Fast Algorithms for Estimating Aerosol Optical
Depth and Correcting Thematic Mapper
Imagery *

Hassan Fallah-Adl ! Joseph J4J& 'f Shunlin Liang 2

Institute for Advanced Computer Studies (UMIACS)

University of Maryland, College Park, MD 20742
{hfallaah, joseph, liang}@Qumiacs.umd.edu

Keywords: High Performance Computing, Scalable Parallel Processing, Remote
Sensing, Atmospheric Correction, Aerosol Optical Depth.

Abstract

Remotely sensed images collected by the satellites are usually contaminated
by the effects of the atmospheric particles through absorption and scattering of
the radiation from the earth surface. The objective of atmospheric correction
is to retrieve the surface reflectance from remotely sensed imagery by removing
the atmospheric effects, which is usually performed in two steps. First, the
optical characteristics of the atmosphere are estimated and then the remotely
sensed imagery is corrected by inversion procedures that derive the surface
reflectance.

In this paper we introduce an efficient algorithm to estimate the optical
characteristics of the Thematic Mapper (TM) imagery and to remove the at-
mospheric effects from it. Our algorithm introduces a set of techniques to
significantly improve the quality of the retrieved images. We pay a particular
attention to the computational efficiency of the algorithm, thereby allowing us
to correct large TM images quite fast. We also provide a parallel implemen-
tation of our algorithm and show its portability and its scalability on several
parallel machines.

*This work is partly supported under the NSF Grand Challenge Grant No. BIR-9318183.
TThe work of this author is partially supported by NSF under Grant No. CCR-9103135.
LUMIACS and Department of Electrical Engineering.

?Department of Geography.

1 Introduction

Remote sensing techniques have been extensively applied in different disciplines. How-
ever, the radiation from the earth surface which is highly correlated with surface inher-
ent properties are largely contaminated by the atmosphere. It has been demonstrated
[1, 2] that the removal of atmospheric effects can significantly improve the accuracy
of image classification. So far, no operational method is avaliable to remove the at-
mospheric effects on large scales. A general scheme and some efficient algorithms
are described in our previous work [3]. In this paper, we develop a fast algorithm
to estimate the aerosol optical thickness from Thematic Mapper (TM) imagery and
present various examples of correcting TM imagery that illustrate the effectiveness of
our approach.

bands 1 2 3 4 5 7
central wavelength (nm) | 503.0 594.0 677.0 800.0 1710.0 2200.0

Table 1: Spectral bands of Thematic Mapper (TM) Imagery.

The Thematic Mapper (TM) of Landsats 4 and 5 provides a substantial amount of
imagery that has a high spatial resolution (30 meters), and a high spectral resolution
and that has been widely used for resource inventory, environmental monitoring, and a
variety of applications [4]. The spectral characteristics of TM imagery is summarized
in Table 1. The first three channels are in the visible spectrum corresponding to
blue, green and red. Channels 4 and 5 are in the near-infrared spectrum and channel
7 is a middle-infrared band. Since channel 6 is in the thermal region which has a
different spatial resolution (120 meters) and different physical properties, it is rarely
used in the environmental sciences and will not be considered in this study. Figure 1
presents a scene of TM imagery acquired on Aug. 17, 19589 in the Amazon Basin
area, which is partially covered by hazy aerosols and some thin clouds. Aerosol has
much larger disturbances in shorter wavelength. Although some cloud residuals are
visible in channel 7, aerosol scattering effects have almost disappeared. The objective
of the atmospheric correction is to retrieve the surface reflectance from observed pixel
values at the top of the atmosphere.

2 Background

Assuming that the atmosphere is bounded by a Lambertian surface (i.e., reflects solar
energy isotropically), the upward radiance at the top of the cloud-free, horizontally
homogeneous atmosphere can be expressed by [5] :

deT

L™= Lo+ 4
I

(1)

Figure 1: TM imagery (512 x 512).

3

where Lg is the upward radiance of the atmosphere with zero surface reflectance (i.e.,
p = 0), often called path radiance, Fy is the downward fluz (total integrated irradiance)
at the ground, T' is the transmittance from the surface to the sensor (the probability
that a photon travels through a path without being scattered or absorbed), and s is
the spheric albedo of the atmosphere (the probability that a photon reflected from
the surface is reflected back to the surface).

In order to invert p from L™ through Eqn. (1), we need to determine the quantities
Lo, F;, T, and s which are functions of the wavelength, atmospheric optical properties,
and a set of locational parameters, such as surface elevation, sensor heights, viewing
zenith and azimuth angles, and solar zenith angle. There are two main tasks involved.
The first is to estimate the atmospheric properties and the second is to calculate the
functions required to invert the surface reflectance p.

2.1 Estimating Atmospheric Properties

It is not realistic to assume that simultaneous measurements of all atmospheric optical
properties are operationally available due to the rapid variation of the atmosphere.
In fact, most of available TM imagery are not accompanied with any simultaneous
measurements at all. Climatology data based on very coarse spatial and temporal
resolutions can not be used for correcting individual images. The estimation of the
atmospheric optical properties from the imagery itself is the only operational scheme
to achieve the atmospheric correction. One of the main parameters needed for the
correction of TM imagery is the aerosol optical depth, which is the measure of at-
mospheric turbility. If the atmosphere is perfectly clear, aerosol optical depth is
zero. When atmosphere becomes more turbid, it becomes larger and its value may
be larger than 1. There are several methods for estimating aerosol optical depth
from the imagery, including contrast estimation [6, 7], ”dark-object” approach [8, 9],
but practical implementations of these have not been reported. The so-called “dark
object” approach is used for this study because of its simplicity and effectiveness [8].
The idea behind this approach is quite simple. We search for pixels with low surface
reflectance using TM band 7 [9] in which aerosol effect is negligible, and then we
assign a small surface reflectance to those dark pixels and the aerosol optical depth
can be figured out from Eqn. (1). Note that in this case the deviation of the assigned
reflectance from the “true” reflectance will not result in a large uncertainty for the es-
timation of aerosol optical depth since both are very small. The assumptions behind
this approach can be summarized as follows: (1) The image contains at least a few
pixels which characterize dense dark vegetation; (2) The atmosphere is bounded by
a Lambertian surface as the lower boundary condition; And (3) the assumed aerosol
scattering phase function and the single-scattering albedo will not result in significant
errors in the retrieval of the aerosol optical depth [9].

2.2 Surface Reflectance Retrieval

Given the aerosol optical depth, the determination of Lo, Fy, T, and s in Eqn. (1)
is not a simple task due to the fact that these quantities are related to the solutions

of the radiative transfer equation [5], which is an integro-differential equation for
which no analytical solution is available. There are several approaches to obtain
practical solutions. The first is to use a numerical iterative approach, such as the
discrete-ordinate algorithm [10], and the Gauss-Seidel algorithm [11]. The resulting
solutions are accurate but the methods involved are computationally very expensive
and not feasible for large scale studies. Another approach is to simplify the radiative
transfer equation by using approximations, such as the two-stream approximation
[12], and the four-stream approximation [13]. These approximation algorithms are
computationally efficient, but the accuracy is limited. An alternative is to set up
off-line look-up tables [14] for certain input values. With the additional tables, the
quantities (Lo, Fy, T, and s) can be efficiently calculated with high accuracy using
interpolations. This look-up table approach has been explored in our previous study
and further improvements will also be presented in this paper.

2.3 Computational Complexity

Estimating optical depth requires the extensive handling of large amounts of data
residing in external storage and hence the optimization of both computation time
and I/O time must be considered. To get a better feel about the volume of data
involved, we should mention that a single standard TM image that covers an area of
size about 180K'm x 180K m consists of approximately 36 million pixels per band,
which adds up to about 216 million pixels. Therefore, we are dealing with more than
1012 pixels for the entire globe. In order to handle such massive amounts of data, our
main objectives are to :

o design very efficient serial algorithms that correct different types of landscape
in TM imagery.

o develop parallel versions of these algorithms, that are scalable in terms of the
number of processors, the number of I/O nodes, and the size of internal memory.

We develop in this paper a new atmospheric correction algorithm that appears
to work very well on a variety of images and that satisfies our two stated objec-
tives. The rest of the paper introduces the algorithms and provides examples of our
implementation.

3 Estimating Aerosol Optical Depth

In this section we first describe the basic sequential algorithm and then present a
number of techniques that were used to improve the quality of the output and to
reduce the overall computational complexity.

3.1 Description of Algorithm

Our algorithm for estimating the aerosol optical depth for TM imagery is based on
the dark object method. The algorithm operates on windows of size w x w and can

be sketched as follows.

Aerosol Optical Depth Estimation Algorithm :

Step A: For each window of the input image, determine if it contains a dark object.
In the affirmative, estimate the aerosol optical depth for the first five bands.

Step B: For cach window without a dark object, estimate the aerosol optical depth
by interpolating on the neighboring windows with dark objects.

The determination of the window size w is not simple due to two conflicting
requirements. On one hand, increasing the window size will increase the chances
of finding a dark pixel in each window and will reduce the overall computational
complexity. On the other hand, the larger the window size, the less accurate the
computed optical thickness is. In general, atmospheric conditions and the resolution
of the image determine the value of w.

In step A, we search for dark objects in each window and if one or more dark
pixels are encountered, aerosol optical depth is estimated for that window. We next
give the details of executing step A. Note that the algorithm for computing aerosol
optical depth given surface reflectance and upward radiance needed for step 4 and 8
will be given later.

Algorithm (Estimate Aerosol Optical Depth for Each Window)

Input: Pizel values (Upward Reflectance®) in the window, location information and
look-up tables.

Output: Aerosol optical depths of the first five channels for the window.
begin

1. Identify all those pizels in the window whose channel 7 (Ch7) values are smaller
than a threshold (L7 < 0.1) as dark objects. Exit if no dark pizels are found.

2. Calculate the average values of dark pizels in each of channels 1 through 5 and
channel 7 (L7, LY, L3, LY, L2, L),

3. Assume the surface reflectance p; in Ch7 equal to its reflectance at the top of
the atmosphere (L2) and calculate surface reflectance in channels 1 and 3 using
p1 = 0.25p7 and ps = 0.50p7, which are derived from statistical analysis in
several test sites [9].

4. Estimate aerosol optical depths of channels 1 and 3 (t1, 73) by using L, LY,
p1, p3, look-up tables. The parameter 1 should be larger than or equal to 7.

3Input pixel values are digital counts which are first converted to radiance values and then to
reflectance units (apparent reflectance).

5. If 1y < 73, repeat steps 1 through 5 with smaller thresholds, until 7 > 75 or the
algorithm terminates when the window does not have any dark pixels.

6. Set the aerosol optical depth as 7; = a)7®, where 7; and \; are the aerosol optical
depth and the wavelength for channel v, 1 < ¢ < 5. Caleulate parameters a and
b from 71, 73.

7. Calculate 15, 74, and 75 using 7; = a)\i_b, 1 <¢ <5,

8. Check whether Timm < 7 < 1 where 7 = 0.0 and 7" can be calculated

by assuming p; = 0.0 and using L" and the look-up tables.

Y

9. If any of the aerosol optical depths is out of bound, fit the exponential curve
again by using 7 and 7", where © denotes the band whose optical depth is out

of range. Repeat this procedure until no optical depth is out of bound.

end

The procedure for determining the aerosol optical depth, given surface reflectance
and upward radiance is very similar to the method for determining the surface re-
flectance given aerosol optical depth and upward radiance [3]. We use look-up tables
to compute Lg, Fy, T and s (as functions of aerosol optical depth) by interpolation
followed by computing the upward radiance (as a function of aerosol optical depth)
using Eqn. (1). We then use spline interpolation of degree one on the upward radiance
to compute the aerosol optical depth.

The algorithm just described handles the case when there is at least one dark
object in the window. Otherwise, we continue in the main algorithm with step B where
we estimate optical depth by interpolating on the optical depths of the neighboring
windows. This can be repeated until we have the optical depth for all the windows.

A straightforward implementation of the strategy sketched above coupled with
our earlier atmospheric correction algorithm [3] reveals a number of shortcomings of
the algorithm. These shortcomings include:

Large variations in the quality of corrected images. The algorithm performed
well only when the atmospheric conditions did not change rapidly, the optical depth
was not high, and when the image did not include any cloud or water. Wherever there
was a sharp change in optical depth, window effects appeared on corrected images
(Figure 2.b). Also, the algorithm was not able to correct water areas, specially when
the image had a large body of water.

Channels 4 and 5 were not corrected appropriately. Not only did the algorithm
not correct Channels 4 and 5, but in fact it typically caused adverse effects on the
tested images.

We modified the algorithm to take care of these problems as well as improve its
computational efficiency.

c.Band 1, After Correction, with Filtering d.Band 1, Aft

Figure 2: TM imagery (512 x 512).

e

er Correction, Fina

3.2 Modified Algorithm

The following techniques were used to handle the problems cited earlier.

Moving Window. An attempt to incorporate a number of smoothing techniques
into our algorithm (just before running the correction algorithm) was not successful
in removing the window effects (Figure 2.c). Instead we used a moving window
technique that is somewhat similar to image convolution. More precisely, we build a
window of appropriate size around each pixel and apply the same window algorithm
as before. We find the optical depth of each pixel (not a window), and therefore we
expect to generate more accurate estimates. It turns out with this modification, there
are no window effects and the tested images were corrected much more accurately
than before (Figure 2.d).

A major problem with our moving window method is the resulting increase in the
number of computations (by a factor of about w?). We will later present a technique
to counter this problem.

To get rid of what appeared to be a random noise, we perform a smoothing step
once at the end of the algorithm, which is done over a small window of pixels. Inter-
polation in step B in the main algorithm can be replaced by an averaging operation.
We thus combined step B with the smoothing step to further improve the timing of
the algorithm.

Correcting Water Areas. Unlike other surfaces, water has in general higher re-
flectance in the first three channels and a very low reflectance in the other channels.
Therefore water will likely be detected as a dark object by our algorithm and, be-
cause of high reflectance in lower channels, it will lead to a higher estimate of the
optical depth. Thus, after correction, water areas will become dark in the first three
channels, an incorrect output. To solve this problem we do not choose water pixels as
dark objects. In other words if a pixel’s vegetation index is less than some threshold
(L — L) /(LY 4+ L) < 0.1), we detect it as a water pixel and remove it from the
list of dark objects.

With this new approach, all the windows that fall completely in water areas,
will not have any dark objects. In this case, we determine the optical depth in the
following way. If a window does not have any dark object and its corresponding pixel
is a water pixel, we examine the pixel’s reflectance in channel 3 (since it is cleaner
than channels 1 and 2). If the reflectance is high, we conclude that it is a shallow,
and clean water and we assign zero optical depth to it. Therefore in the corrected
image its reflectance will also be high in the first three channels. But if its reflectance
is low, we conclude that it is deep or contaminated water and we calculate the optical
depth, assuming p = 0. Therefore in the corrected image its reflectance will also be
low.

By applying the above technique we were able to extend the algorithm’s scope
to images with different kinds of water areas. Also it even improved the quality of
the correction in land areas because occasionally there are scattered water pixels in
land areas, which should be excluded from the dark objects list. Otherwise, they can
increase the value of the optical depth.

Correcting Channels 4 and 5. As mentioned before, channels 4 and 5 were not
corrected and often the algorithm had a reverse effect on them. This is mostly due to
the fact that, in channels 4 and 5, as you increase the optical thickness, the surface
reflectance increases for high values of upward radiance. Thus we can only remove
water and gaseous effects from the image in channels 4 and 5 and it is better to use
zero optical depth for these channels. Also we should note that channels 4 and 5 look
at least as clean as channel 7 and hence we should not expect substantial scattering
correction of those channels. This modification results in a more computationally
efficient algorithm as well.

Simplifying Optical Depth Estimation for channel 2. We have used the model
7 = aA;” primarily to estimate the optical depth for channels 4 and 5. Now that we
have decided to assign zero optical depth for these channels, we do not need to use that
curve and we can instead estimate the optical depth for channel 2 by averaging the
optical depths of channels 1 and 3. Also we do not need to check for 7" < 7; < 7/ma¢,
because we know that 7 and 73 satisfy these boundary conditions and thus 75 will
satisfy these conditions as 7, is just the average. Obviously 74 = 75 = 0 do not exceed
the maximum values.

3.3 Improving the Efficiency of the Modified Algorithm

The next set of techniques allow a significant improvement of the computational
efficiency of the algorithm.

Smart Window Move. As mentioned before, we find the optical depth for each
pixel and hence the number of operations are of the order of N%w?. However we view
the window as sliding from left to right, one column at a time, while performing some
operation at each move. By recording the intermediate results at previous columns
we reduce the number of operations to the order of NZw.

The same technique can be used for the smoothing step, which can be viewed
as matrix convolution where the values of all elements in the convolution matrix are
equal to 1/w?. This later technique made the algorithm substantially faster.

Eliminating the necessity to check 71 > 73. A potential computational bottle-
neck of the algorithm is the step to check the condition 74 > 73 and to repeat the
steps prior to it using smaller thresholds, whenever the condition is not satisfied. Af-
ter examining the situations under which this condition is not satisfied, we decided
to do the following. If the condition is not satisfied and it is a water pixel, then we
follow the same procedure as in the case of a window without any dark object where

the corresponding pixel is a water pixel. Otherwise we accept them as they are?.

Reading Look-up Tables Faster. Another technique to speed-up the program is to
replace the formatted reading of look-up tables with unformatted read. We modified
the look-up tables off-line to be suitable for unformatted 1/0.

*Some experiments report that 75 may be larger than 7 occasionally. Since more investigations
are needed to identify and explain these cases, we do not explore this situation further in this study.

10

%

and 2. After Correction

Band 3, After Correction
TG

Band 7
Figure 3: TM imagery (512 x 512).

11

4 Combining Parameter Estimation and Correc-
tion Algorithms

In an earlier work, we designed an atmospheric correction algorithm [3] that assumed
constant optical depth over windows of a suitable size. As we have seen before, this
assumption may not always be valid. We therefore need to develop an algorithm
that makes no such assumption, which will significantly increase its computational
complexity if the optical depth is to be computed for each pixel in a straightforward
manner. Toward this end, we introduce efficient techniques that exploit the fact that
most of the operations in the atmospheric correction algorithm are also present in the
parameter estimation algorithm. As a result, we end up with a very efficient algorithm
that combines parameter estimation and atmospheric correction. The details are given
next.

Given that the optical depth varies from pixel to a neighboring pixel, the atmo-
spheric correction algorithm has to perform an interpolation for each pixel to generate
an estimate of the optical depth at that pixel, a costly operation. We get around this
problem as follows.

We digitize the optical depth values by scaling these values by a large integer
and then create a look-up table, where each entry in the table corresponds to a
digitized optical depth value. Fach row in the look-up table can hold the result of
the interpolation for the corresponding optical depth and includes a validation flag.

At the beginning of the correction algorithm we set the validation flag to false for
all the entries in the table. Wherever we need to interpolate for an optical depth value,
we check the corresponding validation flag in the table. If the flag is true then we read
the information directly from the table, otherwise we perform the interpolation, save
the result in the table, and set the corresponding flag to true for future references.

Optical depth values in the algorithm range from 0.0 to 2.0 and a table of size
500 provides sufficient precision. Therefore, in the worst case, the new algorithm will
require only 500 interpolations to compute all possible values of the optical depth,
while our previous algorithm would have required hundreds of thousands of interpo-
lations for a standard TM image. For the remainder of this paper, we only refer to
the combined algorithm unless otherwise stated.

Experimental results show that our algorithm requires less than 60 minutes to
correct standard TM image with 50 M Pixels per band (300 M Pixels total) on an IBM
RS6000 workstation. To speedup the computation, we develop an implementation on
a parallel machine, a topic addressed in the next section.

5 Parallel Implementation

In general, the entire image will not fit in the main memory and hence we have to
deal with the issue of storing and accessing the image externally. In the sequential
case, there is basically one way to store the image on the disk available. For a
parallel machine, we seek to achieve an efficient layout of the input imagery on the
disks and an efficient mapping of the computation across the processors in such a

12

way the total computation and 1/O time is minimized. In this section we present
different parallel implementations of our algorithm under two I/O models representing
possible configurations on current parallel machines. We later analyze and compare
the performance of the different algorithms.

5.1 Parallel File Systems

Parallel file systems are usually installed on a set of disks which can physically be
configured as: (1) shared disks, (2) distributed disks, or (3) semi-distributed disks.

In the shared disks configuration, we have a number p of computation nodes F,
Py, ..., P,_y and a number d of 1/O nodes, No, Ny, ..., Ny_1, each holding one or
more disks, connected through an interconnection network. In some shared disks con-
figurations, such as the CMMD on the CM-5 machines and the pfs on the PARAGON
machines, users can not control the file distribution across the disks and the data is
striped over the disks based on some predefined system parameters. With other par-
allel file systems, users can dynamically control the file distribution over the disks.
This flexibility can lead to more efficient implementations of some algorithms. The
piofs parallel file system on the SP-1 and SP-2 machines with dedicated 1/O nodes is
an example of this type of systems.

In the distributed disks architecture, there are no dedicated I/O nodes and one or
more disks are attached to each of the computation nodes, which means that every
node is responsible for both computation and 1/O. The piofs parallel file system on the
SP-1 and SP-2 machines with the disks distributed over all the nodes, is an example
of this type of architecture, which allows the user to control the file distribution
dynamically.

In the semi-distributed disks configuration, the I/O nodes are a subset of the
computation nodes, and thus these nodes are responsible for both computation and
[/0O, while the remaining nodes are dedicated only for computation. The piofs on the
SP-1 and SP-2 machines with the disks distributed over a small subset of the nodes,
is an example of this architecture.

Some parallel file systems provide both independent and synchronous 1/0. To
access a file in synchronous mode, the file should be opened globally by all nodes.
Synchronous mode allows nodes to access sequential portions of a file and the data
read from or written into the file come from each node in sequence, from node 0 to
the highest numbered node. For example, in a read operation, each node requests
an arbitrary number of bytes of data and the data is distributed across the nodes
sequentially by node number. Each node’s block of data begins where the preceding
node’s data block ended. The CMMD and pfs both provide synchronous 1/O mode,
while the piofs does not support synchronous I/O but allows users to divide a file
logically into multiple subfiles.

5.2 Parallel Algorithm

We now sketch the parallel implementations of our algorithm and how they achieve
their computation and /O scalability. All the algorithms are designed in the Single

13

Program Multiple Data (SPMD) model, and hence each processor runs the same code
but on different parts of the image.

The I/O performance can be estimated by using the number of passes through the
data and the number of disk accesses. Our parallel implementations of the algorithm
to be discussed shortly, require only one pass through the image and hence we only
need to minimize the number of disk accesses. Furthermore, we should balance the
computation among the nodes and minimize the interprocessor communication time.

We balance the computation by partitioning each image equally among the pro-
cessors. To minimize the number of disk accesses [3], each processor during each
iteration processes a slab (as opposed to a block) consisting of the maximum possi-
ble number of consecutive rows that can fit in its internal memory. More precisely,
each processor reads a slab sequentially, process it, and writes back the result. This
procedure is repeated until the entire image is processed. Clearly, the number of disk
accesses is minimum and thus the total I/O transfer time is optimal.

Interprocessor communication time depends on the image partitioning policy among
the computation nodes. There are basically two approaches. The first to be called
fine-grain partitioning, processes r x p consecutive rows during each iteration such
that the first r rows goes to the first processor, the second r rows goes to the second
processor, and so on, where r is the maximum number of rows that can fit in the
main memory of each node. This method requires synchronization after each read
or write, and requires interprocessor communication as each processor must get wT_l
rows from its neighbors (if they exist) during each iteration, where w is the window
size used by our algorithm. Such an approach seems to be effective for the shared
disks configuration, specially with optimized synchronous /O mode.

In the second method, to be called coarse-grain partitioning, we partition the
N x M input image into p equal subimages, each subimage consisting of & consecutive
rows. FEach processor works on a subimage independent of the other processors.
During each iteration, a processor reads not only r rows of its subimage but also
wT_l extra rows from the top and bottom boundaries of the slab. Under this scheme,
no interprocessor communication or synchronization is required, but w — 1 extra
rows should be read during each iteration. Such a scheme seems to be well suited
for distributed or semi-distributed disks configuration with dynamic file distribution
capability over the disks.

5.3 Experimental results

The performance data obtained by running our codes on a 16 node IBM SP-2, a 128
node IBM SP-1, a 512 node Thinking Machine CM-5, and a 512 node Intel PARAGON
machines are plotted in Figures 4 through 9. All the results are for a standard TM
image with 50 million pixels per band and thus the input consists of 300 M pixels.
In the remaining discussion, computation time also includes communication time ,
unless otherwise stated.

Figure 4 shows the computation and /O times on a SP-2 machine with distributed
disks configuration which allows dynamic data distribution over the disks. Obviously,
the computation time scales very well with the number of processors and is slightly

14

en

MW 170(min)
Comp

Time (min)

H N 1 Node
| | |

Coarse—Grain Fine-Grain

Figure 4: Computation and /O times for a standard TM imagery on a SP-2 machine
with distributed disks configuration, for different number of processors.

higher for fine-grain approach because of the extra time needed for the communication
and synchronization.

The 1/0 time is negligible, compared to the computation time and we do not
expect it to scale with the number of processors, but to decrease slightly as we in-
crease the number of nodes, because all the nodes participate in the /O even if we
use a subset of nodes for computation. More importantly, the [/O time for coarse-
grain approach is smaller, because this approach allows us to use the dynamic data
distribution feature of the piofs file system.

Figure 5 shows the computation time on a SP-1 machine with semi-distributed
disks configuration. The computation time for both algorithms scale well, but it is
slightly higher for the fine-grain approach. The I/O time is not shown, because it
heavily depends on the machine load, as a result of the fact that the I/O nodes are
also computation nodes.

The performance results for the fine-grain approach on a CM-5 machine with a
shared disks configuration is shown in Figure 6. clearly, the computation time scales
well and the I/O time decreases by a small amount as you increase the number
of processors, which is consistent with our expectation because the number of 1/0
nodes remains constant. Also, as we increase the number of processors, the [/O time
dominates the computation time.

The coarse-grain algorithm did not perform well on CM-5 machine because the
parallel file system on CM-5 is optimized for synchronous [/O and does not perform
well in independent mode.

Figure 7 compares the estimation and correction times on the CM-5 machine, for

15

Time (min)

Node

Coarse—Grain Fine-Grain

Figure 5: Computation time for a standard TM imagery on a SP-1 machine with
semi-distributed disks configuration, for different number of processors.

N Total |

110

Time (min)

Computation

T
10 100 1000

Number of Processors

Figure 6: Computation, 1/0, and total times for the fine-grain approach with a
standard TM imagery as input on a CM-5 machine with shared disks configuration,
for different number of processors.

M Correction
Estimation
170

Time (min)

E= ad 128 256 siz

Number of Nodes

Figure 7: Estimation, Correction, and I/O times for a standard TM imagery on a
CM-5 machine for different number of processors

different number of processors. As before, we can see that both the estimation and
correction times scale well and the correction time takes a small portion of the overall
computation time.

Figure 8 shows the computation and I/O times on a PARAGON machine with
a shared disks configuration. The computation time for coarse-grain approach scales
well up to 512 nodes but it scales only up to 128 nodes for fine-grain algorithm
and that is because of the fact that the fine-grain approach requires synchroniza-
tion and communication in each iteration which are expensive operations on a large
PARAGON machine with mesh structured network.

On the PARAGON machine, Unlike the CM-5, the I/O time increases for larger
number of nodes, even though both machines have the shared disks configuration.
This inconsistency is mainly the result of the architectural differences in the in-
terconnection networks of the two machines. The interconnection network on our
PARAGON machine is a 16 x 32 mesh and 16 1/O nodes are connected along one
side (with 16 nodes). Therefore, whenever the number of nodes is above 16, there will
be contention over the network and increasing the number of processors will make
the problem worse. On the other hand, the CM-5 machine uses a fat tree structure,
in which the network bandwidth increases proportional to the number of nodes.

Obviously, the total time scales only up to 64 nodes because of the I/O behavior.

Figure 9 compares the total times for different machines. The coarse-grain ap-
proach is used for all the machines, except the CM-5, for which we have used the
fine-grain algorithm.

17

H 170 L
Computation

Time (min)

804

&0

40

204

i r—— Sl
1 2 4 8 16 32 &4 128 256 512 0 1 z 4 g 16 32 &4 128 256 512 Node
L | L |

Coarse—Grain Fine-Grain

Figure 8: Computation and [/O times for a standard TM imagery on a PARAGON

machine for different number of processors

s0

|_IF{s]
Computation

404

304

Time (min)

204

16 32 54 128 256 512 0 2 & 16 0 32 &4 128 256 512 Node
I]| || |

PARAGON $P-2 CHM-5

Figure 9: Performance comparison of the total times for a standard TM imagery on
different machines for different number of processors

18

6 Conclusion

We introduced an efficient algorithm to estimate the optical characteristics of the The-
matic Mapper (TM) imagery and to remove the atmospheric effects from it. We also
presented the parallel implementations of our algorithm, which are scalable and 1/0
optimal. Experimental results on different parallel machines showed their portability
and scalability.

This work constitutes a part of a large multidisciplinary grand challenge project on
applying high performance computing to land cover dynamics. Other aspects include
parallel algorithms and systems for image processing and spatial data handling with
emphasis on object oriented programming and parallel I/O of large scale images and
maps.

Acknowledgment

Dr. Yoram Kaufman in NASA Goddard Space Center has continuously provided us
with valuable support and advice. The authors are grateful to acknowledge his help.

This research was performed in part using the CACR, 512 node PARAGON ma-
chine, operated by Caltech on behalf of the Center for Advanced Computing Research.
We have utilized the 512 node CM-5 machine at the National Center for Supercom-
puting Application (NCSA), University of Illinois at Urban-Champaign. We also like
to thank the Argonne National Laboratory at Argonne, Illinois for letting us to use
their 128 node SP-1 machine.

We would like to acknowledge the use of a 16-node IBM SP-2-TN2, which was
provided by an IBM Shared University award and an NSF Research Infrastructure
Initiative Grant No. CDA9401151.

References

[1] R. S. Fraser and Y. J. Kaufman, The relative importance of scattering and ab-
sorption in remote sensing, IEEE Trans. Geosciences and Remote Sensing, 1985,

23:625-633.
[2] R.S. Fraser, O. P. Bahethi, and A. H. Al-Abbas, The effect of the atmosphere on

classification of satellite observations to tdentify surface features, Remote Sens.
Environment, 1977, 6:229.

[3] H. Fallah-Adl, J. J4J4, S. Liang, Y. J. Kaufman, and J. R. G. Townshend,
Efficient algorithms for atmospheric correction of remotely sensed Data, In Pro-
ceedings Supercomputing '95, IEEE Computer Society Press, December 1995.

[4] J. R. G. Townshend, J. Cushnie, J. R. Hardy, and A. Wilson, Thematic Mapper
data: Characteristics and use, Natural Environment Research Council, Swindon,

1983.

19

[5] S. Chandrasekar, Radiative Transfer, London: Oxford University Press, 1960.

[6] Y. J. Kaufman and J. H. Joseph, Determination of surface albedos and aerosol
extinction characteristics from satellite tmagery, J. Geophys. Res., 1982, 20:1287-
1299.

[7] D. Tanre, P. Y. Deschamps, C. Devaux, and M. Herman, Estimation of Saha-
ran aerosol optical thickness from blurring effects in Thematic Mapper data, J.
Geophys. Res., 1988,93:15,955 - 15,964.

[8] Y. J. Kaufman and C. Sendra, Automatic atmospheric correction, Intl. Journal

of Remote sensing, 1988, 9:1357-1381.
9] Y. J. Kaufman, L. A. Lorraine, B. C. Gao, and R. R. Li, Remote sensing of

aerosol over the continents: Dark targets identified by the 2.2 um channel, in
preparation, 1995.

[10] J. Lenoble, Radiative Transfer in Scattering and Absorbing Atmospheres: Stan-
dard Computational Procedures, A. Deepak Publ., Hampton, Virginia, 1985.

[11] S. Liang and A. H. Strahler, Calculation of the angular radiance distribution
for a coupled atmosphere and canopy, IEEFE Trans. Geosci. Remote Sens., 1993,
31:491-502.

[12] W. E. Meador and W. R. Weaver, Two-stream approzimations to radiative trans-
fer in planetary atmospheres: A unified description of existing methods and a new

improvement, J. Atmos. Sci., 1980, 37:630-643.

[13] S. Liang and A. H. Strahler, Four-stream solution for atmosphere radiative trans-

fer over an non-Lambertian surface, Appl. Opt., 1994, 33:5745-5753.

[14] R.S. Fraser, R. A. Ferrare, Y. J. Kaufman, B. .. Markham, and S. Mattoo, Algo-
rithm for atmospheric corrections of aireraft and satellite tmagery, Intl. Journal

of Remote sensing, 1992, 13:541-557.

20

