
Product Unit Learning�Laurens R. Leerinka, C. Lee Gilesb;c, Bill G. Horneb, Marwan A. JabriaaSEDAL, Department of Electrical EngineeringThe University of Sydney, Sydney, NSW 2006, AustraliabNEC Research Institute, 4 Independence Way, Princeton, NJ 08540, USAc UMIACS, University of Maryland, College Park, MD 20742, USAAbstractProduct units provide a method of automatically learning the higher-order input combina-tions required for the e�cient synthesis of Boolean logic functions by neural networks. Productunits also have a higher information capacity than sigmoidal networks. However, this activationfunction has not received much attention in the literature. A possible reason for this is thatone encounters some problems when using standard backpropagation to train networks contain-ing these units. This report examines these problems, and evaluates the performance of threetraining algorithms on networks of this type. Empirical results indicate that the error surface ofnetworks containing product units have more local minima than corresponding networks withsummation units. For this reason, a combination of local and global training algorithms werefound to provide the most reliable convergence.We then investigate how `hints' can be added to the training algorithm. By extracting acommon frequency from the input weights, and training this frequency separately, we show thatconvergence can be accelerated.A constructive algorithm is then introduced which adds product units to a network as re-quired by the problem. Simulations show that for the same problems this method creates anetwork with signi�cantly less neurons than those constructed by the tiling and upstart algo-rithms.In order to compare their performance with other transfer functions, product units wereimplemented as candidate units in the Cascade Correlation (CC) [13] system. Using thesecandidate units resulted in smaller networks which trained faster than when the any of thestandard (three sigmoidal types and one Gaussian) transfer functions were used. This superioritywas con�rmed when a pool of candidate units of four di�erent nonlinear activation functionswere used, which have to compete for addition to the network. Extensive simulations showedthat for the problem of implementing random Boolean logic functions, product units are alwayschosen above any of the other transfer functions.1 IntroductionIt is well-known that supplementing the inputs to a neural network with higher-order combinationsof the inputs both increases the capacity of the network [9] and the the ability to learn geometricallyinvariant properties [19]. Such a network consists of a single layer of higher-order units [19] whichcompute the function�0@w0 +Xi wixi +Xi;j wijxixj +Xi;j;kwijkxixjxk + : : :1A ; (1)where � is the activation or transfer function.�Technical Report CS-TR-3503 and UMIACS-TR-95-80, University of Maryland, College Park, MD 20742 (1995)1



However, there is a combinatorial explosion of higher order terms as the number of inputs tothe network increases. More speci�cally, the number of weights required to implement a K-th orderneuron with N inputs are [32] KXi=0 � N + i� 1i � = � N +KK � : (2)Another approach to this problem were `sigma-pi' networks [35, 30], in which each hidden layer unitcalculates a certain product (or conjunct) of the inputs. In this way a polynomial function of theinputs are presented as inputs to the transfer function of the output layer, i.e. the value of theoutput unit j is �0@ Xi2conjunctwijYxi1xi2 : : :xiN1A ; (3)where i indexes the conjuncts that are used in unit j and assuming there are N values in the conjunct.In this architecture a single higher order term is constructed by each neuron in the hidden layer. Thisarchitecture presents another method of constructing higher-order networks, but the problem of thecombinatorial explosion of the number of weights still remains if the conjuncts are not hand-coded.However, Redding et al [33] found that in order to implement a certain logical function, in mostcases only a few of these higher order terms are required.The `pi-sigma' networks (PSNs) of Ghosh & Shin [18] attempt to make use of this fact. APSN with N summation units and one `pi' output neuron provides a K-th order approximation ofa continuous function. However, the product units introduced by Durbin & Rumelhart [11] havethe advantage that, given an appropriate training algorithm, the units can automatically learn thehigher order terms that are required to implement a speci�c logical function.In these networks the hidden layer units compute the weighted product (instead of the weightedsum) of the inputs. Each term being multiplied together is a input raised to the power of the variableweight. That is, every unit computesNYi=1xwii instead of NXi=1 xiwi: (4)An additional advantage of product units is the increased information capacity of these units com-pared to standard summation networks. Durbin & Rumelhart [11] determined empirically that theinformation capacity of these units (as measured by their capacity for learning random Booleanpatterns) is approximately 3N , compared to 2N for a single threshold logic function [9]. As before,N is the number of inputs to the network.The larger capacity is means that the same functions can be implemented by networks containingless units. In many application areas the size of the neural network required to implement the aspeci�c task determines whether a neural network approach is feasible. One example is real-timeapplications e.g. speech recognition where both the computational load and the bandwidth of theinput data is high. Another area is the VLSI implementation of neural networks. In the latter casethe size of the network is limited by the amount of space available on the chip, as well as currentusage if the network is to be used in a low power application. In this case the number of weights inthe network is more important than the number of neurons, as weights require a much larger surfacearea for implementation [14]. In this case a smaller network with a slightly more complex transferfunction is preferable to a larger network with a standard (sigmoidal) transfer function.When product units are used to process Boolean inputs, best performance is obtained [11] byusing values of +1 and �1. With these inputs, a product unit computes the following function:y = nYi=1xwii (5)= ePni=1 wi ln xi (6)2



= ePnijxi=�1 wi ln xi since ln1 = 0 (7)= ePnijxi=�1 wii� since ln�1 = i� (8)= cos � Xijxi=�1wi + i sin� Xijxi=�1wi (9)If the imaginary component is ignored, the activation function is equivalent to a cosine summationfunction with all �1 inputs mapped to 1 and the +1 inputs mapped to 0. We can thus use previousresults obtained from the study of cosine/sine activation functions to further our understanding ofproduct units. In the remainder of this report the terms product unit(s) and cos(ine) unit will beused interchangeably as all the problems examined have Boolean inputs.2 Cosine Activation FunctionsNetworks with cosine hidden unit activations have been used in the past, and have been shown to haveuniversal approximation properties [28, 16]. Gallant & White [16] proved that a single hidden layerfeedforward network using a `cosine squasher' transfer function can implement a Fourier network.This network implements a Fourier approximation to the desired input-output mapping, and canapproximate to any desired degree of accuracy any square integrable function on a compact setusing a �nite number of hidden units. It then follows that product units are networks with universalapproximation properties.Also relevant are the results of research into the Vapnic-Chervonenkis (VC) dimension of di�erentactivation functions. In [37] the VC dimension is de�ned as follows. For a positive integer N , adichotomy (S�; S+) on a set S � RN is a partition S = S� [ S+ of S into two disjoint subsets. Afunction f : RN ! R will be said to implement this dichotomy if it holds thatf(u) > 0 for u 2 S+ and f(u) < 0 for u 2 S� (10)The set S � RN is shattered by f if each dichotomy on S can be implemented by some f 2 F . TheVC dimension is then the largest integer l so that at least some set S of cardinality l in R which canbe shattered by some f 2 F .In [37] it was remarked thatIf only � or � are desired to be in�nite, one may take the simpler example �(x) =sin(x). Note that for all l rationally independent real numbers xi, the vectors of theform (sin(1x1); : : : ; sin(lxl)), with the i's real, form a dense subset of [�1; 1]l, so alldichotomies on fx1; : : : ; xlg can be implemented with (1; sin)-nets.where � speci�ed the VC dimension.This means that one sin unit can implement any dichotomy of l rationally independent (orrelatively prime) values, and therefore has an in�nite VC dimension.However, this result cannot be directly applied to product units. The reason is that the argumentof the cos unit is the result of the inner product between the inputs and the weight vector; in thecase of product units with f0; 1g inputs this becomes the sum of all weights with nonzero inputsmultiplied by � i.e. cos�Pijxi=�1 wi. This argument cannot be relatively prime for all 2N possibleinput combinations as, when used with f0; 1g inputs, the dot product consists of the sums of thedi�erent weights. This fact, results in a �nite VC dimension for product units.However, rational independence can be enforced by performing a nonlinear scaling operation onthe results of the inner product before applying the cos function. This was done by Brady [7] whoproposed a learning algorithm for a neural network consisting of only a single sin unit. It was shownthat this network could implement any discrete function p : Rn ! f0; 1g. In practice, however, it isfound that a very high numerical precision is required to implement the nonlinear mapping. A �niteprecision will thus limit the number of inputs to the network and the size of the training set.It is also worth mentioning that the VC dimension is directly related to the generalization abilityof the network. The price that has to be paid for having an in�nite VC dimension is that the network3



cannot be guaranteed to generalize [6]. As most applications of neural networks require this ability,an in�nite VC dimension is not always desired.3 Learning with Product Units3.1 Training ProblemsThis section examines the problems that are inherent in training neural networks that containproduct units. The aim is to present an overview that will enable product units to become astandard part of the neural network toolbox. In the same way that the hyperbolic tangent orthe sigmoid activation functions are preferred for certain applications, we show that product unitsare very suitable for certain tasks. This is especially the case when a network is required for theimplementation of logic functions, where we will show that product units are superior to standardactivation functions. These advantages come at the cost of some additional training di�culties, butin this section it will be shown that correct weight initialization combined with a simple extensionto the backpropagation algorithm can lower the complexity of learning with product units to thesame level as that of sigmoidal activation functions.As the basic mechanism of a product unit is multiplicative instead of additive, one would expectthat standard neural network training methods and procedures cannot be directly applied whentraining these networks.This is indeed the case. If a neural network simulation environment is available (in our case theMulti Module Neural Simulation Environment MUME [22] was used), the basic functionality of aproduct unit can be obtained by simply adding the cos function cos(� � input) (and it's derivativewhich is required by backpropagation) to the existing list of transfer functions. This assumes thatBoolean mappings are being implemented and the appropriate f�1;+1g ! f1; 0gmapping has beenperformed on the input vectors.If we then attempt to train a network with 6 inputs, 1 `hidden' product unit and a standardsumming output unit network on the parity-6 problem shown in [11], it is found that the standardbackpropagation algorithm simply does not work. We have found two main reasons for this:� Random weight initialization.� The presence of local minima.3.1.1 Weight InitializationThe �rst step in the backpropagation procedure (see [20] p. 120) is to initialize all weights to smallrandom values. The main reason for this is to use the dynamic range of the sigmoid function andit's derivative. For large inputs the sigmoid saturates and the derivative is small, leading to smallweight adjustments and slow learning. For the same reason the size of the weights are also oftenscaled in proportion to the fan-in of the neuron, e.g. proportional to 1=pfan-in.In contrast to this, the dynamic range of a cos unit is unlimited. Initializing the weights tosmall random values results in an input to the unit in the neighborhood of zero. In this region thederivative is small, so apart from choosing small weights centered around 3n�=2 with n = �1;�2; : : :this is the worst possible choice.As the argument of the cos in cos�Pijxi=�1 wi is already multiplied by � and is symmetric, theweights were initialized randomly in the range [�2; 2]. In fact, learning seems insensitive to the sizeof the weights, as long as they are large enough.3.1.2 Local MinimaThe presence of local minima when training networks with (co)sine units has been reported ear-lier. In the discussion of their `Generalized Fourier Networks' in which sin hidden layer activationfunctions were used, Lapedes & Faber [28] commented that4



Further generalizations are possible by considering multilayer networks and di�erentexpressions for the transfer function. We point out that using sin's often leads to numer-ical problems, and nonglobal minima, whereas sigmoids seemed to avoid such problemsthroughout all our extensive simulations.This comment summarizes our experience of training with product units. For small problems (lessthan 3 inputs) backpropagation provides satisfactory training. However, when the number of inputsare increased beyond this number, even with the weight initialization in the correct range, trainingusually ends up in a local minima. Given the representational power of these units, there certainlyis merit in �nding an appropriate training algorithm.3.2 Training AlgorithmsWith this goal in mind, the following training algorithms were evaluated:� Backpropagation.� Simulated Annealing.� Random Search Algorithm.� Combinations of the above.Backpropagation (BP) was used as a benchmark and for using in combination with the otheralgorithms. It is per de�nition a local search method. The Jacobs delta-bar-delta learning rateadaptation rule [23] was used along with BP to accelerate convergence, with the parameters wereset to the following values (� = 0:35; � = 0:05 and � = 0:90).The random search algorithm (RSA) is a global search method (i.e. the whole weight space isexplored during training), and does the following:� For every epoch, for every weight, generate a new random value.� Replace the weight by this random value and relax the network.� If the training error decreases, retain this weight. Otherwise restore old weight value.Simulated annealing (SA) is a standard optimization method, see ([27], [24],[34]) for more infor-mation. The operation of SA is similar to RSA, with the di�erence that with a decreasing probabilitysolutions are accepted which increase the training error.The combination of algorithms were chosen (BP & SA, BP & RSA) to combine the bene�ts ofglobal and local search. Used in this manner, BP is used to �nd the local minima. If the training errorat the minima is su�ciently low, training is terminated. Otherwise, the global method initializesthe weights to another position in weight space from which local training can continue.3.3 Simulation ResultsThree problems will be examined in this section,� The parity N problem with a 2 layer network.� Computing all logical functions of 3 inputs with 1 product unit.� Computing random logical functions for various sizes of N .5



3.3.1 Parity NThe infamous parity problem is (for the product unit at least) an appropriate task. From thearchitecture and as illustrated by [11], this problem can be solved by one product unit. The questionis whether the training algorithms can �nd a solution. The architecture simulated has N inputs,1 product unit in the hidden layer and one summation output unit. All simulations were run fora maximum of 1,000 iterations before being terminated. The target values are f�1;+1g, and theoutput is taken to be correct if it has the correct sign. The simulation results are shown in Table3.3.1. Parity BP BP SA SA RSA RSAN # Conv Avg Iter # Conv Avg Iter # Conv Avg Iter6 7 34 10 12.6 10 15.28 2 700 10 52.8 10 45.410 0 - 10 99.9 10 74.1Table 1: Learning the parity problem: The table shows N , the number of inputs for the parityproblem, the number of runs out of 10 that have converged for each algorithm, and the averagenumber of training epochs required for convergence.For the parity problem it is clear that local learning does not provide good convergence. BP wasnot combined with either SA or RSA, the addition of local learning to these algorithms can clearlyonly worsen performance. For the parity problem, global search algorithms have the followingadvantages:� The search space is bounded (all weights are initialized in [�2;+2]) and only weights in thisregion are generated.� The dimension of search space is low (maximum of 11 weights for the problems examined).� The fraction of the weight space which satis�es the parity problem relative to the total boundedweight space is high (all weights only have to be within a certain margin of each other for theoutput to have the correct sign).This is a clear indication that BP alone cannot be used as a training algorithm, and that theaddition of a global search procedure is essential for training.3.3.2 All logical functions of 3 inputsAs part of this investigation, we attempted to reproduce the capacity of 3N determined empiricallyby [11] and compare that to the performance of standard summation units. This was done byrunning two sets of simulations.Firstly, one product unit was trained to calculate all (22)N logical functions of the N inputvariables. Unfortunately, this is only practical for N 2 f2; 3g. For N = 2 there are only 16 functions,and a product unit has no problem learning all these functions rapidly with all three trainingalgorithms. In comparison a single summation unit can learn 14 (not the XOR & XNOR functions).For N=3, a product unit is able to implement 208 of the 256 functions, while a single summationunit could only implement 104 (these were the maximum values obtained during training). Thesimulation results are displayed in Table 3.3.2.The BP-RSA combination requires further explanation. Several BP-(R)SA combinations wereevaluated, but best performance was obtained using a �xed number of iterations of BP (in this case120) along with one initial iteration of RSA. In this manner BP is used to move to the local minima,and if the training error is still above the threshold value the RSA algorithm generates a new set ofrandom weights from which BP can start again.The e�ect of this single initial RSA iteration is to reinitialize all weights to new values. Thestandard RSA algorithm only changes the weights permanently if a decrease in error is found, but in6



BP SA RSA BP-RSA# Logic Avg Iter # Logic Avg Iter # Logic Avg Iter # Logic Avg Iter189.2 20.5 196.1 43.8 167.4 60.2 208 44.3Table 2: Learning all logical functions of 3 inputs: The table shows the average number oflogical functions that could be implemented by one product unit and the average number of trainingepochs required when training converged. Ten simulations were performed for each of the 256 logicalfunctions, each for a maximum of 1,000 iterations.many cases extensive searches are required to �nd weights that are better than that of the currentlocal minima. Fastest training was obtained by simply reinitializing the weights if no convergencehas occurred after a certain number of epochs (in most cases this was 120).It is observed from Table 3.3.2 that BP on it's own learns the fastest, but has the worst per-formance in terms of the number of logical functions implemented. The SA and RSA algorithmsconverge surprisingly fast, but with the number of iterations limited to 1,000 the global minima'sare not always found. It is clear that the BP-RSA combination provides the best performance. Thenumber of training iterations could be reduced further by initiating the RSA iteration when the BPtraining error does not decrease signi�cantly, instead of running BP for a �xed number of iterations.The BP-RSA combination is in e�ect equivalent to the `local optimization with random restarts'process discussed by [25, 26], where the local search is this case is performed by the BP algorithm. In[26] it was shown that for certain problems where the error surface was `exceedingly mountainous',multiple random-start local optimization outperformed simulated annealing. We hypothesize thatadding product units to a network makes the error surface su�ciently mountainous so that a globalsearch is required.4 Training Product Units with `Hints'Abu-Mostafa [1] showed that using appropriate `hints' could decrease learning time in neural net-works. Hints are information about the system or training data that is known to the observer,but that is embedded in a non-trivial way in the data. It has also been shown [2] that hints maybe extracted from the training data, or by using previous experience learned from solving similarproblems.4.1 Product Unit ComputationWhen the calculation of one product unit is examined, as shown before, the output of a productunit can be approximated by a cos unit if the imaginary component is ignored. For clarity, this isrepeated below: y = nYi=1xwii (11)= cos� Xijxi=�1wi: (12)If the f�1;+1g inputs are mapped onto f1; 0g, y then becomesy = cos � NXi=1 xiwi! and (13)Error = �"cos � NXi=1 xiwi!# � �; (14)7



where (15)� = the f�1;+1g target values, and (16)� = the Sign() function : (17)The �rst computation that takes place is an inner product, which maps the input vector onto aone-dimensional input space. The inner product is then scaled by � and the cos function applied.The output of the cos function should have the same sign as the target value �.The problem of training a cos unit can also be considered as follows. We have a set of (x; y)coordinates, where xi is the result of the inner product and yi is the corresponding target value �i.The expression � [cos ()] can be seen as a square wave of a to be determined frequency and phaseso that it is has the same sign as �i for all values of xi.Even if the shifting and pre-scaling is not allowed, it is still possible to extract a common frequencyand phase component from the cosine unit. The cos calculation can be rewritten as:y = cos"� NXi=0 xiwi# (18)= cos"� NXi=1 xiwi +w0!# (19)= cos"� wf NXi=1 xiwi +w0!# (20)The bias weight is now used as the phase of the square wave, and another weight wf has been addedwhich is the frequency. This is not strictly another free parameter, just a common factor taken outof all the weights.4.2 The HintsWith the product unit computation in the above form, there are two hints that can be added to thelearning process:� The bias weight w0 is the phase and is f0; 1g depending on whether the target value for thezero input vector is f+1;�1g. This weight is simply initialized to the correct value.� The wf weight can be trained separately using backpropagation, the gradient is given by@y@wf = � sin"� wf NXi=1 xiwi +w0!#"� NXi=1 xiwi# : (21)Since it is known that linear independence between the results of the dot-product will increase theprobability of a correct wf being found, an additional hint could be implemented by the introductionof a term in the cost function which maximizes this measure.4.3 Simulation ResultsThe performance of this method was �rst evaluated on the problem of computing all 256 logicalfunctions of 3 variables. The results are shown in Table 4.3. The BP-RSA values from Table 3.3.2are repeated here for comparison.The main e�ect of adding hints is to accelerate training, the performance of the network trainedby both algorithms is equal to the maximum capacity of the cos unit.In a second experiment, w0 was �xed according to the �rst hint, and fw1 : : :wNg initialized torandom values. We thus have a network in which only one weight is being trained, wf .8



BP-RSA BP-RSA BP-RSA-HINTS BP-RSA-HINTS# Logic Avg Iter # Logic Avg Iter208 44.3 208 32.9Table 3: Learning all logical functions of 3 inputs: The table shows the average number oflogical functions that could be implemented by one product unit and the average number of trainingepochs required for when training converged. Ten simulations were performed for each of the 256logical functions, each for a maximum of 1,000 iterations.The performance of this network is still respectable, an average of 58.6 logical functions werelearned in an average of 487 epochs. The performance will certainly increase if the upper bound of1,000 epochs is lifted.As there is only one variable being learned, the error surface can be examined to get some insightinto why the learning algorithm behaves the way it does. The error surface for the function whichcomputes the XOR of two inputs, and is zero for all other values (targets are f�1;�1;�1;�1;�1;+1;+1;�1gfor the 8 input vectors f0; 0; 0g : : :f1; 1; 1g respectively) is shown in Figure 1. In this case the weightswere initialized to f1=2; 1=3 : : :1=9g.
100 200 300 400 500

Wf

0.2

0.4

0.6

0.8

1

1.2

1.4

MSE

Figure 1: Error Surface. This is the error surface when only wf is trained on the logical XOR oftwo of three input variables.From Figure 1 it is clear why standard BP has di�culty in learning this problem, and why theBP-RSA combination performs well. The error surface is locally smooth, and BP would rapidly �ndthe local minima. The RSA step would then position wf at another (random) value if the trainingerror at the local minima is not su�ciently low. 9



5 Constructive Learning with Product UnitsSelecting the optimal network architecture for a speci�c application is a nontrivial and time-consumingtask, and several algorithms have been proposed to automate this process. One class of networkadaptation algorithms start out with a redundant architecture and proceed by pruning away seem-ingly unimportant weights ([36], [29]). Another class of algorithms start o� with a sparse architectureand grows the network to the complexity required by the problem. Several algorithms have beenproposed for growing feedforward networks. The `upstart' algorithm of Frean [15] and the `cascade-correlation' algorithm of Fahlman [13] are examples of this approach.In this section we will use the experience gained from the experiments described earlier to devisea simple method for adding product units to a three layer network. The hidden layer will consist ofproduct units, while the output layer contains a single sigmoidal unit.5.1 The Constructive AlgorithmSeveral constructive algorithms ([15], [13], [31]) are based on the following process:� A network is trained on a certain training set.� The current weights in the network are frozen, and a new neuron (or a set of candidate neurons)is added to the network. Often the new neuron is a fully connected hidden layer.� The new weights associated with the neuron are now trained on either the whole or a smallersubset of the training set.� As neurons are added, the performance of the network improves. For some training algorithmsproofs are available that specify that, for a given accuracy, the number of neurons to be addedis �nite.From our simulations (and that of others, see [28]) it is clear that networks containing cos trans-fer functions su�er from serious local-minima problems, something which sigmoids are reasonablyinsensitive to. The importance of the RSA (or global search) step when training product units isclear from our experiments, and freezing all the weights (and thereby limiting the global search onlyto the one new weights) limits the learning process. This is because the addition of a new weightadds one degree of freedom, but limits the new solution to an a�ne subset of the existing weightspace [5]. When a new hidden unit is added, it is possible to rotate the previous solution so thatthe local minima is reached. However, as shown in [5] this network will not be of minimal size.For this reason a simple constructive approach was implemented which retains the global (RSA)search for all weights during the whole training process. The method used in our simulations is asfollows:� Train a network using the BP-RSA combination with `hints' on a network with a speci�edminimum number of hidden product units.� If there is no convergence within a speci�ed number of epochs, add a product unit to thenetwork. Reinitialize weights and continue training with the BP-RSA combination.� This process is repeated until a maximum number of epochs is reached or the network hasgrown to the maximum speci�ed size.The method of [8] and [5] was also evaluated, in which neurons with small weights were addedto a network according to certain criteria. The method outlined above performed better, possiblybecause of the global search performed by the RSA step.10
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Figure 2: Learning Random Mappings: Number of units added to the network when trained on2N random mappings. The values are the average of 25 simulations, each on a di�erent training set.5.2 SimulationsTo evaluate the performance of the method with that of the `upstart' [15] and `tiling' [31] algorithms,the constructive product network was trained on two problems also described in these papers namely� The parity problem, for N = 7 : : :10.� Random Mappings.5.2.1 The Parity ProblemIn [15] it was reported that the upstart algorithm required N units for all parity N problems, and1,000 training epochs were su�cient for all values of N except N = 10, which required 10,000.As shown in an earlier section, a product unit is able to perform any parity function with onlyone product unit. The training iterations required for N = 6; 8; 10 were given in Table 3.3.1, forinterest the RSA algorithm required an average of 74.1 iterations. In this case our BP-RSA algorithmsettings are modi�ed so that more RSA iterations are performed compared to the BP iterations.5.2.2 Random MappingsFollowing [15], in this problem the random mapping problem is de�ned by assigning each of the 2Npatterns its target f�1;+1g with 50% probability. As mentioned in [15], this is a di�cult problem,due to the absence of correlations and structure in the input for the network to exploit. As in [15, 31]the average of 25 runs were performed, each on a di�erent training set.The number of units added by the upstart algorithm was approximately 2N=9. The tiling al-gorithm requires approximately double that amount while the number of units added by the con-structive product network are approximately half. The values are plotted in Figure 2. Note that thevalues for the tiling and upstart algorithms are approximate and were obtained through inspectionfrom a similar graph in [15]. 11
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This means that if we want to �nd a minimum size network for a certain problem, given a �nitenumerical precision there might only be a few solutions in weight space. Given a mountainous errorsurface, a local search algorithm is ine�ective and an exhaustive search is required to �nd the correctsolution. As the network becomes larger, the fraction of weight space that contains solutions to theproblem increases, and the learning speed increases correspondingly as these solutions are easier to�nd. However, the danger of overtraining increases and generalization might su�er.In the method proposed, the extent of the global search is limited by the number of randomrestarts that are permitted for a certain architecture. If no solution is found, the learning problemis simpli�ed by adding another hidden unit. The tradeo� between rapid learning and a minimalarchitecture can thus be controlled through one variable, the number of random restarts.5.4 Using Cosine Candidate Units in Cascade Correlation5.4.1 IntroductionThe Cascade Correlation (CC) [13] algorithm is a well-known constructive method, and has beenapplied to both feedforward and recurrent networks. It has been shown [21] that for the neuralnetwork implementation of n-input, m-output logic functions (the type of problem examined here)the node-complexity of the fully connected architecture used in CC is O(q m2nn�logm ). For the onehidden layer units used in SIM the node complexity increases to O(2n + m). Thus the size of thenetworks constructed by CC and SIM cannot be directly compared.However, since CC is a popular algorithm it was thought interesting to compare the performanceof our simple method with it. In fact, CC performed substancially better than the upstart and tilingalgorithms discussed earlier.As the resulting networks could not be compared directly, it was decided to evaluate productunits in a fully connected structure. The simplest method was to implement these units as candidateunits inside CC. This also allows direct comparison with other transfer functions implemented inCC, as well as the construction of hybrid networks consisting of mixtures of candidate units.During the training process, the CC algorithm constructs a fully connected (lower triangularconnection matrix) neural network, with each hidden unit recieving input both from the inputsand all preceding hidden units. The hidden units are added to the network one at a time, and areselected from a pool of `candidate units', which have to compete for addition to the network. Eachof these candidate units are initialized with a di�erent set of random initial weights, and may alsobe di�erent nonlinear functions.The public domain version of CC used [38] supports four di�erent candidate types; the asym-metric sigmoid, symmetric sigmoid, variable sigmoid and gaussian units. Facilities exist for eitherselecting one unit type, or training with a pool of di�erent units allowing the construction of hybridnetworks. It was thus relatively simple to add a cosine candidate unit to the system.5.4.2 The Simulation ResultsThe random mapping problem was chosen to compare the performance of CC with SIM. It issu�ciently complex, and requires larger networks than most other `toy problems'. It also allowscomparisons with the upstart and tiling algorithms.The performance of standard CC in terms of number of hidden units required is shown in Figure4. Four graphs are shown, from top to bottom these are �rstly SIM, followed by CC using sigmoidal,Gaussian and �nally cosine candidate units.In a separate experiment the performance of hybrid networks were evaluated on the same ran-dom logic problem. When the default settings are used, this implementation of CC constructs ahomogeneous network consisting of sigmoidal hidden units. At each step 8 di�erent candidate unitscompete for addition to the network. After the cosine units had been added to the network, therewere 5 di�erent types of candidate units available.To enable a fair competition between candidate units of di�erent types, the simulations were runwith 40 candidate units, 8 of each type. The simulations were re-evaluated on 25 trails for each of13



0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200

N
um

be
r 

of
 n

eu
ro

ns
 in

 n
et

w
or

k

Number of patterns (2^N)

MLP with Product Units
CC with Sigmoidal Units
CC with Gaussian Units

CC with Cosine Units

Figure 4: Learning Random Mappings: Number of units added to the network when trained on2N random mappings. The values are the average of 25 simulations, each on a di�erent training set.The vertical bars indicate the minimum and maximum values.the random mapping problems (7,8,9 and 10 inputs, a total of 1920 input vectors). In total 1460hidden units were allocated, and in all cases cosine candidate units were chosen above units of the4 other types during the competitive stage.During this comparison, all parameters were set to default values, i.e. the weights of the cosineunits were random numbers initialized in the range of [�1;+1]. As discussed earlier, this puts thecosine units at a slight disadvantage as their optimum range is [�2;+2].In terms of epochs required for convergence, Table 5.4.2 displays the results when CC was trainedusing three types of homogeneous candidate units.N CC Sigmoid CC Gauss CC Cosinenepochs �epochs nepochs �epochs nepochs �epochs7 924.5 104.45 642.6 109.6 493.8 102.28 1630.9 164.0 1128.2 112.3 833.8 82.49 2738.3 164.1 1831.1 93.3 1481.8 175.910 4410.9 164.4 2967.6 98.9 2590.8 167.4Table 4: Number of Training Epochs: The table shows the average and standard deviation ofthe number of training epochs required for convergence of CC using Sigmoidal, Gaussian and Cosinecandidate units.5.4.3 DiscussionWe hypothesize that there are two reasons for the choice of cosine units above any of the other typesduring the competitive learning phase: 14



� The higher capacity (in a information capacity sense) of the cosine units, allowing a bettercorrelation with the error signal.� Although the error surface of the network with cosine units contain more local minima thanthe error surface of other transfer functions, the surface is locally smooth. This allows fastconvergence by the quickprop algorithm.In [10] it was shown that networks with Gaussian units train faster and require less units thannetworks with standard sigmoidal units. This is supported by our results as shown in Figure 4.However, for the problem examined, cosine units outperform Gaussian units by approximately thesame margin as Gaussian units outperform sigmoidal units.These results con�rm earlier conclusions which suggest that these units are well suited to learningcertain types of classi�cation problems, and should be concidered as alternative transfer functions.It should also be noted that these problems where not chosen for their suitability for product units.In fact, if the problems are symmetric the di�erence in performance is expected to increase.6 ConclusionOf the learning algorithms examined, BP combined with the delta-bar-delta weight update ruleprovides the fastest training, but is prone to nonglobal minima. On the other hand, global searchmethods perform well on small problems, but are impractical for larger networks. Given a networkcontaining product units, there are some atypical heuristics that can be used: (a) weights leadinginto the product unit have to be initialized in the range [�2�; 2�] (b) reinitialization of the weightsif convergence is not reached after a certain number of epochs.The representational power of product units have enabled us to solve standard problems with con-struction of signi�cantly smaller networks than previously reported, using a very simple constructivemethod.When implemented in the well-known cascade correlation architecture, product units resultedin smaller networks which trained faster than the three sigmoidal and one Gaussian unit found instandard CC. In the CC framework a pool of candidate units of di�erent types can be created,allowing competition between the various hidden unit functions. Simulations show that in all casescosine candidate units were preferred over candidate units of the other four types.References[1] Y. Abu-Mostafa, \Learning from hints in neural networks," Journal of Complexity, vol. 6, p. 192,1990.[2] K. Al-Mashouq and I. Reed, \Including hints in training neural nets," Neural Computation,vol. 3, no. 3, pp. 418{427, 1991.[3] D. Amit, Modelling Brain Function. Cambridge: Cambridge University Press, 1989.[4] J. Anderson and E. Rosenfeld, eds., Neurocomputing: Foundations of Research. Cambridge:MIT Press, 1988.[5] T. Ash, \Dynamic node creation in backpropagation networks," Connection Science, vol. 1,no. 4, pp. 365{375, 1989.[6] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth, \Learnability and the vapnik{chervonenkis dimension," Journal of the Association for Computing Machinery, vol. 36, no. 4,pp. 929{965, 1989.[7] M. Brady, \Guaranteed learning algorithm for network with units having periodic thresholdoutput function," Neural Computation, vol. 2, pp. 405{408, 1990.15
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