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Abstract

Product units provide a method of automatically learning the higher-order input combina-
tions required for the efficient synthesis of Boolean logic functions by neural networks. Product
units also have a higher information capacity than sigmoidal networks. However, this activation
function has not received much attention in the literature. A possible reason for this is that
one encounters some problems when using standard backpropagation to train networks contain-
ing these units. This report examines these problems, and evaluates the performance of three
training algorithms on networks of this type. Empirical results indicate that the error surface of
networks containing product units have more local minima than corresponding networks with
summation units. For this reason, a combination of local and global training algorithms were
found to provide the most reliable convergence.

We then investigate how ‘hints’ can be added to the training algorithm. By extracting a
common frequency from the input weights, and training this frequency separately, we show that
convergence can be accelerated.

A constructive algorithm is then introduced which adds product units to a network as re-
quired by the problem. Simulations show that for the same problems this method creates a
network with significantly less neurons than those constructed by the tiling and upstart algo-
rithms.

In order to compare their performance with other transfer functions, product units were
implemented as candidate units in the Cascade Correlation (CC) [13] system. Using these
candidate units resulted in smaller networks which trained faster than when the any of the
standard (three sigmoidal types and one Gaussian) transfer functions were used. This superiority
was confirmed when a pool of candidate units of four different nonlinear activation functions
were used, which have to compete for addition to the network. Extensive simulations showed
that for the problem of implementing random Boolean logic functions, product units are always
chosen above any of the other transfer functions.

1 Introduction

It is well-known that supplementing the inputs to a neural network with higher-order combinations
of the inputs both increases the capacity of the network [9] and the the ability to learn geometrically
invariant properties [19]. Such a network consists of a single layer of higher-order units [19] which
compute the function
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where 6 1s the activation or transfer function.
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However, there is a combinatorial explosion of higher order terms as the number of inputs to
the network increases. More specifically, the number of weights required to implement a K-th order

neuron with N inputs are [32]
i N+i-1\ [ N+K @
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Another approach to this problem were ‘sigma-pi’ networks [35, 30], in which each hidden layer unit
calculates a certain product (or conjunct) of the inputs. In this way a polynomial function of the
inputs are presented as inputs to the transfer function of the output layer, i.e. the value of the
output unit j is
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where 7 indexes the conjuncts that are used in unit j and assuming there are N values in the conjunct.
In this architecture a single higher order term is constructed by each neuron in the hidden layer. This
architecture presents another method of constructing higher-order networks, but the problem of the
combinatorial explosion of the number of weights still remains if the conjuncts are not hand-coded.

However, Redding et al [33] found that in order to implement a certain logical function, in most
cases only a few of these higher order terms are required.

The ‘pi-sigma’ networks (PSNs) of Ghosh & Shin [18] attempt to make use of this fact. A
PSN with N summation units and one ‘pi’ output neuron provides a K-th order approximation of
a continuous function. However, the product units introduced by Durbin & Rumelhart [11] have
the advantage that, given an appropriate training algorithm, the units can automatically learn the
higher order terms that are required to implement a specific logical function.

In these networks the hidden layer units compute the weighted product (instead of the weighted
sum) of the inputs. Each term being multiplied together is a input raised to the power of the variable
weight. That is, every unit computes
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An additional advantage of product units is the increased information capacity of these units com-
pared to standard summation networks. Durbin & Rumelhart [11] determined empirically that the
information capacity of these units (as measured by their capacity for learning random Boolean
patterns) is approximately 3N, compared to 2N for a single threshold logic function [9]. As before,
N 1s the number of inputs to the network.

The larger capacity is means that the same functions can be implemented by networks containing
less units. In many application areas the size of the neural network required to implement the a
specific task determines whether a neural network approach is feasible. One example is real-time
applications e.g. speech recognition where both the computational load and the bandwidth of the
input data is high. Another area is the VLSI implementation of neural networks. In the latter case
the size of the network is limited by the amount of space available on the chip, as well as current
usage if the network is to be used in a low power application. In this case the number of weights in
the network is more important than the number of neurons, as weights require a much larger surface
area for implementation [14]. In this case a smaller network with a slightly more complex transfer
function is preferable to a larger network with a standard (sigmoidal) transfer function.

When product units are used to process Boolean inputs, best performance is obtained [11] by
using values of +1 and —1. With these inputs, a product unit computes the following function:
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If the imaginary component is ignored, the activation function is equivalent to a cosine summation
function with all —1 inputs mapped to 1 and the 41 inputs mapped to 0. We can thus use previous
results obtained from the study of cosine/sine activation functions to further our understanding of
product units. In the remainder of this report the terms product unit(s) and cos(ine) unit will be
used interchangeably as all the problems examined have Boolean inputs.

2 Cosine Activation Functions

Networks with cosine hidden unit activations have been used in the past, and have been shown to have
universal approximation properties [28, 16]. Gallant & White [16] proved that a single hidden layer
feedforward network using a ‘cosine squasher’ transfer function can implement a Fourier network.
This network implements a Fourier approximation to the desired input-output mapping, and can
approximate to any desired degree of accuracy any square integrable function on a compact set
using a finite number of hidden units. It then follows that product units are networks with universal
approximation properties.

Also relevant are the results of research into the Vapnic-Chervonenkis (VC) dimension of different
activation functions. In [37] the VC dimension is defined as follows. For a positive integer N, a
dichotomy (S_,Sy) on a set S C RY is a partition S = S_ U Sy of S into two disjoint subsets. A
function f: RY — R will be said to implement this dichotomy if it holds that

f(u) > 0 for u € Sy and f(u) <0 for u € S_ (10)

The set S C RN is shattered by f if each dichotomy on S can be implemented by some f € F'. The
VC dimension is then the largest integer | so that at least some set S of cardinality [ in R which can
be shattered by some f € F.

In [37] it was remarked that

If only p or 7 are desired to be infinite, one may take the simpler example #(z) =
sin(z). Note that for all [ rationally independent real numbers x;, the vectors of the
form (sin(y121), ..., sin(y2;)), with the v;’s real, form a dense subset of [—1,1]', so all
dichotomies on {x1,...,#;} can be implemented with (1, sin)-nets.

where 1 specified the VC dimension.

This means that one sin unit can implement any dichotomy of ! rationally independent (or
relatively prime) values, and therefore has an infinite VC dimension.

However, this result cannot be directly applied to product units. The reason is that the argument
of the cos unit is the result of the inner product between the inputs and the weight vector; in the
case of product units with {0, 1} inputs this becomes the sum of all weights with nonzero inputs
multiplied by 7 1.e. cosw Zilx,:—l w;. This argument cannot be relatively prime for all 2V possible
input combinations as, when used with {0, 1} inputs, the dot product consists of the sums of the
different weights. This fact, results in a finite VC dimension for product units.

However, rational independence can be enforced by performing a nonlinear scaling operation on
the results of the inner product before applying the cos function. This was done by Brady [7] who
proposed a learning algorithm for a neural network consisting of only a single sin unit. It was shown
that this network could implement any discrete function p : R™ — {0, 1}. In practice, however, it is
found that a very high numerical precision is required to implement the nonlinear mapping. A finite
precision will thus limit the number of inputs to the network and the size of the training set.

It is also worth mentioning that the VC dimension is directly related to the generalization ability
of the network. The price that has to be paid for having an infinite VC dimension is that the network



cannot be guaranteed to generalize [6]. As most applications of neural networks require this ability,
an infinite VO dimension is not always desired.

3 Learning with Product Units

3.1 Training Problems

This section examines the problems that are inherent in training neural networks that contain
product units. The aim is to present an overview that will enable product units to become a
standard part of the neural network toolbox. In the same way that the hyperbolic tangent or
the sigmoid activation functions are preferred for certain applications, we show that product units
are very suitable for certain tasks. This is especially the case when a network is required for the
implementation of logic functions, where we will show that product units are superior to standard
activation functions. These advantages come at the cost of some additional training difficulties, but
in this section it will be shown that correct weight initialization combined with a simple extension
to the backpropagation algorithm can lower the complexity of learning with product units to the
same level as that of sigmoidal activation functions.

As the basic mechanism of a product unit 1s multiplicative instead of additive, one would expect
that standard neural network training methods and procedures cannot be directly applied when
training these networks.

This is indeed the case. If a neural network simulation environment is available (in our case the
Multi Module Neural Simulation Environment MUME [22] was used), the basic functionality of a
product unit can be obtained by simply adding the cos function cos(w * input) (and it’s derivative
which is required by backpropagation) to the existing list of transfer functions. This assumes that
Boolean mappings are being implemented and the appropriate {—1,4+1} — {1,0} mapping has been
performed on the input vectors.

If we then attempt to train a network with 6 inputs, 1 ‘hidden’ product unit and a standard
summing output unit network on the parity-6 problem shown in [11], it is found that the standard
backpropagation algorithm simply does not work. We have found two main reasons for this:

e Random weight initialization.

e The presence of local minima.

3.1.1 Weight Initialization

The first step in the backpropagation procedure (see [20] p. 120) is to initialize all weights to small
random values. The main reason for this is to use the dynamic range of the sigmoid function and
it’s derivative. For large inputs the sigmoid saturates and the derivative is small, leading to small
weight adjustments and slow learning. For the same reason the size of the weights are also often
scaled in proportion to the fan-in of the neuron, e.g. proportional to 1/+/fan-in.

In contrast to this, the dynamic range of a cos unit is unlimited. Initializing the weights to
small random values results in an input to the unit in the neighborhood of zero. In this region the
derivative is small, so apart from choosing small weights centered around 3nw/2 with n = &1, 42, ...
this 1s the worst possible choice.

As the argument of the cos in cosw Zi|x,:—1 w; 1s already multiplied by 7 and i1s symmetric, the
weights were initialized randomly in the range [—2,2]. In fact, learning seems insensitive to the size
of the weights, as long as they are large enough.

3.1.2 Local Minima

The presence of local minima when training networks with (co)sine units has been reported ear-
lier. In the discussion of their ‘Generalized Fourier Networks’ in which sin hidden layer activation
functions were used, Lapedes & Faber [28] commented that



Further generalizations are possible by considering multilayer networks and different
expressions for the transfer function. We point out that using sin’s often leads to numer-
ical problems, and nonglobal minima, whereas sigmoids seemed to avoid such problems
throughout all our extensive simulations.

This comment summarizes our experience of training with product units. For small problems (less
than 3 inputs) backpropagation provides satisfactory training. However, when the number of inputs
are increased beyond this number, even with the weight initialization in the correct range, training
usually ends up in a local minima. Given the representational power of these units, there certainly
is merit in finding an appropriate training algorithm.

3.2 Training Algorithms

With this goal in mind, the following training algorithms were evaluated:

e Backpropagation.
e Simulated Annealing.
e Random Search Algorithm.

e Combinations of the above.

Backpropagation (BP) was used as a benchmark and for using in combination with the other
algorithms. It is per definition a local search method. The Jacobs delta-bar-delta learning rate
adaptation rule [23] was used along with BP to accelerate convergence, with the parameters were
set to the following values (6 = 0.35,x = 0.05 and ¢ = 0.90).

The random search algorithm (RSA) is a global search method (i.e. the whole weight space is
explored during training), and does the following:

e For every epoch, for every weight, generate a new random value.
e Replace the weight by this random value and relax the network.

o If the training error decreases, retain this weight. Otherwise restore old weight value.

Simulated annealing (SA) is a standard optimization method, see ([27], [24],[34]) for more infor-
mation. The operation of SA is similar to RSA, with the difference that with a decreasing probability
solutions are accepted which increase the training error.

The combination of algorithms were chosen (BP & SA, BP & RSA) to combine the benefits of
global and local search. Used in this manner, BP is used to find the local minima. If the training error
at the minima is sufficiently low, training is terminated. Otherwise, the global method initializes
the weights to another position in weight space from which local training can continue.

3.3 Simulation Results

Three problems will be examined in this section,
e The parity N problem with a 2 layer network.
e Computing all logical functions of 3 inputs with 1 product unit.

e Computing random logical functions for various sizes of N.



3.3.1 Parity N

The infamous parity problem is (for the product unit at least) an appropriate task. From the
architecture and as illustrated by [11], this problem can be solved by one product unit. The question
is whether the training algorithms can find a solution. The architecture simulated has N inputs,
1 product unit in the hidden layer and one summation output unit. All simulations were run for
a maximum of 1,000 iterations before being terminated. The target values are {—1,+1}, and the
output is taken to be correct if it has the correct sign. The simulation results are shown in Table

3.3.1.

Parity BP BP SA SA RSA RSA
N # Conv | Avg Iter | # Conv | Avg Iter | # Conv | Avg Iter
6 7 34 10 12.6 10 15.2
8 2 700 10 52.8 10 45.4
10 0 - 10 99.9 10 74.1

Table 1: Learning the parity problem: The table shows N, the number of inputs for the parity
problem, the number of runs out of 10 that have converged for each algorithm, and the average
number of training epochs required for convergence.

For the parity problem it is clear that local learning does not provide good convergence. BP was
not combined with either SA or RSA| the addition of local learning to these algorithms can clearly
only worsen performance. For the parity problem, global search algorithms have the following

advantages:

e The search space is bounded (all weights are initialized in [—2,42]) and only weights in this
region are generated.

e The dimension of search space is low (maximum of 11 weights for the problems examined).

e The fraction of the weight space which satisfies the parity problem relative to the total bounded
weight space is high (all weights only have to be within a certain margin of each other for the
output to have the correct sign).

This is a clear indication that BP alone cannot be used as a training algorithm, and that the
addition of a global search procedure is essential for training.

3.3.2 All logical functions of 3 inputs

As part of this investigation, we attempted to reproduce the capacity of 3N determined empirically
by [11] and compare that to the performance of standard summation units. This was done by
running two sets of simulations.

Firstly, one product unit was trained to calculate all (22)" logical functions of the N input
variables. Unfortunately, this is only practical for N € {2,3}. For N = 2 there are only 16 functions,
and a product unit has no problem learning all these functions rapidly with all three training
algorithms. In comparison a single summation unit can learn 14 (not the XOR & XNOR functions).
For N=3, a product unit is able to implement 208 of the 256 functions, while a single summation
unit could only implement 104 (these were the maximum values obtained during training). The
simulation results are displayed in Table 3.3.2.

The BP-RSA combination requires further explanation. Several BP-(R)SA combinations were
evaluated, but best performance was obtained using a fixed number of iterations of BP (in this case
120) along with one initial iteration of RSA. In this manner BP is used to move to the local minima,
and if the training error is still above the threshold value the RSA algorithm generates a new set of
random weights from which BP can start again.

The effect of this single initial RSA iteration is to reinitialize all weights to new values. The
standard RSA algorithm only changes the weights permanently if a decrease in error is found, but in



BP SA RSA BP-RSA
| # Logic | Avg Iter | # Logic | Avg Iter | # Logic | Avg Iter | # Logic | Avg Iter
| 1892 | 205 | 1961 | 438 | 1674 | 602 | 208 | 443 |

Table 2: Learning all logical functions of 3 inputs: The table shows the average number of
logical functions that could be implemented by one product unit and the average number of training
epochs required when training converged. Ten simulations were performed for each of the 256 logical
functions, each for a maximum of 1,000 iterations.

many cases extensive searches are required to find weights that are better than that of the current
local minima. Fastest training was obtained by simply reinitializing the weights if no convergence
has occurred after a certain number of epochs (in most cases this was 120).

It is observed from Table 3.3.2 that BP on it’s own learns the fastest, but has the worst per-
formance in terms of the number of logical functions implemented. The SA and RSA algorithms
converge surprisingly fast, but with the number of iterations limited to 1,000 the global minima’s
are not always found. It is clear that the BP-RSA combination provides the best performance. The
number of training iterations could be reduced further by initiating the RSA iteration when the BP
training error does not decrease significantly, instead of running BP for a fixed number of iterations.

The BP-RSA combination is in effect equivalent to the ‘local optimization with random restarts’
process discussed by [25, 26], where the local search is this case is performed by the BP algorithm. In
[26] it was shown that for certain problems where the error surface was ‘exceedingly mountainous’,
multiple random-start local optimization outperformed simulated annealing. We hypothesize that
adding product units to a network makes the error surface sufficiently mountainous so that a global
search 1s required.

4 Training Product Units with ‘Hints’

Abu-Mostafa [1] showed that using appropriate ‘hints’ could decrease learning time in neural net-
works. Hints are information about the system or training data that is known to the observer,
but that is embedded in a non-trivial way in the data. It has also been shown [2] that hints may
be extracted from the training data, or by using previous experience learned from solving similar
problems.

4.1 Product Unit Computation

When the calculation of one product unit is examined, as shown before, the output of a product
unit can be approximated by a cos unit if the imaginary component is ignored. For clarity, this is
repeated below:

Error = ©




where (15)
& = the {—1,41} target values, and (16)
© = the Sign() function . (17)

The first computation that takes place is an inner product, which maps the input vector onto a
one-dimensional input space. The inner product is then scaled by 7 and the cos function applied.
The output of the cos function should have the same sign as the target value &.

The problem of training a cos unit can also be considered as follows. We have a set of (z,y)
coordinates, where z; is the result of the inner product and y; is the corresponding target value &;.
The expression O [cos ()] can be seen as a square wave of a to be determined frequency and phase
so that it is has the same sign as & for all values of z;.

Even if the shifting and pre-scaling is not allowed, it is still possible to extract a common frequency
and phase component from the cosine unit. The cos calculation can be rewritten as:

[ N
Yy = COS ﬂ-lewZ‘| (18)
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= cos |7 (wf Z T, w; + wo)
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(19)
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The bias weight is now used as the phase of the square wave, and another weight w; has been added
which is the frequency. This is not strictly another free parameter, just a common factor taken out
of all the weights.

4.2 The Hints

With the product unit computation in the above form, there are two hints that can be added to the
learning process:

e The bias weight wq is the phase and is {0,1} depending on whether the target value for the
zero input vector is {+1,—1}. This weight is simply initialized to the correct value.

e The w; weight can be trained separately using backpropagation, the gradient is given by

By N N
% = —sin [ﬂ' (wf inwi + wo) [ﬂ';xlwll . (21)

i=1

Since it is known that linear independence between the results of the dot-product will increase the
probability of a correct w; being found, an additional hint could be implemented by the introduction
of a term in the cost function which maximizes this measure.

4.3 Simulation Results

The performance of this method was first evaluated on the problem of computing all 256 logical
functions of 3 variables. The results are shown in Table 4.3. The BP-RSA values from Table 3.3.2
are repeated here for comparison.

The main effect of adding hints is to accelerate training, the performance of the network trained
by both algorithms is equal to the maximum capacity of the cos unit.

In a second experiment, wy was fixed according to the first hint, and {w; ...wx} initialized to
random values. We thus have a network in which only one weight is being trained, w;.



BP-RSA | BP-RSA | BP-RSA-HINTS | BP-RSA-HINTS
# Logic | Avg Iter # Logic Avg Iter
[ 208 [ 443 | 208 | 32.9 |

Table 3: Learning all logical functions of 3 inputs: The table shows the average number of
logical functions that could be implemented by one product unit and the average number of training
epochs required for when training converged. Ten simulations were performed for each of the 256
logical functions, each for a maximum of 1,000 iterations.

The performance of this network is still respectable, an average of 58.6 logical functions were
learned in an average of 487 epochs. The performance will certainly increase if the upper bound of
1,000 epochs is lifted.

As there is only one variable being learned, the error surface can be examined to get some insight
into why the learning algorithm behaves the way i1t does. The error surface for the function which
computes the XOR of two inputs, and is zero for all other values (targets are {—1,—-1,—1,—-1,—1,+1,+1,—1}
for the 8 input vectors {0,0,0}...{1,1, 1} respectively) is shown in Figure 1. In this case the weights
were initialized to {1/2,1/3...1/9}.

W

1 L L L L 1 L L L L 1 L L L L 1 L L L L 1
100 200 300 400 500

Figure 1: Error Surface. This is the error surface when only wy is trained on the logical XOR of
two of three input variables.

From Figure 1 it is clear why standard BP has difficulty in learning this problem, and why the
BP-RSA combination performs well. The error surface is locally smooth, and BP would rapidly find
the local minima. The RSA step would then position wy at another (random) value if the training
error at the local minima is not sufficiently low.



5 Constructive Learning with Product Units

Selecting the optimal network architecture for a specific application 1s a nontrivial and time-consuming
task, and several algorithms have been proposed to automate this process. One class of network
adaptation algorithms start out with a redundant architecture and proceed by pruning away seem-
ingly unimportant weights ([36], [29]). Another class of algorithms start off with a sparse architecture
and grows the network to the complexity required by the problem. Several algorithms have been
proposed for growing feedforward networks. The ‘upstart’ algorithm of Frean [15] and the ‘cascade-
correlation” algorithm of Fahlman [13] are examples of this approach.

In this section we will use the experience gained from the experiments described earlier to devise
a simple method for adding product units to a three layer network. The hidden layer will consist of
product units, while the output layer contains a single sigmoidal unit.

5.1 The Constructive Algorithm

Several constructive algorithms ([15], [13], [31]) are based on the following process:

e A network is trained on a certain training set.

e The current weights in the network are frozen, and a new neuron (or a set of candidate neurons)
is added to the network. Often the new neuron is a fully connected hidden layer.

e The new weights associated with the neuron are now trained on either the whole or a smaller
subset of the training set.

e As neurons are added, the performance of the network improves. For some training algorithms
proofs are available that specify that, for a given accuracy, the number of neurons to be added
1s finite.

From our simulations (and that of others, see [28]) it is clear that networks containing cos trans-
fer functions suffer from serious local-minima problems, something which sigmoids are reasonably
insensitive to. The importance of the RSA (or global search) step when training product units is
clear from our experiments, and freezing all the weights (and thereby limiting the global search only
to the one new weights) limits the learning process. This is because the addition of a new weight
adds one degree of freedom, but limits the new solution to an affine subset of the existing weight
space [5]. When a new hidden unit is added, it is possible to rotate the previous solution so that
the local minima is reached. However, as shown in [5] this network will not be of minimal size.

For this reason a simple constructive approach was implemented which retains the global (RSA)
search for all weights during the whole training process. The method used in our simulations is as
follows:

e Train a network using the BP-RSA combination with ‘hints’ on a network with a specified
minimum number of hidden product units.

e If there is no convergence within a specified number of epochs, add a product unit to the
network. Reinitialize weights and continue training with the BP-RSA combination.

e This process is repeated until a maximum number of epochs is reached or the network has
grown to the maximum specified size.

The method of [8] and [5] was also evaluated, in which neurons with small weights were added
to a network according to certain criteria. The method outlined above performed better, possibly
because of the global search performed by the RSA step.

10
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Figure 2: Learning Random Mappings: Number of units added to the network when trained on
2V random mappings. The values are the average of 25 simulations, each on a different training set.

5.2 Simulations

To evaluate the performance of the method with that of the ‘upstart’ [15] and ‘tiling’ [31] algorithms,
the constructive product network was trained on two problems also described in these papers namely

e The parity problem, for N =7...10.

e Random Mappings.

5.2.1 The Parity Problem

In [15] it was reported that the upstart algorithm required N units for all parity N problems, and
1,000 training epochs were sufficient for all values of N except N = 10, which required 10,000.

As shown in an earlier section, a product unit is able to perform any parity function with only
one product unit. The training iterations required for N = 6,8, 10 were given in Table 3.3.1, for
interest the RSA algorithm required an average of 74.1 iterations. In this case our BP-RSA algorithm
settings are modified so that more RSA iterations are performed compared to the BP iterations.

5.2.2 Random Mappings

Following [15], in this problem the random mapping problem is defined by assigning each of the 2V
patterns its target {—1,4+1} with 50% probability. As mentioned in [15], this is a difficult problem,
due to the absence of correlations and structure in the input for the network to exploit. Asin [15, 31]
the average of 25 runs were performed, each on a different training set.

The number of units added by the upstart algorithm was approximately 2V /9. The tiling al-
gorithm requires approximately double that amount while the number of units added by the con-
structive product network are approximately half. The values are plotted in Figure 2. Note that the
values for the tiling and upstart algorithms are approximate and were obtained through inspection
from a similar graph in [15].

11
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Figure 3: Training Error During Constructive Learning: The mean squared error during
learning; for this specific problem 3 product units were added at 400 epoch intervals.

5.3 Discussion

As expected, the higher separating capacity of the product unit enables the construction of networks
with less neurons than those produced by the tiling and upstart algorithms.

The fact that a simple incremental method works this well is mainly a result of the error surface;
the surface is so irregular that even training a network of fixed architecture is best done by reinitial-
izing the weights if convergence does not occur within certain bounds. This again is in accordance
with the results of [25, 26] who showed that for certain problems where the error surface was ‘ex-
ceedingly mountainous’, multiple random-start local optimization outperformed more sophisticated
methods.

For the training of the random mapping problem, it was found that the parameter settings of
the Jacobs [23] delta-bar-delta weight update rule was critical in ensuring rapid convergence. The
parameters were set to the following values (@ = 0.35,x = 0.05 and ¢ = 0.90) for N = 7,8,9 and
% = 0.003 for N = 10.

The parameter settings of the delta-bar-delta weight update rule influence how the decent in
error space is performed. The parameter settings causing the irregular decent shown in Figure 3 not
only speeds up learning but was found to be necessary for convergence. We hypothesize that this
stochasticity is necessary for rapid training and avoiding local minima.

There is also a tradeoff between obtaining fast convergence and finding a minimum network for
the task. In Figure 3 it can be seen that the network could probably have learned the problem with
only two additional units if training (and possibly a RSA iteration) had been continued for more
than 400 iterations before the addition of the third unit.

Theoretical capacity analysis using methods from statistical mechanics [17, 3, 20, 12] provide
some insight into this process. The fraction of weight space that contains a solution depends on:

e The capacity (information theoretic) of the network.

e The complexity of the problem.
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This means that if we want to find a minimum size network for a certain problem, given a finite
numerical precision there might only be a few solutions in weight space. Given a mountainous error
surface, a local search algorithm is ineffective and an exhaustive search is required to find the correct
solution. As the network becomes larger, the fraction of weight space that contains solutions to the
problem increases, and the learning speed increases correspondingly as these solutions are easier to
find. However, the danger of overtraining increases and generalization might suffer.

In the method proposed, the extent of the global search is limited by the number of random
restarts that are permitted for a certain architecture. If no solution is found, the learning problem
i1s simplified by adding another hidden unit. The tradeoff between rapid learning and a minimal
architecture can thus be controlled through one variable, the number of random restarts.

5.4 Using Cosine Candidate Units in Cascade Correlation
5.4.1 Introduction

The Cascade Correlation (CC) [13] algorithm is a well-known constructive method, and has been
applied to both feedforward and recurrent networks. It has been shown [21] that for the neural
network implementation of n-input, m-output logic functions (the type of problem examined here)

27L
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hidden layer units used in SIM the node complexity increases to O(2" + m). Thus the size of the
networks constructed by CC and SIM cannot be directly compared.

However, since CC is a popular algorithm it was thought interesting to compare the performance
of our simple method with it. In fact, CC performed substancially better than the upstart and tiling
algorithms discussed earlier.

As the resulting networks could not be compared directly, it was decided to evaluate product
units in a fully connected structure. The simplest method was to implement these units as candidate
units inside CC. This also allows direct comparison with other transfer functions implemented in
CC, as well as the construction of hybrid networks consisting of mixtures of candidate units.

During the training process, the CC algorithm constructs a fully connected (lower triangular
connection matrix) neural network, with each hidden unit recieving input both from the inputs
and all preceding hidden units. The hidden units are added to the network one at a time, and are
selected from a pool of ‘candidate units’, which have to compete for addition to the network. Each
of these candidate units are initialized with a different set of random initial weights, and may also
be different nonlinear functions.

The public domain version of CC used [38] supports four different candidate types; the asym-
metric sigmoid, symmetric sigmoid, variable sigmoid and gaussian units. Facilities exist for either
selecting one unit type, or training with a pool of different units allowing the construction of hybrid
networks. It was thus relatively simple to add a cosine candidate unit to the system.

the node-complexity of the fully connected architecture used in CC is O( For the one

5.4.2 The Simulation Results

The random mapping problem was chosen to compare the performance of CC with SIM. It is
sufficiently complex, and requires larger networks than most other ‘toy problems’. It also allows
comparisons with the upstart and tiling algorithms.

The performance of standard CC in terms of number of hidden units required is shown in Figure
4. Four graphs are shown, from top to bottom these are firstly SIM, followed by CC using sigmoidal,
Gaussian and finally cosine candidate units.

In a separate experiment the performance of hybrid networks were evaluated on the same ran-
dom logic problem. When the default settings are used, this implementation of CC constructs a
homogeneous network consisting of sigmoidal hidden units. At each step 8 different candidate units
compete for addition to the network. After the cosine units had been added to the network, there
were 5 different types of candidate units available.

To enable a fair competition between candidate units of different types, the simulations were run
with 40 candidate units, 8 of each type. The simulations were re-evaluated on 25 trails for each of
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Figure 4: Learning Random Mappings: Number of units added to the network when trained on
2V random mappings. The values are the average of 25 simulations, each on a different training set.
The vertical bars indicate the minimum and maximum values.

the random mapping problems (7,8,9 and 10 inputs, a total of 1920 input vectors). In total 1460
hidden units were allocated, and in all cases cosine candidate units were chosen above units of the
4 other types during the competitive stage.

During this comparison, all parameters were set to default values, i.e. the weights of the cosine
units were random numbers initialized in the range of [—1,+1]. As discussed earlier, this puts the
cosine units at a slight disadvantage as their optimum range is [—2, +2].

In terms of epochs required for convergence, Table 5.4.2 displays the results when CC was trained
using three types of homogeneous candidate units.

N CC Sigmoid CC Gauss CC Cosine

ﬁepochs Oepochs ﬁepochs Oepochs ﬁepochs Oepochs

7 9245 | 104.45 | 642.6 109.6 493.8 102.2
8 | 1630.9 | 164.0 | 11282 | 112.3 833.8 82.4
9 | 2738.3 | 164.1 1831.1 93.3 1481.8 | 175.9
10 | 44109 | 1644 | 2967.6 98.9 2590.8 | 1674

Table 4: Number of Training Epochs: The table shows the average and standard deviation of
the number of training epochs required for convergence of CC using Sigmoidal, Gaussian and Cosine
candidate units.

5.4.3 Discussion

We hypothesize that there are two reasons for the choice of cosine units above any of the other types
during the competitive learning phase:
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e The higher capacity (in a information capacity sense) of the cosine units, allowing a better
correlation with the error signal.

e Although the error surface of the network with cosine units contain more local minima than
the error surface of other transfer functions, the surface is locally smooth. This allows fast
convergence by the quickprop algorithm.

In [10] it was shown that networks with Gaussian units train faster and require less units than
networks with standard sigmoidal units. This is supported by our results as shown in Figure 4.
However, for the problem examined, cosine units outperform Gaussian units by approximately the
same margin as Gaussian units outperform sigmoidal units.

These results confirm earlier conclusions which suggest that these units are well suited to learning
certain types of classification problems, and should be concidered as alternative transfer functions.
It should also be noted that these problems where not chosen for their suitability for product units.
In fact, if the problems are symmetric the difference in performance is expected to increase.

6 Conclusion

Of the learning algorithms examined, BP combined with the delta-bar-delta weight update rule
provides the fastest training, but is prone to nonglobal minima. On the other hand, global search
methods perform well on small problems, but are impractical for larger networks. Given a network
containing product units, there are some atypical heuristics that can be used: (a) weights leading
into the product unit have to be initialized in the range [—27, 2x] (b) reinitialization of the weights
if convergence is not reached after a certain number of epochs.

The representational power of product units have enabled us to solve standard problems with con-
struction of significantly smaller networks than previously reported, using a very simple constructive
method.

When implemented in the well-known cascade correlation architecture, product units resulted
in smaller networks which trained faster than the three sigmoidal and one Gaussian unit found in
standard CC. In the CC framework a pool of candidate units of different types can be created,
allowing competition between the various hidden unit functions. Simulations show that in all cases
cosine candidate units were preferred over candidate units of the other four types.
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