 200ms Burst loss period at 4 sec intervals, uniform distribution3.3 Measurement ValidationA number of factors had to be controlled in order to get reliable performance results. Performancebetween the wireless and wired subnets could be inuenced by a high load on the wired subnetor by heavy loads on the source or destination machines. These factors were observed whenevermeasurements were taken to ensure that only minimal interference occurred.Batched commands were used to collect data samples throughout the day to determine theamount and type of tra�c on the local Ethernet network. The tra�c on the Ethernet could a�ectthe performance of the connections if the the network load was high. Even when the load wasthe highest, only a portion of the Ethernet capacity was being utilized. Figure 1 shows networkactivity at various times of day in terms of packets per second. Although the packet size can vary,this information provided a general comparison between the activity level at various times of day.Network activity was high during the middle of the day and the night. The activity was thelowest during the early morning hours of four to eight. This was the best time to perform ourmeasurements to avoid the high load periods which could a�ect our measurements by delays andinterference of other Ethernet tra�c.4 Performance over Wireless MediaTCP and NFS experience similar performance degradation in the presence of errors. Since noprevious studies have been conducted on NFS performance, TCP studies can be used for comparison8

200

400

600

800

1000

1200

1400

1600

1800

12:00am 3:00am 6:00am 9:00am 12:00pm 3:00pm 6:00pm 9:00pm 12:00am

P
ac

ke
ts

/s
ec

on
d

Time of Day

General Traffic Loads

"Load"

Figure 1: General tra�c load on a local area networkand for insight. Most of the solutions proposed for TCP will not be applicable to NFS due to thedi�erences in the function and policies of NFS, but comparison between retransmission policies,packets sizes, and throughput values provides a starting point for analyzing NFS performance.4.1 TCP4.1.1 Retransmission pausesWe have measured TCP retransmission characteristics over wireless links to determine the gran-ularity of the idle times induced by random losses and by burst losses. Figure 2 shows a plotof sequence number versus time, in seconds, for a TCP connection from the wired to the wirelessnetwork. This graph shows the long idle periods that can result from burst losses. Here consecutivelosses cause idle periods of approximately 2, 6, and 7 seconds.Caceres and Iftode observed that mobile host cell switches caused unacceptably long pauses inTCP, between 1 and 7 seconds [CI94]. These values are almost identical to the pauses seen in �gure2. They attribute these long pauses in communication to the current retransmission and congestioncontrol polices in TCP, and they propose a fast retransmission scheme, which noti�es the transportlayer of host migration and thereby reduces these pauses. Our measurements show that the sameperformance problems occur within a single wireless cell due to burst errors even when the mobilehost is not migrating.Figure 3 shows a detailed view of another TCP connection with idle periods due to losses and9

0

500000

1e+06

1.5e+06

2e+06

0 5 10 15 20 25 30 35

S
eq

ue
nc

e
nu

m
be

r

Time (seconds)

Idle Times from Burst Losses

"Packet_number"

Figure 2: TCP Connection with burst losses, Throughput = 41.3 KB/sretransmission timers. When losses occur, the backo� period is doubled after each consecutiveretransmission. The idle periods between retransmissions is 0.9, 2, and 4 seconds. When lossesoccur in the wireless media, TCP incorrectly interprets the losses as congestion in the network andslows its transmissions. These performance measurements indicate that the majority of idle timeis due to retransmission timeout periods (backo� intervals) rather than to the slow start periods.When losses occur, the backo� period is doubled after each consecutive retransmission.In comparison to the idle time, the slow start takes very little time to return to the normalwindow size; it is only takes a few hundred milliseconds. Here the window size is small and thereare usually only two packets outstanding. This small window size is typical of wireless networks dueto the low bandwidth of the links. This observation indicates that the chief cause of performancedegradation in the presence of random losses is due to the idle time while retransmissions occur.TCP's fast retransmit mechanism was incorporated into TCP to decrease the latency of lossdetection. When a threshold number (usually three) of back to back duplicate acknowledgmentsare received, TCP immediately retransmits the current packet instead of waiting for the timer toexpire. The arrival of three duplicate acks is a strong indication that a packet loss has occuredrather than just a packet delay due to congestion. This fast retransmit fails to work on wirelesslinks, however. This is because window sizes are small (sometimes even less than three packets)and back to back packets and acks are likely to be lost during burst periods. If there are no packetsready for transmission then duplicate acks cannot be sent and fast retransmit will not be triggered.In �gure 3 the periods between the �rst loss and the �rst retransmission is after about 900milliseconds. Typical burst errors last several hundred milliseconds. If the burst error length hadbeen 300ms, then the �rst packet retransmission (after 900 ms) would be successful and we wouldhave waited 600ms longer than necessary for retransmission. We can see from these graphs that600 ms is enough time to send about thirty packets. This idle periods is an obvious performancedegradation. The shows that TCP's retransmission timer policies are not suited to a bursty wirelesslink. Ideally, we would be better able to match the retransmission periods and the lengths of thetypical burst periods. 10

1.2e+06

1.21e+06

1.22e+06

1.23e+06

1.24e+06

1.25e+06

1.26e+06

1.27e+06

25 27 29 31 33

S
eq

ue
nc

e
nu

m
be

r

Time(seconds)

FTP Idle Period

"Packets"
"Acknowledgments"

Figure 3: TCP Retransmission Pauses4.1.2 Performance DegradationOne major di�erence between the transfers with burst errors and the transfers without burst errorsis the consistency. The performance in the presence of even short burst errors (100ms) results islarge uctuations in throughput. Table 2 shows a clear performance degradation in the transfersthat experience burst errors. The �les transferred were 3.57 MB. In these experiments, the bursterrors had a mean value of 100ms with a mean value of 1000ms between burst error periods. Theburst periods only occur ten percent of the time, but the decrease in performance was much higherthan ten percent. The average throughput with no burst errors was 54.2 KB/sec and the averagethroughput with burst errors was 27.7 KB/sec (as shown in table 2). This is a decrease of 50percent in the throughput. The variance between transfer rates is caused by the di�erent numberof losses due to burst errors. Consecutive losses of a single packet cause the most degradation sincethe retransmission timeout doubles after each loss.As an example of the long idle times and performance degradation su�ered from burst errors,compare the graphs in �gure 4. The two curves in the graph show the same 95 KB �le transfer �rstwith only random errors present and then with burst errors. The �rst curve shows a transmissionthat experiences no burst error period. Two packets are lost due to random errors. The throughputof this transfer is 15.4 KB/sec. The second curve shows a transfer that experiences 10ms bursterrors every 200ms. This transfer of the same �le takes almost three times as long, 15 packets arelost due to burst errors. The throughput is only 6.3 KB/sec, less than half of the throughput ofthe non-burst error case.
11

No Errors 100ms Burst Errors58 4659.7 3660 3250 5.350.5 2647 18Average 54.2 27.2Table 2: Throughput Values, Kilobytes/second

0

20000

40000

60000

80000

100000

0 2 4 6 8 10 12 14 16

S
eq

ue
nc

e
nu

m
be

r

Time relative to start of connection (secs)

Burst errors vs No burst errors

"Burst_errors"
"No_burst_errors"

Figure 4: A�ect of Burst Errors on Throughput12

4.2 NFS Performance on Wireless Networks4.2.1 Throughput DegradationOur experiments have shown the penalty inicted on TCP by burst errors: performance degradationand inconsistency. Similarly, burst errors cause signi�cant degradation to the performance of NFSover wireless links. When we compare the performance of NFS in the presence of burst errors,random errors, and no errors, the results show the burst errors have the most detrimental e�ect onthe performance of NFS. Table 3 and �gures 5 and 6 compare NFS reads and writes in the presenceof three di�erent error models:1. No burst errors2. 100ms burst errors, with 1 sec good periods (�xed length)3. 100ms mean burst errors, with 1 sec mean good periods (uniform distribution)As table 3 shows, the performance is best for the no error situation and worst with the uniformlydistributed burst errors. This table shows average values that were calculated based on repeatedwrites and reads. Figure 5 compares write performance for these three models and �gure 6 comparesread performance. Error Model NFS write NFS readNo burst errors 25.2 KB/s 94.2 KB/sFixed Length 19.6 KB/s 38.7 KB/sUniform Distribution 16.3 KB/s 21.6 KB/sTable 3: Performance of NFS with burst errorsFigures 5 and 6 show that the �xed length burst error model and the uniformly distributed errormodel cause similar e�ects to NFS performance. Transfers during either of these burst error modelshave consistently lower throughput values than transfer without burst errors. The throughputvalues for non-burst error cases are 24.5 KB/s for the write and 94.3 KB/s for the read. The largedi�erence in these two values are due to the longer write response times and also to several randomerrors in the NFS write transfer. For the writes the throughput values are 20.7 KB/s and 18.7KB/s for the �xed and uniformly distributed burst lengths. For reads the throughput values are38.3 KB/s and 21.6 KB/s. The uniform distribution model has even worse performance than the�xed model, but both su�er from decreased performance. This indicates that a simplistic �xedlength burst error model can provide realistic insight into the behavior of NFS with burst errors aswell as a distributed model. The simpler �xed length model can be used to gain understanding ofthe causes of NFS performance degradation.Our data allows us to investigate the reasons for the performance degradation in the presenceof burst errors. In the remainder of this section we examine the features of NFS which contributeto this inferior performance. 13

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

0 50 100 150 200

Se
qu

en
ce

 N
um

be
r

Time (seconds)

NFS write comparison

"no_burst_errors"
"fixed_burst_lengths"

"uniform_burst_distribution"

Figure 5: NFS write with and without burst errors
0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

0 20 40 60 80 100 120 140 160 180

Se
qu

en
ce

 N
um

be
r

Time (seconds)

NFS read comparison

"no_burst_errors"
"fixed_burst_lengths"

"uniform_burst_distribution"

Figure 6: NFS read with and without burst errors14

4.2.2 Retransmission PausesIn an environment where losses are frequent, the retransmission policy has a signi�cant impacton the system performance. Figure 7 illustrates NFS response to burst losses. Here long burstperiods cause consecutive losses and decrease throughput. The throughput is 27.7 KB/s, and thisis much less than the 94.4 KB/s throughput that is achieved when no errors occur. Table 4 showsthe increasing retransmission timeout values. The retransmission timeouts increase to a maximumof 90 seconds. The graph in �gure 8 also shows the increasing retransmission timeouts. The idleperiod prior to the �rst retransmission is 1.1 seconds, and by the fourth retransmission the timeouthas increased to about 13 seconds. This demonstrates the long timeout periods in NFS.Table 4: NFS Retransmission Intervals, seconds1.1 2.2 4.4 13.1 4.4 8.8 17.6 52.8 17.6 35.2 60 90 30 60 90
0

50

100

150

200

0 5 10 15 20 25 30 35 40 45 50 55 60 65

N
FS

 p
ac

ke
t n

um
be

r

Time (seconds)

NFS Read with Burst Errors

"Packets"
"Acknowledgments"

Figure 7: NFS response to losses, NFS readNFS has been designed for use in the wired environment where disconnections are expectedto be rare and lengthy. The burst periods in wireless systems will usually be on the order of 100milliseconds. This means that any loss will create an idle period of at least one second, 10 timeslonger than necessary for a 100 millisecond burst period. Methods compatible with the existingstructure are needed to ameliorate this e�ect on NFS performance.4.2.3 NFS ProceduresIf a NFS request is lost, the client retries after a certain timeout period. Most client requests arevery quick, such as the getattr, lookup, and readlink procedures which usually take aboutten milliseconds. Other procedure calls, such as readdir, vary depending on the �le involved andtake about �fteen to twenty milliseconds. The read and write procedures take the longest andtheir return times vary the most. In one �le copy experiment, read requests took between 40 and15

150

160

170

180

190

200

210

32 35 38 41 44 47 50 53 56 59 62

N
FS

 p
ac

ke
t n

um
be

r

Time (seconds)

NFS Read Retransmissions

"Packets"

Figure 8: NFS Retransmission Pauses150 milliseconds to complete, with an average of 80 milliseconds. read requests were consistentlyshorter than write requests, which took between 100 and 900 milliseconds, with an average of 550milliseconds.Even in the absence of errors, writes were much slower than reads for the same �le. A writerequest is not acknowledged until the request is written onto stable storage. This is one reason forthe longer write reply times. When no errors occur, a sequence of �ve write requests take aboutone second, and the corresponding sequence of read requests take about 450 milliseconds, lessthan half the time. Consecutive read requests are transmitted every 15 milliseconds and usuallythe acknowledgment is received prior to the next request. write requests are sent in groups of �verequests at 20 millisecond intervals. This means that if a 200ms burst period occurs it is likely thatall �ve write requests will be lost. Thus write losses occur in groups, as seen in �gure 9 where�ve packets are retransmitted and then four of those are transmitted yet again. The throughputis obviously greatly reduced; in this case throughput is 4.4 KB/s instead of the 27 KB/s that isattained when no burst errors occur.When a packet is lost, the client retransmits the request after 1.1 seconds. This idle period,while the client waits for the server response can dramatically increase the amount of time requiredto complete an application program request. For example, if a lookup request is lost, it will take1100 milliseconds instead of 10 milliseconds for the request to complete. This di�erence would behardly noticeable unless a high percentage of the packets were lost. During burst periods thesetimeout periods could have a dramatic e�ect on performance.4.2.4 Large Packet SizeNFS reads and writes are most vulnerable to performance degradation from the burst errors ofwireless links. These two procedures transfer the bulk of the data. The typical packet size is eightkilobytes. This large packet size requires fragmentation which makes the packet more prone tolosses.To investigate the e�ect of the large NFS packet size in the presence of errors, we transferred�les using both NFS and TCP's FTP (�le transfer protocol). By comparing the write and reads16

of both of these protocols, we determined that the large packet size can decrease performance overerror-prone wireless links. Table 5 shows throughput values for NFS and TCP reads and writes.This table shows that, when burst losses occur, FTP performance is about twice as good as NFSperformance.In table 5 the NFS write throughput is about half of NFS read throughput. This is due tothe longer write reply times and the vulnerability of write transfers to multiple consecutive packetlosses during burst periods, as explained in the previous section. The FTP read values and FTPwrite values are di�erent because the data is sent from the slower mobile host in the read case andto the mobile host in the write case.Function Packet Size Throughput Average Throughput8 KB 5.6 KB/sec8 KB 4.7 KB/secNFS write 8 KB 0.98 KB/sec8 KB 2.74 KB/sec8 KB 1.44 KB/sec 3.1 KB/sec0.5 KB 3.27 KB/sec0.5 KB 1.7 KB/secFTP write 0.5 KB 2.7 KB/sec0.5 KB 5.6 KB/sec0.5 KB 11.9 KB/sec 5.0 KB/sec8 KB 1.70 KB/secNFS read 8 KB 1.30 KB/sec 1.5 KB/sec0.5 KB 1.63 KB/sec0.5 KB 3.3 KB/secFTP read 0.5 KB 3.9 KB/sec0.5 KB 0.43 KB/sec 2.3 KB/secTable 5: Throughput and Packet SizeThis data is not conclusive, but indicates that NFS does not perform better than an FTP �letransfer as would be expected. This is attributed to both large NFS packet size and longer NFSretransmission timeout values. The traces of NFS performance (�gure 9) show that NFS write isoften very ine�cient in the retransmission of packets. Many more packets are retransmitted in theNFS transfers than in the FTP transfers. The NFS Write in �gure 9 shows almost 100 percentpacket retransmission, and the FTP write in �gure 10 has less than ten percent retransmission.For the same size �les there are 5 times less NFS packets. Thus if one packet in NFS is losteight Kilobytes must be retransmitted, compared to only 512 bytes for a lost FTP packet. Thisperformance di�erence between NFS and FTP writes is due, in part, to the fact that a loss of asingle fragment causes retransmission of the entire eight kilobyte packet. It is also due to speedinequities between the server and the client, as we discuss in the following section.17

0

20000

40000

60000

80000

100000

120000

140000

160000

0 5 10 15 20 25 30 35

S
eq

ue
nc

e
nu

m
be

r

Time (seconds)

NFS Write

"Packets"
"Acknowledgments"

Figure 9: NFS WRITE, Throughput = 4.41 KB/s4.2.5 Unbalanced Server and ClientIf there exists a great disparity between the speed of the source and the destination machines inany data transfer, there is the danger of the faster machines overwhelming the receiver with data.When the source is faster than the receiver, it often means that entire windows of data are sentbefore the receiver can respond. A wired TCP session between a much faster sender and a slowhost is displayed in �gure 11. An entire window of packets is sent before the receiver sends the �rstacknowledgments. In this case, there is one acknowledgment sent for each group of packets. Assoon as the sender receives an ack, it sends another entire window of packets in rapid succession.As an example of this phenomena we compared the transfer of a �le (using NFS write) betweentwo stationary hosts of comparable speed and then a transfer between a fast and a slow host. Thethroughput varied greatly. In the �rst case, the throughput was 85.3 KB/sec. In the latter case,the performance was only 4.4 KB/sec. Figure 12 shows the second, unbalanced hosts case. Thistransfer was via the Ethernet so the losses in �gure 12 were unrelated to the wireless media. Theywere caused by the lost packets a the slower receiver losing packets since the receiver is too slowto process all of the write requests. From this we determine that the rate at which NFS read andwrite requests are sent by the client is of central importance.In our environment, our NFS server is more powerful than our mobile host. In the error-pronewireless environment, that often means that entire sequence of data packets are retransmitted dueto a single lost packet at the beginning of the sequence of packets. This dramatically reduces theperformance of a transfer, but could be improved by optimizing the patterns of read and writerequests sent by the mobile host.4.2.6 Performance ImprovementOur experiments with NFS over the wireless link clearly displayed a dramatic decrease in perfor-mance when burst errors were introduced. In the �rst case we introduced no errors into the wirelesslink and we read a �le of size 3.57 MB. The throughput for this read was 94.4 KB/s. We tried thesame experiment and introduced a randomly distributed burst error model. In this model, there18

0

20000

40000

60000

80000

100000

120000

140000

160000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
eq

ue
nc

e
nu

m
be

r

Time (seconds)

ftp Write

"Packets"
"Acknowledgments"

Figure 10: FTP write, Throughput = 32.7 KB/sare 'good' periods with a mean of 1000ms (with no losses) and alternating 'bad' periods with amean of 100ms. With even these short burst periods the performance was severely reduced. Thesame read request only achieved 22 KB/s. Thus burst periods occurring 10 percent of the timecaused performance degradation of 75 percent. In addition, the burst errors caused high variabilityin the NFS performance.The performance of NFS over wireless networks clearly requires much improvement. The meth-ods for achieving this improvement are not as obvious. The methods suggested for TCP performanceimprovement can be considered, but, in fact, none of these methods will be e�ective for NFS.The connection partitioning solution, [BB94],[YB94], cannot be easily used with NFS for severalreasons. Since NFS modi�es �les systems, consistency is of central importance. In the partitionedconnection solution, reliability cannot be guaranteed since the mobile host's base station sendsacknowledgments to the source before the mobile host has received the packets. Migration orbu�er overow can introduce consistency problems. If the base station is required to forward thesepackets after a mobile host moves, no reliability exists in the case of a base station failure. TCPrelies on the higher layer, the application, to catch any packets that are lost due to these problems.NFS, however, is an application and can not depend on any higher level to catch consistencyproblems that arise.For consistency reasons, it is important that the acknowledgments be sent to the client onlyafter successful completion of the client's request. This prevents the base station from acknowledg-ing packets for the mobile host. Instead it is possible to use a reliable link layer to improve theperformance of the wireless link without retransmitting wireless losses over the wired portion ofthe connection. A reliable link layer protocol is used on many wireless LANs. Link layer acknowl-edgments are sent by the receiver, and the transmitter will retry several times if no link level ackis received. In the presence of burst errors, however, successive retransmissions are likely to fail. Achannel dependent retransmission policy, as suggested in [BKT95], would handle this problem bydeferring link level retransmissions until it was probable that the burst period had ended.NFS performance is harmed by both large packet size and by the retransmission policy. Al-though the NFS server should not be modi�ed, it is desirable to change the policies of the mobile19

0

20000

40000

60000

80000

100000

120000

140000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
eq

ue
nc

e
nu

m
be

r

Time (secs)

FTP from a fast machine

"Packets"
"Acknowledgments"

Figure 11: TCP session from a faster machine, Throughput = 114.5 KB/sclient. Fragmentation is unavoidable when using large packet sizes, such as those used in NFS.Large packets and the associated fragmentation are preferable to the overhead of smaller packetswhen transmitting over wired networks. Over wireless links the large packet size can be detrimentaldue to packet losses and fragmentation. The NFS packets will often have to be fragmented severaltimes before they are send over the wired and then the wireless networks.Performance may be improved by performing reassembly at the base station rather than end-to-end reassembly, but this would be complicated to implement and add overhead. Since performanceis better on the wired link for larger packet sizes, the base station could reassemble the mobilehost's small packets. Performance may also be improved by optimizing the NFS retransmissiontimers on the mobile host. This would decrease the idle time when a packet is lost. It would behelpful for the mobile host to be able to identify between losses, delays due to migration, and NFSserver failures in order to determine the most e�ective retransmission policy. If a burst periodhas caused losses, then the most e�ective retransmission times would be on the order of severalhundred milliseconds. If losses were due to a server failure, retransmission times should be muchlonger, increasing from an initial value of several seconds. If the delays and losses are due to hostmotion, the retransmission times should be in between these two ranges, on the order of seconds.Caceres and Iftode [CI94] propose noti�cation of host motion to the transport layer, which mightalso help determine the appropriate retransmission policy in this case. Better link level technologiesare needed to enable e�ective interpretation of wireless link losses.Alternative solutions for improving NFS performance include caching �les on the mobile hostor intelligent �le prefetching. These methods have been suggested by those developing �le systemsfor mobile hosts [HKM+88],[Sat90],[SKK+90], and mobile clients should be developed with theseintelligent �le handling capabilities. The ability to prefetch and cache frequently needed �les inessential to attain acceptable application performance for mobile hosts.Future research will investigate these methods for improving NFS performance over wirelesslinks. The most promising solutions address the problem at the source: either at the error pronelink level with link level retransmission or at the NFS level with modi�ed NFS retransmissionpolicies and disk caching on the mobile client. 20

0

20000

40000

60000

80000

100000

120000

140000

160000

0 5 10 15 20 25 30 35

S
eq

ue
nc

e
nu

m
be

r

Time(seconds)

NFS Write

"Packets"
"Acknowledgments"

Figure 12: Transfer to a much slower machine, Throughput = 4.4 KB/s5 ConclusionThe current Mobile IP protocol provides the functionality to allow a mobile user to migrate througha network. Performance on wireless systems su�ers from lower bandwidth and bursty loss patterns.Propagation techniques and link level protocols are being developed to alleviate some of theselimitations. Due to these current limitations, many of the protocols developed for use in the wiredenvironment must be modi�ed to work e�ciently in the wireless domain.TCP and NFS both su�er from long idle periods due to losses and interference. These pro-tocols must be improved to allow satisfactory communication with the network backbone. Outexperiments have provided insight into the complexities of these two protocols in the presence ofvarious types of error patterns. Further research will be conducted to devise solutions to the perfor-mance problems investigated in this paper. Link level solutions, such as Channel State DependentPacket Scheduling [BKT95], require added functions in the link layer transmitters. Successful linklevel solutions have the advantage of improving the performance of both TCP and NFS, as well asother applications. NFS performance can be improved by modifying the �le system behavior of themobile host. Adding simple caching and pre-fetching options or adding base station bu�ering arethe most straightforward methods for improving the slow performance of NFS over wireless links.There are many issues to be resolved before wireless systems will achieve the goal of performancetransparency.
21

References[BB94] Ajay Bakre and B.R. Badrinath. I-TCP: Indirect TCP for Mobile Hosts. Technicalreport, Rutgers University, October 1994. DCS-TR-314.[BKT95] P. Bhagwat, A. Krishna, and S. K. Tripathi. Using Channel State Dependent Packet(CSDP) Scheduling to Improve Throughput Over Wireless LANs. Technical ReportRC 20093, IBM T. J. Watson Research Center, 1995.[CI94] Ramon Caceres and Liviu Iftode. The E�ects of Mobility on Reliable Transport Pro-tocols. In Proceedings of the 14th International Conference on Distributed ComputingSystems, June 1994.[DCY93] Antonio DeSimone, Mooi Choo Chuah, and On-Ching Yue. Throughput Performanceof Transport-Layer Protocols over Wireless LANs. In Proceedings of the Conference onGlobal Communications (IEEE GLOBECM), pages pages 542{549, 1993.[DR94] Dan Duchamp and Neil F. Reynolds. Measured Performance of a Wireless LAN. InProceedings of the 17th Conference on Local Computer Networks, pages p. 494{499,September 1994.[Fre78] Ricard C. French. Error Data Predictions and Measurements in the Mobile Radio DataChannel. IEEE Transactions on Vehicular Technology, 27(3):p. 110{116, August 1978.[Gro88] Network Working Group. RPC: Remote Procedure Call Protocol Speci�cation. RFC1057, June 1988.[Gro89] Network Working Group. NFS: Network File System Protocol Speci�cation. RFC1094, 1989.[HKM+88] J.H. Howard, M.L. Kazar, S.G. Menzees, D.A. Nichols, M. Satyanaraynan, R.N Side-botham, and M.J. West. Scale and Performance in a Distributed File System. ACMTOCS, 6(1):51 { 81, 1988.[IDJ93] John Ioannidis, Dan Duchamp, and Gerald Q. Maguire Jr. IP-based Protocols forMobile Internetworking. In Proceedings of Winter USENIX, San Diego,CA, January1993.[Now89] Bill Nowicki. Transport Issues in the Network File System. ACM CommunicationReview, 19(2):pp 16{20, 1989.[PB94] Charles Perkins and Pravin Bhagwat. A Mobile Networking System Based on theInternet Protocol. IEEE Personal Communications Magazine, 1(1), 1994.[PJS+94] Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and D. Hitz. NFS Version3: Design and Implementation. In Proceedings of Summer USENIX, Boston, Mas-sachusetts, 1994.[Rek94] Yakov Rekhter. An Architecture for Transport Layer Transparent Support for Mobility.Journal of High Speed Networking, pages p 6{17, January 1994.22

[Sat90] M. Satyanaraynan. Scalable, Secure and Highly Available Distributed File Access.IEEE Computer, 23(5):9 { 21, 1990.[SF94] F. Swarts and H.C. Ferreira. Markov Characterization of Digital Fading Mobile VHFChannels. IEEE Transactions on Vehicular Technology, pages pages 977{985, Novem-ber 1994.[SGK+85] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. De-sign and Implementation of the Sun Network Filesystem. In Proceedings of SummerUSENIX, Portland, Oregon, 1985.[Sim94] W.A. Simpson. IP Mobility Support. IETF Network Working Group, Internet Draft,available via ftp from the internet archives, September 1994.[SKK+90] M. Satyanaraynan, J.J. Kistler, P. Kumar, M.E. Okasaki, E.H. Siegel, and D.C. Steere.Coda : A Highly Available File system for a Distributed Workstation Environment.IEEE Transactions on Computers, 39(4):447 { 459, 1990.[SKKF93] Takuro Sato, Manabu Kawabe, Toshio Kato, and Atsushi Fukasawa. Throughput Anal-ysis Method for Hybrid ARG Schemes Over Burst Error Channels. IEEE Transactionson Vehicular Technology, 42(1), February 1993.[TT93] Fumio Teraoka and Mario Tokoro. Host Migration Transparency in IP Networks.Computer Communication Review, January 1993.[WLea85] Dan Walsh, Bob Lyon, and Gary Sager et. al. Overview of the Sun Network FileSystem. In Proceedings of Winter USENIX, pages p. 117{124, January 1985.[WM95] H.S. Wang and N. Moayeri. Finite State Markov Channel - A Useful Model For RadioCommunication Channels. IEEE Transactions on Vehicular Technology, pages pages163{171, february 1995.[WYOT93] Hiromi Wada, Takashi Yozawa, Tatsuya Ohnishi, and Yasunori Tanaka. Mobile Com-puting Environment Based on Internet Packet Forwarding. In Proceedings of WinterUSENIX, San Diego, CA, January 1993.[YB94] Raj Yavatkar and Namrata Bhagawat. Improving End-to-End Performance of TCPover Mobile Internetworks. In Workshop on Mobile Computing Systems and Applica-tions, pages p 146{152, Santa Cruz, California, December 1994.
23

