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2 Computational Intelligencegame, in which no player has complete knowledge about the state of the world, thepossible actions, and their e�ects. Thus the branching factor of the game tree is verylarge. Since the bridge deal must be played in just a few minutes, a full game-treesearch will not search a signi�cant portion of this tree within the time available.To address this problem, some researchers have tried making assumptions aboutthe placement of the opponents' cards based on information from the bidding andprior play, and then searching the game trees resulting from these assumptions. How-ever, such approaches have several limitations, as described in Section 2.In this paper, we describe a di�erent approach to this problem, based on theobservation that bridge is a game of planning. For addressing various card-playingsituations, the bridge literature describes a number of tactical schemes, or short-termcard-playing tactics, such as �nessing and ru�ng; the bridge literature also describesa number of strategic schemes, or long-term card-playing tactics, such as crossru�ng.It appears that there is a small number of such schemes for each bridge deal, andthat each of them can be expressed relatively simply. To play bridge, many humansuse these schemes to create plans. They then follow those plans for some number oftricks, replanning when appropriate.We have taken advantage of the planning nature of bridge, by adapting and ex-tending some ideas from task-network planning. To represent the tactical and strate-gic schemes of card-playing in bridge, we use multi-agent methods|structures similarto the \action schemas" or \methods" used in hierarchical single-agent planning sys-tems such as Nonlin (Tate, 1976; Tate, 1977), NOAH (Sacerdoti, 1974; Sacerdoti,1975; Sacerdoti, 1977), O-Plan (Currie and Tate, 1985), and SIPE (Wilkins, 1984),but modi�ed to represent multi-agency and uncertainty.To generate game trees, we use a procedure similar to task decomposition. Themethods that perform our tasks correspond to the various tactical and strategicschemes for playing the game of bridge. We then build up a game tree whose branchesrepresent moves that are generated by these methods. This approach produces agame tree in which the number of branches from each state is determined not by thenumber of actions that an agent can perform, but instead by the number of di�erenttactical and strategic schemes that the agent can employ. If at each node of the tree,the number of applicable schemes is smaller than the number of possible actions, thiswill result in a smaller branching factor, and a much smaller search tree.To test this approach, we have developed an implementation called Tignum 2.1On 5000 randomly generated notrump deals, Tignum 2 beat the strongest commer-cially available program by 1394 to 1302, with 2304 ties. These results are statisticallysigni�cant at the � = 0:05 level.2. RELATED WORKStanier (1975) did some of the �rst work on bridge; while his bidding programwas primitive, his ideas about play still o�er insight today. Quinlan (1979) wrote aknowledge-based system for reasoning about high cards, but it never developed intoan algorithm for play. Berlin (1985) proposed an approach to play of the hand at1Tignum 2 is a follow-up to a prototype program called Tignum that was described in (Smith and Nau,1993). Tignum demonstrated that we could generate small game trees and still do correct play within thelimited set of situations that its methods addressed, but its structure did not allow us to add methods togeneralize its capabilities. Tignum 2 overcomes these limitations.



A Planning Approach to Declarer Play in Contract Bridge 3bridge that is similar to ours; sadly, he never had a chance to develop the approach(his paper was published posthumously). Some of the work on bridge has focused onbidding (Lindelof, 1983; Gamback et al., 1990; Gamback et al., 1993).There are no really good computer programs for card-playing in bridge, especiallyin comparison to the success of computer programs for chess, checkers, and othello;most computer bridge programs can be beaten by a reasonably advanced novice.Sterling and Nygate (1990) wrote a rule-based program for recognizing and executingsqueeze plays, but squeeze opportunities in bridge are rare. Recently, Frank andothers (1992) have proposed a proof-planning approach, but thus far, they have onlydescribed the results of applying this approach to planning the play of a single suit.Khemani (1994) has investigated a case-based planning approach to notrump declarerplay, but hasn't described the speed and skill of the program in actual competition.The approaches used in current commercial programs are based almost exclusivelyon domain-speci�c techniques, as described below.One approach is to make assumptions about the placement of the opponents'cards based on information from the bidding and prior play, and then search the gametree resulting from these assumptions. This approach was taken in Alpha Bridgeprogram (Lopatin, 1992), with a 20-ply (5-trick) search. However, this approachdidn't work very well: at the 1992 Computer Olympiad, Alpha Bridge placed last.Better-quality play can be achieved by generating several random hypotheses forwhat hands the opponents might have, and doing a full game-tree search for eachhypothesized hand, as is done in Great Game Products' Bridge Baron program.However, this approach is feasible only late in the game, after most of the tricks havebeen played, because otherwise the game tree is too large to search to any signi�cantdepth within the time available.Some work has been done on extending game-tree search to address uncertainty,including Horacek's work on chess (Horacek, 1990), and Ballard's work on backgam-mon (Ballard, 1983). However, these works do not address the kind of uncertaintythat we discussed in the introduction, and thus it does not appear to us that theseapproaches would be su�cient to accomplish our objectives.Wilkins (1980; 1982) uses \knowledge sources" to generate and analyze chessmoves for both the player and the opponent. These knowledge sources have a similarintent to the multi-agent methods that we describe in this paper|but there are twosigni�cant di�erences. First, because chess is a perfect-information game, Wilkins'swork does not address uncertainty and incomplete information, which must be ad-dressed for bridge play. Second, Wilkins's work was directed at speci�c kinds of chessproblems, rather than the problem of playing entire games of chess; in contrast, wehave developed a program for playing entire deals of bridge.Our work on hierarchical planning draws on (Tate, 1976; Tate, 1977; Sacerdoti,1974; Sacerdoti, 1975; Sacerdoti, 1977). In addition, some of our de�nitions weremotivated by (Erol et al., 1993; Erol et al., 1995).3. PROBLEM CHARACTERISTICSBridge is a card game that is played by four players called North, East, South,and West, using a standard 52-card playing deck. North and South are partnersagainst East and West. A Bridge game consists of a series of deals. In each deal, thecards are distributed evenly among the four players; thus, each player has a hand ofthirteen cards. Then, there is an \auction" followed by thirteen \tricks" of play.



4 Computational IntelligenceThe purpose of the auction is to decide who gets to declare what the trump suitis, and how many tricks this declarer needs to take. The auction consists of a numberof calls which are made by the players one at a time, starting with the dealer andprogressing clockwise. A call is either a bid to take a certain number of tricks witha certain \trump" suit, or a Pass, Double, or Redouble.Unless the auction began with four Passes, the play begins. The contract is thelast bid that was made, plus any doubling or redoubling. The trump suit is thesuit of the last bid that was made (or no suit if the last bid was a No Trump bid.)The declarer is the player who made the last bid (not call) in the auction|unlesshis partner made the �rst bid of the same suit for that partnership in the auction,in which case this partner becomes declarer. The player on declarer's left plays acard, the opening lead. Then dummy, or declarer's partner, exposes his hand for thedeclarer to see and play and for the defenders, or opponents, to see.After everyone plays a card, the trick is over. The winner of a trick leads to thenext trick. A trick is won by the player who plays the highest card in the trump suit,if any; otherwise, the trick is won by the player who plays the highest card in thesame suit as the card that was led (played �rst in a trick.) Each player must play acard in the led suit whenever possible. (If the led suit was not trump, but a playerplays a trump card, it is called a ru�.) After all thirteen tricks have been played,scoring occurs, based on whether declarer took all the tricks contracted for or not,how many extra tricks or how much shortfall there was, and whether the contractwas doubled or redoubled.In this paper, we consider the problem of declarer play at bridge. Our playercontrols two agents, declarer and dummy. Two other players control two other agents,the defenders. The auction is over and the contract has been �xed. The openinglead has been made and the dummy is visible. The hands held by the two agentscontrolled by our player are in full view of our agent at all times; the other two handsare not, hence the imperfect information.Bridge has the following characteristics that are necessary for our approach:1. Only one player may move at at time.2. In general, no player has perfect information about the current state S. However,each player has enough information to determine whose turn it is to move.3. A player may control more than one agent in the game (as in bridge, in whichthe declarer controls two hands rather than one). If a player is in control of theagent A whose turn it is to move, then the player knows what moves A can make.4. If a player is not in control of the agent A whose turn it is to move, then theplayer does not necessarily know what moves A can make. However, in this casethe player does know the set of possible moves A might be able to make; that is,the player knows a �nite set of moves M such that every move that A can makeis a member of M .Our approach is applicable to any domain with these characteristics. Modi�cationsof our approach may be possible if some of these characteristics are missing.4. PROBLEM REPRESENTATIONAbstractly, we will consider the current state S (or any other state) to be a collec-tion of ground atoms (that is, completely instantiated predicates) of some function-



A Planning Approach to Declarer Play in Contract Bridge 5free �rst-order language L that is generated by �nitely many constant symbols andpredicate symbols. We do not care whether this is how S would actually be repre-sented in an implementation of a game-playing program.Among other things, S will contain information about who the players are, andwhose turn it is to move. To represent this information, we will consider S to includea ground atom Agent(x) for each player x, and a ground atom Turn(y) for the playery whose turn it is to move. For example, in the game of bridge, S would includethe ground atoms Agent(North), Agent(South), Agent(East), and Agent(West). Ifit were South's turn to move, then S would include the ground atom Turn(South).We will be considering S from the point of view of a particular player P (whomay be a person or a computer system). One or more of the players will be under P 'scontrol; these players are called the controlled agents (or sometimes \our" agents).The other players are the uncontrolled agents, or our opponents. For each controlledagent x, we will consider S to include a ground atom Control(x). For example, inbridge, suppose P is South. Then if South is the declarer, S will contain the atomsControl(South) and Control(North).Because P is playing an imperfect-information game, P will be certain about somethe ground atoms of S, and uncertain about others. To represent the informationabout which P is certain, we use a set of ground literals IS called P 's state informationset (we will write I rather than IS when the context is clear). Each positive literal inIS represents something that P knows to be true about S, and each negative literalin IS represents something that P knows to be false about S. Because we requirethat P knows whose turn it is to move, this means that IS will include a groundatom Turn(y) for the agent y whose turn it is to move, and ground atoms : Turn(z)for each of the other agents. For example, in bridge, suppose that P is South, Southis declarer, it is South's turn to move, and South has the 6| but not the 7|. ThenIS would contain the following literals (among others):Control(North), : Control(East), Control(South), : Control(West),: Turn(North), : Turn(East), Turn(South), : Turn(West),Has(South,|,6), : Has(South,|,7)Unless South somehow �nds out whether West has the 7|, IS would contain neitherHas(West,|,7) nor : Has(West,|,7).In practice, P will know I but not S. Given a state information set I , a state S isconsistent with I if every literal in I is true in S. I� is the set of all states consistentwith I . P might have reason to believe that some states in I� are more likely thanothers. For example, in bridge, information from the bidding or from prior playoften gives clues to the location of key cards. To represent this, we de�ne P 's belieffunction to be a probability function p : I� ! [0; 1], where [0; 1] = fx : 0 � x � 1g:To represent the possible actions of the players, we use operators somewhatsimilar to those used in STRIPS (Fikes and Nilsson, 1971). More speci�cally, ifX1; X2; : : : ; Xn are variable symbols, then a primitive operator O(X1;X2; : : : ; Xn) isa triple (Pre(O),Add(O),Del(O)), where Pre(O), Add(O), and Del(O) are as follows:21. Pre(O), the precondition formula, is a formula in L whose variables are all fromfX1; : : : ; Xng. Pre(O) must always begin with \Agent(X1) ^ Turn(X1) ^ : : :".2The semicolon separates X1 from the rest of the arguments because X1 is the agent who uses theoperator when it is X1's turn to move.



6 Computational Intelligence2. Add(O) and Del(O) are both �nite sets of atoms (possibly non-ground) whosevariables are all from fX1; : : : ; Xng. Add(O) is called the add list of O, andDel(O) is called the delete list of O.For example, in bridge, one operator might be PlayCard(P ;S;R), where the variableP represents the player (North, East, South or West), S represents the suit played (|,}, ~, or �), and R represents the rank (2, 3, : : : , 9, T, J, Q, K, or A). Pre(PlayCard)would contain conditions to ensure that player P has the card of suit S and rankR. Add(PlayCard) and Del(PlayCard) would contain atoms to express the playingof the card, the removal of the card from the player's hand, and possibly any trickwhich may be won by the play of the card.We de�ne applicability in the usual way: if O(a1; a2; a3; : : : ; an) is an instantiationof a primitive operator O, then O(a1; a2; a3; : : : ; an) is applicable in a state S ifPre(O(a1; a2; a3; : : : ; an)) is true in S. If O(a1; a2; a3; : : : ; an) is applicable in somestate Sa 2 I�, and if Control(a1) holds, then we require that the instantiation beapplicable in all states S 2 I�. This will guarantee that, as required, if P is incontrol of the agent a1 whose turn it is to move, then P will have enough additionalinformation to determine which moves a1 can make. In bridge, for example, thismeans that if P has control of South, and it is South's turn, then P knows whatcards South can play.We let S be the set of all states, and I be the set of all state information sets.An objective function is a partial function f : S ! [0; 1]. Intuitively, f(S)expresses the perceived bene�t to P of the state S; where f(S) is unde�ned, thismeans that S's perceived bene�t is not known. In bridge, for states representingthe end of the hand, f might give the score for the participant's side, based on thenumber of tricks taken. For other states, f might well be unde�ned.Game-playing programs for perfect-information games make use of a static eval-uation function, which is a total function e : S ! [0; 1] such that if S is a state andf(S) is de�ned, then e(S) = f(S). In imperfect-information games, it is di�cultto use e(S) directly, because instead of knowing the state S, all P will know is thestate information set I . Thus, we will instead use a distributed evaluation functione�(I) =PS2I� p(S)e(S).Intuitively, e�(I) expresses the estimated bene�t to P of the set of states consis-tent with the state information set I . Our game-playing procedure will use e� onlywhen it is unable to proceed past a state.3A game is a pair G = (L;O) where L is the planning language and O is a �niteset of operators. Given a game G, a problem in G is a quadruple P = (IS1 ; p; f; e),where IS1 is the state information about an initial state S1, p is a belief function, fis an objective function and e is a static evaluation function. For example, if G is thegame of bridge, then the problem P would be a particular hand, from a particularplayer's point of view. All the information required to compute e� is expressed in eand p, thus we need not include e� in our de�nition of P .3However, we can imagine that in time-sensitive situations, one might want to modify our procedure sothat it sometimes uses e� on nodes that it can proceed past, just as chess-playing computer programs use astatic evaluation function rather than searching to the end of the game.



A Planning Approach to Declarer Play in Contract Bridge 75. MULTI-AGENCY IN TASK NETWORKSGiven a game G = (L;O) and a problem P = (IS1 ; p; f; e) in G, the set of allplausible initial states for P is the set I�S1 of all states consistent with IS1 . The set ofall states that might plausibly occur as a result of the various players' moves is theset TP of all states that can be reached via sequences of legal moves from states inI�S1 . In general, TP is a proper subset of S, but TP is usually quite large.Much of the di�culty of game-playing is due to the large number of states in TPthat must be examined and discarded. In order to avoid generating and examiningevery state in TP (as would be done by a brute-force search procedure), we willattempt to generate only those states that appear to �t into coherent tactical andstrategic schemes such as �nessing, ru�ng, and crossru�ng.Our approach is an adaptation of hierarchical task networks (HTNs). We usetwo kinds of multi-agent methods to build a task network: operator methods anddecomposable methods. An operator method is a triple M = (T; P; E), where1. T is a task. This may either be the expression `NIL' or a syntactic expressionof the form N(X1;X2; X3; : : : ; Xn) where N is a symbol called the name of thetask, and each Xi is a variable of L. Note that n may be 0, in which case the taskhas no variables. If n > 1, then a semicolon separates X1 from the rest of thearguments because X1 is the agent whose turn it is to move when the method isused. If, when an operator method M is used, X1 is an opponent, then M mustassociate both a critic and a weighting function with the branch that it createsin the game tree, as described in Section 6.3.2. P is the precondition formula of M . This may be any formula in L that is su�-cient to ensure the truth of the precondition formula of the operator instantiationO(t1; t2; : : : ; tm) described below.3. E is a syntactic expression O(t1; t2; : : : ; tm), where O is an operator in O, andt1; t2; : : : ; tm are terms of L.A decomposable method is a triple M = (T; P; E), where1. T is a task. This may either be the expression `NIL' or a syntactic expressionof the form N(X1;X2; X3; : : : ; Xn) where N is a symbol called the name of thetask, and each Xi is a variable of L.Note that n may be 0, in which case the task has no variables. If n > 1, then asemicolon separates X1 from the rest of the arguments because X1 is the agentwhose turn it is to move when the method is used.2. P , the precondition formula, is any formula in L such that if n > 0 above, thenP is su�cient to ensure the truth of the atom Agent(X1).3. E is a (possibly empty) tuple of tasks(T1(t1;1; t1;2; : : : ; t1;m1); T2(t2;1; t2;2; : : : ; t2;m2); � � � ; Tk(tk;1; tk;2; : : : ; tk;mk )):E, called the expansion list, lists the subtasks that make up this method.For declarer and dummy, networks of methods are used to represent tacticalschemes such as �nessing and setting up suits. For defenders, networks of methodsrepresent tactical schemes such as causing the �nesse to fail or to succeed.For example, consider Figure 1, in which the task Finesse(P ;S) represents thetactical scheme of �nessing. In �nessing, we try to win a trick with a high card by



8 Computational Intelligence

PlayCard(P3;S;R3)PlayCard(P2 ;S;R2) PlayCard(P4;S;R04)PlayCard(P4; S;R4)FinesseFour(P4 ;S)operatormethods:opponent
PlayCard(P ; S;R1) FinesseTwo(P2;S)StandardFinesse(P2 ;S)EasyFinesse(P2 ;S) BustedFinesse(P2 ;S)

operatormethod:our player Finesse(P ; S) Something(P ) Everything()Everything()NIL
decomposable methods

operators
tasks

LeadLow(P ;S)
StandardFinesseTwo(P2 ;S) StandardFinesseThree(P3 ;S)

M1:M2:M3:M4:M5:M6: M7: M8:
Figure 1. The part of the network of multi-agent methods for the game of bridge thataddresses �nessing.



A Planning Approach to Declarer Play in Contract Bridge 9Table 1. Some of the methods and operators used in Figure 1.Decomposable methods:T : NILP : NILE: Everything()T : Everything()P : Agent(P )^Turn(P )E: Something(P ) then Everything()T : Something(P )P : Agent(P )^OnLead(P )^ (MACRO:TrumpDrawn(P )) ^ (MACRO:FinesseInSuit(P ; S))E: Finesse(P ; S)T : Finesse(P ; S)P : Agent(P )^Turn(P )^Next(P;P2)E: LeadLow(P ;S) then FinesseTwo(P ; S)T : FinesseTwo(P2;S)P : Agent(P2)^Turn(P2)^ (MACRO:Singleton(P2 ;S;R)) ^ (MACRO:KeyFinesseCard(S; R))E: EasyFinesse(P2 ;S)T : FinesseTwo(P2;S)P : Agent(P2)^Turn(P2)^ (MACRO:VoidInSuit(P2;S))E: BustedFinesse(P2 ;S)T : FinesseTwo(P2;S)P : Agent(P2)^Turn(P2)^ Has(P2;S;R) ^ (R 6= R2) ^ (MACRO:KeyFinesseCard(S; R2))E: StandardFinesse(P2 ;S)Operator method:T : LeadLow(P ;S)P : Agent(P )^ (MACRO:Playable(P ; S;R)) ^ (MACRO:LowestInSuit(P ;S; R))E: PlayCard(P ; S; R)Operator:Name: PlayCard(P ; S; R)Preconditions: Agent(P )^ (MACRO:Playable(P ; S;R))Add list: Played(P ; S; R)^ (MACRO:TurnChangeAdds(P ; S; R))Delete list: Has(P ;S;R)^ (MACRO:TurnChangeDels(P ; S; R))playing after the opponent that has a higher card; see Figure 3 and Figure 4 forexamples of a decision tree for a �nesse. The task StandardFinesse(P2;S) is thecore of the tactical scheme of a �nesse. The task FinesseFour(P4;S) represents thedefenders causing the �nesse to fail or to succeed. \Two" in FinesseTwo(P2;S) andStandardFinesseTwo(P2;S) refers to the second card played to the trick; similarly\Three" and \Four". For the meaning of BustedFinesse(P2; S) and EasyFinesse(P2;S), see Section 6.2.Some of the methods used in Figure 1 are shown in Table 1. The syntax(MACRO:MacroName(X1;X2; X3; : : : ; Xn))means that MacroName(X1;X2; : : : ; Xn) is not an atom of L, but expands into a



10 Computational Intelligencesecond-order formula of L. For example, (MACRO:Playable(P ;S;R)) expands intoHas(P ;S;R)^Turn(P )^ (OnLead(P )_SuitLed(S) _ (8R1)(:Has(P ;S;R1))).We present a detailed example using these methods in Section 6.2.If an instantiation of a method (say M(a1; a2; a3; : : : ; an)) is applicable in somestate Sa 2 I�, and if Control(a1) holds, then we require that the instantiation beapplicable in all states S 2 I�. This will guarantee that if P is in control of theagent a1 whose turn it is to move, then P will have enough additional informationto determine which methods are applicable. In bridge, for example, this means thatif P has control of South, and it is South's turn, then P knows what strategic andtactical schemes South can employ.Let M be a set of operator methods and decomposable methods. Then M is anetwork of multi-agent methods. Figure 1 shows how methods link tasks together,making a \network".In contrast to the task networks used in most task-network planners, our tasknetworks are totally ordered; that is, the expansion lists in all the decomposablemethods are in the order in which tasks must be completed. For example, nowheredo we allow a single decomposable method to generate two tasks such as \Set Up(Spade) Suit" and \Get a (Heart) Ru�" without specifying the order of the tasks.We chose this total ordering because of the di�culty of reasoning with imper-fect information. It is di�cult enough to reason about the probable locations ofthe opponents' cards. If our task networks were partially ordered, then in manyplanning situations we wouldn't know what cards the opponents had already played.This would make reasoning about the probable locations of the opponents' cardsnearly impossible; this reasoning is a more serious problem than the problems withuninstantiated variables that occur in perfect-information domains.Some of the tasks used for bridge in our implementation are listed in Section 7.6. GAME-PLAYING PROCEDUREOur game-playing procedure constructs a decision tree, then evaluates the deci-sion tree to produce a plan for playing some or all of the game. It then executes thisplan either until the plan runs out, or until some opponent does something that theplan did not anticipate (at which point the procedure will re-plan). The details ofthe procedure are described in this section.6.1. Constructing a Decision TreeGiven a network of multi-agent methods and a state information set I , our game-playing procedure constructs a decision tree rooted at I .4 A decision tree resemblesa game tree.5 It contains two kinds of non-leaf nodes: decision nodes, representing4We use the term \decision tree" as it is used in the decision theory literature (French, 1986; Feldmanand Yakimovsky, 1974; Feldman and Sproull, 1977), to represent a structure similar to a game tree. We arenot employing decision trees (also, and less ambiguously, referred to as comparison trees (Knuth, 1973)) asthey are de�ned in the sorting literature (Cormen et al., 1990, p. 173). We apologize for the confusion, butit is inescapable.5In the decision theory literature, what we call external-agent nodes are usually called chance nodes,because decision theorists usually assume that the external agent is random. What we call leaf nodes areusually called consequence nodes, because they represent the results of the paths taken to reach them.



A Planning Approach to Declarer Play in Contract Bridge 11the situations in which it is P 's turn to move, and external-agent nodes, representingsituations in which it is some external agent's turn to move. The tree's leaves arenodes where the procedure has no methods to apply, either because the game hasended, or because the methods simply don't tell the procedure what to do.Each node of the decision tree T will contain a state information set and asequence of 0 or more tasks to be solved. Our procedure for creating T is as follows:Let the root of T be a node containing the state information set I and notasks. Do the following steps repeatedly:1. Pick a leaf node u of T such that u is not the end of the game and wehave never tried to expand u before. If no such node exists, then exit,returning T . Otherwise, let Iu be the state information set in u, andU = (U1; U2; : : : ; Un) be the sequence of tasks in u.2. For each instantiated methodM that is applicable to u, let v be the nodeproduced by applying M to u. Install v into T as a child of u. (Below,we de�ne the terms `instantiated method,' `applicable,' and `produced.')Using the network shown in Figure 2, the procedure might generate a piece of adecision tree for �nesse such as that shown in Figure 3. We will give an example ofan operation of this procedure in Section 6.2.An instantiated method is any ground instance M of some method M . Letu be a node whose state information set is Iu and whose task sequence is U =(U1; U2; : : : ; Un). Then an instantiated method M = (T; P; E) is applicable to u if:1. Either U is empty and T is NIL, or T matches U1.2. Some state S consistent with Iu satis�es P , i.e., some state S 2 I�u satis�es P .If P is in control of the agent au whose turn it is to move at node u, and if onestate S consistent with Iu satis�es P , then all states S 0 consistent with Iu (i.e., allS 0 2 I�u) satisfy P . We made this property a requirement of our multi-agent methodsin Section 5. Because all states S 0 consistent with Iu satisfy P , it follows that P � Iu.If P is not in control of the agent au whose turn it is to move at node u, thenit is possible for one state S1 consistent with Iu to satisfy P , while some other stateS2 consistent with Iu does not satisfy P . In this case, our procedure will need toassume that P holds, so that it can investigate what happens when some oppo-nent makes a move using the instantiated method M . Other instantiated methodsM1;M2; : : : ;Mm will investigate what happens in states where P does not hold.For example, in Figure 3, before investigating the move Play(North; �, 3), ourprocedure would need to make the assumption that North holds the 3�. The pro-cedure would investigate the other moves for West under di�erent assumptions (say,that North holds only the Q�, or that North holds no spades.)If M is applicable to u, then applying M to u produces the node v whose stateinformation set Iv and task sequence V are as follows:� If M = (T; P; E) is a decomposable method, then Iv = Iu [ P . Intuitively, Ivis Iu with all the conditions in P assumed. If M = (T; P; E) is an operatormethod, then Iv = [(Iu [ P ) � Del(E)] [ Add(E). Intuitively, Iv is Iu, with allthe conditions in P assumed, and then all the conditions in Del(E) deleted, andall the conditions in Add(E) added.
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PlayCard(P3;S;R3)PlayCard(P2 ;S;R2) PlayCard(P4;S;R04)PlayCard(P4; S;R4)FinesseFour(P4 ;S)
PlayCard(P ; S;R1) FinesseTwo(P2;S)StandardFinesse(P2 ;S)EasyFinesse(P2 ;S) BustedFinesse(P2 ;S)

Finesse(P ; S) Something(P ) Everything()Everything()NIL�A2 �QT98653�KJ74East: West: Out:On lead: West at trick 3.Contract: East|3NT.Our players:Opponents: East declarer,Defenders,West dummySouth and North
West|�2(North|�Q) (North||3)North|�3 East|�J South|�5 South|�Q

LeadLow(P ;S)
StandardFinesseTwo(P2 ;S) StandardFinesseThree(P3 ;S)
Figure 2. Instantiation of the �nessing part of the network.



A Planning Approach to Declarer Play in Contract Bridge 13S|�Q tacticalploysLatera3a1 a2 bW|�2 cdeopponent's move N||3our moveN|�3 E|�J S|�5E|�KN|�Q E|�K S|�3\FINESSE" S|�3aFigure 3. Decision tree generated on our example. For the sake of clarity, some nodes havebeen omitted.� If M = (T; P; E) is a decomposable method and E = (V1; V2; : : : ; Vm), thenV = (V1; V2; : : : ; Vm; U2; U3; : : :, Un). Intuitively, this corresponds to saying thatthe tasks V1; V2; : : : ; Vm need to be solved before attempting to solve the tasksU2; U3; : : :, Un. If M is an operator method, then V = (U2; U3; : : : ; Un).Each solution tree in the decision tree represents an alternative plan. However,as seen in Figure 3, branches in our decision tree correspond to possible schemes,not to cards in the various hands. All opponents' moves are completely instantiatedin our decision tree. We will see in Section 6.3 how a completely instantiated cardcan represent a possible scheme, and also what to do if the opponent makes a movethat does not appear in our decision tree.6.2. Example of Decision-Tree ConstructionAs an example, consider the situation in which \our" players (the players of whichP is in control) are East, the declarer, and West, the dummy. The opponents, Northand South, are the defenders. The contract is 3NT by East. West is on lead at trick3 East has the � KJ74, West has the � A2, and the � QT98653 are in North's andSouth's hands, although we do not know who holds which spades.Initially, the decision tree consists of the root node a, containing the state infor-mation set Ia and the task sequence Va. Ia contains the following literals:: Control(North), Control(East), : Control(South), Control(West),: Turn(North), : Turn(East), : Turn(South), Turn(West),Has(East,�,K), Has(East,�,J) Has(East,�,7) Has(East,�,4)Has(West,�,A), Has(West,�,2) : Has(West,�,Q) : Has(East,�,Q): Has(West,�,T) : Has(East,�,T) (and various other literals)Va = (), the empty sequence. Refer to Table 1, Figure 1, Figure 2, and Figure 3.The only instantiated method applicable to a is M1 in Figure 1. Thus, nodea1 becomes the child of a. Va1 = (Everything()). Ia1 = Ia, because M1 has nopreconditions.The only instantiated method applicable to a1 is M2 in Figure 1, with the instan-tiation P = West. Thus, node a2 becomes the child of a1. Va2 = (Something(West),Everything()). Ia2 = Ia1, because M2's only preconditions, as seen in Table 1, are



14 Computational IntelligenceAgent(P )^Turn(P ). Indeed, if it is our player's turn to move at a node u, then forany child v of u produced by a decomposable method, Iv = Iu, because Iv = Iu[P bythe de�nition of \produces"; and P � Iu, as we saw when we considered applicabilityof P to u in Section 6.1.The instantiated method applicable to a2 which we will consider is M3 in Figure 1,with the instantiations P = West, S = �. Thus, node a3 becomes the child of a2.Va3 = (Finesse(West; �), Everything()). Ia3 = Ia2. Other instantiated methods areapplicable to a2, such as the method for cashing all the high cards in East's andWest's hands. These methods are indicated by the dots in Figures 1{3.The only instantiated method applicable to a3 is M4 in Figure 1, with the in-stantiations P = West, P2 = North, S = �. Thus, node a4 becomes the child of a3.Va4 = (LeadLow(West; �), FinesseTwo(North; �), Everything()). Ia4 = Ia3.The only instantiated method applicable to a4 is M5 Figure 1, with the instan-tiations P = West, S = �, R = 2. Thus, node b becomes the child of a4. Vb =(FinesseTwo(North; �), Everything()).Ib = [(Ia4 [ P )� Del(E)][ Add(E)= [Ia4 �Del(E)] [ Add(E)= [Ia4 � fHas(West;�; 2);Turn(West)g] [ fPlayed(West;�; 2);Turn(North)g:EasyFinesse(P2;S) refers to a �nesse in which the �rst opponent plays the cardthat we are trying to trap. In the current situation, if North plays the Q�, East canplay the K�, and now the J� is a card that is sure to win a trick. BustedFinesse(P2;S) refers to a �nesse in which the �rst opponent plays a card in a suit other than thesuit led, in which case it is clear that the �rst opponent does not have the card thatwe are trying to trap. In the current situation, if North plays the 3|, West wouldhave to play the K�, because South must have the Q� and the �nesse must fail.Three instantiated methods are applicable to b: M6, M7, and M8. They aredecomposable methods whose tasks are FinesseTwo(P2;S) with the instantiationsP2 = North, S = �:� M6's expansion list is (EasyFinesse(P2;S)). M6 also has the instantiation R = Q.For M6, node d becomes b's child. Vd = (EasyFinesse(North; �), Everything()).M6's preconditions include (MACRO:HasSingletonInSuit(P2;S;R)) ^ (MACRO:KeyFinesseCard(S;R)), and thus Id = Ib [ fHas(North, �, Q), :Has(North, �,3), :Has(North;�; 5); : : : ;:Has(North;�;T)g.� M7's expansion list is (BustedFinesse(P2;S)). For M7, node e becomes b'schild. Ve = (BustedFinesse(North; �), Everything()). M7's preconditions in-clude (MACRO: VoidInSuit(P2 ; S)), and thus Ie = Ib [ f:Has(North;�; 3);:Has(North;�; 5); : : : ;:Has(North;�;Q)g.� M8's expansion list is (StandardFinesse(P2;S)). M8 also has the instantiationsR =3, R2 =Q. For M8, node c becomes b's child. Vc = (StandardFinesse(North;�), Everything()). M8's preconditions include Has(P2;S;R), and thus Ic = Ib [fHas(North;�, 3)g.The rest of the decision tree in Figure 3 is generated in a similar manner.6.3. Decision-Tree Evaluation and Plan ExecutionGiven a decision tree T , P will want to evaluate this tree by assigning a utilityvalue to each node of the tree. As we generate the decision tree T (as described in



A Planning Approach to Declarer Play in Contract Bridge 15N||3W|�2 E|�K S|�3N|�Q E|�K S|�3S|�Q"FINESSE"opponent's move our move +630-100+630+600+630+630 +600+6000.00780.00780.9854 0.50.5+265+265+270.73+270.73a3 b N|�3 E|�J S|�5Figure 4. Evaluation of the decision tree generated on our example. For the sake of clarity,many nodes have been omitted.the previous section), it is possible to evaluate it at the same time. However, for thesake of clarity, this section describes the evaluation of T as if the entire tree T hadalready been generated. Refer to Figure 4.In perfect-information games, the usual approach is to use the minimax proce-dure, which computes the maximum at nodes where it is P 's move, and the minimumat nodes where it is the opponent's move. In the decision theory literature, this pro-cedure is referred to as the Wald maximin-return decision criterion. This decisioncriterion is less appropriate for imperfect-information games: because we do not knowwhat moves the opponent is capable of making, it makes less sense to assume thatthe opponent will always make the move that is worst for us. Thus, a more com-plicated criterion which considers the belief function is to be preferred, such as theweighted-average-of-utilities criterion outlined below.Let u be an external-agent node whose children are u1; : : : ; un. For each ui, letIi be the state information set contained in ui. Suppose we have already computeda utility value vi 2 [0; 1] for each ui. Then we de�ne a external-agent criterion to bean algorithm C that returns a utility value v = C(u; u1; : : : ; un) for the node u.6Many external-agent criteria can be used, taking ideas from the pure decisioncriteria (such as Hurwicz's optimism-pessimism index, Savage's minimax regret, andWald's maximin return). Some will make use of the belief function p, others willnot. In bridge, we generally use an external-agent criterion that gives a weightedaverage of the utility values vi resulting from the best move the opponents couldmake in all the states consistent with the state information set I . The weights arecomputed using p by functions associated with each operator method that yieldsopponents' moves, as described in Section 5. A weight represents the probabilitythat the opponent makes a given move, and the functions compute the weights onthe basis of information from the prior bidding and play.Given a decision tree, a external-agent criterion for each uncontrolled agent, anobjective function, and a belief function, we evaluate the decision tree as follows:1. The utility value of a leaf node u is the value of e�(I), where I is the state6This de�nition of external-agent criterion is somewhat di�erent from the usual de�nition of decisioncriterion in decision theory (French, 1986, p. 28), which essentially de�nes decision criteria on a two-levelstructure of decision nodes and chance nodes, without the belief function p. However, we believe that ourde�nition, while in theory is not always as powerful, is in practice strong enough to implement most decisioncriteria we would want in most domains.



16 Computational Intelligenceinformation set associated with u. Recall that if f , the objective function, isde�ned at a state S, then e(S) = f(S). Thus, if we have reached a the end of thegame, then the objective function is used, as desired.2. The utility value of an external-agent node u is the value C(u; u1; u2; : : : ; un),where u1; u2; : : : ; un are the children of u.3. The utility value of a decision node u is the maximum of the utility values of itschildren.Although this evaluation may be computed recursively as de�ned, there may also bemore e�cient computations (for example, if C(u; u1; u2; : : : ; un) were the minimumof the utility values of u1; u2; : : : ; un, then we could use alpha-beta pruning as a moree�cient computation of minimax).Once the decision tree is solved, a plan (a policy in the decision theory literature)has been created; P will, at the state information set associated with any decisionnode, simply choose the method that leads to the node with highest utility value.This plan can be thought of as a contingency plan. After each of our moves, thetree includes nodes that match most of the opponent's possible responses; the subtreebelow each such node represents the plan we will use to respond to the opponent'smove. Each node where it is the opponent's move contains a \planned card" (thecard we think the opponent is most likely to play), as well as a critic function (asmentioned in Section 5). The purpose of this critic function is to tell us if certainother cards match by virtue of being \equivalent" to the planned card. For example,the critic associated with the method for StandardFinesseTwo(P2;S) in Figure 1 andFigure 2 would accept any of 3�, 5�, 6�, 8�, 9�, or T� as equivalent to 3�.P follows the plan as far as possible. If the plan takes P to the end of thegame, then the problem is solved. If the plan should terminate before the end of thegame|which may occur either because an external agent performs an action whichis not present in the plan, or because the plan has reached a previously unexpandednode|then P simply re-plans, starting at the node where the plan ends.7. IMPLEMENTATION AND TESTINGTo test our approach, we have done a full implementation of a program to performdeclarer play at bridge, called Tignum 2. For now, Tignum 2 has concentrated onplaying notrump contracts, which comprise about 28.6% of all bridge contracts.7The tasks used in Tignum 2 are shown in Tables 2 and 3. Second hand refers tothe player who plays the second card to a given trick; similarly third hand and fourthhand. A sequence is a set of cards, such as the K� and Q�, such that one of thecards must eventually win a trick; if the K� loses to the opponents' A�, the Q� isthe highest remaining spade and can then win a trick. A marked �nesse is a �nessethat is known to be successful, for example, when fourth hand is known to be void inthe suit. A winner is a card, such as the Ace, that is sure to win a trick. To followsuit is to play a card in the same suit as the card led to the current trick. To crossis lead to a winner in partner's hand, so that partner is on lead. To cash is to playa winner for the purposes of winning a trick.7Our 95% con�dence interval for the frequency of notrump contracts bid by the Bridge Baron is[27:9%;29:3%].



A Planning Approach to Declarer Play in Contract Bridge 17Table 2. Tasks used in Tignum 2, part one.Task name Task descriptionEverything Play the whole handSomething Use a particular strategic or tactical schemeCashOut Cash all the winners in declarer's and dummy's handsCashHand Cash all the winners in a particular handCashWinner Cash a winner in declarer's hand in a particular suitCashDummyWinner Cash a winner in dummyCashFollowed Cash a winner in declarer's hand; have the opponents follow suitCashDummyFollowed Cash a winner in dummy; have the opponents follow suitConsiderCross Think about crossing from declarer to dummy, or vice versaSimpleCross Cross from declarer to dummy, or vice versaLeadLow Lead a low cardFinesse Take a �nesseStandardFinesse Play in a standard �nesseStandardFinesseThree Play third hand in a standard �nesseMarkedStandardFinesse Play in a marked �nessePlaySetCard Play a card in a sequencePlaySetFollowed Play a card in a sequence; have the opponents follow suitConsiderLength Think about setting up a low card to win a trickLengthWinner Set up a low card to win a trickWaitForControl Wait to get back on lead before continuingFollow Follow to a trick that the opponents ledFollowVoid Follow to a trick when void in the suit ledFollowSuit Follow to a trick when holding cards in the suit ledConsiderHard Think about setting up a low card by losing some tricksHardLengthWinner Set up low card by losing some tricks in the suitHardCash Cash a winner before losing some tricksHardWinner Cash a winner in declarer's hand before losing some tricksHardDummyWinner Cash a winner in dummy before losing some tricksHardFollowed Cash a winner before losing some tricks; have the opponents follow suitHardDummyFollowed Cash a winner in dummy before losing some tricks;have the opponents follow suitHardLose Lose a trick to set up a low cardLoseTrick Lose a trickLoseFollowed Lose a trick; have the opponents follow suitHardDuck Intentionally lose a trick to preserve high cards for crossingRu�In Ru� a trick when void in the suit ledDiscardLow Discard a low card when void in the suit ledDiscardDuringCash Discard a low card when void in the suit led while cashing outFreeFinesse Play a card in second hand that might win a trickThirdHandLow Play a low card when third handThirdHandHigh Play a high card when third handThirdHandEquiv Play a card in third hand equivalent to a particular cardThirdHandCover Play a card in third hand that covers the cardthat an opponent played in second handThirdHandRu� Play a trump card in third hand when void in the suit ledThirteenthTrick Play the thirteenth trick



18 Computational IntelligenceTable 3. Tasks used in Tignum 2, part two.Task name Task descriptionDrawTrump Play cards in the trump suit to remove cards in the trump suitfrom the opponents' handsConsiderRu� Think about setting up a low card opposite a void to get a ru�SetUpRu� Set up a low card opposite a void to get a ru�Ru�Low Ru� with a low cardRu�Ru�ed Ru� a trick, forcing the opponents to ru� with a higher cardRu�Out Cash all the winners and take all the ru�s in declarer's and dummy's handsCashTrumps Cash all the winners in the trump suitForceThemRu� Force the opponents to ru� by cashing winnersCashRu�ed Cash a winner in declarer's hand, forcing the opponents to ru�CashDummyRu�ed Cash a winner in dummy's hand, forcing the opponents to ru�FinesseTwo Opponents: play in second hand during a �nesseStandardFinesseTwo Opponents: play in second hand during a standard �nesseEasyFinesse Opponents: play a card being �nessed againstBustedFinesse Opponents: show void in suit during a �nesseFinesseFour Opponents: play in fourth hand during a �nesseFreeFinesseThree Opponents: play in third hand during a free �nesseMarkedFinesseTwo Opponents: play in second hand during a marked �nesseMarkedFinesseFour Opponents: play in fourth hand during a marked �nesseThemNotWinner Opponents: play a card that does not win the trickThemAny Opponents: play any cardThemLead Opponents: lead to a trickThemVoid Opponents: follow to a trick when void in the suit ledThemSuit Opponents: follow to a trick when holding cards in the suit ledThemWin Opponents: win a trickThemAnyLow Opponents: play any low cardThemSplit Opponents: follow to a trick, possibly void in the suit led, possibly notThemSplitLess Opponents: follow to a trick, possibly void in the suit led,possibly holding cards that do not beat a particular cardThemSuitLess Opponents: follow to a trick when holding cards in the suit ledthat do not beat a particular cardThemRu� Opponents: ru� a trickThemOverru� Opponents: ru� a trick with a higher cardThemFinesse Opponents: take a �nesse against declarerStop Stop planningWe wanted to test the play of Tignum 2 against the Bridge Baron (BB), a com-mercially available bridge program. Like most such programs, BB is primarily rule-based (without rule chaining). It is probably safe to say that the Bridge Baron is thebest program in the world for declarer play at contract bridge.88The Bridge Baron (which was formerly known as the Micro-Bridge Companion) won the 1990 and 1991Computer Olympiads, lost the 1992 Computer Olympiad on a tiebreaker, won the 1993 Computer Bridgeworld championship, and won the 1994 and 1995 Computer Bridge competitions sponsored by the AmericanContract Bridge League (ACBL). In their review of seven commercially available programs (Manley, 1993),the ACBL rated the Bridge Baron to be the best of the seven, and the skill of the Bridge Baron to be thebest of the �ve that do declarer play without \peeking" at the opponents' cards.



A Planning Approach to Declarer Play in Contract Bridge 19NorthDeal: � KJ852~ T} 43| QJ952West South East� Q964~ Q8} AK62| 874�|~ A9764} QJ9875| KT� AT73~ KJ532} T| A63 W N E SBidding: PassPassPassPassPassPassPass 2NT2| 1NT1~Contract: East|2NTLead: South|Q }Vulnerable: AllFigure 5. One of the deals on which the Tignum 2 team beat the BB team.Table 4. Results of competition between two teams described in the text.Result Deals Wins Losses Ties Margin of victoryTignum 2 over BB 5000 1394 1302 2304 92The best method of comparing bridge competitors is duplicate bridge, which elim-inates the possibility of any competitor gaining a gross advantage simply by the luckof the deal. In duplicate bridge, each deal is played twice. The �rst time (played atthe \�rst table"), two members of Team A sit North and South, and two membersof Team B sit East and West. The second time (played at the \second table"), twoother members of Team A sit East and West, and two other members of Team B sitNorth and South. (No one team member plays the same deal twice, to ensure thatno one has foreknowledge of the unknowns in the deal.)In order to compare the declarer play of Tignum 2 against the declarer play ofthe Baron, we formed the following two teams:� the BB team: BB for declarer play, and BB for bidding and defender play.� the Tignum 2 team: Tignum 2 for declarer play, and BB for bidding and defenderplay (because Tignum 2 does not do bidding and defender play).8. TEST RESULTSOne method of scoring duplicate bridge is Swiss teams board-a-match scoring.Whichever team gets the higher number of total points wins the board; if the teamshave the same number of total points, the board is tied, and each team wins 1=2 aboard. For example, on the deal in Figure 5 and Figure 6, the Tignum 2 team scores+120 at one table and the Bridge Baron team scores -100 at the other table; thus,Tignum 2 wins the board.We held a duplicate bridge competition based on Swiss teams board-a-matchscoring on 5000 randomly generated notrump deals between the BB team and theTignum 2 team. For now, Tignum 2 is better on notrump deals than it is on suitdeals, because we have not yet encoded enough bridge knowledge for Tignum 2 toplay all suit deals well.The results of this competition in are shown in Table 4. On 5000 notrumpdeals, the declarer play of Tignum 2 was 92 boards better than that of the strongest
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Get in controlTry to set up hearts; realize failureTry to set up spadesTake marked spade �nesseGet in controlCash heart winnerTake marked spade �nesseCash last spade winnerDefense gets the last three tricksStart trying to set up hearts; unblock
Figure 6. Play of the deal from Figure 5 showing the Tignum 2 team beating the BB team.An arrow (!) indicates a card led to a trick. An asterisk (*) indicates a card that won a trick.commercially available program. These results are statistically signi�cant at the� = 0:05 level. We had never run Tignum 2 on any of these deals before this test, sothese results are free from any training-set biases in favor of Tignum 2.Tignum 2 searched an average of 8745.6 moves per deal on these 5000 notrumpdeals. Note that in each deal, Tignum 2 must play 26 cards. Tignum 2 never searchedmore than 583638 moves in a single deal. (In contrast, in the worst case, a brute-forcegame-tree search would search �2513�(13!)4=13 = 6:01�1044 moves.) These small searchtrees demonstrate the e�ectiveness of Tignum 2's pruning. Tignum 2's declarer playon each deal averaged 27.5 seconds on a Sun SPARCstation 10.In the next section, we will look at one of the deals on which Tignum 2 demon-strated the power of its planning ability. We will look at the BB declarer's play, andthen the Tignum 2 declarer's play in some depth.8.1. Example DealFigure 5 shows one of the deals on which Tignum 2 demonstrated the power of itsplanning ability. As seen in Figure 6, Tignum 2 �rst tried to set up tricks in hearts.After discovering that South had too many hearts, Tignum 2 considered alternativeplans and concluded that its best chance of making the contract was to execute aspade �nesse. After succeeding, it quickly cashed enough tricks to make the contract.In the next two subsections, we will see how the bidding and play on this deal bythe BB team and the Tignum 2 team took place. In the �rst subsection, we discussplay at the \�rst table", and in the second subsection, play at the \second table".The First Table. At the �rst table, the Tignum 2 team sat North and South,and the BB team sat East and West. The bidding proceeded as shown in Figure 5|because Tignum 2 does not bid, all four players used the BB bidding routines. East



A Planning Approach to Declarer Play in Contract Bridge 21became declarer at a contract of 2NT. Because the BB team won the contract, BBperformed the declarer play at this table. Because the Tignum 2 team was on de-fense, and because Tignum 2 does not perform defender play, BB also performed thedefensive play at this table.The play proceeded, and East, the BB declarer, won the �rst trick with the A}.At the second trick, East was on lead. On the basis of its ad-hoc rules, it decided tolead the Q~, the correct play. South, a defender, won the trick with the A~, and attrick 3, led back the J}, setting up four diamond tricks if it ever got back into thelead. After winning trick 3 with the A}, East, the BB declarer, led the 4� at trick 4,and South showed a spade void by playing the 6~, a card in another suit. West, theBB dummy, played the A�, winning the trick. At this point, the BB declarer wasguaranteed to make the contract with correct play, unless North had all four missingdiamonds (which was very unlikely, based on South's leads at trick 1 and trick 3.)At trick 5, West played the K~, knowing it would win the trick because the A~ hadalready been played, and North, a defender, showed a heart void by playing the 2|.At this point, on lead at trick 6, the BB declarer was still almost certain to makethe contract with correct play. However, West played the J~, making South's 9~ awinner. As the cards lay, the BB declarer could still make the contract, but becauseof its ad-hoc rules, it decided at trick 7 to lead the 5~, a mistake. After winning the9~, South quickly cashed four diamond tricks, for a total of six tricks for the defense.Because the BB declarer had only taken �ve tricks, and because at the eleventh trickthere were only two tricks remaining, the BB declarer could only take a total of seventricks|but the BB declarer had contracted for eight tricks. Thus, the BB declarerfell one trick short, for a score of -100 to the Bridge Baron team.The Second Table. Because all four players at the second table were again usingthe deterministic BB bidding routines, the bidding was identical to that at the �rsttable. East was again declarer at a contract of 2NT. Because the Tignum 2 team wonthe contract, Tignum 2 performed the declarer play at this table and BB performedthe defensive play at this table.South, a BB defender, made the opening lead of the Q}. It was then dummy'sturn to play, and because Tignum 2 was declarer, Tignum 2 played both declarer'scards and dummy's cards. West, the Tignum 2 dummy, had only one card in thediamond suit, so it was forced to play the 10}. North, a BB defender, played the4}. East, the Tignum 2 declarer, played the K}. Because there were no alternativesthat Tignum 2 considered worth investigating at trick 1 (that is, Tignum 2 believedthat it had only one sensible choice), Tignum 2 stopped planning after trick 1, andplanned for trick 2 when it was time to play to trick 2. The reasoning that Tignum 2used to decide on the play of the K} is shown in Figure 7.East was on lead at trick 2. Tignum 2 now did extensive planning to decideamong three alternatives: trying to set up hearts; cashing its A}, for fear that itwouldn't be able to get back to East's hand to do so later; or cashing its high cards(starting with the A}.)After generating and evaluating its game tree, Tignum 2 decided to try to setup hearts, and played the Q~ appropriately. Tignum 2 preferred the Q~ to the 8~on the basis of its bridge knowledge; playing the 8~ would have made it harder toplay the rest of the hearts, because Tignum 2 would have to win the next trick withEast's Q~ and then get back to West to lead the next high heart.South won trick 2 with the A~, and at trick 3, led back the J}, setting up fourdiamond tricks if it ever got back into the lead.
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Something(P )NILFollow(P ) WaitForControl(P )FollowSuit(P ; S)East|}KFigure 7. Reasoning that Tignum 2 used todecide on the play of the K} at trick 1. Contract: East|2NTVulnerable: AllDeclarer: 2 tricksDefense: 1 trickOn lead: East at trick 4
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Figure 8. Situation at trick 4at the second table.The lead of the J} did not meet the criteria of Tignum 2's critic, becauseTignum 2 expected a club lead. Thus, after winning trick 3 with the A}, Eastre-planned, deciding among three alternatives at trick 4: trying to set up hearts;trying to set up spades; or cashing its high cards (starting with the A}.)The situation was now as shown in Figure 8. An annotated version of part of thegame tree that Tignum 2 generated and searched is shown in Figure 9.After generating and evaluating this game tree, Tignum 2 decided to try to setup hearts, and played the 8~ appropriately; this was the �rst Tignum 2 declarer playat the second table that di�ered from BB's declarer play at the �rst table. Southplayed the 9~, and West played the J~ as planned, knowing it would win the trickbecause the A~ and Q~ had already been played and West itself held the K~. NowNorth �nished the trick, showing a heart void by playing the 2�.The rest of the play proceeded as shown in Figure 6. The Tignum 2 declarer tookeight tricks, making its contract, for a score of +120 to the Tignum 2 team.9. CONCLUSIONIn this paper, we have described an approach to playing imperfect-informationgames. By using techniques adapted from task-network planning, our approach re-
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Figure 9. Annotated version of part of the game tree that Tignum 2 investigated at trick 4for the hand shown in Figure 5.duces the large branching factor that results from uncertainty in such games. It doesthis by producing game trees in which the number of branches from each state isdetermined not by the number of actions that an agent can perform, but instead bythe number of di�erent tactical and strategic schemes that the agent can employ. Bydoing a modi�ed game-tree search on this game tree, one can produce a plan thatcan be executed for multiple moves in the game.Our approach appears to be particularly suited to bridge, because bridge is animperfect-information game that is characterized by a high degree of planning dur-ing card play. Thus, to test our approach, we created an implementation, calledTignum 2, that uses these techniques to do card-playing for declarer in the game ofbridge. The declarer play of this implementation on 5000 notrump deals was sta-tistically signi�cantly better than the declarer play of the strongest commerciallyavailable program.Tignum 2 \consciously" handles cashing out, ru�ng out, crossing, �nesses, free �-nesses, automatic �nesses, marked �nesses, sequence winners, length winners, winnersthat depend on splits, opponents on lead, opponents �nessing against declarer anddummy, dangerous opponents, ducking, hold-up plays, discarding worthless cards,drawing trump, ru�ng, and setting up ru�s; i.e., it has tasks and methods to ad-dress these tactical and strategic schemes. Endplays and even squeezes are occasionalemergent behavior; i.e., while Tignum 2 does not consciously handle endplays andsqueezes, occasionally other tasks and methods will combine to produce them. ForTignum 2 to handle endplays and squeezes consciously, we would just have to addtasks and methods; we have yet to address these strategies because they are rare.



24 Computational IntelligenceAnyone wishing to apply our approach to other domains should consider thefollowing factors that led us to choose and shape our approach:� Bridge has a natural element of hierarchical planning. Humans use hierarchiesof schemes to create plans to play bridge deals. The bridge literature describesmany such schemes. Hierarchical planning gives each play a context; withoutsuch a context, one might search through many methods at each play.� Because our approach avoids examining all possible moves for all agents, it isrelated to the idea of forward pruning. The primary di�erence from previous ap-proaches to forward pruning is that previous approaches used heuristic techniquesto prune \unpromising" nodes from the game tree, whereas our approach simplyavoids generating nodes that do not �t into a tactical and strategic scheme forany player. Although forward pruning has not worked very well in games suchas chess (Biermann, 1978; Truscott, 1981), our recent study of forward pruning(Smith and Nau, 1994) suggests that forward pruning works best in situationswhere there is a high correlation among the minimax values of sibling nodes. Partof our motivation for the development of Tignum 2 is that we believe that bridgehas this correlation.� Although our approach is based on ideas from hierarchical task-network plan-ning, it di�ers from most other task-network planners in that it generates totallyordered plans. This seemed to be the best solution to imperfect information,which causes problems more severe than the uninstantiated variables that occurin perfect-information domains.We hope that the approach described in this paper will be useful in a varietyof imperfect-information domains, possibly including defensive play in bridge. Weintend to investigate this issue in future work.REFERENCESBallard, B. W. 1983. The *-minimax search procedure for trees containing chance nodes. Arti�cialIntelligence 21:327{350.Berlin, D. L. 1985. SPAN: integrating problem solving tactics. Proc. 9th International JointConference on Arti�cial Intelligence, 1047{1051.Berliner, H. J.; Goetsch, G.; Campbell, M. S.; and Ebeling, C. 1990. Measuring the perfor-mance potential of chess programs. Arti�cial Intelligence 43:7{20.Biermann, A. W. 1978. Theoretical issues related to computer game playing programs. PersonalComputing, September 1978:86{88.Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990. Introduction to Algorithms. MITPress/McGraw Hill.Currie, K. and Tate, A. 1985. O-Plan|control in the open planner architecture. BCS ExpertSystems Conference, Cambridge University Press, UK.Erol, K.; Nau, D. S.; and Hendler, J. 1993. Toward a general framework for hierarchical task-network planning. In AAAI Spring Symposium.Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995. Complexity, decidability and undecidabilityresults for domain-independent planning. Arti�cial Intelligence, to appear.Feldman, J. A. and Yakimovsky, Y. 1974. Decision theory and arti�cial intelligence i. A semantics-based region analyzer. Arti�cial Intelligence 5:349{371.Feldman, J. A. and Sproull, R. F. 1977. Decision theory and arti�cial intelligence ii: The hungrymonkey. Cognitive Science 1:158{192.
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