
Transactional Client-Server Cache Consistency:Alternatives and Performance�Michael J. Franklin Michael J. Carey Miron LivnyUniversity of Maryland IBM Almaden Research Center University of WisconsinUniversity of Maryland College ParkTechnical Report CS-TR-3511 and UMIACS TR 95-84September 1995AbstractClient-server database systems based on a page server model can exploit client memory resourcesby caching copies of pages across transaction boundaries. Caching reduces the need to obtain datafrom servers or other sites on the network. In order to ensure that such caching does not result in theviolation of transaction semantics, a cache consistency maintenance algorithm is required. Many suchalgorithms have been proposed in the literature and, as all provide the same functionality, performanceis a primary concern in choosing among them. In this paper we provide a taxonomy that describesthe design space for transactional cache consistency maintenance algorithms and show how proposedalgorithms relate to one another. We then investigate the performance of six of these algorithms, anduse these results to examine the tradeo�s inherent in the design choices identi�ed in the taxonomy. Theinsight gained in this manner is then used to reect upon the characteristics of other algorithms that havebeen proposed. The results show that the interactions among dimensions of the design space can impactperformance in many ways, and that classi�cations of algorithms as simply \pessimistic" or \optimistic"do not accurately characterize the similarities and di�erences among the many possible cache consistencyalgorithms.1 IntroductionIn recent years, trends towards distributed computing and object-orientation have combined to bring aboutthe development of a new class of database systems. These systems use a client-server computing model toprovide both responsiveness to users and support for complex, shared data in a distributed environment.Client processes, which execute close to the users, allow for �ne-grained interaction with the database systemas required by the advanced applications that utilize object-based DBMSs. Server processes manage theshared database and provide transaction management support to allow the coordination of database accessby multiple users distributed across the network.1.1 Client-Server Database System ArchitecturesClient-server DBMS architectures can be categorized according to the way in which client and server processesinteract. Relational client-server DBMSs are based on query-shipping (e.g., the ODBC model), in which�This work was partially supported by NSF grants IRI-8657323 and IRI-9409575, by ARPA under contract DAAB07-92-C-Q508, and by a research grant from IBM. 1

clients send queries to servers and the servers send results back to the clients. Queries may be sent asplain text (e.g., SQL), in a compiled representation, or as calls to pre-compiled queries stored at the server.Query shipping provides e�cient use of communication for the coarse-grained, query-based data access thatis prevalent in relational DBMSs. Furthermore, the conversion of an existing centralized DBMS to a query-shipping system is relatively straightforward, as the structure of the DBMS engine remains largely unchanged| it is centralized at the server.In contrast, object-oriented database systems (OODBMSs) are typically built using data-shipping. Data-shipping systems perform most query processing (in addition to application processing) at the clients. Whena client needs data from the server, it sends a request for the speci�c data items (e.g., objects or pages)that it requires. The advantages of data-shipping for OODBMSs are two-fold: First, data-shipping movesthe data closer to the applications, allowing e�cient �ne-grained interaction between the application andthe DBMS. This accelerates navigation through complex persistent data structures, as supported by theprogrammatic interfaces of object-based DBMSs. Second, data-shipping o�oads much of the DBMS functionfrom the server to the client workstations, thereby allowing the DBMS to exploit the plentiful and relativelyinexpensive resources of the workstations. Workloads that demonstrate these performance advantages includethe 001 (or \Sun") engineering database benchmark [Catt92] and the more recent 007 benchmark [Care93].Examples of data-shipping systems include include research prototypes such as ORION [Kim90], EXODUS[Fran92c, Exod93], SHORE [Care94a], and THOR [Lisk92], as well as commercial products such as GemStone[Butt91], O2 [Deux91], ObjectStore [Lamb91], Ontos [Onto92], Objectivity [Obje91], and Versant [Vers91].1.2 Client CachingA potential weakness of the data-shipping approach is its susceptibility to network and/or server bottlenecksthat can arise due to the volume of data requested by clients. In the presence of locality (i.e., the a�nity ofapplications at certain workstations for certain subsets of the data items), caching data items in memory atthe clients can reduce the volume of data that must be obtained from servers. Therefore, client data cachingis a fundamental technique for improving the performance and scalability of data-shipping database systems.There are two basic types of client caching: intra-transaction caching refers to the caching of data within asingle transaction; inter-transaction caching allows clients to keep data cached locally even across transactionboundaries. Intra-transaction caching is easily implemented, requiring only that a client process be able tomanage its own bu�er pool and keep track of the locks it has obtained. This is because the transactionmechanism will ensure that any data that has been accessed by a transaction (and hence, brought into aclient's memory) is valid. In contrast, inter-transaction data caching raises the need for a cache consistencyprotocol to ensure that applications always see a consistent (serializable) view of the database.Cache consistency protocols for client-server database systems have been the subject of much studyover the past �ve years [Wilk90, Care91a, Wang91, Fran92a, Fran93a, Adya95]. Many algorithms havebeen proposed; these algorithms di�er along numerous dimensions such as their level of optimism versuspessimism, their use of invalidation or propagation (i.e., write-invalidate or write-broadcast [Arch86]) forupdated data items, and their interaction with transaction management. While the papers mentionedpreviously have all provided comparisons of two or more proposed algorithms, there has been little publishedwork on systematically exploring the large design space for client-server cache consistency algorithms. Asa result, it has been di�cult to compare and contrast the set of proposed algorithms and to choose amongthem.This paper addresses this problem by proposing a taxonomy of transactional cache consistency mainte-2

nance algorithms that encompasses the algorithms that have been proposed in the literature. The taxonomyoutlines the numerous dimensions of the design space for cache consistency algorithms and shows how pro-posed algorithms relate to one another. The taxonomy is used to focus a detailed analysis of the performancecharacteristics of six candidate algorithms; the insight gained in this manner is then used to reect upon thecharacteristics of other proposed algorithms. In this way, the taxonomy allows us to shed light both on thenature of the design space for transactional cache consistency algorithms and on the performance tradeo�simplied by the many of the choices that exist in that design space.1.3 Organization of the PaperThe remainder of the paper is organized as follows: Section 2 outlines a reference architecture for a data-shipping database system and motivates the use of inter-transaction caching as a fundamental technique inthe design of such systems. Section 3 presents our taxonomy of transactional cache consistency maintenancealgorithms. Section 4 describes three families of proposed transactional cache consistency maintenancealgorithms in greater detail, examining their performance using a detailed simulation model. Section 5comments on the tradeo�s made by the remaining algorithms in the taxonomy, and discusses related studiesof cache consistency in other environments. Finally, Section 6 presents our conclusions.2 Caching in Client-Server Database Systems2.1 Reference ArchitectureFigure 1 shows a high-level reference architecture for a data-shipping client-server DBMS. The underlyinghardware is typical of that found in today's computer-assisted work environments (e.g., CAD, CAM, CASE,etc.). As shown in the �gure, applications in a data-shipping DBMS execute at the client workstations. TheDBMS consists of two types of processes that are distributed throughout the network. First, each clientworkstation runs a Client DBMS process, which is responsible for providing access to the database for theapplications running at the local workstation. For protection reasons, the applications run in a separateaddress space from their local Client DBMS process, though some shared-memory may be used for e�ciency(e.g., for communication)1. Applications send database access requests to their local Client DBMS process,which executes the request, in turn sending requests for transaction support and for speci�c data itemsto the Server DBMS processes. Server DBMS processes are the actual owners of data, and are ultimatelyresponsible for preserving the integrity of the data and enforcing transaction semantics. The Server DBMSprocesses manage the stable storage on which the permanent version of the database and the log reside.They also provide concurrency control and copy management functions for the data that they own. Thedatabase is assumed to be statically partitioned across the servers.Data-shipping systems can be structured either as page servers, in which clients and servers interact usingphysical units of data (e.g., pages or groups of pages), or object servers, which interact using logical units ofdata (e.g., tuples or objects). The tradeo�s between page servers and object servers have been studied forthe single user case in [DeWi90], and more recently for the multi-user case in [Care94b, Chu94]. In the singleuser case, page servers were shown to o�er communication savings given e�ective clustering. The multi-userwork showed how to e�ciently support �ne-grained (e.g., object-level) sharing within a page server context.1The process boundaries described here are typical, but not strictly required. For example, in EXODUS, applications arelinked into a single process with the client DBMS code. 3

Workstation 1

Client
DBMS

cache
client
disk

Workstation n

Client
DBMS

Application

cache
client
disk

Log Disk

Database
Disks

buffer pool

Server
DBMS

Lock & Copy
Table

Log Disk

Database
Disks

buffer pool

Server
DBMS

Lock & Copy
Table

Server
1

Server

Appli−
cation

Appli−
cation

m

lock
manager

lock
manager

data data

Figure 1: Reference Architecture for a Data-Shipping DBMSFurthermore, our experience with the client-server EXODUS system [Fran92c, Exod93] has shown that apage server design provides additional advantages, such as the ability to use standard recovery algorithms(e.g., ARIES [Moha92]), and the ability to add e�cient, server-based garbage collection algorithms [Amsa95].For these reasons, the work in this paper is focused on page server architectures. It should be noted however,that many of the algorithms and results are also applicable to object servers.In a page server DBMS, the database is divided into �xed length pages, which are typically on the orderof four or eight KBytes. Each Client DBMS process is responsible for translating local application requestsinto requests for speci�c database pages and for bringing those pages into memory at the client. As a result,all of the pages referenced by an application are brought from the server(s) to the clients at some point.Some or all of these pages may be cached at the clients in order to reduce transaction path length and serverload. A Server DBMS process is responsible for providing the most recent committed values for the datapages that it owns in response to clients' requests; of course, due to concurrency control conicts, it may notbe possible for the server to provide each requested page immediately.An important aspect of page server systems is that all of the DBMS processes (both Client and Server)have memory that they use for bu�ering database pages. Therefore, the database system as a whole isresponsible for managing bu�ers across the entire collection of machines. Similarly, the other distributedresources of the system, such as CPUs and disks, can also be exploited by the DBMS. The next sectionoutlines the overall strategy for utilizing these resources e�ectively, as well as the properties of page serverDBMSs that inuence the design space of techniques for achieving this utilization.4

2.2 Utilizing Client Resources2.2.1 Improving Performance and ScalabilityOne consequence of the reference architecture presented in the previous section is that, while individualservers will typically have more CPU power and main memory than any single workstation, the majority ofthe aggregate CPU power and main memory available to the DBMS is likely to be at the clients. As a result,o�oading functionality from the servers to the clients can improve both performance and scalability. Byreducing their need to communicate with the server, the overall path length of transactions can be shortened,thereby improving latency. In addition, for a heterogeneous system, clients can cache data in their nativeformat, thus avoiding the conversion costs that would be required when importing data items from a remotesite. System throughput can be improved through the o�oading of shared resources such as server machinesand the network, both of which are potential performance bottlenecks.The utilization of client resources can also enhance performance predictability. As Hennessy and Pat-terson state: \The attraction of a personal computer is that you don't have to share it with anyone. Thismeans response time is predictable, unlike timesharing systems." [Henn90]. This is only true, however, tothe extent that access to shared resources can be avoided. For example, if data must be obtained from aremote server, then the time required to respond to a user request will vary depending on the load on theserver and the network. However, if the data can be obtained locally, without any server interaction, thenits access time is independent of the activity at other sites.2.2.2 Correctness and Availability ConsiderationsWhile the potential gains to be realized by exploiting client resources are large, they are ultimately lim-ited by correctness and availability constraints. Workstation-server database systems must be capable ofproviding the same level of transaction support as more traditional database architectures (i.e., the ACIDproperties [Gray93]), including serializability. Because (as described in the following section) client cachingis essentially a form of dynamic data replication, correctness criteria for managing replicated data are appli-cable in this environment. The extension of serializability to replicated data is called one-copy serializabil-ity [Bern87]. A one-copy serializable execution of transactions on a replicated database is equivalent to someserial execution of those transactions on a non-replicated database.In terms of availability, client-server environments have inherent asymmetries that impact the extent towhich responsibility for data and transaction management can be placed at the client workstations. Theseasymmetries include both physical and environmental ones. The physical di�erences result from economiesof scale that dictate the placement of certain resources at either the client or server machines. For example,duplexed log disk storage or non-volatile memory can be placed more cost-e�ectively at server machinesrather than at each client machine. The environmental di�erences result from the fact that client machinesare often managed by users, while server machines are typically administered by an operations sta� and arelocated in machine rooms rather than on desktops. More importantly, as portable client machines becomeincreasingly popular, it cannot be assumed that a client is always reliably connected to the network. As aresult, care must be taken so that the crash or disconnection of one client workstation does not impact theavailability of data for applications running at other client workstations. This constraint limits the extentto which clients can be allowed to manage data independently (i.e., without server interaction).5

2.3 Transactional Client CachingThe previous subsections have made the following two points:1. There are substantial gains to be obtained through the utilization of client resources.2. Methods that attempt to realize these gains must do so within the correctness and availability con-straints of the client-server DBMS environment.The combination of these two factors leads to the adoption of client caching as a fundamental technique inthe design of a page server DBMS. For a page server system, client caching refers to the ability of clients toretain copies of database pages locally once they have been obtained from the server. In this context, clientcaching can be thought of in the following manner:Client Caching = Dynamic Replication + Second-Class OwnershipDynamic replication means that page copies are created and destroyed based on the runtime demands ofclients. When a client needs to access a page, a copy of that page is placed in the client's cache if one doesnot already exist. Page copies are removed from a client's cache in order to make room for more recentlyrequested ones or, under some caching algorithms, because they become invalid. This is in contrast to staticreplication schemes, in which the replication of data is determined as part of the physical database designprocess (e.g., [Ston79]).It is well known that replication can reduce data availability for updates in the presence of certain failures(e.g., network partition) in a distributed environment [Davi85]. Second-class ownership allows consistencyto be preserved without sacri�cing availability. Second-class ownership refers to the fact that the cachedcopies of pages are not considered to be the equals of the actual data pages, which are kept at the server2.Speci�cally, the server always retains locally any and all data that is necessary for ensuring transactiondurability (e.g., data pages, logs, dirty page information, etc.), so that client-cached pages can be destroyedat any time without causing the loss of committed updates. This notion is crucial to data availability,as it allows the server to consider a client to be \crashed" at any time, and thus, to unilaterally abort anytransactions active at that client. As a result, the system as a whole is never held hostage by an uncooperativeor crashed client.2.4 Cost Factors for Transactional Cache ConsistencyWhile the potential bene�ts of caching are signi�cant, there are potential pitfalls as well. In order to ensurethat caching does not a�ect the correctness of client database accesses, a cache consistency maintenancealgorithm is required. Such protocols can be complex and may entail substantial overhead. The costs ofmaintaining cache consistency can be inuenced by several factors such as: 1) the amount of work (e.g.,communication) required for control actions, 2) whether this work is done synchronously or asynchronously,3) transaction blocking or aborts due to consistency actions, and 4) the extent to which clients can successfullyutilize their caches.In addition to being highly dependent on the choice of cache consistency maintenance algorithm, theperformance impact of these cost factors is often workload-dependent. The challenge in designing cache2The term \second-class ownership" is derived from a similar concept called "second-class replication" used in the CODAdistributed �le system [Kist91]. The two notions are similar in that a distinction is made between the \worth" of di�erent typesof copies. They di�er, however, in that the second-class replicas of CODA are used to increase availability by allowing accessto inconsistent data, whereas our notion of second-class copies is used to enhance the availability of consistent data.6

consistency maintenance protocols is thus to provide correctness while minimizing the negative performanceimpact over a range of workloads. Because of the wide range of tradeo�s underlying the performance ofcache consistency maintenance algorithms, many such algorithms have been proposed in the literature. Theremainder of this paper describes the design space of transactional cache consistency maintenance algorithmsand analyzes a number of proposed algorithms with respect to these cost factors.3 A Taxonomy of AlgorithmsCache consistency algorithms for page server DBMSs combine aspects of distributed concurrency control,transaction management, and replicated data management. As a result, there is a wide range of optionsfor the design of such algorithms. This section provides a taxonomy of transactional cache consistencyalgorithms that encompasses the major algorithms that have appeared in the literature, including [Wilk90,Care91a, Wang91, Fran92a, Fran93a, Adya95]. All of these algorithms provide one-copy serializability andare applicable to page server DBMSs (although some were originally proposed for object servers).The taxonomy is shown in two parts in Figures 2 and 3. The �gures show where proposed algorithms�t in the taxonomy. Branches of the taxonomy for which (to the best of our knowledge) no algorithmshave been published, are shown using dashed boxes in the �gures. At the highest level of the taxonomy(which divides the design space into Figures 2 and 3), algorithms are classi�ed according to their policy forInvalid Access Prevention. This policy dictates whether or not the clients can trust the validity of their cachecontents. As explained in the following, algorithms that use avoidance for invalid access prevention ensurethat all cached data is valid, while those that use detection allow stale data to remain in client caches andensure that transactions that are allowed to commit have not accessed such stale data.There are many possible ways to organize the design space for cache consistency algorithms, and at �rst,it might seem odd to use the the avoidance/detection distinction as the most fundamental decision point inthe taxonomy. A di�erent, and possibly more intuitive approach is to divide the taxonomy along the linesof concurrency control and replicated data management, as has been done for algorithms in the shared disksenvironment [Rahm91]. Because the two concepts are so closely inter-related, however, dividing a taxonomyat the highest level along these lines can result in substantial duplication of mechanism within the taxonomy,hurting its descriptive e�ectiveness. Another approach that is often used informally is to classify algorithmsat the coarsest level as either \pessimistic" or \optimistic". As will be seen in the following sections, sucha binary classi�cation is not meaningful for many algorithms; in fact, many of the algorithms that havebeen proposed use combinations of both pessimism and optimism that interact in complex ways. By usingthe invalid access prevention policy as the coarsest level of di�erentiation in the taxonomy, such hybridalgorithms can be easily accommodated.The next section describes the avoidance-based and detection-based approaches for invalid access pre-vention. Because this choice is a major distinction among algorithms, the properties upon which the lowerlevels of the taxonomy are based di�er depending on which invalid access prevention policy is used. Thelower levels of the taxonomy for each option are then elaborated in the sections that follow.3.1 Invalid Access PreventionTransactional cache consistency maintenance algorithms must ensure that no transactions that access stale(i.e., out-of-date) data are allowed to commit. In a transactional world, a data item is considered to be7

No−Wait Locking
[Wang91]

Initiation

Category
Category with no
Published Algorithms=

Dynamic

On Initial Access
(Synchronous)

On Initial Access
(Asynchronous)

Deferred Until
Commit

Change Notification

None

After Commit Propagation

[Wang91]

No−Wait Locking
w/Notification

Invalidation

During Transaction

After Commit
Propagation

Dynamic

Invalidation

Cache Locks
[Wilk90]

None

During Transaction

After Commit

During Transaction

None

Remote Update
Hints

Protocols

Detection

Based

Caching Two−Phase
Locking [Kim 90,

Care91a, Wang91]

Invalid Access
Prevention

Validity Check
Action

[Adya95]

Adaptive
OptimisticFigure 2: Taxonomy of Detection-Based Algorithms8

Preempt

Wait

Preempt

Preempt

Wait

Wait

Deferred Until
Commit

Protocols

Avoidance

(Synchronous)
Fault

On Write

Fault

On Write

(Asynchronous)

End of
Transaction

End of
Transaction

Category
Category with no
Published Algorithms=

Declaration
RemoteWrite Intention

Duration

Invalidation

Dynamic

Dynamic

Propagation

Invalidation

Invalidation

Propagation

Dynamic

Invalidation

Propagation

Dynamic

Notify Locks

[Care91a]

[Care91a]

[Care91a]

[Wilk90]

O2PL−Invalidate

Propagation

O2PL−Propagate

O2PL−Dynamic

Callback−All

Callback−Read

O2PL−NewDynamic

Remote Update

Revoked
or

Dropped

Until

Revoked
or

Dropped

Until

Based

Invalid Access
Prevention ActionConflict Priority

(ROWA)

Write Permission

Permission

Permission

[Wang91, Fran92a]

[Lamb91, Fran92a]

[Fran92a]Figure 3: Taxonomy of Avoidance-Based Algorithms9

stale if its value is older than the item's latest committed value.3 In this taxonomy we partition consistencymaintenance algorithms into two classes according to whether their approach to preventing stale data accessis detection-based or avoidance-based. Qualitatively, the di�erence between these two classes is that detection-based schemes are lazy, requiring transactions to check the validity of accessed data, while avoidance-basedschemes are eager; they ensure that invalid data is quickly (and atomically) removed from client caches.Detection-based schemes allow stale data copies to reside in a client's cache for some period of time.Transactions must therefore check the validity of any cached page that they access before they can be allowedto commit. The server is responsible for maintaining information that will enable clients to perform thisvalidity checking. Detection-based schemes are so named because access to stale data is explicitly checkedfor and detected. In contrast, under avoidance-based algorithms, transactions never have the opportunityto access stale data. Avoidance-based algorithms use a read-one/write-all (ROWA) approach to replicamanagement. A ROWA protocol ensures that all existing copies of an updated item have the same valuewhen an updating transaction commits. Avoidance-based algorithms can thus be said to avoid access tostale data by making such access impossible. In a ROWA scheme, a transaction is allowed to read any copyof a data item (which will typically be the one in its local client cache, if such a copy exists). Updates,however, must be reected at all of the copies that are allowed to exist in the system beyond the updatingtransaction's commit point.4Before proceeding, it should be noted that it is possible to augment detection-based algorithms withavoidance-based techniques. In fact, three of the detection-based algorithms cited in Figure 2 use asyn-chronous update noti�cations (i.e., they asynchronously install new values or remove stale values at remoteclients) in order to reduce the probability of having stale data in the client caches. These are the algorithmswith entries in the \Remote Update Action" column in Figure 2. These three algorithms lie strictly in thedetection-based camp, however, as the noti�cations are sent only as \hints". That is, all three ultimatelydepend on detection to ensure that committing transactions have not accessed any stale data. Of course,the use of avoidance obviates any possible need for detection, so there is no augmentation in the oppositedirection within the taxonomy.3.2 Detection-based AlgorithmsA number of detection-based algorithms (shown in Figure 2) have been proposed and studied in the litera-ture [Kim90, Wilk90, Care91a, Wang91, Adya95]. The main argument for the detection-based approach issimplicity. Because their consistency actions involve only a single client and the server, the detection-basedapproaches allow the cache management software on the clients to be greatly simpli�ed compared to theROWA approach. For example, using detection, the system software can be structured such that clients donot ever have to receive asynchronous messages from the server. The EXODUS storage manager [Exod93]chose a detection-based approach largely for this reason. Also, servers can be made responsible for main-taining consistency information, thus relieving clients of that burden. The disadvantage of detection-basedapproaches, however, is a greater dependency on the server, which can result in additional overhead. Thereare three levels of di�erentiation in the detection-based side of the taxonomy: validity check initiation, change3It is important to note that values become stale only as the result of the commit of an update transaction. Some consistencyalgorithms allow multiple transactions to simultaneously access di�erent values of the same page, provided that serializabilityis not violated, essentially yielding a dynamic form of multiversion concurrency control [Bern87].4As described in Section 2.3, the use of second-class replication allows the server to unilaterally eliminate any unreachablecopies from the protocol so that transaction processing can continue.10

noti�cation hints, and remote update action.3.2.1 Validity Check InitiationThe coarsest level of di�erentiation for the detection-based half of the taxonomy is based on the point (orpoints) during transaction execution at which the validity of accessed data is checked. The validity of anyaccessed data must be determined before a transaction can be allowed to commit; consistency checks for alldata touched by a transaction must therefore begin and complete during the execution of the transaction.In the taxonomy, three classes of validity checking strategies are di�erentiated:� Synchronous, on each initial access to a page (cached or otherwise) by a transaction.� Asynchronous, with checking initiated on the initial access.� Deferred, until a transaction enters its commit processing phase.All three classes have the property that once the validity of a client's copy of a data item is established,that copy is guaranteed to remain valid for the duration of the transaction. To implement this guarantee,the server must not allow other transactions to commit updates to such items until a transaction that hasreceived a validity guarantee �nishes (commits or aborts). As a result, transactions must obtain permissionfrom the server before they are allowed to commit an update to a data item.5Synchronous validity checking is the simplest of the three classes. On the �rst access that a transactionmakes to a particular data item, whether cached or not, the client must check with the server to ensurethat its copy of the item is valid. This is done in a synchronous manner | the transaction is not allowedto access the item until its validity has been veri�ed. Once the validity of the client's copy of the item hasbeen established (which may involve the sending of a new, valid copy to the client), the copy is guaranteedto remain valid at least until the transaction completes. Asynchronous validity checking is similar, but thetransaction does not wait for the result of the check. Rather, it proceeds to access (or write) the localcopy under the assumption that the check will succeed. If this optimism turns out to be unfounded, thenthe transaction must abort. Finally, deferred validity checking is even more optimistic than asynchronouschecking. No consistency actions pertaining to cached data are sent to the server until the transaction hascompleted its execution phase and has entered its commit phase. At this point, information on all the dataitems read and written by the transaction is sent to the server, and the server determines whether or notthe transaction should be allowed to commit.These three classes provide a range from pessimistic (synchronous) to optimistic (deferred) techniques.Therefore, they represent di�erent tradeo�s between checking overhead and possible transaction aborts.Deferring consistency actions can have two advantages. First, and most signi�cantly, consistency actionscan be bundled together in order to reduce and/or amortize consistency maintenance overhead. Secondly,the consistency maintenance work performed for a transaction that ultimately aborts is wasted; deferredconsistency actions can avoid some of this work. There are also potential disadvantages to deferring con-sistency actions, however. The main disadvantage is that deferral can result in the late detection of dataconicts, which will cause the (late) abort of one or more transactions. Such aborts can hurt performancedue to wasted work. In addition, transaction aborts may result in signi�cant lost work for users in the highly5Although it is not strictly necessary, all of the algorithms shown in Figure 2 use the same initiation method for updatepermission requests as they do for validity checks. If this were not the case, validation and update requests would requireseparate dimensions in the taxonomy. 11

interactive OODBMS environments for which page servers are often intended. The asynchronous approachis an attempt at a compromise; it aims to mitigate the cost of interaction with the server by removing itfrom the critical path of transaction execution, while at the same time lowering the abort rate and/or costthrough the earlier discovery of conicts.3.2.2 Change Noti�cation HintsThe emphasis on optimistic (i.e., asynchronous and deferred) techniques found in the literature on detection-based algorithms is an artifact of the cost tradeo�s of the page server environment. Communication withthe server is an inherently expensive operation, so designers of detection-based algorithms often rely uponoptimism in an attempt to reduce this cost. Optimistic techniques are oriented towards environments inwhich conicts are rare and the cost of detecting conicts is high. While there is currently no de�nitiveunderstanding of page server DBMS workloads, it is generally assumed that such workloads have lower levelsof conict than more traditional DBMS workloads, such as transaction processing [Catt91]. In a transactionalcaching environment, however, the notion of conict must take into account not only concurrent data sharing,but also sequential sharing. Sequential sharing arises when transactions that do not run concurrently accessthe same data. Because caching strives to retain data at a site even after a transaction has completed, thecache consistency maintenance algorithmmust also deal e�ectively with this type of sharing. Recent studiesof �le system workloads [Rama92, Sand92] indicate that sequential sharing may, in fact, be quite commonin the types of situations in which page servers are intended to be used. If this is the case, then the naiveuse of optimistic techniques could result in unacceptably high abort rates.Two approaches to reducing the potential for aborts in optimistic techniques have been proposed. Oneis to simply treat \hot spot" data di�erently, e.g., by switching to a more pessimistic protocol for such data(e.g., [Adya95]). The details of such adaptive algorithms have not yet been published, however. The otherapproach is to borrow techniques from the avoidance-based (ROWA) algorithms on the other side of thetaxonomy to reduce the amount of stale data that resides in client caches. We call such techniques changenoti�cation hints. As can be seen in Figure 2, three of the algorithms found in the literature use some formof change noti�cation hints (or simply, \noti�cations"). A noti�cation is an action that is sent to a remoteclient as the result of an update that may impact the validity of an item cached at that client. Removingor updating a stale copy reduces the risk that a subsequent transaction will be forced to abort as a result ofaccessing that data item.Noti�cations can be sent asynchronously at any time during the execution of an updating transaction,or even after such a transaction commits. In fact, sending noti�cations before commit can be dangerous ifthe noti�cations actually update the remote copies rather than simply removing them; if the transaction onwhose behalf the noti�cation was sent eventually aborts, then the remote updates will have to be undone,adding signi�cant complexity (e.g., cascading aborts) and expense to the algorithm. Early noti�cations thatsimply purge copies from remote caches are less problematic; still, they too can cause unnecessary abortsat remote sites if active transactions have already accessed the invalidated copies there. Because of thesecomplexities, all three of the algorithms shown in Figure 2 that use change noti�cation hints send them onlyafter the updating transaction has committed.3.2.3 Remote Update ActionThe �nal level of di�erentiation in the detection-based half of the taxonomy is concerned with the actiontaken when a noti�cation arrives at a remote site. There are three options here: propagation, invalidation,12

and choosing dynamically between the two. Propagation results in the newly updated value being installedat the remote site in place of the stale copy. Invalidation, on the other hand, simply removes the stale copyfrom the remote cache so that it will not be accessed by any subsequent transactions. After a page copy isinvalidated at a site, any subsequent transaction that wishes to access the page at that site must obtain a newcopy from the server. A dynamic algorithm can chose between invalidation and propagation heuristicallyin order to optimize performance for varying workloads. The concepts of propagation and invalidation areanalogous to the notions of write-broadcast and write-invalidate (respectively) found in multiprocessor cacheconsistency algorithms [Arch86].3.3 Avoidance-based AlgorithmsAvoidance-based algorithms form the other half of our taxonomy of transactional cache consistency main-tenance algorithms. The avoidance-based side of the taxonomy is shown in Figure 3. As stated previously,avoidance-based algorithms enforce consistency by making it impossible for transactions to ever access staledata in their local cache. They accomplish this by directly manipulating the contents of remote client cachesas the result of (or prior to) client updates. Because consistency actions manipulate page copies in remoteclient caches, the client software must include additional mechanisms to support these actions (e.g., someschemes require that clients have a full function lock manager). While this additional responsibility increasesthe complexity of the client-side software, the goal is to reduce reliance on the server and thereby o�oadshared resources.In addition to their need for additional client support, avoidance-based algorithms also require extrainformation to be maintained at the server. Speci�cally, all of the avoidance-based algorithms describedhere require that the server keep track of the location of all page copies. In order to satisfy the \write all"requirement of the ROWA paradigm, it must be possible to locate all copies of a given page. One way toaccomplish this is through the use of broadcast, as in the snooping protocols used in caching algorithms forsmall-scale multiprocessors [Good83]. Reliance on broadcast is not a viable option in a page server DBMSenvironment, however, due to cost and scalability issues. As a result, a \directory-based" approach [Agar88]must be used. As discussed in Section 2.3, the server is the focal point for all transaction managementfunctions and is responsible for providing clients with requested data; as a result, the avoidance-basedalgorithms covered here all maintain a directory of client page copies at the server.There are four levels in the avoidance-based half of the taxonomy, as shown in Figure 3: write intentiondeclaration, write permission duration, remote conict priority, and remote update action. Two of thesedimensions, write intention declaration and remote update action, are analogous to dimensions that appearedin the detection-based side of the taxonomy.3.3.1 Write Intention DeclarationAs with the detection-based algorithms, the avoidance-based algorithms can be categorized according to thetime at which transactions initiate consistency actions. The nature of their consistency actions, however,is somewhat di�erent than in the detection-based schemes. Because of the ROWA protocol, transactionsexecuting under an avoidance-based scheme can always read any page copy that is cached at their localclient. Thus, interaction with the server is required only for access to pages that are not cached locally andfor updates to cached pages. Interactions with the server to obtain copies of non-cached pages must, ofcourse, be done synchronously. On a cache miss, the client requests the desired page from the server. When13

the server responds with a copy of the page, it also implicitly gives the client a guarantee that the client willbe informed if another client performs an operation that would cause the copy to become invalid.While all of the avoidance-based algorithms use the same policy for handling page reads, they di�er inthe manner in which consistency actions for updates are initiated. When a transaction wishes to update acached page copy, the server must be informed of this write intention sometime prior to transaction commitso that it can implement the ROWA protocol. When the server grants write permission on a page to a client,it guarantees that, for the duration of the permission, the client can update that page without again havingto ask the server6. The duration of write permissions is addressed in Section 3.3.2.A write permission fault is said to occur when a transaction attempts to update a page copy for which itdoes not possess write permission. The taxonomy contains three options for when clients must declare theirintention to write a page to the server:� Synchronous, on a write permission fault.� Asynchronous, initiated on a write permission fault.� Deferred, until the updating transaction enters its commit processing phase.In the �rst two options, clients contact the server at the time that they �rst decide to update a page forwhich they do not currently posses write permission. As in the detection-based case, such requests can beperformed synchronously (where the transaction waits for the server to acknowledge the registration of thewrite permission) or asynchronously (where the transaction does not wait). In the third option, declarationsof write intentions are deferred until the transaction �nishes its execution phase (if the updated data can beheld in the client cache until then).The tradeo�s among synchrony, asynchrony and deferral for write intentions are similar in spirit to thosepreviously discussed for the detection-based algorithms: synchronous algorithms are pessimistic, deferredones are optimistic, and asynchronous ones are a compromise between the two. The magnitude of thesetradeo�s, however, are quite di�erent for avoidance-based algorithms. The global (ROWA) nature of thesealgorithms implies that that consistency actions may be required at one or more remote clients before theserver can register a write permission for a given client (or transaction). Therefore, consistency actions caninvolve substantial work here. The relatively high cost of consistency maintenance actions on the avoidance-based side of the taxonomy tends to strengthen the case for deferral of such actions. It is also importantto note that with avoidance-based algorithms, the remote consistency operations are in the critical path oftransaction commit. That is, an update transaction cannot commit until all of the necessary consistencyoperations have been successfully completed at remote clients.3.3.2 Write Permission DurationIn addition to when write intentions are declared, avoidance-based algorithms can also be di�erentiatedaccording to how long write permission is retained for. There are two choices at this level of the taxonomy:write permissions can be retained only for the duration of a particular transaction, or they can span multipletransactions at a given client. In the �rst case, transactions start with no write permissions, so they musteventually declare write intentions for all pages that they wish to update. At the end of the transaction, all6A \permission", while similar to a \write lock", di�ers in two signi�cant ways. First, permissions are granted to clientsites rather than to individual client transactions. Second, permissions are not subject to a two-phase constraint. As shown inSection 4.1.2, the notion of permissions provides additional exibility in the design of cache consistencymaintenance algorithms.14

write permissions are automatically revoked by the server. In the second case, a write permission can beretained at a client site until the client chooses to drop the permission (e.g., after removing a copy of a pagefrom its bu�er pool). In the latter case, the server may also ask a client to drop its write permission on apage copy (in conjunction with the performance of a consistency action).3.3.3 Remote Conict PriorityThe third level of di�erentiation for avoidance-based algorithms is the priority given to consistency actionswhen they are received at remote clients. There are two options here: wait and preempt. A wait policy statesthat consistency actions that conict with the operation of an ongoing transaction at a client must wait forthat transaction to complete. In contrast, under a preempt policy, ongoing transactions can be aborted asthe result of an incoming consistency action. Under the wait policy, the guarantees that are made to clientsregarding the ability to read cached page copies are somewhat stronger than under the preempt policy. Thisis because the wait policy forces a remote writer to serialize behind a local reader if a conict arises, whereaswriters always have priority over readers under the preempt policy, so conicting readers are aborted.3.3.4 Remote Update ActionThe �nal level on the avoidance-based side of the taxonomy is based on how remote updates are implemented.The options here are the same as in the detection-based case, namely: invalidation, propagation, and choosingdynamically between the two. As stated previously, the propagation of updates to remotely cached copiescan be problematic if consistency actions are sent to remote sites during a transaction's execution phase. Asa result, both of the published algorithms in the taxonomy that send remote consistency actions during theexecution phase rely on invalidation as the mechanism for handling updates remotely.An important di�erence between remote update actions under the avoidance-based algorithms and underthe detection-based ones (discussed earlier) is that in the avoidance-based case, the remote operations areinitiated and must be completed on behalf of a transaction before the transaction is allowed to commit.This is necessary to maintain the ROWA semantic guarantees. Therefore, if update propagation is used,all remote sites that receive the propagated update must participate in a two-phase commit with the serverand the client at which the transaction is executing. In contrast, invalidation does not require two-phasecommit, as data is simply removed from the remote client caches in this case.4 A Performance Comparison of Three Algorithm FamiliesThe taxonomy presented in the previous section illuminates the wide range of options that are availableto designers of transactional cache consistency maintenance algorithms. As de�ned in this paper, all suchalgorithms provide the same functionality | they support one-copy serializability in the presence of dynamiccaching, so performance issues are a primary consideration in choosing among them. In this section, weexamine the performance implications of a number of the choices identi�ed in the taxonomy.To date, our work has focused primarily on algorithms from the avoidance-based half of the taxon-omy [Care91a, Fran92a]. In this section, we consolidate the results of those studies and re-examine theirconclusions in the context of the design choices identi�ed in the taxonomy. We �rst describe six candidatealgorithms from three di�erent algorithm families. We then provide an overview of a detailed simulationmodel and a set of four workloads used to examine the relative performance of those algorithms. Finally,15

performance results from a series of simulations are analyzed to shed light on the relevant design decisionsfrom the taxonomy. The insights gained through this process are then used in Section 5 to reect on theperformance characteristics of the remaining design choices and algorithms in the taxonomy.4.1 AlgorithmsThe algorithms that we focus on in this section come from three families: Server-based two-phase locking(S2PL), Callback Locking (CBL), and Optimistic 2PL (O2PL). While these algorithms di�er in many ways,they all stem from the fundamental observation that because cached data is dynamically replicated data,techniques originally devised for managing replicated data can be adapted to manage cached copies. Inthe following, we briey describe each of these three algorithm families (see [Fran93a] for a more detaileddescription) and then identify pairs of algorithms that can be used to isolate the impact of a number of thedesign choices described in Section 3.4.1.1 Server-Based Two-Phase Locking (S2PL)Server-based two-phase locking algorithms are detection-based algorithms that validate cached pages syn-chronously on a transaction's initial access to the page. Server-based 2PL schemes are derived from theprimary copy approach to replicated data management [Alsb76, Ston79]. Before a transaction is allowed tocommit, it must �rst access a specially designated copy (i.e., the primary copy) of each data item that itreads or writes. In a page server DBMS (with no server replication), the primary copy of any page is the onethat resides at the server. For reads, the client's copy of the page must be veri�ed to have the same value asthe server's copy. For writes, the new value created by the transaction must be installed as the new value ofthe primary copy.The performance results examined here include an algorithm called Caching 2PL (C2PL). In C2PL,cache consistency is maintained using a \check-on-access" policy. All page copies are tagged with a versionnumber that uniquely identi�es the state of the page.7 When a transaction attempts a page access forwhich it has not obtained the proper lock (i.e., read or write), it sends a lock request to the server andwaits for the server's response. If the page is cache-resident at the client, then the cached copy's versionnumber is included in the lock request message. If any transactions hold conicting locks, then the lockrequest blocks at the server until those locks are released. When the server grants a read lock to a client,it also determines whether or not the client has an up-to-date cached copy of the requested page. If not,then the server piggybacks a valid copy of the page on the lock response message returned to the client.C2PL uses strict two-phase locking | all locks are held until transaction commit or abort. Deadlocks aredetected through a centralized scheme at the server, and are resolved by aborting the youngest transactioninvolved in the deadlock. C2PL is one of the simplest algorithms that supports inter-transaction caching, andtherefore, algorithms similar to C2PL have been implemented in several systems, including the ORION-1SXprototype [Kim90] and the EXODUS storage manager [Exod93]. An algorithm similar to C2PL has alsobeen studied in [Wang91].For comparison purposes, the performance study also includes results for an algorithm called Basic 2PL(B2PL) that allows only intra-transaction caching. B2PL works similarly to C2PL, except that under B2PL,the client's bu�er pool is purged upon transaction termination. Since every transaction starts with an empty7Data pages are typically tagged with such numbers, called Log Sequence Numbers (LSNs), in systems that use the Write-Ahead-Logging protocol for crash recovery [Gray93]. 16

bu�er pool, no page copies ever need to be validated with the server. Comparing the performance of B2PLto that of C2PL (and the other algorithms) isolates the degree of performance improvement that is due tointer-transaction caching.4.1.2 Callback Locking (CB)Callback Locking algorithms are similar to C2PL, in that they are extensions of two-phase locking that sup-port inter-transaction page caching. In contrast to the detection-based C2PL algorithm, however, CallbackLocking algorithms are avoidance-based. Therefore, locally cached page copies are always guaranteed to bevalid, so transactions can read them without contacting the server (i.e., only a local read lock is required).On a cache miss, the client sends a page request message to the server. The server returns a valid copyof the requested page when it determines that no other active clients believe they have write permissionfor the page. In Callback Locking, write intentions are declared synchronously | a client must have writepermission on a page before it can grant a local write lock to a transaction. Because write permissions areobtained during transaction execution, transactions can commit after completing their operations withoutperforming any additional consistency maintenance actions. We have studied two Callback Locking variants:Callback-Read (CB-R), where write permissions are granted only for the duration of a single transaction(i.e., they are treated like traditional write locks), and Callback-All (CB-A), where write permissions areretained at clients until being called back or until the corresponding page is dropped from the cache. Bothvariants use invalidation for handling remote updates.With Callback Locking (as with all avoidance-based algorithms), the server keeps track of the locationsof cached copies throughout the system. Clients inform the server when they drop a page from their bu�erpool by piggybacking that information on the next message that they send to the server. The server's copyinformation is thus conservative | there may be some delay before the server learns that a page is no longercached at a client. Transactions obtain locks from the local lock manager at the client site on which theyexecute. Read lock requests, as well as requests for write locks on pages for which the client has obtainedwrite permission, can be granted immediately without contacting the server. Write lock requests on pages forwhich write permission has not yet been obtained cause a \write permission fault". On a write permissionfault, the client must register its write intention with the server and then wait until the server responds thatthe permission has been granted before continuing.When a write intention declaration arrives at the server, the server issues callback requests to all sites(except the requester) that hold a cached copy of the requested page. At a client, such a callback requestis treated as a request for a write lock on the speci�ed page. If the request cannot be granted immediately,due to a lock conict with an active transaction, the client responds to the server by saying that the pageis currently in use. When the callback request is eventually granted at the client, the page is removed fromthe client's bu�er and an acknowledgement message is sent to the server. When all callbacks have beenacknowledged to the server, the server registers the write permission on the page for the requesting clientand informs the client that it has done so. Any subsequent read or write requests for the page by transactionsfrom other clients will then be blocked at the server until the write permission is released by the holdingclient or else revoked by the server.If a read request for a page arrives at the server and a write permission for the page is currently registeredfor some other client, then the server action is algorithm-dependent. Under Callback-Read (CB-R), whereWrite Permission Duration is only until the end of a transaction, the read request is simply blocked at theserver until the termination of the current transaction at the client holding the permission. In contrast,17

under Callback-All (CB-A), the server sends a downgrade request to that client. A downgrade request issimilar to a callback request, but rather than responding by removing the page from its bu�er, the clientsimply acknowledges to the server that it no longer has write permission on the page. At a remote client,a downgrade request for a page copy must �rst obtain a read lock on the page in order to ensure that notransactions active at the client are currently holding write locks on the page. The downgrade request blocksat the client if a conict is detected, in which case a message is sent to the server informing it of the conict.Global deadlocks can arise due to callback and downgrade requests. These deadlocks can always be detectedat the server, however, because clients inform the server when they block such requests. As in the S2PLalgorithms, deadlocks are resolved by aborting the youngest involved transaction.At the end of a transaction, the client sends copies of any cached updated pages to the server. This isdone only to simplify recovery, as no other sites can access a page while it is cached with write permissionat a site. Thus, it is technically possible to avoid sending a copy of dirty page back to the server until thewrite permission on the page is downgraded or the page is dropped [Fran93b].Callback-style algorithms originated in the operating systems community for maintaining cache consis-tency in distributed �le systems such as Andrew [Howa88] and Sprite [Nels88], both of which provide weakerforms of consistency than that required by database systems. More recently, a Callback Locking algorithmthat provides transaction serializability has been employed in the ObjectStore OODBMS [Lamb91]. Analgorithm similar to CB-R was also studied in [Wang91].4.1.3 Optimistic Two-Phase Locking (O2PL)The third family of caching algorithms that we have studied is Optimistic Two-phase Locking (O2PL). TheO2PL algorithms are derived from a concurrency control protocol that was originally developed for replicateddistributed databases [Care91b]. The O2PL algorithms are avoidance-based, but they are more \optimistic"than Callback Locking because they defer write intention declaration until the end of a transaction's executionphase. We have developed and analyzed several O2PL variants that di�er in their implementation of remoteupdate actions. In this paper we focus on two such variants: O2PL-Invalidate (O2PL-I), which alwaysinvalidates remote copies, and O2PL-Propagate (O2PL-P), which always propagates updated page copies toremote clients that are caching the updated pages.Under O2PL, each client has a local lock manager from which the proper lock must be obtained before atransaction can access a data item at that client. No locks are obtained at the server during the executionphase of a transaction.8 Transactions update pages in their local cache, and these updated pages are retainedat the client (unless they are aged out) until the transaction enters its commit phase. When an updatingtransaction is ready to enter its commit phase, it sends a message to the server containing the new copies ofsuch pages. The server then acquires exclusive locks on these pages on behalf of the �nishing transaction.The locks obtained at the server are held until the transaction completes, as they will allow the server tosafely install the new page values.Once the required locks have been obtained at the server, the server sends a message to each client thathas cached copies of any of the updated pages. These remote clients obtain exclusive locks on their localcopies (if present) of the updated pages on behalf of the committing transaction. If any of their transactionscurrently holds a read lock on a local copy, then the update transaction will have to wait for the readertransaction(s) to complete before it can continue commit processing. Once all of the required locks have8Actually, a non-two-phase read lock (i.e., latch) is obtained briey at the server when a data item is in the process of beingprepared for shipment to a client, to ensure that the client is given a transaction-consistent copy of the page.18

been obtained at a remote site, that site performs consistency actions on its copies of the updated pages:Under O2PL-I, the client simply purges its copies of the updated pages, releases its local locks on those pages,and then sends an acknowledgement message to the server. In contrast, under O2PL-P, remote clients mustenter a two-phase commit protocol with the server. First, each client sends a message to the server indicatingthat it has obtained the necessary local locks. This message acts as the "prepared" message of the commitprotocol. When the server has heard from all involved clients, it sends copies of the updated pages to thosesites. These messages initiate the second phase of the commit protocol. Upon receipt of the new page copies,the clients install them in their bu�er pools and then release the locks on those pages.9Because O2PL is distributed and locking-based, distributed deadlocks can arise in O2PL-I and O2PL-P.Each client therefore maintains a local waits-for graph which is used to detect deadlocks that are local tothat client. Global deadlocks are detected using a centralized algorithm in which the server periodicallyrequests local waits-for graphs from the clients and combines them to build a global waits-for graph.10 As inthe previously described algorithms, deadlocks are resolved by aborting the youngest transaction involved.4.1.4 Evaluating the Tradeo�sThe three families of cache consistency maintenance algorithms described in the preceeding sections covera number of the design alternatives identi�ed in the taxonomy presented in Section 3. Table 1 summarizesthe portion of the design space covered by these algorithms and shows which algorithms can be comparedin order to examine the performance tradeo�s implied by a given decision. The focus of our work in thisarea has been on avoidance-based algorithms, so the majority of the tradeo�s investigated come from thatside of the taxonomy. However, because several of the avoidance-based dimensions have analogs on thedetection-based side of the taxonomy, the comparisons presented here can shed light on a number of thedetection-based tradeo�s as well. The algorithms that are not directly addressed in this section will bediscussed in Section 5.Design Choice Algorithms to CompareInvalid Access Prevention C2PL (Detection)vs. CB-A (Avoidance)Write Intention Declaration CB-R (Synchronous)vs. O2PL-I (Deferred)Write Permission Duration CB-R (Single Transaction)vs. CB-A (Until Revoked or Dropped)Remote Update Action O2PL-I (Invalidation)vs. O2PL-P (Propagation)Table 1: Design Choices and Relevant ComparisonsInvalid Access Prevention (C2PL vs. CB-A) As described in Section 3, the top-level design choicein the taxonomy is the policy used for preventing access to invalid data. Detection requires the validityof all accessed data to be explicitly con�rmed prior to transaction commit, while Avoidance ensures that9It should be noted that the receipt of a propagated page copy at a client does not a�ect the page's LRU status at that site.10Note that deadlocks involving consistency actions can be resolved early, rather than waiting for periodic detection, as anyconict detected between two consistency actions or between a consistency action and an update will ultimately result in adeadlock [Care91b]. 19

transactions never have the opportunity to access stale data. The S2PL algorithms are detection-based,whereas the CBL and O2PL algorithms are all avoidance-based. Among these algorithms, comparing theperformance of C2PL and CB-A can provide the clearest insights into this tradeo�. Both algorithms allowinter-transaction caching, neither propagates updated pages, and both initiate their consistency actionssynchronously.Write Intention Declaration (CB-R vs. O2PL-I) For avoidance-based algorithms, the next level ofdi�erentiation is concerned with the timing of Write Intention Declarations. As described in Section 3.3.1,avoidance-based algorithms can be pessimistic and require update transactions to declare their write inten-tions synchronously when a permission fault occurs, or they can be more optimistic and allow the deferral ofthese declarations until the update transaction enters its commit phase. The CBL algorithms belong to thepessimistic or synchronous camp, while the O2PL algorithms are more optimistic. Comparing the perfor-mance of CB-R and O2PL-I provides insight into this tradeo�, as both algorithms retain write permissionsonly until the end of transaction and both use invalidation for remote update actions.Write PermissionDuration (CB-R vs. CB-A) The next level of choice for avoidance-based algorithmsis that of Write Permission Duration. As discussed in Section 3.3.1, write permissions can be associated witha single transaction, or they can be retained by a client site across multiple transactions. The tradeo�sbetween these two approaches can be directly observed by comparing the performance of CB-R and CB-A,which di�er only in this aspect.Remote Update Actions (O2PL-I vs. O2PL-P) The �nal choice to be examined here is that of theaction performed on remote copies of updated pages. As stated in Section 3.3.4, two options are invalidation,which purges such copies from remote caches, and propagation, which sends new valid copies of such pagesto the remote sites that contain cached copies of them. Comparing the performance of O2PL-I and O2PL-P,which di�er only in this respect, will help to isolate the tradeo�s between these two options.4.2 A Client-Server Performance Model4.2.1 The System ModelFigure 4 shows the structure of our simulation model, which was constructed using the DeNet discreteevent simulation language [Livn90]. It consists of components that model diskless client workstations and aserver machine (with disks) that are connected over a simple network. Each client site consists of a Bu�erManager that uses an LRU page replacement policy, a Concurrency Control Manager that is used eitheras a simple lock cache or as a full-function lock manager (depending on the cache consistency algorithmin use), a Resource Manager that provides CPU service and access to the network, and a Client Managerthat coordinates the execution of transactions at the client. Each client also has a Transaction Source whichinitiates transactions one-at-a-time at the client site according to the workload model described in the nextsubsection. Upon completion of one transaction, the source waits for a speci�ed think time and then submitsthe next transaction. If a transaction aborts, it is resubmitted with the same page reference string. Thenumber of client machines is a parameter to the model.The server machine is modeled similarly to the clients, but with the following di�erences: First, theserver's Resource Manager manages disks as well as a CPU. Second, its Concurrency Control Manager hasthe ability to store information about the location of page copies in the system and also manages locks.20

Third, there is a Server Manager component that coordinates the server's operation; this is analogous to theclient's Client Manager. Finally, there is no Transaction Source module at the server since all transactionsoriginate at client workstations.
Client Model Server Model

Source
Transaction

CPU

Resource Manager

Other Clients

Other Clients

Network

Network Manager

Concurrency

Control
Manager

Client

Manager

Buffer

Manager

...

Resource Manager

CPU Disks

Concurrency

Control
Manager Manager

Buffer

Manager

Server

Figure 4: Performance Model of a Client-Server DBMSTable 2 describes the parameters that are used to specify the system resources and overheads and showsthe settings used in this study. The simulated CPUs of the system are managed using a two-level priorityscheme. System CPU requests, such as those for message and disk handling, are given priority over user(client transaction) requests. System CPU requests are handled using a FIFO queueing discipline, whilea processor-sharing discipline is employed for user requests. Each disk has a FIFO queue of requests; thedisk used to service a particular request is chosen uniformly from among all the disks at the server. Thedisk access time is drawn from a uniform distribution between a speci�ed minimum and maximum. A verysimple network model is used in the simulator's Network Manager component; the network is modeled as aFIFO server with a speci�ed bandwidth. We did not model the details of the operation of a speci�c typeof network (e.g., Ethernet, token ring, etc.). Rather, the approach we took was to separate the CPU costsof messages from their on-the-wire costs, and to allow the on-the-wire message costs to be adjusted usingthe network bandwidth parameter. The CPU cost for managing the protocol to send or receive a message ismodeled as a �xed number of instructions per message plus an additional charge per message byte.4.2.2 Client WorkloadsOur simulation model provides a simple but exible mechanism for describing client workloads. The accesspattern for each client can be speci�ed separately using the parameters shown in the �rst column of Table 3.Transactions are represented as a string of page access requests in which some accesses are for reads andothers are for writes. Two ranges of database pages can be speci�ed: a hot range and a cold range. Theprobability of a page access being to a page in the hot range is speci�ed; the remainder of the accesses aredirected to cold range pages. For both ranges, the probability that an access to a page in the range willinvolve a write (in addition to a read) is speci�ed. The parameters also allow the speci�cation of the averagenumber of instructions to be performed at the client for each page read or write, once the proper lock hasbeen obtained.Table 3 summarizes the workloads that are examined here. The PRIVATE workload has a per-clientprivate hot region that is read and written by each client and a shared cold region that is accessed in a read-only manner by all clients. This workload is intended to model an environment such as a large CAD system,21

Parameter Meaning SettingPageSize Size of a page 4,096 bytesDatabaseSize Size of database in pages 1250NumClients Number of client workstations 1 to 25ClientCPU Instruction rate of client CPU 15 MIPSServerCPU Instruction rate of server CPU 30 MIPSClientBufSize Per-client bu�er size 5% or 25% of DBServerBufSize Server bu�er size 50% of DB sizeServerDisks Number of disks at server 2 disksMinDiskTime Minimum disk access time 10 millisecondMaxDiskTime Maximum disk access time 30 millisecondsNetBandwidth Network bandwidth 8 or 80 Mbits/secFixedMsgInst Fixed no. of inst. per message 20,000 instructionsPerByteMsgInst No. of addl. inst. per msg. byte 10,000 inst. per 4KbControlMsgSize Size in bytes of a control message 256 bytesLockInst Instructions per lock/unlock pair 300 instructionsRegisterCopyInst Inst. to register/unregister a copy 300 instructionsDiskOverheadInst CPU Overhead to perform I/O 5000 instructionsDeadlockInterval Global deadlock detection frequency 1 second (for O2PL)Table 2: System and Overhead Parameter SettingsParameter PRIVATE HOTCOLD UNIFORM FEEDTransSize 16 pages 20 pages 20 pages 5 pagesHotBounds p to p+24, p to p+49, - 1 to 50p = 25(n-1)+1 p = 50(n-1)+1ColdBounds 626 to 1,250 rest of DB all of DB rest of DBHotAccProb 0.8 0.8 - 0.8ColdAccProb 0.2 0.2 1.0 0.2HotWrtProb 0.2 0.2 - 1.0/0.0ColdWrtProb 0.0 0.2 0.2 0.0/0.0PerPageInst 30,000 30,000 30,000 30,000ThinkTime 0 0 0 0Table 3: Workload Parameter Settings for Client nwhere each user has a portion of the design that they are currently working on while accessing additionaldesign parts from a shared library of components. The HOTCOLD workload has a high degree of localityper client and a moderate amount of sharing and data contention among clients. UNIFORM is a low-locality,moderate write probability workload which is used to examine the consistency algorithms in a case wherecaching is not expected to pay o� signi�cantly. This workload has a higher level of data contention thanHOTCOLD. Finally, the FEED workload represents an application involving a highly directional informationow, such as one might expect in a stock quotation system; one site produces data while all the other sitesconsume it.4.3 Experiments and ResultsIn this section we present results from several performance experiments involving the algorithms describedin Section 4.1. The main performance metric presented is system throughput (measured in transactions22

per second).11 The throughput results are, of course, dependent on the particular settings chosen for thevarious physical system resource parameters. For example, the relative performance of the algorithms in adisk-bound system may di�er greatly from that in a CPU-bound system. Thus, while the throughput resultsshow performance characteristics in what we consider to be a reasonable environment, we also present variousauxiliary performance measures, such as message and disk I/O counts, to provide additional insights intothe fundamental tradeo�s among the algorithms.Auxiliary metrics that are presented as \per commit" values are computed by taking the total countfor the given metric (e.g., the total number of messages routed through the network) over the duration ofthe simulation run and then dividing by the number of transactions that committed during that run. Asa result, these averages also take into account work that was done on behalf of aborted transactions. Toensure the statistical validity of the results presented here, we veri�ed that the 90% con�dence intervals fortransaction response times (computed using batch means) were su�ciently tight. The size of the con�denceintervals was within a few percent of the mean in all cases, which is more than su�cient for our purposes.In the sections that follow, we focus on a system con�guration in which each client has a large cache (25%of the active database size) and the network bandwidth is set to the lower value in Table 2 (8 Mbits/sec).The network speed was chosen to approximate the speed of an Ethernet, reduced slightly to account forbandwidth lost to collisions, etc. The large client cache size tends to reduce the performance impact of serverI/O. Therefore, the combination of these settings tends to emphasize the performance impact of messagebehavior, which plays a role in all four of the tradeo�s listed in Table 1. However, I/O and transaction abortsalso factor into the comparisons and will be discussed where appropriate. Finally, although this sectionfocuses on results from a limited set of experiments, it should be emphasized that we have run numerousexperiments with a variety of di�erent parameter settings and workloads. Many of these experiments aredescribed in [Care91a, Fran92a, Fran93a].4.3.1 The PRIVATE WorkloadWe �rst examine performance results for the PRIVATE workload. As described in Section 4.2.2, PRIVATEhas a high degree of locality per client, and it has no read-write or write-write data sharing. Figure 5shows the total system throughput for the PRIVATE workload as the number of clients in the system isincreased from 1 to 25. In this experiment, the invalidation-based O2PL algorithms and Callback lockingalgorithms provide the best performance. The detection-based C2PL algorithm has lower throughput, andB2PL, which does not allow inter-transaction caching, has the poorest performance by a signi�cant margin.In this experiment (and in most of the others), B2PL su�ers due to high message volumes and server diskI/O levels because it is unable to exploit client memory for storing data pages across transaction boundaries.In order to see what insight these results can provide into the performance tradeo�s for this workload,it is helpful to examine pairs of algorithms as discussed in Section 4.1.4. The �rst tradeo� we examine hereis based on the choice of Invalid Access Prevention. In this experiment, the avoidance-based algorithms allsigni�cantly outperform the detection-based C2PL algorithm throughout the range of client populations.This behavior is due to the server CPU overhead and the path-length resulting from the number of messagessent per transaction. Focusing on C2PL and CB-A, as can be seen in Figure 6, C2PL requires nearly 40messages per transaction (on average) in this experiment, while CB-A requires only 12. This di�erence is11Because the simulation uses a closed queueing model, throughput and response time are equivalently informative metrics.23

O2PL-I O2PL-P CB-R CB-A C2PL B2PL

0 5 10 15 20 25

Clients

0

10

20

30

T
hr

ou
gh

pu
t

(T
P

S)

Figure 5: Throughput(PRIVATE, 25% Client Cache, Slow Net) 0 5 10 15 20 25

Clients

0

10

20

30

M
sg

s
se

nt
 p

er
 c

om
m

it

Figure 6: Messages Sent/Commit(PRIVATE, 25% Client Cache, Slow Net)because the pessimistic, detection-based C2PL algorithm sends a message to the server on every initial pageaccess | even for pages that it has cached locally. In fact, C2PL sends the same number of messages asthe non-caching B2PL algorithm, though it sends many fewer bytes because fewer of the replies from theserver contain page copies than for B2PL. This di�erence in message requirements in the absence of datacontention is one reason why most of the detection-based algorithms that have been proposed (see Figure 2)include some amount of optimism.The next design decision to be examined is the choice of Write Intention Declaration timing. Becauseof the lack of read-write and write-write sharing in this workload, however, this choice has only a minorimpact on performance here. As can be seen in Figure 5, CB-R performs only slightly below O2PL-I underthis workload. With no data conicts, write intention declarations only require a round trip message to theserver as no remote clients ever need to be contacted, so O2PL-I gains only a small savings in messagesby deferring its write intention declarations until commit time. Returning to the message counts shown inFigure 6, it can be seen that while the message requirements for CB-R remain constant as clients are added,there is a slight rise in the message requirements for O2PL-I. This rise is due to the cost of distributeddeadlock detection, which is not required by CB-R. Finally, it should be noted that the absence of dataconicts means that the di�erences in abort rates between pessimism (CB-R) and optimism (O2PL-I) aresimply not an issue for this workload.The tradeo�s for the choice of Write Permission Duration can be seen by comparing the performanceand message sending behavior of CB-A, which retains permissions across transaction boundaries, and CB-R,which gives up a write permission when the transaction that obtained it completes. Under the PRIVATEworkload, CB-A declares a write intention on a page copy at most once for the duration of the page copy'sresidence in the cache, as permissions are never called back by remote clients under this workload. Thus,CB-A consistently sends fewer messages than CB-R. This results in a message savings and a slight throughputadvantage for CB-A in this case (in fact, CB-A performs as well as O2PL-I does here).Finally, it should be noted that the of Remote Update Action choice does not impact performance underthe PRIVATE workload. This is again due to the absence of read-write and write-write sharing. No remote24

updates ever occur, so O2PL-I and O2PL-P provide similar throughput here.4.3.2 The HOTCOLD WorkloadFigure 7 shows the throughput results for the HOTCOLD workload with the large client caches and slownetwork. As described in Section 4.2.2, HOTCOLD has high locality per client, but unlike the PRIVATEworkload, it also has read-write and write-write sharing among the clients. Despite this sharing, however,the relative throughput for each of the algorithms (except for O2PL-P, which is discussed below) is similarto what was observed in the PRIVATE case. That is, the avoidance-based algorithms perform better thanC2PL, and the non-caching B2PL algorithm has the worst performance.
O2PL-I O2PL-P CB-R CB-A C2PL B2PL

0 5 10 15 20 25

Clients

0

5

10

15

20

T
hr

ou
gh

pu
t

(T
P

S)

Figure 7: Throughput(HOTCOLD, 25% Client Cache, Slow Net) 0 5 10 15 20 25

Clients

0

20

40

60

M
sg

s
se

nt
 p

er
 c

om
m

it

Figure 8: Messages Sent/Commit(HOTCOLD, 25% Client Cache, Slow Net)The introduction of read-write and write-write sharing, however, raises several additional tradeo�s forcache consistency maintenance. Many of the tradeo�s can be seen in Figure 8, which shows the number ofmessages sent per committed transaction. The �rst tradeo� that we discuss is that between detection-basedand avoidance-based Invalid Access Prevention. As can be seen in the �gure, the message counts for thedetection-based C2PL algorithm are independent of the number of clients in this case, while the avoidance-based algorithms all send more messages per transaction as clients are added (unlike under the PRIVATEworkload results of Figure 6). The additional messages used by the avoidance-based algorithms are forimplementing remote update actions (callbacks, invalidations, propagations, etc.) at clients that possesscached copies of a�ected pages. As more clients are added, the number of cached copies for any given pageincreases, so more messages for remote update actions are required. However, it should be noted that thenumber of messages sent by the avoidance-based CB-A algorithm remains substantially lower than for thedetection-based C2PL algorithm throughout the range of client populations explored in this experiment.The next tradeo� of interest involves Write Intention Declaration. The tradeo�s between declaringWrite Intentions synchronously, during transaction execution (as in CB-R), or deferring such declarationsuntil transaction commit (as in O2PL-I) are slightly di�erent under HOTCOLD than they were under thePRIVATE workload. Comparing the number of messages sent under HOTCOLD (Figure 8) and under25

PRIVATE (Figure 6), the di�erence between CB-R and O2PL-I is greater here than under PRIVATE fortwo reasons: �rst, each transaction updates more pages under HOTCOLD than under PRIVATE, andsecond, some intention declarations result in Remote Update Actions here. Since CB-R declares intentionsone-at-a-time, multiple declaration messages are sent, and it is possible that multiple callback requests willbe sent to some remote clients during a transaction. In contrast, by deferring Write Intention Declarations,O2PL-I sends only a single declaration message to the server, and it sends at most one request for RemoteUpdate Actions to each remote client. This di�erence has only a small impact on throughput here, whichdisappears as more clients are added and the server disks become the dominant resource. Finally, while theWrite Intention Declaration decision also impacts the transaction abort rate (as discussed in Section 4.1.4),the abort rate does not play a signi�cant factor in this experiment due to a fairly low level of data contention.The tradeo�s involving Write Permission Duration are a�ected in an interesting way by the introductionof read-write and write-write sharing, as can be seen by comparing the message behavior of CB-R and CB-Ain Figure 8. With fewer clients, CB-R, which gives up write permissions at the end of a transaction, sendsmore messages than CB-A, which retains permissions across transaction boundaries. However, as clients areadded, the amount of sharing increases; more write permission callbacks occur, so the number of messagessent by CB-A increases at a faster rate than for CB-R. CB-A has higher message requirements than CB-R at15 clients and beyond. Due to the fact that the disk becomes the dominant resource in this region, however,the two Callback algorithms deliver similar performance.Finally, the choice of Remote Update Action has a very signi�cant impact in this experiment, due topresence of read-write and write-write sharing. In contrast to the invalidation-based O2PL-I algorithm,O2PL-P su�ers a substantial degradation in performance beyond �ve clients; it eventually performs evenbelow the level of C2PL. The reason for O2PL-P's poor performance in this case is a dramatic increase inmessage volume as clients are added. At 25 clients, O2PL-P sends almost three times more data throughthe network (about 120 Kbytes per commit) than O2PL-I (which sends about 43 Kbytes per commit). Thisincrease is due to the messages needed by O2PL-P to propagate updated pages to remote clients. At 25clients, it sends propagations to an average of 13 (!) remote clients per transaction. Furthermore, the vastmajority of these propagations are \wasted" | that is, the remote copies are either propagated to again,or else dropped from the cache, before the previous propagated value is ever actually used. It should benoted that the large number of involved sites is due to the large client caches; when O2PL-P is used withsmaller client caches, wasted propagations are reduced, as unimportant pages tend to be quickly pushed outof the caches before another propagation occurs. This experiment demonstrates that using propagation toimplement Remote Update Actions is a rather dangerous policy. Its performance is very sensitive to thesize of the client caches, and it has the potential to more than nullify the performance bene�ts of caching insome cases.4.3.3 The UNIFORM WorkloadThe third workload that we examine is the UNIFORM workload, which has no per-client locality and, as aresult, has a higher level of data contention and bene�ts less from caching than the HOTCOLD workload. Thethroughput results and message counts are shown in Figures 9 and 10, respectively. In terms of throughput,UNIFORM's combination of no locality and high data contention reduces the magnitude of the performancedi�erences among the caching algorithms. In terms of message counts, Figure 10 shows that the tradeo�sfor Invalid Access Prevention are somewhat di�erent here than in the previous cases. As in the HOTCOLDworkload, the number of messages required by the avoidance-based algorithms increases with the number26

O2PL-I O2PL-P CB-R CB-A C2PL B2PL

0 5 10 15 20 25

Clients

0

2

4

6

T
hr

ou
gh

pu
t (

T
P

S)

Figure 9: Throughput(UNIFORM, 25% Client Cache, Slow Net) 0 5 10 15 20 25

Clients

0

20

40

60

80

100

M
sg

s
se

n
t

p
er

 c
om

m
it

Figure 10: Messages Sent/Commit(UNIFORM, 25% Client Cache, Slow Net)
0 5 10 15 20 25

Clients

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
li

en
t

B
u

ff
er

 H
it

 %

Figure 11: Client Hit Rate(UNIFORM, 25% Client Cache, Slow Net) 0 5 10 15 20 25

Clients

0.0

0.1

0.2

0.3

A
b

or
ts

 p
er

 C
om

m
it

Figure 12: Aborts/Commit(UNIFORM, 25% Client Cache, Slow Net)
27

of clients, whereas the requirements of C2PL remain nearly constant (increasing slightly due to abortedtransactions). Unlike the HOTCOLD case, however, all of the avoidance-based algorithms require moremessages than the detection-based C2PL algorithm beyond 5-10 clients.To understand why detection leads to fewer messages than avoidance in this low-locality situation, it isuseful to examine the message tradeo�s made by the avoidance-based algorithms. Under CB-A (as well asthe other avoidance-based algorithms), the permission to read a page is e�ectively cached along with thepage. Thus, when a client wishes to read a page that it has in its cache, it can do so without contacting theserver. Compared to C2PL, this saves two messages per initial read. However, if some remote client wishesto write a page that a client has cached, then a callback message will arrive and a reply must be sent. Thisis a net cost of two messages per write compared to C2PL. Furthermore, CB-A has analogous tradeo�s forpages on which write permissions are retained: it enjoys a savings of two messages if the page is writtenlocally, and pays a price of two messages if the page is read remotely. CB-A's avoidance approach thereforeyields a net loss if a page is less likely to be read locally than written remotely, and the retention of writepermissions is a net loss if the page is less likely to be written locally than read remotely. The absence oflocality in the UNIFORM workload means that both of the tradeo�s made by CB-A become net losses asmore clients are added. Similar tradeo�s are made by the other avoidance-based algorithms.In addition to messages, the choice of an Invalid Access Prevention technique also has an impact on I/Orequirements. Figure 11 shows the average hit rate across all client caches for the UNIFORM workload.12 Ascan be seen in the �gure, the avoidance-based algorithms all have higher client cache hit rates than C2PL.In this experiment, the O2PL algorithms have inated client bu�er hit rates due to aborted transactions(as indicated in Figure 12). However, while CB-A has a nearly identical abort rate to C2PL, it has anoticeably better client hit rate. The reason for this di�erence is that size of the client caches under C2PLis e�ectively smaller than under the avoidance-based algorithms because of the presence of invalid pages.These invalid pages consume cache space that could otherwise be used for holding valid pages. In contrast,since the avoidance-based algorithms remove pages from client caches as they become invalid, they allow theentire cache to be used for valid pages. This e�ect is greatest in the range of 10-15 clients here. Beyondthis point, CB-A incurs an increasing rate of page invalidations due to the large number of clients. Theseinvalidations reduce the extent to which CB-A is able to utilize the client caches; beyond a client populationof 15, signi�cant numbers of client cache slots simply remain empty under CB-A.The increased data contention of the UNIFORM workload also brings out the downside of the optimisticapproach of deferring Write Intention Declarations. As can be seen in Figure 12, the semi-optimistic O2PL-Ialgorithm aborts as many as 0.4 transactions for every transaction that it commits in this experiment. Incomparison, the pessimistic CB-R algorithm aborts about one third as many transactions. Interestingly,despite this di�erence, O2PL-I obtains roughly 10% higher throughput than CB-A (see Figure 9). Thisis because the cost of aborts in this experiment is rather low due to cache hits that occur when abortedtransactions run again. However, as shown in [Fran92a, Fran93a], the high abort rate of O2PL-I can causeit to have signi�cantly worse performance than CB-R if data contention is increased further.In terms of the Write Permission Duration, the high sharing level and lack of locality of the UNIFORMworkload results in CB-R sending fewer messages than CB-A across the range of client populations (Figure 10)and thereby having a slight performance advantage across most of the range (Figure 9). As discussedpreviously, retaining Write Permissions is a net loss for CB-A if a page is less likely to be written locally12A cache request results in a hit only if a valid copy of the page is found in the local cache.28

than it is to be read remotely. The lack of locality and the update probability in the UNIFORM workloadthus work to the disadvantage of CB-A.The e�ects of using propagation for Remote Update Actions are similar here to those seen in the HOT-COLD workload. In this case, however, O2PL-P ultimately performs worse than even B2PL, which does nointer-transaction caching. Although propagation does give O2PL-P a slight advantage in terms of the clienthit rate (Figure 11), the cost of sending propagations that go unused is much higher here than the bene�tgained from those propagations that are indeed eventually used.4.3.4 The FEED WorkloadThe last workload to be examined here is the FEED workload. As discussed in Section 4.2.2, FEED isintended to model an information service environment, such as a stock quotation system, where many clientsread data from an information source. In this workload, one client acts as the source, reading and updatingpages, while the remainder of the clients act as consumers, only reading the data. We include this workloadprimarily to demonstrate a case where using propagation as the Remote Update Action can be bene�cial;thus, we focus only on the performance of O2PL-I and O2PL-P here. Figure 13 shows the throughput resultsfor O2PL-I and O2PL-P under this workload. The dashed lines show the throughput of the source (Client#1) while the solid lines show the aggregate throughput of the remaining clients. In this workload, O2PL-Psigni�cantly outperforms O2PL-I. The reason for this is that propagation gives the consumers a much higherclient cache hit rate, as is shown in Figure 14. This improvement in hit rate reduces the path length of thereader transactions. Furthermore, due to the high degree of client access locality in this workload, manyfewer propagations are wasted than in the UNIFORM workload.
0 5 10 15 20 25

Clients

0

50

100

T
h

ro
u

gh
p

u
t

(T
P

S
)

O2PL-I
O2PL-P
Readers
WriterFigure 13: Throughput(FEED, 25% Client Cache, Slow Net) 0 5 10 15 20 25

Clients

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
li

en
t

B
u

ff
er

 H
it

 %
 (

R
ea

d
er

s
O

n
ly

)

O2PL-I
O2PL-PFigure 14: Client Cache Hit % (Readers only)(FEED, 25% Client Cache, Slow Net)The FEED workload shows the potential bene�ts of propagation in specialized workloads, but the HOT-COLD and UNIFORM workloads both demonstrated that propagation can substantially reduce performancein other situations. We have also developed and investigated dynamic algorithms that can adaptively choosebetween invalidation and propagation on a page-by-page basis at each client. These algorithms will bediscussed briey in Section 5. 29

4.4 Summarizing The ResultsIn this section of the paper we have compared the performance of six di�erent cache consistency maintenancealgorithms | drawn from three algorithm families | using four di�erent workloads. Here, we briey reviewthe results in terms of the insight that they o�er regarding the design tradeo�s for transactional cacheconsistency maintenance algorithms.The tradeo�s between using avoidance and detection for Invalid Access Prevention were examined bycomparing C2PL and CB-A. Both of these algorithms are pessimistic, so the avoidance/detection choicewas seen to have a large impact on the number of messages sent. C2PL validates its cached data prior toaccessing it, and thus sends a round-trip message to the server on every initial access regardless of whetherany read-write or write-write sharing is occurring. In contrast, CB-A, being avoidance-based, is able toread its cached data without contacting the server. However, CB-A, was seen to be sensitive to the typeand degree of sharing in the system, as increased data sharing results in additional callback and downgrademessages. In addition to message count di�erences, the results for the UNIFORM workload demonstratedthat the choice of an Invalid Access Prevention method can have an impact on I/O requirements and on thevolume of data transferred. This is because detection-based approaches allow out-of-date pages to remainin client caches, reducing the e�ective size of those caches.The tradeo� between synchronous and deferred Write Intention Declaration (examined by comparingCB-R and O2PL-I) is a tradeo� between pessimism and optimism, a�ecting both the number of messagesrequired to complete transactions and the transaction abort rate. With no read-write or write-write sharing(e.g., under the PRIVATE workload), the approaches were seen to be roughly equal in performance. Ifsharing is present, then deferring declarations can save messages. However, if sharing increases to the pointwere data contention arises, deferring declarations can lead to signi�cantly higher abort rates; transactionaborts can result in higher resource utilization due to lost work [Fran92a, Fran93a], though this e�ect didnot signi�cantly hurt throughput in the workloads examined here. Whether or not aborts impact overallthroughput, a high abort rate may be intolerable for users in some highly-interactive applications.The choice of Write Permission Duration was examined by comparing the performance of CB-R, whichretains write permissions only for the duration of a single transaction, and CB-A, which retains writepermissions across transaction boundaries. The impact of this tradeo� is on the number of messages sent.In general, retaining write permissions is a net win if a page is more likely to be updated at the client thatholds the permissions than to be read at another client. Thus, CB-A was seen to have a slight advantageover CB-R in the PRIVATE workload, while it had a slight disadvantage in the other workloads examined.The fourth design choice analyzed was the choice of Remote Update Action, as demonstrated by O2PL-Iversus O2PL-P. In the PRIVATE workload, this choice has no e�ect because there is never a need for aremote update action. The other workloads, however, demonstrated that this choice can have a dramaticimpact on performance. In the majority of the cases, invalidationwas seen to be the right choice. Propagationwas shown to be dangerously sensitive to the level of sharing present in the workload, and hence to the clientcache size | with larger caches, the potential for sequential sharing across clients increases. In contrast,invalidation was seen to be much more stable in its performance characteristics. The FEED workload,however, demonstrated that there are indeed cases where propagation can be useful.30

5 Related WorkAs explained earlier, the performance experiments described in this paper have covered only a portion ofthe large design space available for cache consistency maintenance. In particular, our work has focusedon algorithms that lie on the avoidance-based side of the taxonomy in Section 3. The design decisions fordetection-based algorithms, however, each have avoidance-based analogs. In the following, we apply theinsight gained from our experiments to predict the relative performance characteristics of other publishedalgorithms that appear in the taxonomy. We then briey discuss related work in other domains.5.1 Other Proposed Algorithms5.1.1 Optimistic Detection-Based AlgorithmsThe �rst published paper to analyze transactional cache consistency algorithms for client-server OODBMSswas [Wilk90]. In that paper, two algorithms were proposed and studied. One algorithm, called Cache Locks,is a detection-based algorithm that defers validation of transactions until commit time. Special lock modesand long-running \envelope transactions" are used to determine when transactions have accessed stale data.Cache Locks is an optimistic algorithm in the sense that lock requests are not sent to the server duringtransaction execution. At commit time, a transaction sends its read and write sets to the server, and theserver attempts to obtain the necessary shared and exclusive locks. Special lock modes for locks held oncached copies by envelope transactions indicate whether or not the copies accessed by the transaction werevalid. If it is determined that the transaction accessed stale cached data, then it is aborted. In order toreduce the likelihood of aborts due to stale data, the server piggybacks noti�cations about modi�ed pageson its replies to client requests. These noti�cations inform the client that it should mark its copies of thea�ected data as invalid (hence, it is an invalidation-based algorithm) and abort any ongoing transactionsthat have accessed those data items.More recently, an optimistic algorithm with noti�cations has been proposed for the Thor system atMIT [Adya95]. This algorithm, called Adaptive Optimistic Concurrency Control (AOCC), is similar to theCache Locks algorithm; it also includes support for transactions that access data frommultiple servers (whichis beyond the scope of both [Wilk90] and this paper). Rather than using lock modes to represent invalidcached copies, AOCC maintains an invalid set for each client in order to keep track of which copies of thedata items cached at a client have been made invalid. As described in [Adya95], AOCC uses a combination ofinvalidation and propagation for Remote Update Actions. As in Cache Locks, noti�cations are piggybackedon messages sent to clients, and such noti�cations invalidate cached copies. However, when a transaction isaborted due to a detected inconsistency, AOCC immediately piggybacks new copies (i.e. propagations) ofthe invalid items on the abort acknowledgement that it sends to the client.As discussed in the previous section, a potential problem with detection-based policies is an increase incommunication due to the need to check page validity with the server. The comparisons of C2PL and CB-Ashowed that this cost can be signi�cant if a pessimistic (i.e., synchronous on each initial access) approach tovalidity checking is used. For this reason, both Cache Locks and AOCC use the more optimistic approachof deferring such checks until transaction commit time. As shown in [Adya95], such optimism, combinedwith piggybacking of noti�cations, can signi�cantly reduce the number of messages required for consistencychecking; of course, this comes at the expense of a possible rise in transaction aborts. Whether such atradeo� is bene�cial depends on several factors including the level of contention in the workload, the cost ofwasted work due to aborts, and the tolerance of the application to a higher abort rate.31

One major di�erence between Cache Locks and AOCC is that Cache Locks uses invalidation for remoteupdate actions while AOCC uses a combination of invalidation (in the absence of concurrent conicts) andpropagation (when a conict has caused an abort). These propagations can be very useful in reducing thecosts of transaction aborts as long as the aborted transactions are restarted immediately and tend to accessthe same items as they did in their previous incarnation(s); otherwise, ine�ciencies that were identi�ed forpropagation in Section 4.3 may be incurred by this approach as well.5.1.2 Notify LocksThe second algorithm proposed in [Wilk90], Notify Locks, is an avoidance-based algorithm. It is similarto the O2PL-P algorithm described previously in that it defers Write Intention Declaration until the endof transaction execution and uses propagation for remote update actions. When a transaction wishes tocommit, it sends copies of the updated data items back to the server. The server then sends noti�cationmessages to any clients that hold copies of the updated items; these messages contain the new values ofthose items. A major di�erence between Notify Locks and O2PL-P is that with Notify Locks, the arrivalof a noti�cation preempts any ongoing transactions that have accessed the changed items. In contrast,O2PL-P blocks noti�cation requests that conict with read locks held by ongoing transactions. Becauseof the preemption approach used by Notify Locks, committing a transaction requires (sometimes multiple)handshakes between the client and the server to avoid race conditions at commit time. The performancetradeo�s between the wait and preempt policies, however, have not been addressed in this study. Of course,because Notify Locks uses propagation, it is clearly subject to the performance problems that we saw forO2PL-P. This e�ect was not detected in [Wilk90] because that study used a probabilistic cache model thatassumed that cache hit probabilities were independent of cache size.5.1.3 No-wait LockingNo-wait locking algorithms were studied in [Wang91]. No-wait algorithms are detection-based algorithmsthat try to hide the latency of validations at the server by performing validity checking asynchronously. Aswith all detection-based algorithms, transactions must abort if they are found to have accessed stale data.By initiating the validity checks before commit time, however, the window during which data can becomeinvalid is shortened compared to Cache Locks and AOCC. As stated in Section 4.1.4, asynchrony does notreduce the total work required, and thus, will not improve performance in a highly utilized system (e.g., ifthe server is a bottleneck). The performance results of [Wang91] showed that an algorithm similar to CB-Rtypically performed as well as or better than no-wait Locking.To reduce the possibility of stale data access, the no-wait algorithm was extended in [Wang91] with apropagation-based noti�cation hint scheme. The performance of this algorithm, called No-Wait Lockingwith Noti�cations, was then examined. The results of that study showed (as we did in [Care91a]) that thecost of propagations typically outweighs their potential bene�ts. An invalidation-based noti�cation schemecould avoid this problem, but such a scheme was not studied in [Wang91].5.1.4 Dynamic Optimistic Two-Phase LockingThe two remaining algorithms shown in the taxonomy of Figures 2 and 3 are variants of O2PL that choosedynamically between invalidation and propagation on a page-by-page basis. The original dynamic algorithm(O2PL-Dynamic) was introduced in [Care91a]. This algorithm used a simple heuristic that would initially32

propagate an update to a remotely cached page copy, switching to invalidation the next time if the propa-gation went unused. An improved heuristic (called O2PL-NewDynamic), which initially favors invalidationover propagation, was described and studied in [Fran92a, Fran93a]. Those studies showed that by favoringinvalidation, O2PL-NewDynamic was able to match the performance of O2PL-I in those workloads where ithad the best performance (i.e., most workloads tested), and to approach the superior performance of O2PL-Pin the FEED workload (which is the once case where it provided the best performance).5.2 Other Related WorkIn addition to work that is directly related to transactional cache consistency for client-server databasesystems, there has been a tremendous amount of work on cache consistency for other types of systemsincluding database as well as non-database environments. While an in-depth treatment of this work isbeyond the scope of this paper, this section briey discusses this other related work.5.2.1 Shared-Disk Database SystemsTransactional cache consistency is required in any database system that supports dynamic caching. Onesuch class of systems is shared-disk (or data sharing) parallel database systems, which consist of multiplenodes with private processors and memory that share a common disk pool [Bhid88]. While similar in somerespects to the client-server database systems addressed in this study, they di�er in three signi�cant ways.First, since nodes are not assigned to individual users, they are likely to have less locality of access at theindividual nodes (i.e., all nodes are likely to have similar data a�nities). Secondly, the cost of communicationamong nodes in a shared-disk environment is substantially lower than would be expected in the local areanetwork of a page server DBMS. Thirdly, the structure of a shared disk system is peer-to-peer, as opposedto the client-server structure of a page server system, so many of the environmental considerations raised inSection 2.2.2 do not apply.A number of papers on shared-disk caching performance have been written by a group at IBM York-town. One of their earlier papers examined cache consistency protocols that were integrated with the globallock manager of a shared-disk system [Dias87]. Later work has addressed the impact of data skew andcontention for a range of possible algorithms [Dan90a, Dan90b], the interaction between private and sharedbu�ering [Dan91] (similar to the interactions between client bu�ers and the server bu�er), and extensionsto callback-style algorithms [Dan92]. Other related work in this area includes the work of Mohan andNarang [Moha91], Rahm [Rahm93], and Lomet [Lome94]. An algorithm that could dynamically adjust thegranularity at which locking and coherency were managed for a shared-disk DBMS was introduced in [Josh91].This approach was later extended for use in page server environments in [Care94b].5.2.2 Non-Database EnvironmentsOf course, cache consistency issues arise in other types of distributed and/or parallel systems as well, such asmulti-processor architectures, distributed �le systems, and distributed shared memory systems. While thereare many similarities between the solutions available for these environments and those available in client-server database systems, there are signi�cant environmental di�erences that impact the design alternativesand their inherent tradeo�s. Important areas of di�erence, from the standpoint of cache consistency main-tenance, include: correctness criteria, granularity of caching, cost tradeo�s, and workload characteristics.Much of the early work in cache consistency maintenance was done in the context of shared-memory33

multiprocessors. A number of early protocols for such systems were studied in [Arch86]; a more recentsurvey appears in [Sten90]. These systems di�er along all four of the dimensions listed above. For example,database systems support serializable transactions, while the consistency requirements for multiprocessorsare at the level of individual memory accesses. Nevertheless, the basic consistency mechanisms, such aswrite-broadcast and write-invalidate [Arch86], or directories of cached copies (e.g., [Agar88]), are similar.Client caching has been used in distributed �le systems since some of the earliest work in the area (e.g.,DFS [Stur80]). Many distributed �le systems that support some form of client caching have been proposedand built. These include Andrew [Howa88] and Sprite [Nels88], which both used callback-style algorithms.A survey of distributed �le systems can be found in [Levy90]. As with page server DBMSs, these systems useclient caching to improve performance and scalability. However, they support much less stringent notionsof correctness in terms of both concurrency and failure semantics. Furthermore, distributed �le systems aretypically designed for workloads in which read-write sharing is rare (e.g., [Bake91]). Caching is often doneat a fairly coarse granularity, such as entire �les or large portions of �les.Finally, Distributed Shared Memory (DSM) systems [Li89, Nitz91] provide the abstraction of a sharedvirtual memory address space that spans the nodes of a distributed system. DSM implementations allowmultiple readers to access the same page, so DSM systems must deal with the problems raised by dynamicreplication. Unlike multiprocessor caching, which relies heavily on hardware support, DSMs are typicallyimplemented in software with only minimal hardware assists. Because pages are the unit of consistency,DSMs are similar to page servers with respect to granularity. In terms of cost tradeo�s, DSMs are againcloser to page servers than are shared-memory multiprocessors, because messages are required for consistency(although if the DSM is built on a multiprocessor then messages may be less expensive). The main di�erences,therefore, lie in the area of correctness criteria. DSM systems typically do not provide transactional supportfor concurrency or for failure. Consistency is provided in terms of individual reads and writes, so anyhigher-level consistency model must be implemented on top of the DSM.6 ConclusionsIn this paper we began by describing the potential bene�ts of caching in client-server database systemsbased on the data-shipping approach. The introduction of caching raises the need for mechanisms to ensurethat transaction semantics are not violated as a result of dynamic replication. We refer to such mechanismsas transactional cache consistency maintenance algorithms. The client-server DBMS server environmentwas shown to have certain characteristics that impose constraints on the design of such algorithms. Wepresented a taxonomy that describes the design space and showed how it encompasses the algorithms thathave been proposed in the literature. Six algorithms, taken from three di�erent families, were then describedin more detail and analyzed. These algorithms were used to explore many of the tradeo�s inherent in thedesign choices of the taxonomy. The insight gained was then used to reect upon the characteristics of otheralgorithms that appear in the taxonomy.The choice of avoidance versus detection for preventing invalid access was seen to have a signi�cant impacton the number of messages sent for maintaining consistency. Under pessimistic-style approaches, avoidancetypically sends far fewer messages than detection. Concern about communication requirements has leddesigners of detection-based algorithms to employ optimistic techniques that defer consistency actions orperform them asynchronously. Such techniques reduce the number of messages sent at the possible expenseof increasing the probability of transaction aborts. A secondary e�ect of the choice of invalid access prevention34

is that avoidance-based techniques are able to more e�ciently use client caches, as they allow only valid datato reside in the caches. E�cient cache usage can reduce the number of pages that must be obtained fromthe server, saving messages, message volume, and possibly even server I/O. Several of the detection-basedalgorithms have been extended with noti�cation hints that help remove invalid pages from client caches.These hints reduce the potential for aborts due to accessing invalid pages and help to ensure more e�cientuse of the caches.The choice between synchronous and deferred declaration of write intentions was seen to be a tradeo�between the number of messages sent and the transaction abort rate. Deferring declarations introducesanother form of optimism, which can reduce messages but may also increase aborts. A third design decision,the duration of write permissions, was examined using two variants of Callback Locking. The tradeo� liesin the number of messages sent, and is workload-dependent. In situations with high-locality and low dataconict rates, retaining write permissions across transaction boundaries was seen to save messages, whilewith low-locality and high data conict rates retaining write permissions was shown to result in a net increasein messages sent. These observations indicate that a dynamic algorithm that can choose between these twostrategies is likely to perform well. Finally, the choice between invalidating remote copies and propagatingchanges to them was investigated by comparing two variants of the Optimistic Two-Phase Locking approach.Invalidation was seen to be quite robust in the face of changes to a number of workload and con�gurationparameters. In contrast, propagation was shown to be dangerously sensitive to the level of sequential sharingand to the client cache sizes; however, it was also demonstrated to be bene�cial in a workload meant to modelan information dissemination environment. In the absence of a dynamic approach or detailed informationabout client access patterns, invalidation is clearly the safest choice for most situations.The work reported here has been extended in several ways. The extension of these techniques to clientdisk caching was investigated in [Fran93b]. Issues that arise when clients are allowed to obtain data fromeach other (in addition to servers) were studied in [Fran92b]. More recently, callback-style approacheshave been extended to support multiple granularities of concurrency control and cache consistency mainte-nance [Care94b, Chu94]. Current trends in client-server database systems raise additional challenges thatmust be addressed as well. In particular, the merging of Relational and Object technologies requires systemsthat can e�ciently support both the navigational style of data access assumed in this study and the query-oriented access typically associated with relational systems. This is a major focus of our ongoing work. Weare also investigating the extension of these techniques to systems in wider-area networks.References[Adya95] Adya, A., Gruber, R., Liskov, B., Maheshwari, U., \E�cient Optimistic Concurrency ControlUsing Loosely Synchronized Clocks" Proceedings of the ACM SIGMOD International Conferenceon the Management of Data, San Jose, CA, June, 1995.[Agar88] Agarawal, A., Simoni, R., Hennessy, J., Horowitz, M., \An Evaluation of Directory Schemes forCache Coherence", Proceedings of the 15th International Symposium on Computer Architecture,Honolulu, June, 1988.[Alsb76] Alsberg, P., Day, J., \Principles for Resilient Sharing of Distributed Resources", Proceedings ofthe 2nd International Conference on Software Engineering, IEEE, San Francisco, 1976.35

[Amsa95] Amsaleg, L., Franklin, M., Gruber, O., \E�cient Incremental Garbage Collection for Client-Server Object Database Systems", Proc. of the 21st International Conference on Very LargeData Bases, Zurich, Switzerland, September, 1995.[Arch86] Archibald, J., Baer, J., \Cache Coherence Protocols: Evaluation Using a Multiprocessor Simu-lation Model", ACM Transactions on Computer Systems, 4(4), November, 1986.[Bake91] Baker, M., Hartman, J., Kuper, M., Shirri�, K., Ousterhout, J., \Measurements of a DistributedFile System", Proceedings of the 13th International Symposium on Operating System Principles,Paci�c Grove, CA, October, 1991.[Bern87] Bernstein, P., Hadzilacos, V., Goodman, N., Concurrency Control and Recovery in DatabaseSystems, Addison-Wesley, 1987.[Bhid88] Bhide, A., Stonebraker, M., \An Analysis of Three Transaction Processing Architectures," Pro-ceedings of the 14th International Conference on Very Large Data Bases, Los Angeles, August,1988.[Butt91] Butterworth, P., Otis, A., Stien, J., \The GemStone Object Database System", Communicationsof the ACM, 34(10), October, 1991.[Care91a] Carey, M., Franklin, M., Livny, M., Shekita, E., \Data Caching Tradeo�s in Client-Server DBMSArchitectures", Proceedings of the ACM SIGMOD International Conference on the Managementof Data, Denver, June, 1991.[Care91b] Carey, M. and Livny, M., \Conict Detection Tradeo�s for Replicated Data", ACM Transactionson Database Systems, 16(4), December, 1991.[Care93] Carey, M., DeWitt, D., Naughton, J., \The 007 Benchmark", Proceedings of the ACM SIGMODInternational Conference on the Management of Data, Washington, D.C., May, 1993.[Care94a] Carey, M., DeWitt, D., Franklin, M., Hall, N., McAuli�e, M., Naughton, J., Schuh, D., Solomon,M., Tan, C., Tsatalos, O., White, S., Zwilling, M.. \Shoring up Persistent Applications" Proceed-ings of the ACM SIGMOD International Conference on the Management of Data, Minneapolis,MN, June 1994.[Care94b] Carey, M., Franklin, M., Zaharioudakis, M., \Fine-grained Locking in Page Server DatabaseSystems", Proceedings of the ACM SIGMOD International Conference on the Management ofData, Minneapolis, MN, June, 1994.[Catt91] Cattell, R., Object Data Management, Addison Wesley, Reading, MA, 1991.[Catt92] Cattell, R., Skeen, J., \Object Operations Benchmark", ACM Transactions on Database Systems,17,1, March, 1992.[Chu94] Chu, S., Winslett, M., \Minipage Locking Support for Page-Server Database Management Sys-tems", Proc. 3rd Intl. Conference on Information and Knowledge Management, Gaithersburg,MD, November, 1994.[Dan90a] Dan, A., Dias, D., Yu, P., \The E�ect of Skewed Data Access on Bu�er Hits and Data Contentionin a Data Sharing Environment", Proceedings of the 16th International Conference on Very LargeData Bases, Brisbane, Australia, August, 1990.[Dan90b] Dan, A., Yu, P., \Performance Comparisons of Bu�er Coherency Policies", IBM Research ReportRC16361, November, 1990.[Dan91] Dan, A., Dias, D., Yu, P., \Analytical Modelling of a Hierarchical Bu�er for a Data Sharing En-vironment", Proceedings of the ACM SIGMETRICS Conference on Measurement and Modellingof Computer Systems, San Diego, May, 1991.36

[Dan92] Dan, A., Yu, P., \Performance Analysis of Coherency Control Policies through Lock Retention",Proceedings of the ACM SIGMOD International Conference on the Management of Data, SanDiego, June, 1992.[Davi85] Davidson, S., Garcia-Molina, H., Skeen, D., \Consistency in Partitioned Networks", ACM Com-puting Surveys, 17(3), September, 1985.[Deux91] O. Deux et al., \The O2 System", Communications of the ACM, 34(10), October, 1991.[DeWi90] DeWitt, D., Futtersack, P., Maier, D., Velez, F., \A Study of Three Alternative Workstation-Server Architectures for Object-Oriented Database Systems", Proceedings of the 16th Interna-tional Conference on Very Large Data Bases, Brisbane, Australia, August, 1990.[Dias87] Dias, D., Iyer, B., Robinson, J., Yu., P., \Design and Analysis of Integrated Concurrency-Controls", Proceedings of the 13th International Conference on Very Large Data Bases, Brighton,England, 1987.[Exod93] EXODUS Project Group, \EXODUS Storage Manager Architectural Overview", EXODUSProject Document, Computer Sciences Department, University of Wisconsin-Madison, (availableby ftp from ftp.cs.wisc.edu), 1993.[Fran92a] Franklin, M., Carey, M.,"Client-Server Caching Revisited", in Proceedings of the InternationalWorkshop on Distributed Object Management, Edmonton, Canada, August, 1992, (Published asDistributed Object Management, Ozsu, Dayal, Vaduriez, eds., Morgan Kaufmann, San Mateo,CA, 1994).[Fran92b] Franklin, M. Carey, M., and Livny, M., \Global Memory Management in Client-Server DBMSArchitectures", Proceedings of the 18th International Conference on Very Large Data Bases,Vancouver, B.C., Canada, August, 1992.[Fran92c] Franklin, M., Zwilling, M., Tan, C., Carey, M., DeWitt, D., \Crash Recovery in Client-ServerEXODUS", Proceedings of the ACM SIGMOD International Conference on the Management ofData, San Diego, June, 1992.[Fran93a] Franklin, M., Caching and Memory Mangement in Client-Server Databse Systems, Ph.D. Thesis,Dept. of Computer Science, University of Wisconsin, July, 1993.[Fran93b] Franklin, M. Carey, M., and Livny, M., \Local Disk Caching in Client-Server Database Systems",Proceedings of the 19th International Conference on Very Large Data Bases, Dublin, Ireland,August, 1993.[Good83] Goodman, J., \Using Cache Memory to Reduce Processor Memory Tra�c", Proceedings of the10th International Symposium on Computer Architecture, Stockholm, Sweden, June, 1983.[Gray93] Gray, J., Reuter, A., Transaction Processing: Concepts and Techniques, Morgan Kaufmann, SanMateo, CA, 1993.[Henn90] Hennesy, J., Patterson, D.,Computer Architecture, A Quantitative Approach, Morgan Kaufmann,San Mateo, CA., 1990.[Howa88] Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan, M., Sidebotham, R., West, M.,\Scale and Performance in a Distributed File System", ACM Transactions on Computer Systems,6(1), February, 1988.[Josh91] Joshi, A., \Adaptive Locking Strategies in a Multi-Node Data Sharing System", Proceedings ofthe 17th International Conference on Very Large Data Bases, Barcelona, 1991.[Kim90] Kim, W., Garza, J., Ballou, N., Woelk, D., \The Architecture of the ORION Next-GenerationDatabase System," IEEE Transactions on Knowledge and Data Engineering, 2(1), March, 1990.37

[Kist91] Kistler, J., Satyanarayanan, M., \Disconnected Operation in the Coda File System", Proceedingsof the 13th International Symposium on Operating System Principles, Paci�c Grove, CA, October1991.[Lamb91] Lamb, C., Landis, G., Orenstein, J., Weinreb, D., \The ObjectStore Database System", Com-munications of the ACM, 34(10), October, 1991.[Levy90] Levy, E., Silbershatz, A., \Distributed File Systems: Concepts and Examples", ACM ComputingSurveys, 22(4), December, 1990.[Li89] Li, K., Hudak, P., \Memory Coherence in Shared Virtual Memory Systems", ACM Transactionson Computer Systems,7(4) November, 1989.[Lisk92] Liskov, B., Day, M., Shrira, L., \Distributed Object Management in Thor", Proceedings of theInternational Workshop on Distributed Object Management, Edmonton, Canada, August, 1992,(Published as Distributed Object Management, Ozsu, Dayal, Vaduriez, eds., Morgan Kaufmann,San Mateo, CA, 1994).[Livn90] Livny, M., DeNet User's Guide, Version 1.5, Computer Sciences Dept., University of Wisconsin-Madison, 1990.[Lome94] Lomet, D., \Private Locking and Distributed Cache Management", Proc. of the 3rd Intl. Con-ference on Parallel and Distributed Information Systems, Austin, TX, September, 1994.[Moha91] Mohan, C., Narang, I., \Recovery and Coherency Control Protocols for Fast Intersystem PageTransfer and Fine-Granularity Locking in a Shared Disks Transaction Environment", Proceedingsof the 17th International Conference on Very Large Data Bases, Barcelona, Spain, September,1991.[Moha92] Mohan, C., Haderle, D. Lindsay, B., Pirahesh, H., Schwarz, P., \ARIES: A Transaction MethodSupporting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging", ACMTransactions on Database Systems, 17(1), March, 1992.[Nels88] Nelson, M., Welch, B., Ousterhout, J., \Caching in the Sprite Network File System", ACMTransactions on Computer Systems, 6(1), February, 1988.[Nitz91] Nitzberg, B., Lo, V., \Distributed Shared Memory: A Survey of Issues and Algorithms", IEEEComputer, 24(8), August, 1991.[Obje91] Objectivity Inc., Objectivity/DB Documentation Vol. 1, 1991.[Onto92] ONTOS Inc., ONTOS DB 2.2 Reference Manual, 1992.[Rahm91] Rahm, E., \Concurrency and Coherency Control in Database Sharing Systems", Technical Report3/91, Computer Science Dept., University of Kaiserslautern, Germany, November 1991.[Rahm93] Rahm, E., \Emperical Performance Evaluation of Concurrency and Coherency Control Protocolsfor Database Sharing Systems", ACM Transactions on Database Systems, 18,2, June, 1993.[Rama92] Ramakrishnan, K., Biswas, P., Karedla, R., \Analysis of File I/O Traces in Commercial Com-puting Environments", Proceedings of the ACM SIGMETRICS and Performance '92 Conference,May, 1992.[Sand92] Sandhu, H., Zhou, S., \Cluster-Based File Replication in Large-Scale Distributed Systems",Proceedings of the ACM SIGMETRICS and Performance '92 Conference, May, 1992.[Sten90] Stenstrom, P., \A Survey of Cache Coherence Schemes for Multiprocessors", IEEE Computer,23(6), June, 1990.[Ston79] Stonebraker, M., \Concurrency Control and Consistency of Multiple Copies of Data in Dis-tributed INGRES", IEEE Transactions on Software Engineering, SE-5(3), May, 1979.38

[Stur80] Sturgis, H., Mitchell, J., Israel, J., \Issues in the Design and use of a Distributed File System",Operating Systems Review, 14(3), July, 1980.[Vers91] Versant Object Technology, VERSANT System Reference Manual, Release 1.6, Menlo Park, CA,1991.[Wang91] Wang, Y., Rowe, L., \Cache Consistency and Concurrency Control in a Client/Server DBMSArchitecture", Proceedings of the ACM SIGMOD International Conference on the Managementof Data, Denver, June, 1991[Wilk90] Wilkinson, W., Neimat, M., \Maintaining Consistency of Client Cached Data", Proceedings ofthe 16th International Conference on Very Large Data Bases, Brisbane, Australia, August, 1990.

39

