Computational Intelligence, Volume 12, Number 1, 1996

A PLANNING APPROACH TO DECLARER PLAY IN
CONTRACT BRIDGE*

S. J. J. SMITH

Computer Science Department, University of Maryland, College Park, MD 20742, USA,
(301)-405-2717, sjsmith@cs.umd.edu

D. S. Navu

Computer Science Department, Institute for Systems Research, and Institute for Advanced
Computer Studies, University of Maryland,
College Park, MD 20742, USA, (301)-405-2684, nau@cs.umd.edu

T. A. THROOP

Great Game Products, 8804 Chalon Drive, Bethesda, MD 20817, USA, (301)-365-3297,
bridgebaron@mcimail.com

Although game-tree search works well in perfect-information games, it is
less suitable for imperfect-information games such as contract bridge. The
lack of knowledge about the opponents’ possible moves gives the game tree
a very large branching factor, making it impossible to search a significant
portion of this tree in a reasonable amount of time.

This paper describes our approach for overcoming this problem. We rep-
resent information about bridge in a task network that is extended to rep-
resent multi-agency and uncertainty. Our game-playing procedure uses this
task network to generate game trees in which the set of alternative choices
is determined not by the set of possible actions, but by the set of available
tactical and strategic schemes.

We have tested this approach on declarer play in the game of bridge, in
an implementation called Tignum 2. On 5000 randomly generated notrump
deals, Tignum 2 beat the strongest commercially available program by 1394 to
1302, with 2304 ties. These results are statistically significant at the o = 0.05
level. Tignum 2 searched an average of only 8745.6 moves per deal in an
average time of only 27.5 seconds per deal on a Sun SPARCstation 10. Further
enhancements to Tignum 2 are currently underway.

Key words: game, game tree, game-playing, planning, uncertainty, im-
perfect information, pruning, bridge.

1. INTRODUCTION

Although game-tree search works well in perfect-information games (such as chess
(Levy and Newborn, 1982; Berliner et al., 1990), checkers (Samuel, 1967; Schaeffer et
al., 1992), and othello (Lee and Mahajan, 1990)), it does not always work as well in
other games. One example is the game of bridge. Bridge is an imperfect-information

*This material is based on work supported in part by an AT&T Ph.D. scholarship to Stephen J. J. Smith,
Maryland Industrial Partnerships (MIPS) grant 501.15, Great Game Products, and the National Science
Foundation under Grants NSF EEC 94-02384 and IRI-9306580. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation, AT& T, Maryland Industrial Partnerships, or Great Game Products.

© 1996 Blackwell Publishers, 238 Main Street, Cambridge, MA 02142, USA, and 108 Cowley Road, Oxford, OX4 1JF, UK.

2 COMPUTATIONAL INTELLIGENCE

game, in which no player has complete knowledge about the state of the world, the
possible actions, and their effects. Thus the branching factor of the game tree is very
large. Since the bridge deal must be played in just a few minutes, a full game-tree
search will not search a significant portion of this tree within the time available.

To address this problem, some researchers have tried making assumptions about
the placement of the opponents’ cards based on information from the bidding and
prior play, and then searching the game trees resulting from these assumptions. How-
ever, such approaches have several limitations, as described in Section 2.

In this paper, we describe a different approach to this problem, based on the
observation that bridge is a game of planning. For addressing various card-playing
situations, the bridge literature describes a number of tactical schemes, or short-term
card-playing tactics, such as finessing and ruffing; the bridge literature also describes
a number of strategic schemes, or long-term card-playing tactics, such as crossruffing.
It appears that there is a small number of such schemes for each bridge deal, and
that each of them can be expressed relatively simply. To play bridge, many humans
use these schemes to create plans. They then follow those plans for some number of
tricks, replanning when appropriate.

We have taken advantage of the planning nature of bridge, by adapting and ex-
tending some ideas from task-network planning. To represent the tactical and strate-
gic schemes of card-playing in bridge, we use multi-agent methods—structures similar
to the “action schemas” or “methods” used in hierarchical single-agent planning sys-
tems such as Nonlin (Tate, 1976; Tate, 1977), NOAH (Sacerdoti, 1974; Sacerdoti,
1975; Sacerdoti, 1977), O-Plan (Currie and Tate, 1985), and SIPE (Wilkins, 1984),
but modified to represent multi-agency and uncertainty.

To generate game trees, we use a procedure similar to task decomposition. The
methods that perform our tasks correspond to the various tactical and strategic
schemes for playing the game of bridge. We then build up a game tree whose branches
represent moves that are generated by these methods. This approach produces a
game tree in which the number of branches from each state is determined not by the
number of actions that an agent can perform, but instead by the number of different
tactical and strategic schemes that the agent can employ. If at each node of the tree,
the number of applicable schemes is smaller than the number of possible actions, this
will result in a smaller branching factor, and a much smaller search tree.

To test this approach, we have developed an implementation called Tignum 2.1
On 5000 randomly generated notrump deals, Tignum 2 beat the strongest commer-
cially available program by 1394 to 1302, with 2304 ties. These results are statistically
significant at the o = 0.05 level.

2. RELATED WORK

Stanier (1975) did some of the first work on bridge; while his bidding program
was primitive, his ideas about play still offer insight today. Quinlan (1979) wrote a
knowledge-based system for reasoning about high cards, but it never developed into
an algorithm for play. Berlin (1985) proposed an approach to play of the hand at

ITignum 2 is a follow-up to a prototype program called Tignum that was described in (Smith and Nau,
1993). Tignum demonstrated that we could generate small game trees and still do correct play within the
limited set of situations that its methods addressed, but its structure did not allow us to add methods to
generalize its capabilities. Tignum 2 overcomes these limitations.

A PLANNING APPROACH TO DECLARER PLAY IN CONTRACT BRIDGE 3

bridge that is similar to ours; sadly, he never had a chance to develop the approach
(his paper was published posthumously). Some of the work on bridge has focused on
bidding (Lindelof, 1983; Gamback et al., 1990; Gamback et al., 1993).

There are no really good computer programs for card-playing in bridge, especially
in comparison to the success of computer programs for chess, checkers, and othello;
most computer bridge programs can be beaten by a reasonably advanced novice.
Sterling and Nygate (1990) wrote a rule-based program for recognizing and executing
squeeze plays, but squeeze opportunities in bridge are rare. Recently, Frank and
others (1992) have proposed a proof-planning approach, but thus far, they have only
described the results of applying this approach to planning the play of a single suit.
Khemani (1994) has investigated a case-based planning approach to notrump declarer
play, but hasn’t described the speed and skill of the program in actual competition.
The approaches used in current commercial programs are based almost exclusively
on domain-specific techniques, as described below.

One approach is to make assumptions about the placement of the opponents’
cards based on information from the bidding and prior play, and then search the game
tree resulting from these assumptions. This approach was taken in Alpha Bridge
program (Lopatin, 1992), with a 20-ply (5-trick) search. However, this approach
didn’t work very well: at the 1992 Computer Olympiad, Alpha Bridge placed last.

Better-quality play can be achieved by generating several random hypotheses for
what hands the opponents might have, and doing a full game-tree search for each
hypothesized hand, as is done in Great Game Products’ Bridge Baron program.
However, this approach is feasible only late in the game, after most of the tricks have
been played, because otherwise the game tree is too large to search to any significant
depth within the time available.

Some work has been done on extending game-tree search to address uncertainty,
including Horacek’s work on chess (Horacek, 1990), and Ballard’s work on backgam-
mon (Ballard, 1983). However, these works do not address the kind of uncertainty
that we discussed in the introduction, and thus it does not appear to us that these
approaches would be sufficient to accomplish our objectives.

Wilkins (1980; 1982) uses “knowledge sources” to generate and analyze chess
moves for both the player and the opponent. These knowledge sources have a similar
intent to the multi-agent methods that we describe in this paper—but there are two
significant differences. First, because chess is a perfect-information game, Wilkins’s
work does not address uncertainty and incomplete information, which must be ad-
dressed for bridge play. Second, Wilkins’s work was directed at specific kinds of chess
problems, rather than the problem of playing entire games of chess; in contrast, we
have developed a program for playing entire deals of bridge.

Our work on hierarchical planning draws on (Tate, 1976; Tate, 1977; Sacerdoti,
1974; Sacerdoti, 1975; Sacerdoti, 1977). In addition, some of our definitions were
motivated by (Erol et al., 1993; Erol et al., 1995).

3. PROBLEM CHARACTERISTICS

Bridge is a card game that is played by four players called North, East, South,
and West, using a standard 52-card playing deck. North and South are partners
against Fast and West. A Bridge game consists of a series of deals. In each deal, the
cards are distributed evenly among the four players; thus, each player has a hand of
thirteen cards. Then, there is an “auction” followed by thirteen “tricks” of play.

4 COMPUTATIONAL INTELLIGENCE

The purpose of the auction is to decide who gets to declare what the trump suit
is, and how many tricks this declarer needs to take. The auction consists of a number
of calls which are made by the players one at a time, starting with the dealer and
progressing clockwise. A call is either a bid to take a certain number of tricks with
a certain “trump” suit, or a Pass, Double, or Redouble.

Unless the auction began with four Passes, the play begins. The contract is the
last bid that was made, plus any doubling or redoubling. The trump suit is the
suit of the last bid that was made (or no suit if the last bid was a No Trump bid.)
The declarer is the player who made the last bid (not call) in the auction—unless
his partner made the first bid of the same suit for that partnership in the auction,
in which case this partner becomes declarer. The player on declarer’s left plays a
card, the opening lead. Then dummy, or declarer’s partner, exposes his hand for the
declarer to see and play and for the defenders, or opponents, to see.

After everyone plays a card, the trick is over. The winner of a trick leads to the
next trick. A trick is won by the player who plays the highest card in the trump suit,
if any; otherwise, the trick is won by the player who plays the highest card in the
same suit as the card that was led (played first in a trick.) Each player must play a
card in the led suit whenever possible. (If the led suit was not trump, but a player
plays a trump card, it is called a ruff.) After all thirteen tricks have been played,
scoring occurs, based on whether declarer took all the tricks contracted for or not,
how many extra tricks or how much shortfall there was, and whether the contract
was doubled or redoubled.

In this paper, we consider the problem of declarer play at bridge. Our player
controls two agents, declarer and dummy. Two other players control two other agents,
the defenders. The auction is over and the contract has been fixed. The opening
lead has been made and the dummy is visible. The hands held by the two agents
controlled by our player are in full view of our agent at all times; the other two hands
are not, hence the imperfect information.

Bridge has the following characteristics that are necessary for our approach:

—_

Only one player may move at at time.

2. In general, no player has perfect information about the current state 5. However,
each player has enough information to determine whose turn it is to move.

3. A player may control more than one agent in the game (as in bridge, in which
the declarer controls two hands rather than one). If a player is in control of the
agent A whose turn it is to move, then the player knows what moves A can make.

4. 1If a player is not in control of the agent A whose turn it is to move, then the

player does not necessarily know what moves A can make. However, in this case

the player does know the set of possible moves A might be able to make; that is,
the player knows a finite set of moves M such that every move that A can make

is a member of M.

Our approach is applicable to any domain with these characteristics. Modifications
of our approach may be possible if some of these characteristics are missing.

4. PROBLEM REPRESENTATION

Abstractly, we will consider the current state S (or any other state) to be a collec-
tion of ground atoms (that is, completely instantiated predicates) of some function-

A PLANNING APPROACH TO DECLARER PLAY IN CONTRACT BRIDGE 5

free first-order language £ that is generated by finitely many constant symbols and
predicate symbols. We do not care whether this is how S would actually be repre-
sented in an implementation of a game-playing program.

Among other things, S will contain information about who the players are, and
whose turn it is to move. To represent this information, we will consider 5 to include
a ground atom Agent(z) for each player z, and a ground atom Turn(y) for the player
y whose turn it is to move. For example, in the game of bridge, S would include
the ground atoms Agent(North), Agent(South), Agent(East), and Agent(West). If
it were South’s turn to move, then S would include the ground atom Turn(South).

We will be considering S from the point of view of a particular player P (who
may be a person or a computer system). One or more of the players will be under P’s
control; these players are called the controlled agents (or sometimes “our” agents).
The other players are the uncontrolled agents, or our opponents. For each controlled
agent z, we will consider S to include a ground atom Control(z). For example, in
bridge, suppose P is South. Then if South is the declarer, S will contain the atoms
Control(South) and Control(North).

Because P is playing an imperfect-information game, P will be certain about some
the ground atoms of 5, and uncertain about others. To represent the information
about which P is certain, we use a set of ground literals I'g called P’s state information
set (we will write I rather than Is when the context is clear). Each positive literal in
Is represents something that P knows to be true about 5, and each negative literal
in Ig represents something that 7 knows to be false about 5. Because we require
that P knows whose turn it is to move, this means that Is will include a ground
atom Turn(y) for the agent y whose turn it is to move, and ground atoms — Turn(z)
for each of the other agents. For example, in bridge, suppose that P is South, South
is declarer, it is South’s turn to move, and South has the 6& but not the 7d. Then
Is would contain the following literals (among others):

Control(North), = Control(East), Control(South), - Control(West),
= Turn(North), = Turn(East), Turn(South), = Turn(West),
Has(South,&%.,6), — Has(South,&,7)

Unless South somehow finds out whether West has the 7&, Is would contain neither
Has(West,é,7) nor = Has(West,&,7).

In practice, P will know I but not 5. Given a state information set I, a state ' is
consistent with I if every literal in [is true in 5. I™ is the set of all states consistent
with /. P might have reason to believe that some states in I* are more likely than
others. For example, in bridge, information from the bidding or from prior play
often gives clues to the location of key cards. To represent this, we define P’s belief
function to be a probability function p : I* — [0, 1], where [0,1] = {2 : 0 < 2 < 1}.

To represent the possible actions of the players, we use operators somewhat
similar to those used in STRIPS (Fikes and Nilsson, 1971). More specifically, if
X1, Xg,..., X, are variable symbols, then a primitive operator O(X1; Xz,..., X,,) is
a triple (Pre(0),Add(0),Del(0)), where Pre(0), Add(O), and Del(O) are as follows:?

1. Pre(0), the precondition formula, is a formula in £ whose variables are all from
{X1,..., X, }. Pre(O) must always begin with “Agent(Xy) A Turn(Xq) A ...7.

2The semicolon separates X; from the rest of the arguments because X is the agent who uses the
operator when it is X1’s turn to move.

6 COMPUTATIONAL INTELLIGENCE

2. Add(O) and Del(Q) are both finite sets of atoms (possibly non-ground) whose
variables are all from {Xy,...,X,}. Add(O) is called the add list of O, and
Del(O) is called the delete list of O.

For example, in bridge, one operator might be PlayCard(P; .5, R), where the variable
P represents the player (North, East, South or West), S represents the suit played (é,
¢, ©, or #), and R represents the rank (2,3,...,9,T,J, Q, K, or A). Pre(PlayCard)
would contain conditions to ensure that player P has the card of suit 5 and rank
R. Add(PlayCard) and Del(PlayCard) would contain atoms to express the playing
of the card, the removal of the card from the player’s hand, and possibly any trick
which may be won by the play of the card.

We define applicability in the usual way: if O(aq;ag,as, ..., a,)is an instantiation
of a primitive operator O, then O(ay;az,as,...,a,) is applicable in a state 5 if
Pre(O(aq; az,as,...,a,)) is true in S. If O(aq;az,as,...,a,) is applicable in some

state S, € I*, and if Control(ay) holds, then we require that the instantiation be
applicable in all states S € I*. This will guarantee that, as required, if P is in
control of the agent a; whose turn it is to move, then P will have enough additional
information to determine which moves a; can make. In bridge, for example, this
means that if 7 has control of South, and it is South’s turn, then 7 knows what
cards South can play.

We let S be the set of all states, and 7 be the set of all state information sets.

An objective function is a partial function f : & — [0,1]. Intuitively, f(.5)
expresses the perceived benefit to P of the state S; where f(.5) is undefined, this
means that 5’s perceived benefit is not known. In bridge, for states representing
the end of the hand, f might give the score for the participant’s side, based on the
number of tricks taken. For other states, f might well be undefined.

Game-playing programs for perfect-information games make use of a static eval-
uation function, which is a total function e : § — [0, 1] such that if S is a state and
f(9) is defined, then e(S) = f(5). In imperfect-information games, it is difficult
to use e(.9) directly, because instead of knowing the state S, all P will know is the
state information set I. Thus, we will instead use a distributed evaluation function
(1) = Yere p(S)e(S).

Intuitively, e*(I) expresses the estimated benefit to P of the set of states consis-
tent with the state information set I. Qur game-playing procedure will use e* only
when it is unable to proceed past a state.?

A game is a pair G = (£, 0) where L is the planning language and O is a finite
set of operators. Given a game G, a problem in (' is a quadruple P = (Ig,,p, f,€),
where [g, is the state information about an initial state Sy, p is a belief function, f
is an objective function and e is a static evaluation function. For example, if G is the
game of bridge, then the problem P would be a particular hand, from a particular
player’s point of view. All the information required to compute €* is expressed in e
and p, thus we need not include e* in our definition of P.

3However, we can imagine that in time-sensitive situations, one might want to modify our procedure so
that it sometimes uses e* on nodes that it can proceed past, just as chess-playing computer programs use a
static evaluation function rather than searching to the end of the game.

A PLANNING APPROACH TO DECLARER PLAY IN CONTRACT BRIDGE 7

5. MULTI-AGENCY IN TASK NETWORKS

Given a game GG = (£,0) and a problem P = (Ig,,p, f,e) in G, the set of all
plausible initial states for P is the set I3 of all states consistent with Is,. The set of
all states that might plausibly occur as a result of the various players’ moves is the
set Tp of all states that can be reached via sequences of legal moves from states in
Ixg, . In general, 7p is a proper subset of S, but 7p is usually quite large.

Much of the difficulty of game-playing is due to the large number of states in 7p
that must be examined and discarded. In order to avoid generating and examining
every state in 7p (as would be done by a brute-force search procedure), we will
attempt to generate only those states that appear to fit into coherent tactical and
strategic schemes such as finessing, rufling, and crossrufling.

Our approach is an adaptation of hierarchical task networks (HTNs). We use
two kinds of multi-agent methods to build a task network: operator methods and
decomposable methods. An operator method is a triple M = (T, P, I), where

1. T is a task. This may either be the expression ‘NIL’ or a syntactic expression
of the form N(X1; Xg, Xa,...,X,) where N is a symbol called the name of the
task, and each X; is a variable of £. Note that n may be 0, in which case the task
has no variables. If n > 1, then a semicolon separates X; from the rest of the
arguments because X7 is the agent whose turn it is to move when the method is
used. If, when an operator method M is used, Xy is an opponent, then M must
associate both a critic and a weighting function with the branch that it creates
in the game tree, as described in Section 6.3.

2. P is the precondition formula of M. This may be any formula in £ that is suffi-
cient to ensure the truth of the precondition formula of the operator instantiation
O(t1,t2,...,t,) described below.

3. F is a syntactic expression O(t1,1q,...,t,), where O is an operator in O, and
ty,t9,...,1, are terms of L.

A decomposable method is a triple M = (T, P, /), where

1. T is a task. This may either be the expression ‘NIL’ or a syntactic expression
of the form N(X1; Xg, Xa,...,X,) where N is a symbol called the name of the
task, and each X; is a variable of L.

Note that n may be 0, in which case the task has no variables. If n > 1, then a
semicolon separates X7 from the rest of the arguments because X is the agent
whose turn it is to move when the method is used.

2. P, the precondition formula, is any formula in £ such that if » > 0 above, then
P is sufficient to ensure the truth of the atom Agent(Xy).

3. Fis a (possibly empty) tuple of tasks

(Th(ti1,t,20 sty)s To(t215t2,2, - s tomy)y oy Thel(trasthg, - s thm,)

FE, called the expansion list, lists the subtasks that make up this method.

For declarer and dummy, networks of methods are used to represent tactical
schemes such as finessing and setting up suits. For defenders, networks of methods
represent tactical schemes such as causing the finesse to fail or to succeed.

For example, consider Figure 1, in which the task Finesse(P;5) represents the
tactical scheme of finessing. In finessing, we try to win a trick with a high card by

8 COMPUTATIONAL INTELLIGENCE

operator . .
method: - "
[]

our player

LeadLow(P; S)

decomposable methods

MS5:
‘ PlayCard P S, R1 ‘ FmesseTWO P2,

EasyFmesse P S ‘ StandardFinesse(P ; S ‘ BustedFmesse(PQ,S)‘
. 7 -
[| u
m tasks =

operator
methods:

opponent

StandardFinesseTwo(Ps; S)‘ ‘ StandardFinesseThree(Ps; S)‘

‘ FinesseFour(Py; S)‘

| PlayCard(Ps; 5, Ro)|| || PlayCard(Ps; S, Rs)|

c A~
operators —___~— = || PlayCard(Py; 5, Ry)|| || PlayCard(Ps; S, R})

FiGure 1. The part of the network of multi-agent methods for the game of bridge that
addresses finessing.

A PLANNING APPROACH TO DECLARER PLAY IN CONTRACT BRIDGE 9

TABLE 1. Some of the methods and operators used in Figure 1.

Decomposable methods:

NIL
NIL
Everything()

Everything()
Agent(P)ATurn(P)
Something(P) then Everything()

Something(P)
Agent(P)AOnLead(P)A (MACRO:TrumpDrawn(P)) A (MACRO:FinesseInSuit(P; S))
Finesse(P; S)

Finesse(P; S)
Agent(P)ATurn(P)ANext(P, Pz)
LeadLow(P;.5) then FinesseTwo(P; S)

FinesseTwo(Ps; S)
Agent(P2)ATurn(P)A (MACRO:Singleton(P:; S, R)) A (MACRO:KeyFinesseCard(S, R))
EasyFinesse(P:;.S)

FinesseTwo(Ps; S)

Agent(P)ATurn(P2)A (MACRO:VoidInSuit(Pz; S))

BustedFinesse(Ps; S)

FinesseTwo(Ps; S)

Agent(Po)ATurn(P2)A Has(Ps; S, R) A (R # R2) A (MACRO:KeyFinesseCard(S, R2))
StandardFinesse(P ;.S)

ST T TR HCE ST I R

Operator method:

T: LeadLow(P;5S)

P: Agent(P)A (MACRO:Playable(P; S, R)) A (MACRO:LowestInSuit(P; S, R))
E: PlayCard(P; S, R)

Operator:

Name: PlayCard(P; S, R)

Preconditions: Agent(P)A (MACRO:Playable(P; S, R))

Add list: Played(P; S, R)A (MACRO:TurnChangeAdds(P; S, R))
Delete list: Has(P; S, R)A (MACRO:TurnChangeDels(P; S, R))

playing after the opponent that has a higher card; see Figure 3 and Figure 4 for
examples of a decision tree for a finesse. The task StandardFinesse(F,;.5) is the
core of the tactical scheme of a finesse. The task FinesseFour(Py; 5) represents the
defenders causing the finesse to fail or to succeed. “Two” in FinesseTwo(F;5) and
StandardFinesseTwo(Py; 9) refers to the second card played to the trick; similarly
“Three” and “Four”. For the meaning of BustedFinesse(Py; 5) and EasyFinesse(Ps;
S'), see Section 6.2.
Some of the methods used in Figure 1 are shown in Table 1. The syntax

(MACRO:MacroName(X1; X3, X3,...,X,))

means that MacroName(X1; Xo,...,X,,) is not an atom of £, but expands into a

10 COMPUTATIONAL INTELLIGENCE
second-order formula of £. For example, (MACRO:Playable(P; 5, R)) expands into
Has(P; S, R)ATurn(P) A (OnLead(P)VvSuitLed(S) Vv (VR1)(=Has(P; 5, Ry1))).

We present a detailed example using these methods in Section 6.2.

If an instantiation of a method (say M (aq;ag,as, ..., a,)) is applicable in some
state S, € I*, and if Control(ay) holds, then we require that the instantiation be
applicable in all states S € I*. This will guarantee that if P is in control of the
agent a1 whose turn it is to move, then P will have enough additional information
to determine which methods are applicable. In bridge, for example, this means that
if P has control of South, and it is South’s turn, then P knows what strategic and
tactical schemes South can employ.

Let M be a set of operator methods and decomposable methods. Then M is a
network of multi-agent methods. Figure 1 shows how methods link tasks together,
making a “network”.

In contrast to the task networks used in most task-network planners, our task
networks are totally ordered; that is, the expansion lists in all the decomposable
methods are in the order in which tasks must be completed. For example, nowhere
do we allow a single decomposable method to generate two tasks such as “Set Up
(Spade) Suit” and “Get a (Heart) Ruff” without specifying the order of the tasks.

We chose this total ordering because of the difficulty of reasoning with imper-
fect information. It is difficult enough to reason about the probable locations of
the opponents’ cards. If our task networks were partially ordered, then in many
planning situations we wouldn’t know what cards the opponents had already played.
This would make reasoning about the probable locations of the opponents’ cards
nearly impossible; this reasoning is a more serious problem than the problems with
uninstantiated variables that occur in perfect-information domains.

Some of the tasks used for bridge in our implementation are listed in Section 7.

6. GAME-PLAYING PROCEDURE

Our game-playing procedure constructs a decision tree, then evaluates the deci-
sion tree to produce a plan for playing some or all of the game. It then executes this
plan either until the plan runs out, or until some opponent does something that the
plan did not anticipate (at which point the procedure will re-plan). The details of
the procedure are described in this section.

6.1. Constructing a Decision Tree

Given a network of multi-agent methods and a state information set I, our game-
playing procedure constructs a decision tree rooted at I.* A decision tree resembles
a game tree.” It contains two kinds of non-leaf nodes: decision nodes, representing

4We use the term “decision tree” as it is used in the decision theory literature (French, 1986; Feldman
and Yakimovsky, 1974; Feldman and Sproull, 1977), to represent a structure similar to a game tree. We are
not employing decision trees (also, and less ambiguously, referred to as comparison trees (Knuth, 1973)) as
they are defined in the sorting literature (Cormen et al., 1990, p. 173). We apologize for the confusion, but
it is inescapable.

5In the decision theory literature, what we call external-agent nodes are usually called chance nodes,
because decision theorists usually assume that the external agent is random. What we call leaf nodes are
usually called consequence nodes, because they represent the results of the paths taken to reach them.

A PLANNING APPROACH TO DECLARER PLAY IN CONTRACT BRIDGE 11

the situations in which it is P’s turn to move, and external-agent nodes, representing
situations in which it is some external agent’s turn to move. The tree’s leaves are
nodes where the procedure has no methods to apply, either because the game has
ended, or because the methods simply don’t tell the procedure what to do.

Each node of the decision tree T will contain a state information set and a
sequence of 0 or more tasks to be solved. Our procedure for creating T is as follows:

Let the root of T' be a node containing the state information set I and no
tasks. Do the following steps repeatedly:

1. Pick a leaf node u of T" such that u is not the end of the game and we
have never tried to expand u before. If no such node exists, then exit,
returning 7. Otherwise, let I, be the state information set in u, and
U= (Uy,Us,...,U,) be the sequence of tasks in u.

2. For each instantiated method M that is applicable to u, let v be the node
produced by applying M to w. Install v into 7" as a child of u. (Below,
we define the terms ‘instantiated method,” ‘applicable,” and ‘produced.’)

Using the network shown in Figure 2, the procedure might generate a piece of a
decision tree for finesse such as that shown in Figure 3. We will give an example of
an operation of this procedure in Section 6.2.

An instantiated method is any ground instance M of some method M. Let
u be a node whose state information set is I, and whose task sequence is U =
(Uy,Us, ..., Uy,). Then an instantiated method M = (T, P, F) is applicable to wu if:

1. Either ¢ is empty and T is NIL, or T matches U;. .
2. Some state 5 consistent with [, satisfies P, i.e., some state S € I satisfies P.

If P is in control of the agent @, whose turn it is to move at node u, and if one
state S consistent with I, satisfies P, then all states S’ consistent with I, (i.e., all
S’ € I7¥) satisfy P. We made this property a requirement of our multi-agent methods
in Section 5. Because all states S/ consistent with I, satisfy P, it follows that P C I,,.

If P is not in control of the agent a, whose turn it is to move at node u, then
it is possible for one state S consistent with I, to satisfy P, while some other state
Sy consistent with I, does not satisfy P. In this case, our procedure will need to
assume that P holds, so that it can investigate what happens when some oppo-
nent makes a move using the instantiated method M. Other instantiated methods
My, M,,..., M, wil investigate what happens in states where P does not hold.

For example, in Figure 3, before investigating the move Play(North; &, 3), our
procedure would need to make the assumption that North holds the 3&4. The pro-
cedure would investigate the other moves for West under different assumptions (say,
that North holds only the Q#, or that North holds no spades.)

If M is applicable to u, then applying M to u produces the node v whose state
information set I, and task sequence V are as follows:

e If M = (T,P,E)is a decomposable method, then I, = I, U P. Intuitively, I,
is I, with all the conditions in P assumed. If M = (T, P, E) is an operator
method, then I, = [(I, U P) — Del(E)] U Add(F). Intuitively, I, is I,,, with all
the conditions in P assumed, and then all the conditions in Del(F) deleted, and

all the conditions in Add(F) added.

12 COMPUTATIONAL INTELLIGENCE

Our players: East declarer,
West dummy
Opponents: Defenders,
South and North
Contract: East—3NT.
On lead: West at trick 3.
East: West: Out:
AKJ74 #A2 MQT98653

Everything()

Something(P)| | Everything() |

LeadLow(P; S)

| PlayCard(P; S, R1 |F1nesseTWO (P2; S

- ﬁ

| EasyFinesse(Ps; S | StandardFinesse(P ; S | BustedFinesse(Py; S
[
[
[
(North—aQ)

| StandardFinesseTwo(P; S)| | StandardFinesseThree(Ps; S)|

| FinesseFour(Py; S) |

PlayCard(P,; S, R)|| || PlayCard(Ps; S, Rs)|
North—é3 Fast—&J

| PlayCard(Ps; S, R4)|

| PlayCard(Ps; S, R})|

South—&5

FIGURE 2. Instantiation of the finessing part of the network.

South—#Q

A PLANNING APPROACH TO DECLARER PLAY IN CONTRACT BRIDGE 13

' «FINESSE” our move S—0Q omm T

N—&3 — E—&] ~~S &5
L1 _/

N—#Qr— E— &K O S—#3

L |
N—#3 7 E—8K ~5—a3 T
L | -/
opponent’s move J
FIGURE 3. Decision tree generated on our example. For the sake of clarity, some nodes have

been omitted.

o If M = (TP, F) is a decomposable method and £ = (V1,V;,...,V,,), then
V=(V,Va..., Vi, Uz, Us, ..., Uy,). Intuitively, this corresponds to saying that
the tasks Vi, Vo, ..., V,, need to be solved before attempting to solve the tasks
U, Us, ..., U,. If M is an operator method, then V = (U, Us, ..., U,).

Each solution tree in the decision tree represents an alternative plan. However,
as seen in Figure 3, branches in our decision tree correspond to possible schemes,
not to cards in the various hands. All opponents’ moves are completely instantiated
in our decision tree. We will see in Section 6.3 how a completely instantiated card
can represent a possible scheme, and also what to do if the opponent makes a move
that does not appear in our decision tree.

6.2. Example of Decision-Tree Construction

As an example, consider the situation in which “our” players (the players of which
P is in control) are East, the declarer, and West, the dummy. The opponents, North
and South, are the defenders. The contract is 3NT by Fast. West is on lead at trick
3 East has the # KJ74, West has the # A2, and the & QT98653 are in North’s and
South’s hands, although we do not know who holds which spades.

Initially, the decision tree consists of the root node a, containing the state infor-
mation set I, and the task sequence V,. I, contains the following literals:

= Control(North), Control(East), = Control(South), Control(West),

= Turn(North), = Turn(East), = Turn(South), Turn(West),
Has(East,#,K), Has(East,#,J) Has(East,#,7) Has(East,#.,4)
Has(West,#,A), Has(West,#,2) = Has(West,#,Q) - Has(East,#,Q)
- Has(West,#,T) - Has(East,#,T) (and various other literals)

V. = (), the empty sequence. Refer to Table 1, Figure 1, Figure 2, and Figure 3.
The only instantiated method applicable to ¢ is M1 in Figure 1. Thus, node
al becomes the child of a. V,3 = (Everything()). I,1 = I,, because M1 has no
preconditions.
The only instantiated method applicable to a1 is M2 in Figure 1, with the instan-
tiation P = West. Thus, node a2 becomes the child of al. V,3 = (Something(West),
Everything()). l,2 = I.1, because M2’s only preconditions, as seen in Table 1, are

14 COMPUTATIONAL INTELLIGENCE

Agent(P)ATurn(P). Indeed, if it is our player’s turn to move at a node u, then for
any child v of u produced by a decomposable method, I, = I, because I, = I,UP by
the definition of “produces”; and P C I,,, as we saw when we considered applicability
of P to u in Section 6.1.

The instantiated method applicable to a2 which we will consider is M3 in Figure 1,
with the instantiations P = West, S = #. Thus, node a3 becomes the child of a2.
Va3 = (Finesse(West; &), Everything()). I,3 = I,2. Other instantiated methods are
applicable to a2, such as the method for cashing all the high cards in East’s and
West’s hands. These methods are indicated by the dots in Figures 1-3.

The only instantiated method applicable to a3 is M4 in Figure 1, with the in-
stantiations P = West, P, = North, S = #. Thus, node a4 becomes the child of 3.
Va4 = (LeadLow(West; #), FinesseTwo(North; &), Everything()). Iy4 = I3.

The only instantiated method applicable to a4 is M5 Figure 1, with the instan-
tiations P = West, S = #, R = 2. Thus, node b becomes the child of a4. V, =
(FinesseTwo(North; &), Everything()).

I, = [(I.aUP)—Del(E)UAdd(F)
= [lua — Del(E)]U Add(F)
= [Lya — {Has(West,#,2), Turn(West)}] U {Played(West,#, 2), Turn(North)}.

FasyFinesse(Py;.9) refers to a finesse in which the first opponent plays the card
that we are trying to trap. In the current situation, if North plays the Q#, Fast can
play the K&, and now the J& is a card that is sure to win a trick. BustedFinesse(Py;
S') refers to a finesse in which the first opponent plays a card in a suit other than the
suit led, in which case it is clear that the first opponent does not have the card that
we are trying to trap. In the current situation, if North plays the 3&%, West would
have to play the K&, because South must have the Q# and the finesse must fail.

Three instantiated methods are applicable to b: M6, M7, and M8. They are
decomposable methods whose tasks are FinesseTwo(Py;.5) with the instantiations

P, = North, 5 = &:

e M6’s expansion list is (EasyFinesse(Py;.9)). M6 also has the instantiation R = Q.
For M6, node d becomes b’s child. Vy = (EasyFinesse(North; #), Everything()).
M6’s preconditions include (MACRO:HasSingletonInSuit(Py; 5, R)) A (MACRO:
KeyFinesseCard(9, R)), and thus I; = I, U {Has(North, &, Q), -Has(North, &,
3), “Has(North,#,5),...,~Has(North,&,T)}.

e MT7’s expansion list is (BustedFinesse(Py;5)). For M7, node e becomes b’s
child. V. = (BustedFinesse(North; #&), Everything()). MT7’s preconditions in-
clude (MACRO: VoidInSuit(Py; 5)), and thus I, = [, U {-Has(North,#,3),
—Has(North,#,5),...,~Has(North,#,Q)}.

e MS&’s expansion list is (StandardFinesse(P;;5)). M8 also has the instantiations
R =3, Ry =Q. For M8, node ¢ becomes b’s child. V. = (StandardFinesse(North;
#), Everything()). M8’s preconditions include Has(Py; 5, R), and thus I. = [, U
{Has(North,#, 3)}.

The rest of the decision tree in Figure 3 is generated in a similar manner.

6.3. Decision-Tree Evaluation and Plan Execution

Given a decision tree T, P will want to evaluate this tree by assigning a utility
value to each node of the tree. As we generate the decision tree T' (as described in

A PLANNING APPROACH TO DECLARER PLAY IN CONTRACT BRIDGE 15

! »FINESSE” our move m '‘mum-100
- w 0.5
' N—#3 — E—&J S5 'mmm 4630
' 0.9854 — o5
! +265 +265 '
' N—&Qr— E—&K ~S—a&3
t° . +630
opponen Is move 00073 L W
. +630 +630 !
D @ W—szt-)\ N—#%3] E—&K ~\S—&3 ' g +600
. 2 0078 A .
(H270.78 421073 4600 4600
FIiGURE 4. Evaluation of the decision tree generated on our example. For the sake of clarity,

many nodes have been omitted.

the previous section), it is possible to evaluate it at the same time. However, for the
sake of clarity, this section describes the evaluation of T" as if the entire tree T had
already been generated. Refer to Figure 4.

In perfect-information games, the usual approach is to use the minimax proce-
dure, which computes the maximum at nodes where it is ’s move, and the minimum
at nodes where it is the opponent’s move. In the decision theory literature, this pro-
cedure is referred to as the Wald maximin-return decision criterion. This decision
criterion is less appropriate for imperfect-information games: because we do not know
what moves the opponent is capable of making, it makes less sense to assume that
the opponent will always make the move that is worst for us. Thus, a more com-
plicated criterion which considers the belief function is to be preferred, such as the
weighted-average-of-utilities criterion outlined below.

Let w be an external-agent node whose children are uq,...,u,. For each u;, let
I; be the state information set contained in u;. Suppose we have already computed
a utility value v; € [0, 1] for each u;. Then we define a external-agent criterion to be
an algorithm C that returns a utility value v = C(u,uy,...,u,) for the node u.%

Many external-agent criteria can be used, taking ideas from the pure decision
criteria (such as Hurwicz’s optimism-pessimism index, Savage’s minimax regret, and
Wald’s maximin return). Some will make use of the belief function p, others will
not. In bridge, we generally use an external-agent criterion that gives a weighted
average of the utility values »; resulting from the best move the opponents could
make in all the states consistent with the state information set I. The weights are
computed using p by functions associated with each operator method that yields
opponents’ moves, as described in Section 5. A weight represents the probability
that the opponent makes a given move, and the functions compute the weights on
the basis of information from the prior bidding and play.

Given a decision tree, a external-agent criterion for each uncontrolled agent, an
objective function, and a belief function, we evaluate the decision tree as follows:

1. The utility value of a leaf node w is the value of e*(I), where I is the state

6This definition of external-agent criterion is somewhat different from the usual definition of decision
criterion in decision theory (French, 1986, p. 28), which essentially defines decision criteria on a two-level
structure of decision nodes and chance nodes, without the belief function p. However, we believe that our
definition, while in theory is not always as powerful, is in practice strong enough to implement most decision
criteria we would want in most domains.

16 COMPUTATIONAL INTELLIGENCE

information set associated with u. Recall that if f, the objective function, is
defined at a state 5, then e(.5) = f(.9). Thus, if we have reached a the end of the
game, then the objective function is used, as desired.

2. The utility value of an external-agent node u is the value C(u,u1,uz,...,u,),
where uq,us,...,u, are the children of u.

3. The utility value of a decision node u is the maximum of the utility values of its
children.

Although this evaluation may be computed recursively as defined, there may also be
more efficient computations (for example, if C'(u,uq,uz,...,u,) were the minimum
of the utility values of uy,ug, ..., u,, then we could use alpha-beta pruning as a more
efficient computation of minimax).

Once the decision tree is solved, a plan (a policy in the decision theory literature)
has been created; P will, at the state information set associated with any decision
node, simply choose the method that leads to the node with highest utility value.

This plan can be thought of as a contingency plan. After each of our moves, the
tree includes nodes that match most of the opponent’s possible responses; the subtree
below each such node represents the plan we will use to respond to the opponent’s
move. Each node where it is the opponent’s move contains a “planned card” (the
card we think the opponent is most likely to play), as well as a critic function (as
mentioned in Section 5). The purpose of this critic function is to tell us if certain
other cards match by virtue of being “equivalent” to the planned card. For example,
the critic associated with the method for StandardFinesseTwo(Py; 9)in Figure 1 and
Figure 2 would accept any of 3#, 54, 6, 34, 9M. or T as equivalent to 3M.

P follows the plan as far as possible. If the plan takes P to the end of the
game, then the problem is solved. If the plan should terminate before the end of the
game—which may occur either because an external agent performs an action which
is not present in the plan, or because the plan has reached a previously unexpanded
node—then P simply re-plans, starting at the node where the plan ends.

7. IMPLEMENTATION AND TESTING

To test our approach, we have done a full implementation of a program to perform
declarer play at bridge, called Tignum 2. For now, Tignum 2 has concentrated on
playing notrump contracts, which comprise about 28.6% of all bridge contracts.”

The tasks used in Tignum 2 are shown in Tables 2 and 3. Second hand refers to
the player who plays the second card to a given trick; similarly third hand and fourth
hand. A sequence is a set of cards, such as the K& and Q®&, such that one of the
cards must eventually win a trick; if the K& loses to the opponents” A#, the Q& is
the highest remaining spade and can then win a trick. A marked finesse is a finesse
that is known to be successful, for example, when fourth hand is known to be void in
the suit. A winner is a card, such as the Ace, that is sure to win a trick. To follow
suit is to play a card in the same suit as the card led to the current trick. To cross
is lead to a winner in partner’s hand, so that partner is on lead. To cash is to play
a winner for the purposes of winning a trick.

TOur 95% confidence interval for the frequency of notrump contracts bid by the Bridge Baron is
[27.9%, 29.3%].

A PLANNING APPROACH TO DECLARER PLAY IN CONTRACT BRIDGE 17

TABLE 2. Tasks used in Tignum 2, part one.

Task name

Task description

Everything Play the whole hand

Something Use a particular strategic or tactical scheme

CashOut Cash all the winners in declarer’s and dummy’s hands
CashHand Cash all the winners in a particular hand

CashWinner Cash a winner in declarer’s hand in a particular suit
CashDummyWinner Cash a winner in dummy

CashFollowed Cash a winner in declarer’s hand; have the opponents follow suit
CashDummyFollowed Cash a winner in dummy; have the opponents follow suit
ConsiderCross Think about crossing from declarer to dummy, or vice versa
SimpleCross Cross from declarer to dummy, or vice versa

LeadLow Lead a low card

Finesse Take a finesse

StandardFinesse Play in a standard finesse

StandardFinesseThree Play third hand in a standard finesse

MarkedStandardFinesse

Play in a marked finesse

PlaySetCard Play a card in a sequence
PlaySetFollowed Play a card in a sequence; have the opponents follow suit
ConsiderLength Think about setting up a low card to win a trick
LengthWinner Set up a low card to win a trick
WaitForControl Wait to get back on lead before continuing
Follow Follow to a trick that the opponents led
FollowVoid Follow to a trick when void in the suit led
FollowSuit Follow to a trick when holding cards in the suit led
ConsiderHard Think about setting up a low card by losing some tricks
HardLengthWinner Set up low card by losing some tricks in the suit
HardCash Cash a winner before losing some tricks
HardWinner Cash a winner in declarer’s hand before losing some tricks
HardDummyWinner Cash a winner in dummy before losing some tricks
HardFollowed Cash a winner before losing some tricks; have the opponents follow suit
HardDummyFollowed Cash a winner in dummy before losing some tricks;

have the opponents follow suit
HardLose Lose a trick to set up a low card
LoseTrick Lose a trick
LoseFollowed Lose a trick; have the opponents follow suit
HardDuck Intentionally lose a trick to preserve high cards for crossing
Ruffln Ruff a trick when void in the suit led
DiscardLow Discard a low card when void in the suit led
Discard DuringCash Discard a low card when void in the suit led while cashing out
FreeFinesse Play a card in second hand that might win a trick
ThirdHandLow Play a low card when third hand
ThirdHandHigh Play a high card when third hand
ThirdHand Equiv Play a card in third hand equivalent to a particular card
ThirdHandCover Play a card in third hand that covers the card

that an opponent played in second hand
ThirdHandRuff Play a trump card in third hand when void in the suit led
ThirteenthTrick Play the thirteenth trick

18 COMPUTATIONAL INTELLIGENCE

TABLE 3. Tasks used in Tignum 2, part two.

Task name Task description

DrawTrump Play cards in the trump suit to remove cards in the trump suit
from the opponents’ hands

ConsiderRuff Think about setting up a low card opposite a void to get a ruff
SetUpRuff Set up a low card opposite a void to get a ruff

RuffLow Ruff with a low card

RuffRuffed Ruff a trick, forcing the opponents to ruff with a higher card
RuffOut Cash all the winners and take all the ruffs in declarer’s and dummy’s hands
CashTrumps Cash all the winners in the trump suit

ForceThemRuff Force the opponents to ruff by cashing winners

CashRuffed Cash a winner in declarer’s hand, forcing the opponents to ruff
CashDummyRuffed Cash a winner in dummy’s hand, forcing the opponents to ruff
FinesseTwo Opponents: play in second hand during a finesse
StandardFinesseTwo Opponents: play in second hand during a standard finesse
EasyFinesse Opponents: play a card being finessed against

BustedFinesse Opponents: show void in suit during a finesse

FinesseFour Opponents: play in fourth hand during a finesse
FreeFinesseThree Opponents: play in third hand during a free finesse
MarkedFinesseTwo Opponents: play in second hand during a marked finesse

MarkedFinesseFour Opponents: play in fourth hand during a marked finesse

ThemNotWinner Opponents: play a card that does not win the trick

ThemAny Opponents: play any card

ThemLead Opponents: lead to a trick

ThemVoid Opponents: follow to a trick when void in the suit led

ThemSuit Opponents: follow to a trick when holding cards in the suit led

ThemWin Opponents: win a trick

ThemAnyLow Opponents: play any low card

ThemSplit Opponents: follow to a trick, possibly void in the suit led, possibly not

ThemSplitLess Opponents: follow to a trick, possibly void in the suit led,
possibly holding cards that do not beat a particular card

ThemSuitLess Opponents: follow to a trick when holding cards in the suit led
that do not beat a particular card

ThemRuff Opponents: ruff a trick

ThemOverruff Opponents: ruff a trick with a higher card

ThemFinesse Opponents: take a finesse against declarer

Stop Stop planning

We wanted to test the play of Tignum 2 against the Bridge Baron (BB), a com-
mercially available bridge program. Like most such programs, BB is primarily rule-
based (without rule chaining). It is probably safe to say that the Bridge Baron is the
best program in the world for declarer play at contract bridge.®

8The Bridge Baron (which was formerly known as the Micro-Bridge Companion) won the 1990 and 1991
Computer Olympiads, lost the 1992 Computer Olympiad on a tiebreaker, won the 1993 Computer Bridge
world championship, and won the 1994 and 1995 Computer Bridge competitions sponsored by the American
Contract Bridge League (ACBL). In their review of seven commercially available programs (Manley, 1993),
the ACBL rated the Bridge Baron to be the best of the seven, and the skill of the Bridge Baron to be the
best of the five that do declarer play without “peeking” at the opponents’ cards.

A PLANNING APPROACH TO DECLARER PLAY IN CONTRACT BRIDGE 19

Deal: North Bidding:
& KJ352 W N F g
T Pass
West 43 East 190 Pass 1INT Pass
& ATT3 % QJ952 & Q964 2& Pass 2NT Pass
Q KJ532 0 Q8 Pass Pass
South
& T o & AK62
& A63 Q A9764 &% 874 Contract: East—2NT
& QJ9875 Lead: South—Q <&
& KT Vulnerable: All

FIGURE 5. One of the deals on which the Tignum 2 team beat the BB team.
TABLE 4. Results of competition between two teams described in the text.

Result Deals Wins Losses Ties Margin of victory

Tignum 2 over BB 5000 1394 1302 2304 92

The best method of comparing bridge competitors is duplicate bridge, which elim-
inates the possibility of any competitor gaining a gross advantage simply by the luck
of the deal. In duplicate bridge, each deal is played twice. The first time (played at
the “first table”), two members of Team A sit North and South, and two members
of Team B sit Fast and West. The second time (played at the “second table”), two
other members of Team A sit Fast and West, and two other members of Team B sit
North and South. (No one team member plays the same deal twice, to ensure that
no one has foreknowledge of the unknowns in the deal.)

In order to compare the declarer play of Tignum 2 against the declarer play of
the Baron, we formed the following two teams:

o the BB team: BB for declarer play, and BB for bidding and defender play.
o the Tignum 2 team: Tignum 2 for declarer play, and BB for bidding and defender
play (because Tignum 2 does not do bidding and defender play).

8. TEST RESULTS

One method of scoring duplicate bridge is Swiss teams board-a-match scoring.
Whichever team gets the higher number of total points wins the board; if the teams
have the same number of total points, the board is tied, and each team wins 1/2 a
board. For example, on the deal in Figure 5 and Figure 6, the Tignum 2 team scores
+120 at one table and the Bridge Baron team scores -100 at the other table; thus,
Tignum 2 wins the board.

We held a duplicate bridge competition based on Swiss teams board-a-match
scoring on 5000 randomly generated notrump deals between the BB team and the
Tignum 2 team. For now, Tignum 2 is better on notrump deals than it is on suit
deals, because we have not yet encoded enough bridge knowledge for Tignum 2 to
play all suit deals well.

The results of this competition in are shown in Table 4. On 5000 notrump
deals, the declarer play of Tignum 2 was 92 boards better than that of the strongest

20 COMPUTATIONAL INTELLIGENCE

BB declarer vs. BB defense Tignum 2 declarer vs. BB defense

W N E S W N E S

TS 48 Ko*—~Qo TS 48 Ko —Qo Get in control

20 TO —QU AQ* 20 TO —=QQ© AQ* Start trying to set up hearts; unblock

3& 3O ASY =T 3& 3O ASH—TO Get in control
ANY 286 —4b 60 JO* 24 —8Q 9Q Try to set up hearts; realize failure
—KQO* 2& 8Q 40 —AM* 58 4é 75 Try to set up spades
—JO* 9% 4 70 —Td K&* 66 5 Take marked spade finesse
—50 5& Gl 9Q* AS* —Qd 4% T& Get in control
6 S 2 —90F —SKO* 5 T 40 Cash heart winner
3M 5d 6 —8OF =3 St 9Nt 8 Take marked spade finesse
M J& & —=TOF M J& —Qa* 60 Cash last spade winner
T Q& 8& —5O* 30 2&% —2$ 9H* Defense gets the last three tricks
A&* & I —Kd 6 9% S —K&*
—30* K& Q& T& 50 J& 6O —TO*
2 NT—Down 1 2 NT—Made
100 to North/South 120 to East/West

Tignum 2 team wins board

FIGURE 6. Play of the deal from Figure 5 showing the Tignum 2 team beating the BB team.
An arrow (—) indicates a card led to a trick. An asterisk (*) indicates a card that won a trick.

commercially available program. These results are statistically significant at the
a = 0.05 level. We had never run Tignum 2 on any of these deals before this test, so
these results are free from any training-set biases in favor of Tignum 2.

Tignum 2 searched an average of 8745.6 moves per deal on these 5000 notrump
deals. Note that in each deal, Tignum 2 must play 26 cards. Tignum 2 never searched
more than 583638 moves in a single deal. (In contrast, in the worst case, a brute-force
game-tree search would search (33)(13!)*/13 = 6.01x 10* moves.) These small search
trees demonstrate the effectiveness of Tignum 2’s pruning. Tignum 2’s declarer play
on each deal averaged 27.5 seconds on a Sun SPARCstation 10.

In the next section, we will look at one of the deals on which Tignum 2 demon-
strated the power of its planning ability. We will look at the BB declarer’s play, and
then the Tignum 2 declarer’s play in some depth.

8.1. Example Deal

Figure 5 shows one of the deals on which Tignum 2 demonstrated the power of its
planning ability. As seen in Figure 6, Tignum 2 first tried to set up tricks in hearts.
After discovering that South had too many hearts, Tignum 2 considered alternative
plans and concluded that its best chance of making the contract was to execute a
spade finesse. After succeeding, it quickly cashed enough tricks to make the contract.

In the next two subsections, we will see how the bidding and play on this deal by
the BB team and the Tignum 2 team took place. In the first subsection, we discuss
play at the “first table”, and in the second subsection, play at the “second table”.

The Fuirst Table. At the first table, the Tignum 2 team sat North and South,
and the BB team sat Fast and West. The bidding proceeded as shown in Figure 5—
because Tignum 2 does not bid, all four players used the BB bidding routines. East

A PLANNING APPROACH TO DECLARER PLAY IN CONTRACT BRIDGE 21

became declarer at a contract of 2NT. Because the BB team won the contract, BB
performed the declarer play at this table. Because the Tignum 2 team was on de-
fense, and because Tignum 2 does not perform defender play, BB also performed the
defensive play at this table.

The play proceeded, and East, the BB declarer, won the first trick with the A,
At the second trick, East was on lead. On the basis of its ad-hoc rules, it decided to
lead the Q©, the correct play. South, a defender, won the trick with the AQ, and at
trick 3, led back the J¢, setting up four diamond tricks if it ever got back into the
lead. After winning trick 3 with the A{, East, the BB declarer, led the 4# at trick 4,
and South showed a spade void by playing the 60, a card in another suit. West, the
BB dummy, played the A#, winning the trick. At this point, the BB declarer was
guaranteed to make the contract with correct play, unless North had all four missing
diamonds (which was very unlikely, based on South’s leads at trick 1 and trick 3.)
At trick 5, West played the KO, knowing it would win the trick because the AQ had
already been played, and North, a defender, showed a heart void by playing the 2.

At this point, on lead at trick 6, the BB declarer was still almost certain to make
the contract with correct play. However, West played the JO. making South’s 99 a
winner. As the cards lay, the BB declarer could still make the contract, but because
of its ad-hoc rules, it decided at trick 7 to lead the 50, a mistake. After winning the
990, South quickly cashed four diamond tricks, for a total of six tricks for the defense.
Because the BB declarer had only taken five tricks, and because at the eleventh trick
there were only two tricks remaining, the BB declarer could only take a total of seven
tricks—but the BB declarer had contracted for eight tricks. Thus, the BB declarer
fell one trick short, for a score of -100 to the Bridge Baron team.

The Second Table. Because all four players at the second table were again using
the deterministic BB bidding routines, the bidding was identical to that at the first
table. East was again declarer at a contract of 2NT. Because the Tignum 2 team won
the contract, Tignum 2 performed the declarer play at this table and BB performed
the defensive play at this table.

South, a BB defender, made the opening lead of the Q¢{. It was then dummy’s
turn to play, and because Tignum 2 was declarer, Tignum 2 played both declarer’s
cards and dummy’s cards. West, the Tignum 2 dummy, had only one card in the
diamond suit, so it was forced to play the 10{. North, a BB defender, played the
4§, Fast, the Tignum 2 declarer, played the K. Because there were no alternatives
that Tignum 2 considered worth investigating at trick 1 (that is, Tignum 2 believed
that it had only one sensible choice), Tignum 2 stopped planning after trick 1, and
planned for trick 2 when it was time to play to trick 2. The reasoning that Tignum 2
used to decide on the play of the K{ is shown in Figure 7.

East was on lead at trick 2. Tignum 2 now did extensive planning to decide
among three alternatives: trying to set up hearts; cashing its A, for fear that it
wouldn’t be able to get back to East’s hand to do so later; or cashing its high cards
(starting with the A$.)

After generating and evaluating its game tree, Tignum 2 decided to try to set
up hearts, and played the QU appropriately. Tignum 2 preferred the QU to the 80
on the basis of its bridge knowledge; playing the 80 would have made it harder to
play the rest of the hearts, because Tignum 2 would have to win the next trick with
East’s QU and then get back to West to lead the next high heart.

South won trick 2 with the AQ, and at trick 3, led back the J{, setting up four
diamond tricks if it ever got back into the lead.

22 COMPUTATIONAL INTELLIGENCE

Deal: North
& KJ352
o
West N East
Everything() & AT73 & QJ952 & Q964
@ KIs3
South V8
& — - & 62
% A6 © 9764 & 874
{ 9875
‘ Something(P)‘ ‘ Everything() ‘ & KT
| |
Not expanded because o
. Bidding:
planning stops
W N E S
Pass
‘FOHOW(P) ‘ ‘WaitForControl(P)‘ 19 Pass INT Pass
‘ 2&% Pass 2NT Pass
Not expanded because Pass Pass

FollowSuit(P; §) ~ Planning stops
Contract: East—2NT

Vulnerable: All
Declarer: 2 tricks
‘] ‘ Defense: 1 trick
PlayCard(P; 5, 1) On lead: East at trick 4
East—OK
FIGURE 7. Reasoning that Tignum 2 used to FI1GURE 8. Situation at trick 4
decide on the play of the K< at trick 1. at the second table.

The lead of the J¢{ did not meet the criteria of Tignum 2’s critic, because
Tignum 2 expected a club lead. Thus, after winning trick 3 with the A, East
re-planned, deciding among three alternatives at trick 4: trying to set up hearts;
trying to set up spades; or cashing its high cards (starting with the A{.)

The situation was now as shown in Figure 8. An annotated version of part of the
game tree that Tignum 2 generated and searched is shown in Figure 9.

After generating and evaluating this game tree, Tignum 2 decided to try to set
up hearts, and played the 80 appropriately; this was the first Tignum 2 declarer play
at the second table that differed from BB’s declarer play at the first table. South
played the 90, and West played the JO as planned, knowing it would win the trick
because the AQ and QU had already been played and West itself held the KO. Now
North finished the trick, showing a heart void by playing the 2.

The rest of the play proceeded as shown in Figure 6. The Tignum 2 declarer took
eight tricks, making its contract, for a score of +120 to the Tignum 2 team.

9. CONCLUSION

In this paper, we have described an approach to playing imperfect-information
games. By using techniques adapted from task-network planning, our approach re-

A PLANNING APPROACH TO DECLARER PLAY IN CONTRACT BRIDGE 23

-6.25

Try to set Cash all high cards

up hearts

spade finesse Evaluated to -200

W N E S W N E S
KO* 60 —80 490 AN* 5h —id 24
77777 —Jo* ()25 —34 ()-19.68
Csuit NOTO/N N28 g0 Nose N—Ka&* N—2&
splits 0370/ 0 N 0628 goeant | 0.667 0.222| 0.111
L4150 Cr L -100 split o -72.812 +120| | -250] |
'E—4&% . E4&% E—Q&(*?) E—64| E—Qa
| 4150 N 100 | -72.812 +120 () =250 ()
‘ . | S—Ka* S—Jé
| S—90 L S—70 S—8M | S—Ka*
| X | 05 05 oM STEA
: Evaluated: : Evaluated : Evaluated Evaluated FEvaluated Evaluated
' to 4150 ., to-100 ! to -265.62 to +120 to +120 to -250

FIGURE 9. Annotated version of part of the game tree that Tignum 2 investigated at trick 4
for the hand shown in Figure 5.

duces the large branching factor that results from uncertainty in such games. It does
this by producing game trees in which the number of branches from each state is
determined not by the number of actions that an agent can perform, but instead by
the number of different tactical and strategic schemes that the agent can employ. By
doing a modified game-tree search on this game tree, one can produce a plan that
can be executed for multiple moves in the game.

Our approach appears to be particularly suited to bridge, because bridge is an
imperfect-information game that is characterized by a high degree of planning dur-
ing card play. Thus, to test our approach, we created an implementation, called
Tignum 2, that uses these techniques to do card-playing for declarer in the game of
bridge. The declarer play of this implementation on 5000 notrump deals was sta-
tistically significantly better than the declarer play of the strongest commercially
available program.

Tignum 2 “consciously” handles cashing out, ruffing out, crossing, finesses, free fi-
nesses, automatic finesses, marked finesses, sequence winners, length winners, winners
that depend on splits, opponents on lead, opponents finessing against declarer and
dummy, dangerous opponents, ducking, hold-up plays, discarding worthless cards,
drawing trump, ruffing, and setting up ruffs; i.e., it has tasks and methods to ad-
dress these tactical and strategic schemes. Endplays and even squeezes are occasional
emergent behavior; i.e., while Tignum 2 does not consciously handle endplays and
squeezes, occasionally other tasks and methods will combine to produce them. For
Tignum 2 to handle endplays and squeezes consciously, we would just have to add
tasks and methods; we have yet to address these strategies because they are rare.

24 COMPUTATIONAL INTELLIGENCE

Anyone wishing to apply our approach to other domains should consider the
following factors that led us to choose and shape our approach:

e Bridge has a natural element of hierarchical planning. Humans use hierarchies
of schemes to create plans to play bridge deals. The bridge literature describes
many such schemes. Hierarchical planning gives each play a context; without
such a context, one might search through many methods at each play.

e Because our approach avoids examining all possible moves for all agents, it is
related to the idea of forward pruning. The primary difference from previous ap-
proaches to forward pruning is that previous approaches used heuristic techniques
to prune “unpromising” nodes from the game tree, whereas our approach simply
avoids generating nodes that do not fit into a tactical and strategic scheme for
any player. Although forward pruning has not worked very well in games such
as chess (Biermann, 1978; Truscott, 1981), our recent study of forward pruning
(Smith and Nau, 1994) suggests that forward pruning works best in situations
where there is a high correlation among the minimax values of sibling nodes. Part
of our motivation for the development of Tignum 2 is that we believe that bridge
has this correlation.

e Although our approach is based on ideas from hierarchical task-network plan-
ning, it differs from most other task-network planners in that it generates totally
ordered plans. This seemed to be the best solution to imperfect information,
which causes problems more severe than the uninstantiated variables that occur
in perfect-information domains.

We hope that the approach described in this paper will be useful in a variety
of imperfect-information domains, possibly including defensive play in bridge. We
intend to investigate this issue in future work.

REFERENCES

BaLLARD, B. W. 1983. The *-minimax search procedure for trees containing chance nodes. Artificial
Intelligence 21:327-350.

BerLIN, D. L. 1985. SPAN: integrating problem solving tactics. Proc. 9th International Joint
Conference on Artificial Intelligence, 1047-1051.

BerRLINER, H. J.; GoETscH, G.; CAMPBELL, M. S.; and EBELING, C. 1990. Measuring the perfor-
mance potential of chess programs. Artificial Intelligence 43:7-20.

BIERMANN, A. W. 1978. Theoretical issues related to computer game playing programs. Personal
Computing, September 1978:86-88.

CorMEN, T. H.; LEisErsoN, C. E.; and Rivest, R. L. 1990. Introduction to Algorithms. MIT
Press/McGraw Hill.

CuRRIE, K. and TATE, A. 1985. O-Plan—control in the open planner architecture. BCS Expert
Systems Conference, Cambridge University Press, UK.

EroL, K.; Nau, D. S.; and HENDLER, J. 1993. Toward a general framework for hierarchical task-
network planning. In AAAT Spring Symposium.

Eror, K.; Nau, D. S.; and SUBRAHMANIAN, V. S. 1995. Complexity, decidability and undecidability
results for domain-independent planning. Artificial Intelligence, to appear.

FELDMAN, J. A. and YAKIMOVSKY, Y. 1974. Decision theory and artificial intelligence i. A semantics-
based region analyzer. Artificial Intelligence 5:349-371.

FELDMAN, J. A. and SPROULL, R. F. 1977. Decision theory and artificial intelligence ii: The hungry
monkey. Cognitive Science 1:158-192.

A PLANNING APPROACH TO DECLARER PLAY IN CONTRACT BRIDGE 25

Fikes, R. E. and NiussonN, N. J. 1971. Strips: a new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189-208.

Frank, I.; BasiN, D.; and BunDy, A. 1992. An adaptation of proof-planning to declarer play in
bridge. In Furopean Conference on Artificial Intelligence.

FRENCH, S. 1986. Decision Theory: An Introduction to the Mathematics of Rationality. Wiley: New
York.

GAMBACK, B.; RAYNER, M.; and PELL, B. 1990. An architecture for a sophisticated mechanical
bridge player. In Beal, D. F. and Levy, D.N.L., editors, Heuristic Programming in Artificial
Intelligence— The Second Computer Olympiad. Ellis Horwood: Chichester, UK.

GAMBACK, B.; RAYNER, M.; and PELL, B. 1993. Pragmatic reasoning in bridge. Tech. Report 299,
Computer Laboratory, University of Cambridge.

HoraAceK, H. 1990. Reasoning with uncertainty in computer chess. Artificial Intelligence 43:37-56.

KHEMANI, D. 1994. Planning with thematic actions. In Proc. Second Internat. Conf. AI Planning
Systems, Kristian Hammond, ed. AAAI Press: Menlo Park, CA.

KnutH, D. E. 1973. The Art of Computer Programming, Vol. 8: Sorting and Searching. Addison-
Wesley Publ. Co.

LEgE, K.-F. and MaHAJAN, S. 1990. The development of a world class othello program. Artificial
Intelligence 43:21-36.

LEvVY, D. and NEWBORN, M. 1982. All About Chess and Computers. Computer Science Press.

LinpDELOF, E. 1983. COBRA: the computer-designed bidding system. Victor Gollancz Ltd: London.

LoPATIN, A. 1992. Two combinatorial problems in programming bridge game. Computer Olympiad,
unpublished.

MANLEY, B. 1993. Software ‘judges’ rate bridge-playing products. The Bulletin (published monthly
by the American Contract Bridge League), Volume 59, Number 11, November 1993:51-54.
QUINLAN, J. R. 1979. A knowledge-based system for locating missing high cards in bridge. Proc. 6th

International Joint Conf. Artificial Intelligence, pp. 705-707.

SACERDOTI, E. D. 1974. Planning in a hierarchy of abstraction spaces. Artificial Intelligence 5:115—
135.

SACERDOTI, E. D. 1975. The nonlinear nature of plans. In Allen, J.; Hendler, J.; and Tate, A.,
editors, Readings in Planning. Morgan Kaufman, 1990. 162-170. Originally appeared in Proc.
4th International Joint Conf. Artificial Intelligence, pp. 206-214.

SACERDOTI, E. D. 1977. A Structure for Plans and Behavior. American Elsevier Publishing Company.

SAMUEL, A. I.. 1967. Some studies in machine learning using the game of checkers. ii—recent progress.
IBM Journal of Research and Development 2:601-617.

SCHAEFFER, J.; CULBERSON, J.; TRELOAR, N.; KNiGHT, B.; LU, P.; and SzAFrON, D. 1992. A world
championship caliber checkers program. Artificial Intelligence 53:273-290.

SMITH, S. J. J. and NAU, D. S. 1993. Strategic planning for imperfect-information games. In Games:
Planning and Learning, Papers from the 1993 Fall Symposium, Technical report FS9302, AAAI
Press, Menlo Park, CA.

SMmiTH, S. J. J. and Nau, D. S. 1994. An analysis of forward pruning. In Proc. 12th National
Conference on Artificial Intelligence, pp. 1386-1391.

STANIER, A. 1975. Bribip: a bridge bidding program. In Proc. 4th International Joint Conf. Artificial
Intelligence.

STERLING, L. and NYGATE, Y. 1990. Python: an expert squeezer. Journal of Logic Programming
8:21-39.

TATE, A. 1976. Project planning using a hierarchic non-linear planner. Tech. Report 25, Department
of Artificial Intelligence, University of Edinburgh.

TATE, A. 1977. Generating project networks. In Proc. 5th International Joint Conf. Artificial
Intelligence.

TruscorT, T. R. 1981. Techniques used in minimax game-playing programs. Master’s thesis, Duke
University, Durham, NC.

26 COMPUTATIONAL INTELLIGENCE

WiLkins, D. E. 1980. Using patterns and plans in chess. Artificial Intelligence 14:165-203.
WiLkins, D. E. 1982. Using knowledge to control tree searching. Artificial Intelligence 18:1-51.

WiLKINs, D. E. 1984. Domain independent planning: representation and plan generation. Artificial
Intelligence 22:269-301.

