
Scheduling Issues inReal-Time Systems 1Chia-Mei ChenInstitute for Advanced Computer StudiesSystems Design and Analysis GroupDepartment of Computer ScienceUniversity of Maryland, College Park, MD 20742June 19, 1995
1This work is supported in part by ARPA and Philips Labs under contract DASG-92-0055 toDepartment of Computer Science, University of Maryland. The views, opinions, and/or �ndingscontained in this report are those of the author(s) and should not be interpreted as representing theo�cial policies, either expressed or implied, of the Advanced Research Projects Agency, PL, or theU.S. Government.

Chapter 1IntroductionReal-time systems (RTS) have drawn a lot of attention and become an active area of re-search, because of the importance of their applications, such as defense, avionics, robotics,industrial automation, and stock trading. In particular, one of the most intensive researcharea in RTS is the domain of scheduling [AGM88, Bur90, CJL89, CL90b].The result of a real-time application is valid only if the application functions correctlyeven with underlying faults and its real-time constraints are satis�ed. Besides real-timeconstraints, tasks usually have resource requirements, such as exclusive access of certainresource or inter-task communication. Some real-time applications may have intensive dataprocessing; we call such system real-time database system (RTDBS) and the applicationrunning on RTDBS is called transaction. Transactions must have data access requirementsbecause of their nature. Besides resource requirements, transactions also have real-timeconstraints.Scheduling tasks in RTS or scheduling transactions in RTDBS needs to consider real-time constraints, resource requirements, and fault-tolerance goals. In this dissertation, weaddress some scheduling issues, namely, scheduling tasks with resource requirements inRTS, scheduling transactions with resource requirements in RTDBS, scheduling tasks withfault-tolerance goals.1.1 Motivation and ApproachesTo schedule tasks with resource requirements in HRTS, resource synchronization or con-trol protocol is employed to permit exclusive access to shared resources, while preventingdeadlocks and guaranteeing that timing constraints are satis�ed.One approach to synchronization involves extending priority-driven protocols. In thisclass of protocols, each task has an associated priority that is used to determine access toshared resources (including the processor). When synchronization is permitted, priority-driven protocols are susceptible to potentially unpredictable delays due to priority inversion.Priority inversion [SRL87] occurs where a higher priority task is forced to wait for lower pri-1

ority task. Some amount of priority inversion is unavoidable to guarantee mutual exclusion;however, it must be bounded to allow schedulability analysis and minimized to improveprocessor utilization bounds.With the exception of Multiprocessor Priority Ceiling Protocol (MPCP) [RSL88], mostresource synchronization protocols, in the context of preemptive priority-driven scheduling,have been developed solely for uniprocessor systems. MPCP does not allow nested accessesto global resources, i.e., it does not allow a task to simultaneously lock more than oneglobal resource. A global resource is one that may be accessed by tasks assigned to di�erentprocessors. This limitation on the use of global resources may not satisfy varying resourceaccess requirements, and may lead to unnecessary blocking. For example, some tasks mayonly need access to a small unit of global data, while other tasks may need to lock theentire resource. With MPCP, all tasks are forced to lock the entire global resource toguarantee consistency. The situation is analogous to using �le locking, when record lockingwould su�ce. We know that a �ner granularity of synchronization allows a greater degreeof concurrency, while coarser granularity imposes less overhead. A balanced application of�ne granularity can gain the advantages of parallelism in return for a reasonable overheadcost. The insights motivate us to propose a priority ceiling based resource synchronizationprotocol, for multiprocessor HRTS, that allows a task to simultaneously lock multiple globalresources.Scheduling algorithms for data intensive real-time applications (transactions) need toaccompany with concurrency control to enforce data consistency and to satisfy timing con-straints simultaneously. We call such system real-time database systems (RTDBS). Onemajor objective in traditional database systems is to minimize the average response timeof a transaction, while in RTDBS minimizing the number of transactions that miss theirdeadlines is a major concern. Transaction scheduling and concurrency control in RTDBStry to ful�ll this objective while maintaining data integrity and consistency.Priority-driven concurrency control methods usually favor high priority transactions.However, higher priority transactions do not necessarily have urgent timing constraints.For example, suppose a system prede�nes that every occurence of transaction H has higherpriority than that of transaction X and both have the same relative deadline. Suppose anoccurence of X arrives earlier than that of H . Therefore, low priority transaction X hastigher timing contraint than H . It might be the case that low priority transaction X witha tight timing constraint con
icts with higher priority transaction H with a looser timingconstraint and has to wait or restart. After all, the low priority transaction X might missits deadline. Let EA and DA be the execution time and the deadline of transaction A andLA be the latest time to start execution of A, i.e. LA = (DA � EA). A transaction A issaid to have a tighter timing constraint than transaction B, or be more urgent than B, ifLA is less than LB, i.e, the latest time to start execution of A is earlier than that of B.A transaction A is restartable if its latest time to start execution is later than the currenttime. By the concept of restartability, we can discard late (non-restartable) transactionsbefore their deadlines expire and save resources. These observations motivate our researchto examine if the knowledge of execution time can help us make better data resolutiondecision. 2

The deployment of execution time information to improve the performance of optimisticconcurrency control algorithms is not trivial. One possibility is to give preferential treat-ment to short transaction in data con
icts, for example, waiting for short transactions tocommit if the validating transaction con
icts with short transactions. However, for thetransaction with urgent timing constraint, such waiting might cause it to miss the deadline.Therefore, the number of transactions that miss their deadlines might increase. Besides, giv-ing preferential treatment to short or long transactions might not satisfy certain properties,such as fairness and freedom of starvation. Therefore, this research studies the signi�canceof the knowledge of the execution time in optimistic concurrency control.RTS should perform applications correctly and meet the deadline requirements even withunderlying failures. Hence, fault-tolerance is an inherent requirement for RTS. Faults can beclassi�ed as hardware and software faults. A software fault refers to a design or coding faultin a software system; a hardware fault refers to any deviation of a machine state from correctstate. Hardware faults can be caused by transient disturbance, environmental disturbance1[KS89] and permanent failure of a component. The fault model for our research considerstransient and permanent faults.The simplest way of achieving fault-tolerance is to use fully redundant hardware or toreplicate all the tasks in the system. These naive approaches increase the communicationcost and need a voting mechanism to get the results of execution. Hence, the overheadand the resource usage are quite large in these cases. Besides, some systems might nothave enough resources to replicate all tasks, or does not have fully redundant hardwarearchitecture. But, they have fault-tolerance requirement. In non-real-time systems, a taskcan rollback many times to skip a transient fault, since it does not have timing constraint.Tasks in RTS might not have such luxury to roll back several times or even once. We areinterested in static fault-tolerant scheduling which can pre-analyze the execution pro�les oftasks. We may only need to replicate some tasks which have stringent timing constraintsand can achieve very high degree of system reliability.1.2 ContributionsTo summarize, the major contributions of this dissertation are:� We present resource synchronization protocols for multiprocessor HRTS and the sim-ulation results show that the performance of the proposed protocols is superior tothat of the existing protocols.� We study the performance of optimistic concurrency control protocols with the knowl-edge of execution time and the simulation results illustrate that proper use of executiontime information can improve the system performance.� We present a static fault-tolerant scheduling algorithm which adaptively and dynam-ically puts temporal and spatial redundancy into the schedule in order to improve1Environmental disturbance, such as electromagnetic noise and radiation, often cause correlated transientfailures 3

system reliability.� We utilize Markov chain models to estimate reliability for RTS using static schedulingand demonstrate the correctness of the proposed reliability models by simulation.� We demonstrate that our proposed fault-tolerant scheduling method provide morereliable systems than the basic fault-tolerant scheduling schemes, replication and roll-back.1.3 Organization of the DissertationChapter 2 is devoted to an overview of issues related to scheduling in RTS. This chap-ter contains a survey of published research on the subject of scheduling algorithms andsynchronization protocols for RTS or RTDBS. Chapter 3 presents the proposed resourcesynchronization protocols for RTS and evaluates the performance of the proposed and ex-isting protocols. Chapter 4 presents a set of optimistic concurrency control protocols usingthe knowledge of execution time. In this chapter, we give a review on the mechanism of op-timistic concurrency control and the foundmental structure of the proposed protocols. Wealso demonstrate the signi�cance of the knowledge of execution time in improving systemperformance. In Chapter 5, we propose a fault-tolerant scheduling algorithm. An abstractsystem model, applicable to the proposed scheduling algorithm and reliability models, isstated. The reliability models used for estimating system reliability are presented in Chap-ter 6. In Chapter 7, we present the basic fault-tolerant scheduling algorithms which are usedas the baseline for evaluating the performance of the proposed scheduling algorithm. Then,we evaluate and compare the performance of the proposed and basic scheduling algorithms.Finally, Chapter 8 summarizes the results obtained in this dissertation and outlines futureavenues to explore.
4

Chapter 2Related WorkThe objective of RTS design is to produce outputs correctly and within deadlines, in spiteof occasional uncertainty. Most of research in real-time scheduling has been based on theassumption of periodic workload with static characteristics. Scheduling can be carried outo�-line or on-line. O�-line (static) scheduling can provide predictable execution behaviorfor a �xed set of tasks; while on-line scheduling can jointly accept periodic and aperiodictasks. To schedule tasks with hard deadlines, o�-line scheduling is a frequent approach tomeeting timing constraints. For a system with dynamic workload, on-line scheduling is acommon proposal, which can adaptively adjust the system workload and reject tasks whentheir constraints cannot be met.In order to provide predictable behavior for real-time processing, the requirements orconstraints of the tasks must be known a priori. For scheduling tasks with exclusive accessesto shared resources, resource control protocol is deployed to coordinate the accesses ofresources in maintaining data consistency and deadlock avoidance. For scheduling tasks withfault-tolerance requirements, fault-tolerance scheme is used to improve system reliability.Our research focuses on the issues on scheduling tasks with resource or fault-tolerancerequirements. Hence, in this chapter, we review published work in real-time schedulingwhich considers resource synchronization, concurrency control, and fault-tolerance.2.1 Scheduling with Resource SynchronizationIt is a fundamental feature for RTS to allow a set of tasks to exclusively access physicalor logic shared resources. Real-time applications are hard to design on a system withoutsuch feature. For preemptive scheduling, one frequently used strategy for resource control,to have predictive execution behavior, is priority-driven protocols. This class of protocolsemploys blocking to enforce synchronization. The advantages of priority-driven protocolsare that theoretically they provide worse case bounds for blocking time and schedulabilitytests; the shortcomings are that they are conservative in estimating blocking time and ignorethe overhead of context switches. The former shortcoming is the price we need to pay forschedulability tests. There is rare work on the issue of estimating the impact of context5

switches.Sha et al. introduced the concept of priority inheritance protocols to solve the priorityinversion problem [SRL87]. One of the more attractive protocols they proposed, the priorityceiling protocol (PCP), prevents both deadlock and transitive blocking. Transitive blockingoccurs where a job J is blocked by job Ji which is in turn blocked by another job. Theyalso developed su�cient schedulability conditions for a set of periodic tasks to be scheduledvia the PCP algorithm on a uniprocessor system. Rajkumar et al. subsequently developedmultiprocessor and distributed versions of PCP [RSL88].Chen and Lin developed the dynamic priority ceiling protocol (DPCP) to enhance EDFscheduling algorithm [CL90a]. Baker proposed a stack-based resource allocation policy(SRP) which can be applied to either RM or EDF scheduling algorithms [Bak90]. PCPfor multiple-instance resources is also developed in [CL91]. Chen and Lin summarized theschedulability conditions of several priority-driven protocols, and proposed a set of su�cientschedulability conditions for EDF-based resource control protocols [CL90b].A review of resource control for HRTS is published in [Aud91]. It identi�es the possibletechniques for uniprocessor and multiprocessor systems.For non-preemptive scheduling, mutually exclusive access of shared resources is solvedimplicitly, since the access of shared resources will not be interrupted. Zhao and Ramam-ritham proposed an on-line scheduling algorithm based on branch and bound approach toscheduling tasks that arrive dynamically and have timing and resource constraints [ZR87].Heuristics were devised to shrink the search space. O�-line scheduling algorithms can alsobe developed by means of branch and bound approach. Xu and Parnas proposed suchalgorithm for �nding an optimal schedule on uniprocessor systems [XP90]. Herhoosel andHammer considered the problem of scheduling periodic tasks which have deadlines, resourcerequirements, and precedence constraints in distributed HRTS [VLH91]. Instead of usingbranch and bound approach, they adopted heuristic backtracking for searching feasibleschedule, since the search space is large.2.2 Scheduling with Concurrency ControlScheduling in RTDBS needs concurrency control protocol to enforce data consistency andto satisfy timing constraints. Lin and Son gave a survey on the issues of schedulability andserializability in RTDBS [LS93]. Since the objectives of RTDBS are di�erent from those ofconventional database systems, scheduling and concurrency control used for conventionalsystems should be re-evaluated and might need to be extended for RTDBS. Several researche�orts have been carried out in evaluating the performance of concurrency control and theimpact of real-time constraints in RTDBS [AGM88, AGM89, HSTR89, Son91]. Buchmannet al. presented a framework for integrating real-time scheduling and concurrency controland a summary of real-time concurrency control algorithms [BMHD89].Several priority ceiling based protocols were proposed; these protocols provide boundedblocking times imposed by accessing data objects and schedulability tests for scheduling aset of periodic tasks in uniprocessor RTDBS [SRSC91, Nak93]. Haritsa et al. proposed a6

priority-based optimistic concurrency control algorithm WAIT-50 [HCL90] which performsbetter than the traditional optimistic algorithm, OPT-BC [MN82, Rob82]. They concludedthat priority information can improve the performance of optimistic concurrency control inRTDBS. Ulusoy proposed several locking and timestamp based concurrency control proto-cols for RTDBS [Ulu92]. He also developed single-site and distributed RTDBS models forevaluating the proposed protocols.Most of the proposed real-time concurrency control protocols mentioned above incor-porate priority information into data resolution decision. None of the aforementioned workmakes use of execution time information to support the decision policies of concurrencycontrol. Our research investigates the impact of execution time on data resolution decisionof concurrency control.2.3 Scheduling with Fault-ToleranceRollback and redundancy are dominant approaches to fault-tolerance. Rollback schemesoften tightly connect to the checkpoint insertion methods. Several researchers have inves-tigated the problem of selecting a checkpoint interval which is optimal with respect to acertain objective [CR72, Upa90, US86, Gel79, NK83, GRW88].The earliest attempt to obtain highly reliable system was through redundancy [Neu56].Redundancy schemes use several identical components operating in parallel and usuallyneed a voting mechanism to get the results of execution. Redundancy schemes can beclassi�ed as hardware redundancy and software redundancy. Triple modular redundancy(TMR) is an example of hardware redundancy [Mar67, Pie65]. A slight di�erent way ofhardware redundancy is a hybrid system which uses TMR and standby spares switchedin when needed [MA70]. Much work has been done on fault-tolerant architectures usingredundancy strategy. Many of the techniques required either a number of spare processors[BB87, Bat80, BCH91, KJC89, Ros92, RBK90], or a switching mechanism assumed to beimmune to faults [BB87, Bat80, BCH91, RBK90]. Walter et al. presented a multicomputerarchitecture for fault-tolerance (MAFT) which was designed for RTS requiring both highperformance and reliability [WKF85]. System overhead tasks are executed at each node by aspecial purpose device, operations controller (OC), and the application tasks are performedon application processors (AP). A number of APs are connected together through OCs.Multiple copies of a task can run on di�erent APs; OCs will take care of consistency andcommunication problems.Software redundancy is to have multiple copies or versions of a software program run-ning on di�erent processors. Chen and Cherkassky devised k-circular shifting algorithm toallocate tasks to processors statically and redundantly, so that if some processors fail duringthe execution all tasks can be completed on the remaining processors [CC90].Rollback strategy can be considered as temporal redundancy in which multiple copiesof a task are run in di�erent time intervals. Typically transient errors subsides quickly;one rollback often can skip an independent transient error. A permanent error might bedetected by encounting the same error on multiple retries. Usually a task does not roll back7

from the beginning of the task, it rolls back to the most recent checkpoint and consumesresources only when it needs to. However, for redundancy strategy, multiple copies of atask run and consume resources regardless of errors. Hence, rollback strategy can savemore resources than redundancy strategy. In another point of view, rollback strategy canaccept larger workload. Rollback technique has time and space overheads for saving andreloading system state, while redundancy techniques often have communication overheadand time overhead on voting to get the results of execution. Redundancy strategy is moredeterministic in which redundant copies run no matter what happens. Hence, such systemhas more predictable behavior and it is easy to meet timing constraints in RTS.These two strategies have their own advantages and disadvantages, usually they arecomplementary. Few e�orts have been made on combining these two strategies to get areliable real-time system with the guarantee of satisfying timing requirements. This researchattempts to develop a hybrid technique to extract the bene�ts of both to build up a morereliable system than that using only rollback or redundancy.

8

Chapter 3Resource SynchronizationProtocolsScheduling tasks with needs to exclusively access some resources must consider resourcesynchronization problem. The common approach to synchronization in real-time systems(RTS) is priority-driven protocols. The order of accessing resources is according to the pri-ority of the task, that is, higher priority task gets the priority to access resources. Priorityinversion [SRL87] happens when a higher priority task tries to access a resource which iscurrently accessing by a low priority task. The higher priority task has to be blocked in orderto maintain data integrity. Such blocking causes discontinuity in scheduling, results in un-predictable behavior, and degrades schedulability. The proposed protocol tries to minimizethe priority inversion in order to obtain higher schedulability and system throughput.In this chapter, we propose a synchronization approach based on priority ceiling protocolfor multiprocessor hard real-time systems (HRTS). The proposed approach can be used toenhance rate monotonic (RM) or earliest deadline �rst (EDF) scheduling algorithms. Inaddition, we extend MPCP [RSL88] to an EDF-based resource synchronization protocol.We present the results of performance analysis of the proposed approach and MPCP andshow that the proposed approach improves schedulability. This improvement is due to thefact that our approach allows a greater degree of parallelism.In the next section, we state the assumptions of the proposed approach and present thenotation used in the rest of the chapter. Section 3.2 presents a new version of multiprocessorsynchronization protocol, along with its properties and schedulability analysis. MPCP isinvestigated and extended in Section 3.3. Section 3.4 compares the performance of theproposed approach and the existing approach.3.1 Overview and NotationLet P1,P2, : : :,Pm be the processors of the system. Each task is assigned to a speci�c pro-cessor. A resource is any object that requires serialized access. Each resource is associatedwith a binary semaphore which is used to guarantee mutual exclusion. A resource may be9

either global or local. Global resources can be accessed by tasks assigned to some (possiblycomplete) subset of the processors, while local resources are only accessible to the tasks onthat particular single processor. A set of ni periodic tasks is associated with each processorPi. Each task T can be described by a triple (w; e; L), where w is the period of the task; eis the execution time of the task; and L is a list of resources accessed by the task. Accessto a shared resource occurs within the corresponding critical section (i.e. a sequence ofinstructions preceded by a lock operation of the associated semaphore and followed by anaccompanying release operation). To distinguish between critical sections that access globalresources and those that access local resources, we call the former global critical sections andthe latter local critical sections. Furthermore, semaphores that guard global resources arecalled global semaphores and those that guard local resources are called local semaphores.We use the terms resource, critical section, or semaphore interchangeablely, depending onthe context.For each task, an instance of the task, called a job, is generated for every period ofthe task. The release time of a job is the beginning of the period and the deadline of ajob is the end of the period. Pt(J) denotes the priority of the job J at time t and P (J)denotes the priority of the job J at the current time. Ct(S) denotes the priority ceiling ofthe semaphore S at time t and similarly C(S) refers to the priority ceiling of the semaphoreS at the current time. When priorities are static, the subscript t is dropped. The remoteprocessors of processor P are the processors which share global resources with P . Onlyjobs assigned to remote processors of processor P can interfere with the jobs on processorP . Let J be assigned to processor P . We de�ne the remote jobs of J , or of P , as the jobsassigned to the remote processors of processor P , and similarly the local jobs as the jobsassigned to P . Jobs J1; J2; : : : ; Jn are listed conventionally in descending order of prioritywith J1 having the highest priority, i.e., P (J1) > P (J2) > : : : > P (Jn). The jth criticalsection of job Ji is denoted by zi;j .Even though the priority ceiling protocol (PCP) [SRL87] is based on RM schedulingand the dynamic priority ceiling protocol (DPCP) [CL90a] is based on EDF, the conceptsunderlying both protocols are similar, varying primarily in their de�nitions of priority. Bothprotocols assign priority ceilings to semaphores which are used to defer some requests thatcould potentially be granted. The purpose of deferring some requests is to reduce and boundblocking due to priority inversion. The priority ceiling of a semaphore S, C(S), is de�ned asthe maximum priority of all jobs that are currently locking or will lock S. For a particularjob J , S� denotes the semaphore with the highest priority ceiling that is currently lockedby a job other than J . Whenever a job J wants to access a resource, it must �rst acquirean exclusive lock on the semaphore associated with that resource. The lock is granted onlyif P (J) > C(S�); otherwise job J is blocked until the lock may be granted. The job holdingsemaphore S� inherits the priority of the highest priority job that is blocked by S�. Whena job exits from a critical section, it releases the semaphore, and the highest priority jobwaiting for the semaphore can then lock the semaphore. There are two types of blocking1 .A job J is blocked if it attempts to lock some semaphore S, while some lower priority job JLhas locked a semaphore S0 whose priority ceiling exceeds the priority of J , C(S 0) � P (J).1We use the term blocking to refer to situations when a higher priority job is temporarily denied a resource(including the processor) due to a lower priority task.10

The other form of blocking occurs when there is a higher priority job JH that is alreadyblocked due to some lower priority job JL. Though the concepts do not change substantially,these protocols require careful modi�cation to be extended to multiprocessor systems.3.2 Multiprocessor Dynamic Priority Ceiling Protocol C(MDPCP-C)In this section, we present a dynamic priority multiprocessor version of the priority ceilingprotocol (MDPCP-C) based upon EDF scheduling. The protocol imposes a few restrictionswhich we believe are often acceptable. MDPCP-C only allows global (local) critical sectionsto be nested within other global (local) critical sections; in other words it is not possiblefor a job to simultaneously lock both a global and a local semaphores. An outermost globalcritical section and its nested inner global critical sections are viewed as a unit and can beshared by a group of processors. Any global semaphores that are ever locked simultaneouslyby the same job, (i.e. that ever appear in the same nested critical section), must be sharedby exactly the same set of processors. If a global semaphore S is shared by processors Pi andPj , we say that S is a global semaphore common to Pi and Pj . In the following subsections,we present the fundamental concepts behind MDPCP-C, give proofs of some of its usefulproperties, and analyze conditions under which a feasible schedule may be assured.3.2.1 Basic Idea Behind MDPCP-CRajkumar et al. de�ned remote blocking as the blocking caused by remote jobs, regardlessof their priorities [RSL88]. They then proved that the remove blocking time of a jobblocked while attempting to enter a global critical section is a function of the access time ofcritical sections if and only if a job within the global critical section cannot be preemptedby jobs executing outside critical sections. To ensure that blocking times are predictable,MDPCP-C will not allow any job to preempt a job executing within a global critical section.Since local critical sections may not overlap or nest with global critical sections, we can useDPCP to synchronize access to local resources. Events which may a�ect global resourcessuch as locking or releasing a global semaphore or the arrival of a new job require moreattention as will be discussed shortly. Recall from the previous section that the priorityceiling of a global semaphore S, C(S), is the priority of the highest priority job that iscurrently holding or will hold the semaphore S at the current time. C(S) may vary withtime as priorities are reassigned according to the EDF scheduling discipline. Let job J bebound to processor Pj .1. The highest priority job eligible to execute on processor Pj is assigned the processorif no local job with lower priority is in a global critical section.2. Before a job J enters a global critical section, it must lock the associated semaphoreS. Let SS�j denote the set of global semaphores accessible from processor Pj that arecurrently locked by remote jobs of J . Job J is granted the lock and may enter the11

critical section if it satis�es the locking condition:P (J) > maxs2SS�j(C(s)):Otherwise, it is blocked and joins the queue for semaphore S. The queue is priority-ordered, i.e., the job with the highest priority waiting in the queue locks the semaphorewhen it is released.3. If a job J is blocked and it has not locked any global semaphores, then a remote job Jrwith the priority lower than J may lock a global semaphore whose priority ceiling isgreater than or equal to P (J) only if Jr was executing within a global critical sectionwhen J blocked. This restriction holds even if the remote job satis�es the lockingcondition described in rule 2.4. A job J uses its original priority, unless it is in a critical section and blocks higherpriority jobs. In that case, it inherits the priority of the highest priority job that itblocks. The original priority is restored upon exiting the critical section.MDPCP-C gives rise to four distinct types of synchronization delay: indirect and directblocking, remote and implicit preemption. If a job JL is in a global critical section, it willblock other local jobs with higher priorities (see rule 1). We use the term indirect blockingto refer to such blocking. The blocking enforced by the locking condition described in rule2 is called direct blocking or remote preemption, especially when the blocking is caused byhigher priority jobs. The blocking enforced by rule 3 is called implicit preemption. Notethat the blocking caused by synchronization of local resources is also called direct blockingsince the uniprocessor protocol uses the same locking condition described in rule 2.Rule 1 implies that at most one job on each processor can be within a global criticalsection. Hence, each semaphore in SS�j must be locked by a remote job of the blocked job.In addition, the priority of a job that has locked a semaphore in SS�j may be either higheror lower than that of the blocked job.Because of rule 2, a job J may be remotely preempted by a higher priority remote job.For example, suppose Jr is a remote job of J with higher priority than J and both arewaiting for the same global semaphore Sg. Jr will lock the semaphore Sg before J , since itspriority is higher than that of J . J is directly blocked by Jr when Jr locks Sg. We call thisspecial case of direct blocking remote preemption. In uniprocessor systems, conventionally,blocking occurs when a job is blocked by a lower priority job. Therefore, to conform withthe de�nition of blocking used in uniprocessor protocols, we will in the future only use theterm direct blocking when discussing blocking caused by lower priority jobs. We will referto blocking due to a higher priority remote job as remote preemption.Implicit preemption ensures that a higher priority job will not be in�nitely blockedby lower priority remote jobs. The following two examples show the need for implicitpreemption.Figure 3.1 shows the con�guration of the system used in the next two examples. P1,P2, and P3 are the processors of the system and S1, S2, and S3 are the global semaphores.12

C(S2) = P (J1)C(S1) = P (J1)C(S3) = P (J5)S2 S3 S1
J1 J2J3 J4J5P1 P2 P3 Priority ceiling ofglobal semaphores:

Figure 3.1: Architecture used in examples.(We don't show any local semaphores.) S1 is accessible from P1 and P3. S2 is accessiblefrom P1 and P2, and S3 is accessible from P2 and P3. Job J1 is assigned to processor P1,jobs J2 and J3 to P2, and jobs J4 and J5 to P3. S1 is accessed by jobs J1, J4, and J5, andS2 is accessed by J1, J2, and J3. No job accesses S3.Figure 3.2 illustrates how a job can be in�nitely blocked by lower priority jobs, if we donot impose rule 3. Consider the following sequence of events. Suppose that J1 attempts tolock global semaphore S1 while J2 has locked global semaphore S2. In this case, J2 directlyblocks J1. Before J2 releases semaphore S2, J4 locks S1, since SS�3 is empty. Therefore,J1 is directly blocked once again. The same scenario can happen on processor P2. BeforeJ4 releases S1, J3 locks S2, and hence it blocks J1. This sequence of events can repeatinde�nitely, and cause J1 to be in�nitely blocked. Figure 3.3 shows how, under the samecircumstances, job J1 will not be in�nitely blocked if rule 3 is enforced.Synchronization of global resources contributes new blocking factors that do not arisein uniprocessor systems. To facilitate computation of the worse case blocking time inducedby this protocol, we de�ne two kinds of blocking sets: � and �. We also de�ne three sets ofjobs, GP (J), LP (J) and LLP (J), useful in computing � and �. Each set of jobs contributesdi�erent synchronization delays.Let GP (J) be the set of remote jobs of job J whose priorities are higher than that ofJ , and let LP (J) be the set of remote jobs of job J whose priorities are lower than that ofJ . Finally, LLP (J) is de�ned to be the set of the local jobs of job J with priorities lowerthan J .� �i;L denotes the set of the critical sections of the lower priority job JL which candirectly block Ji. �i;LP (Ji) denotes the set of critical sections of jobs in LP (Ji) thatcan directly block Ji. �i;LLP (Ji) is de�ned similarly. Let �i be the set of critical sectionsof all lower priority jobs of Ji that can directly block Ji. �i = �i;LP (Ji)[�i;LLP (Ji) and�i;LP (Ji) \ �i;LLP (Ji) = ;: Let P be the processor to which job Ji is bound. Elements13

P3J4J5
J2J1 DB by J2DB by J4 DB by J3DB by J5P1P2J3

Figure 3.2: An example without implicit preemption.
J3J2J4J5 IB by J5 IP by J2RP by J1RP by J1P3 DB by J2P1P2J1

Figure 3.3: An example with implicit preemption. (IP = implicit preemption. RP = remotepreemption.) 14

in �i;LLP (Ji) are the local critical sections of processor P , while elements in �i;LP (Ji)are the global critical sections of P .� �i;L denotes the set of all critical sections of local job JL which can indirectly blockJi. �i is de�ned similarly.3.2.2 The Properties of MDPCP-CBoth DPCP and PCP prevent transitive blocking and deadlock. These useful propertiesare preserved in MDPCP-C.Lemma 3.1 Suppose JH is directly blocked by a remote job JL on global semaphore S.Then under MDPCP-C, JH is not within any critical section.Suppose JH is within a critical section guarded by S0 when it is directly blocked by JL onS. S0 must be a global semaphore and S0 and S are common to the processors to which JHand JL are bound. JH must lock S0 either before or after JL locks S. (1) First, suppose JLlocks S after JH has locked S 0. Then P (JL) > C(S 0), and hence P (JH) > P (JL) > C(S 0).However, C(S 0) � P (JH) due to the de�nition of priority ceiling. (2) Now, suppose JHlocks S0 after JL has locked S. Thus P (JH) > C(S). But since JH is blocked by S,P (JH) � C(S). Since both cases lead to contradictions, the lemma follows. 2Since global critical sections can be nested within other global critical sections, a jobcan be within several critical sections simultaneously. The above lemma implies that oncea job enters an outermost critical section, it will not be blocked before it exits from thatcritical section. Hence, no matter how many nested critical sections are entered during thetime the job is within the outermost critical section, the job will not be blocked by anylower priority job. Note that the job still can be preempted by a higher priority job.Theorem 3.2 MDPCP-C prevents transitive blocking.Let Ji3 directly or indirectly block Ji2 and suppose that Ji2 directly or indirectly blocksJi1. If Ji3 directly blocks Ji2, by Lemma 3.1, Ji2 is not within any of its critical sections.By the de�nition of MDPCP-C, Ji2 cannot block any jobs indirectly or directly. If Ji3indirectly blocks Ji2, by the de�nition of MDPCP-C, Ji2 has not started execution. Hence,Ji2 cannot directly or indirectly block a job. 2Theorem 3.3 MDPCP-C prevents deadlocks.Suppose deadlock may occur and let fJ1; J2; : : : ; Jng be a set of jobs that cause a waitingcycle. Since, by Theorem 3.2 there is no transitive blocking, at most two jobs can be in thewaiting cycle. The rest of the proof is similar to the proof of Theorem 3.2. 215

3.2.3 Schedulability Analysis of MDPCP-CIn this subsection, we develop a set of su�cient conditions which, when satis�ed, guaranteethat m sets of periodic tasks assigned to m processors will complete execution within theirperiods when scheduled using MDPCP-C. Liu and Layland proved the schedulability con-dition for uniprocessor EDF scheduling [LL73]. A set of n periodic tasks can be scheduledby EDF algorithm if e1w1 + e2w2 + : : :+ enwn � 1: (3.1)If we �nd upper bounds for the blocking factors of MDPCP-C, we can then derive su�cientschedulability conditions using equation 3.1. The blocking factors can be better understoodwith the aid of the following lemma.Lemma 3.4 Whenever JH attempts to enter an outermost global critical section, it can bedirectly blocked by lower priority remote jobs for at most the duration of the global criticalsection with the longest access time in �H;LP (JH).Let V be the set of remote jobs which are currently within global critical sections in�H;LP (JH) and that block JH at the time JH requests a lock on a semaphore correspondingto an outermost global critical section. During the blocking by jobs in V , a remote job withthe priority lower than JH cannot enter a critical section. The jobs in LP (JH) � V arethe remote jobs with priorities lower than JH ; hence, they cannot contribute any blocking.Therefore, JH can be directly blocked by a remote job with lower priority for at most theduration of the longest global critical section in �H;LP (JH). 2The above lemma provides an upper bound for the direct blocking caused by remotejobs with lower priorities, for each time that a job attempts to enter an outermost globalcritical section.We now address the computation of blocking factors. First, we de�ne additional nota-tion. Let LBk;i be the worse case direct blocking time of job Jk;i induced by one of its lowerpriority local jobs (i.e., the local blocking time of Jk;i). Let GBk;i be the worse case directblocking time of job Jk;i induced by its lower priority remote jobs (i.e., the remote blockingtime of Jk;i) each time that Jk;i attempts to enter an outermost global critical section. LetIBk;i be the worse case indirect blocking time of job Jk;i. Finally, we de�ne dk;i as thenumber of times that Jk;i enters an outermost global critical section.By the de�nition of MDPCP-C, indirect blocking can only occur once during the ex-ecution of a job. Lemma 3.4 showed that each time a job Jk;i attempts to enter an out-ermost critical section, it can be directly blocked by its remote jobs with lower priority.Thus, the worse case blocking time induced by indirect blocking and remote blocking isIBk;i + dk;i � GBk;i. As for local blocking, every time Jk;i suspends itself when it triesto enter a global critical section, its local jobs with lower priorities might enter local crit-ical sections which can later cause Jk;i to be blocked. Local blocking factors contributedk;i � LBk;i in the worse case. 16

In addition to the above blocking factors, remote and implicit preemption will also occur.When a job Jk;i attempts to lock a global semaphore, it might be remotely preemptedby its remote jobs with higher priorities. In the worse case, it has to wait for all itsremote jobs with higher priorities accessing the global critical sections common to processorPk. So, in the worse case the blocking time caused by the remote preemption, RPk;i, isPJj;h2GP (Jk;i) ck;j;h � dwk;i=wj;he, where ck;j;h is the total access time that job Jj;h spends inthe global critical sections common to Pk.Implicit preemption occurs when a job Jk;i wants to lock a global semaphore S and �ndsthat one of its higher priority remote jobs, Jj;h, is directly blocked by SS�j and C(S) �P (Jj;h). According to the de�nition of MDPCP-C, Jk;i is implicitly preempted by Jj;h.Each time job Jk;i attempts to lock a global semaphore whose priority ceiling is higher thanor equal to the priority of one of its higher priority remote jobs, P (Jj;h), it is implicitlypreempted. In other words, each time when Jk;i wants to lock a global semaphore S, Jk;ican be implicitly preempted for at most maxJj;h2GP (Jk;i)GBj;h, where C(S) � P (Jj;h). Tosimplify the computation of the total implicit preemption time, we express the worse caseof implicit preemption time of job Jk;i, IPk;i, as dk;i �maxJj;h2GP (Jk;i)GBj;h. Hence, theworse case total blocking time of a job Jk;i induced by MDPCP-C, BMDPCP�Ck;i , can beexpressed as follows.BMDPCP�Ck;i = IBk;i + dk;i � (GBk;i + LBk;i) +XJj;h2GP (Jk;i) ck;j;h � dwk;i=wj;he+dk;i � maxJj;h2GP (Jk;i)GBj;h: (3.2)We need to know the elements of the sets LLP (Jk;i), LP (Jk;i), and GP (Jk;i) for eachjob Jk;i to compute the blocking sets and preemption factors. The set of local jobs withlower priorities, LLP (Jk;i), of job Jk;i is the same as the set of the lower priority jobs of Jk;ide�ned in uniprocessor systems, since both refer to the jobs on a single processor. A job Jk;lin LLP (Jk;i) must arrive earlier and lock a local semaphore. It is preempted by Jk;i whenit is holding the semaphore such that later Jk;i will be blocked. Since Jk;l is preempted, itmust have a later deadline. Consequently, the period of a job in LLP (Jk;i must be longerthan that of Jk;i.However, the set of remote jobs with lower priorities, LP (Jk;i), of job Jk;i does notpossess the same nice properties as LLP (Jk;i). Jobs in LP (Jk;i) are the jobs whose deadlinesare later than that of Jk;i, but not necessarily with earlier arrival times. So, they can be anyjobs on the remote processors of processor Pk. The same theory applies to the set GP (Jk;i).Consequently, GP (Jk;i) = LP (Jk;i) = GP (Jk;j) = LP (Jk;j). The su�cient schedulabilityconditions can be stated as follows:Theorem 3.5 Given m sets of periodic tasks on a system with m processors, where a setof nk periodic tasks is assigned to processor Pk. The sets of tasks can be scheduled by EDFwith MDPCP-C as the resource control protocol, if the following conditions are satis�ed:8k; 1 � k � m;17

synprotocol EDFMDPCP-RMDPCP-CRMMSPCP-CMSPCP-R(=MPCP)schedulingschemeCT approachRSL approachFigure 3.4: The mapping of the abbreviations for di�erent approaches.ek;1 +Bk;1wk;1 + ek;2 + Bk;2wk;2 + : : :+ ek;nk +Bk;nkwk;nk � 1: (3.3)23.3 Multiprocessor Dynamic Priority Ceiling Protocol R(MDPCP-R)The multiprocessor dynamic priority ceiling protocol R (MDPCP-R) is based on a previ-ously developed static priority multiprocessor protocol known as MPCP [RSL88]. To clearlydistinguish our dynamic protocol MDPCP-C from the static protocol MPCP, we will sub-sequently use the acronym MSPCP-R to refer to the original MPCP protocol. MSPCPis short for multiprocessor static priority ceiling protocol. The su�x R indicates that thesame resource control scheme is used as in MDPCP-R, and does not signify a revision to theoriginal MPCP protocol. MDPCP-R relies upon an EDF scheduling policy, but is otherwiseidentical to MSPCP-R.Figure 3.4 shows a brief mapping of the proposed protocols to the scheduling schemes,where RSL approach means the approach adopted by [RSL88]. Unlike CT approach (ourapproach), theirs does not allow nested global critical sections. Otherwise, the assumptionsmade by theirs do not di�er from those required by ours.Due to the varying restrictions concerning nested global critical sections, Both ap-proaches take dramatically di�erent policies to controlling access to global resources. Toallow nested global critical sections, our approach relies upon priority ceilings to re
ect theimportance of global resources throughout the system. Thus ours requires a lock check-ing protocol that is similar to that used in uniprocessor systems, but must be much morecomplex. By contrast, due to its prohibition against nested global critical sections, RSL ap-proach can use simple e�cient atomic operations, such as test-and-set, to implement globallocking. Both approaches may use a uniprocessor synchronization protocol to manage localresources. 18

3.3.1 Basic Idea of MDPCP-RWe use a slightly di�erent de�nition of priority ceiling that we used in MDPCP-C. Thepriority ceiling of a local semaphore SL, C(SL), is de�ned to be the priority of the highestpriority job that is accessing or will access the semaphore at the current time. This is thesame de�nition used in the (uniprocessor) DPCP. Recall from Section 3.2.1 that, in orderto easily bound remote blocking times, it is necessary to prevent jobs executing withinglobal critical sections from being preempted by jobs executing outside of critical sections.Consequently, a job within a global critical section must have a priority higher than everyjob executing outside of global critical sections. This is easily handled by introducing theconcept of the base priority to denote the priority that is higher than the highest priorityjob in the entire system.A job Ji bound to Pj is assigned a new priority, ~P (Ji; S), when it locks a semaphore S,and reverts to its previous priority when it releases the semaphore. The extended priority~PJi;S is de�ned to be P (Ji) if S is a local semaphore, and P (Ji) plus the base priority if Sis a global semaphore. Since the remote priority ceilings of all global semaphores have beenincreased by the base priority, a job executing within a global critical section has a higherpriority than any job outside of a global critical section. This is assured that a job that haslocked a global semaphore may only be preempted by a local job that locks another globalsemaphore that has a higher remote priority ceiling.The protocol can be described as follows:1. When job J wants to access a local critical section, it uses DPCP to see if it can lockthe associated semaphore. i.e., J can seize the lock, only if P (J) > C(S�L), whereS�L denotes the semaphore with the highest priority ceiling of all local semaphorescurrently locked by jobs other than J . DPCP is used to synchronize access to localresources.2. If job J attempts to access a global critical section, it locks the associated semaphoreS if no other job has already locked S. Otherwise, it joins the priority-ordered queueassociated with S using its original priority P (J),3. A job J locking a global semaphore Sg inherits the extended priority ~PJ;Sg , and revertsto its previous priority upon releasing Sg.4. A job J can lock Sg and preempt another job J 0 within another global critical sectionguarded by S0, if ~P (J; Sg) > ~P (J 0; S 0g).5. Whenever a global semaphore is released, it will be given to the highest priority jobwaiting if the associated queue is not empty.While a job has locked any global semaphore, it cannot attempt to lock any othersemaphore, whether it is local or global. Thus a job cannot deadlock while holding a lockfor a global semaphore. Jobs can simultaneously lock multiple local semaphores, but sinceMDPCP-R uses DPCP to manage the access of local critical sections, a job cannot becomedeadlocked within a local critical section. So MDPCP-R is deadlock free.19

3.3.2 Schedulability Analysis of MDPCP-RBlocking times in MDPCP-R depend upon one type of blocking that does not arise inMDPCP-C. In MDPCP-R, a job within a global critical section S can preempt a local jobwithin another global critical section S0. Hence, it can induce another form of blocking delayto jobs that waits for S0. Blocking times in MDPCP-R fall into the following categories:1. Blocking by local jobs with lower priorities within local critical sections. When a jobJk;i attempts to lock a global semaphore S, it may suspend while waiting for somejob to unlock S. In the meantime, one of its local jobs might lock a local semaphorewhich will later cause job Jk;i to be blocked. Let LLBk;i be the worse case access timeof a local semaphore accessed by a lower priority local job of job Jk;i that can blockJk;i. Let dk;i denote the number of times that Jk;i locks a global semaphore. Theworse case blocking time caused by this scenario can be expressed as dk;i � LLBk;i.2. Blocking by local jobs with lower priorities accessing global critical sections. This typeof blocking is similar to the previous one, except that, in this case, a lower prioritylocal job can lock or be waiting for a global semaphore that might later cause Jk;i tobe blocked when Jk;i executes outside of a critical section. Let GLBk;i;l be the worsecase access time of a global semaphore accessed by the lower priority job Jk;l thatcan block Jk;i. For every lower priority job Jk;l of job Jk;i, this form of blocking cancontribute at most min(dk;l; dk;i + 1) �GLBk;i;l blocking delay.3. Blocking by remote jobs with lower priorities. When job Jk;i attempts to lock a globalsemaphore, that semaphore might already be locked by a lower priority remote job.Let GRBk;i be the worse case access time of the global semaphore that is accessedby job Jk;i and a lower priority remote job. Then job Jk;i can experience at mostdk;i �GRBk;i blocking delay caused by this situation.4. Blocking by remote jobs with higher priorities. When job Jk;i tries to lock a globalsemaphore, that semaphore might be locked or a higher priority remote job mightbe waiting for it. Let dCk;i;m;h be the number of times that job Jm;h locks the globalsemaphores which will be also accessed by Jk;i. Let GHBk;i;m;h be the worse caseaccess time of the global semaphore accessed by Jk;i and Jm;h. We call this form ofblocking remote preemption. The worse case blocking time caused by remote pre-emption is dk;i;m;h � dwk;i=wm;he � GHBk;i;m;h, for each remote job Jm;h, with higherpriority, of job Jk;i.5. Blocking by a remote job accessing a global critical section. Suppose job Jk;i is blockedby a remote job Jm;j accessing a global semaphore Sg1. Meanwhile, suppose anotherremote job Jm;x inherits a higher extended priority and preempts Jm;j , when Jm;xlocks another global semaphore Sg2. Not only does job Jk;i experience the blockingdelay caused by the semaphore Sg1 that it tried to lock; it also experiences a blockingdelay due to Sg2. The blocking by the former semaphore is considered above; theblocking by the latter is considered here. Let dHk;i;m;x be the number of times that jobJm;x locks the global semaphores with higher remote priority ceilings than a global20

semaphore that is accessed by another local job of Jm;x and that can block Jk;i. We usethe notation GHBk;i;m;x to refer to the worse case access time of the global semaphoreas described above. This type of the blocking time can be bound by the expressiondHk;i;m;x � dwk;i=wm;xe �GHBk;i;m;x, for every remote job Jm;x of job Jk;i.The total blocking time of a job Jk;i induced by MDPCP-R, BMDPCP�Rk;i , is the sum-mation of the blocking factors described above.BMDPCP�Rk;i = di;k � LLBk;i +XJk;l2LLP (Jk;i)min(dk;l; dk;i + 1) �GLBk;i;l +dk;i �GRBk;i +XJm;h2GP (Jk;i)dk;i;m;h � dwk;i=wm;heGHBk;i;m;h +X8Jm;xm6=k dHk;i;m;x � dwk;i=wm;xe �GHBk;i;m;x: (3.4)The de�nitions of the set of remote jobs with lower priorities and higher priorities and theset of local jobs with lower priorities, LP (Jk;i), GP (Jk;i), and LLP (Jk;i), for a job Jk;i arethe same as those de�ned in MDPCP-C, since both use dynamic priorities.3.4 Performance Comparisons for Multiprocessor PriorityCeiling Based ProtocolsThis section compares the performance of two static priority protocols, MSPCP-C andMSPCP-R, and two dynamic priority protocols, MDPCP-C and MDPCP-R. The multipro-cessor static priority ceiling protocol C, MSPCP-C is a variation of MDPCP-C which uses aRM scheduling algorithm. The primary di�erences between MSPCP-C and MDPCP-C arethe de�nitions for priorities and priority ceilings. MDPCP-C de�nes P (J) and C(S) in ex-actly the same fashion as uniprocessor PCP. MDPCP-C also preserves the useful MDPCP-Cproperties: freedom from deadlock and prevention of transitive blocking. The proofs areanalogous to those for MDPCP-C. The blocking factors induced by MSPCP-C are similaras well: indirect blocking, local and remote blocking, remote preemption, and implicit pre-emption. Hence, the expression for the worse case blocking time of a job Jk;i, BMSPCP�Ck;iis the same as that in MDPCP-C, BMDPCP�Ck;i . The only di�erence is the de�nitions of thesets of lower (and higher) priority remote jobs, i.e., LP (Jk;i) and GP (Jk;i). LP (Jk;i) is theset of remote jobs with longer periods than Jk;i, and GP (Jk;i) is the set of remote jobs withshorter periods than Jk;i. A set of periodic tasks can be scheduled by RM if the followingcondition is satis�ed[LL73]: nXi=1 eiwi � n(2 1n � 1): (3.5)21

The metric used to compare the schedulability of these protocols is the maximum es-timated consumed processor power (MECPP). Inequality 3.1 shows the intuition behindthis measurement. When an EDF scheduling policy is used in a single processor system,the utilization of the processor must be less than 1 in order to meet all the deadlines of theperiodic tasks in the system. The left-hand side of the inequality is the upper bound of theprocessor utilization consumed by the tasks in the system. This upper bound, called theestimated consumed processor power (ECPP), can be viewed as a measure of schedulability.For a multiprocessor system, each processor Pk has its associated ECPP value, ECPPk.The deadlines of all tasks in the system will be met if all the ECPP values are less than1; or equivalently, if the maximum of the ECPP values is less than 1. Consequently, themaximum ECPP value (MECPP) is a natural performance metric for the schedulability ofmultiprocessor hard real-time systems.Given m sets of n tasks each assigned to an m multiprocessor system and each processoraccepts a set of n tasks. The estimated consumed processor power of processor Pk (ECPPk)is de�ned asPni=0 ek;jwk;j +max1�i�n Bk;iwk;i , if RM scheduling is used andPnj=0 ek;j+Bk;jwk;j , if EDFis used, where Bk;j is the worse case blocking time of job Jk:j induced by the correspondingresource synchronization protocol. The computation of Bk;j is described in Sections 3.2.3and 3.3.2. MECPP is de�ned as max1�k�mECPPk. Note that utilization for real work(processor utilization without synchronization delay) is the same for both CT and RSLapproaches, i.e., Pni=0 ek;jwk;j for processor Pk. Therefore, the major factor of schedulabilitydepends on synchronization delay. According to the schedulability condition proved inTheorem 3.5, If ECPPk is smaller, we have greater chance that the set of tasks assignedto processor Pk is schedulable. Therefore, we say that a protocol performs better, if theprotocol leads to a smaller MECPP .3.4.1 Simulation DesignThe simulator models a system with m processors and shared memory. It consists of twocomponents, the con�guration model and the task model. The con�guration model producesglobal critical sections shared with di�erent sets of processors and local critical sections foreach processor. The task model generates m sets of tasks; each set contains n periodictasks. The con�guration model generates nested global critical sections since MSPCP-Cand MDPCP-C allow them. However, for MSPCP-R and MDPCP-R, a job must use acoarser level of granularity for global semaphores.The following parameters control the con�guration of the simulated system:� m is the number of processors in the system.� n is the number of tasks accepted by each processor.� NumLCS is the maximum number of local semaphores for a processor. In our simu-lation, NumLCS is 4.� NumGCS is the maximum number of global semaphores for a processor. In oursimulation, NumGCS is 4. 22

� TotalGCS is the total number of global semaphores in the whole system. In oursimulation, TotalGCS is 8.� CSAccessTime is the maximum access time of a critical section. In our simulation,CSAccessTime is 4 time units. We assume that all tasks have the same access timefor executing the same global critical section.� DegreeSharing is the probability that a global critical section is accessible from aprocessor. Setting DegreeSharing to 0 means that no global critical sections areshared by di�erent processors (all global semaphores become local in this case), whilea value of 1 indicates that all global critical sections are accessible from every processor.The greater the degree of sharing, the more frequently jobs interfere with each other.The task model determines the attributes of the various tasks. The following parameterscontrol the task model.� MinPeriod and PeriodIncrement de�nes the periods of tasks. For a task Tk;i, theperiod of task Tk;i, wk;i can be computed bywk;i = (MinPeriod+ PeriodIncrement �Rw if i = 1wk;i�1 + PeriodIncrement �Rw otherwise,where Rw is a number uniformly distributed over (0,1].� LbTaskConsumedPower and UbTaskConsumedPower de�ne the lower and upperbounds of the task consumed processor power, the rate of the execution time to theperiod of a task. The execution time of a task Tk;i, ek;i, is de�ned asek;i = wk;i �Re;whereRe is uniformly distributed between LbTaskConsumedPower and UbTaskConsumedPower.� The list of critical sections accessed by a task is represented as a bit map which isgenerated by a random number and uniformly distributed between 0 and the maximumnumber of possible bit map patterns.Our simulation does not generate workload based on processor utilization; di�erentworkloads are generated by varying run-time parameters: the number of processors, thenumber of tasks, and the degree of sharing. Under a �xed setting of the parameters, wewant to see how the protocols perform on various utilization. We de�ne processor workloadas processor utilization of the real work. Therefore, the average workload for a processorcan be expressed as n2 (LbTaskConsumedPower + UbTaskConsumedPower).Three run-time parameters are used to simulate various system workloads. Varying thenumber of tasks provides a way to see how the protocol behaves as the processor workloadincreases, and varying the number of processors shows how the protocol behaves as the sys-tem size scales. Changing the degree of sharing illustrates the impact of synchronization foraccess to global resources. In the following section, we give the results of several simulationexperiments. In each experiment, we varied only a single system parameter, and held allthe others constant. 23

3.4.2 Simulation ResultsIn order to see the impact of increases in the processor workload on performance, we variedthe number of tasks for a �xed number of processors. The results are shown in Figure 3.5.We also changed the degree of sharing when varying processor workload, and found similarresults. Therefore, we only present the results for the case when the degree of sharing wasset equal to 0.5. Clearly, resource contention and blocking time increase as the workloadincreases. The rate of increase of blocking by MSPCP-R and MDPCP-R are greater, becauseblocking factors 4 and 5, described in Section 3.3.2, increase signi�cantly as the number oftasks increases. The slopes of MSPCP-C with m equal to 10 and 20 are almost identical.The increased MECPP values for the case where m is 20 are primarily due to remotepreemption, and remain constant throughout the various processor loads. A job will havemore remote jobs with higher priorities when m is 20, which increases the amount of moreremote preemption for the job. The rate of increase of the number of higher priority remotejobs remains stable as the processor workload increases; there is negligible di�erence betweenthe cases where m equals 10 and m equals 20. Consequently, the increase in MECPPvalues is almost identical for the two cases. However, MDPCP-C behaves di�erently sincethe blocking time of each task a�ects the MECPP; it is unlike MSPCP-C where only asingle blocking time matters. As processor workload increases, the discrepancies betweenMSPCP-C and MSPCP-R (or between MDPCP-C and MDPCP-R) become signi�cant.MSPCP-C and MDPCP-C perform better under a wide range of processor workloads.Figure 3.6 and Figure 3.7 show the simulated performance results as the degree ofsharing changes. For MDPCP-C and MSPCP-C, the increased concurrency allowed bythe �ne granularity of resources becomes more signi�cant as the degree of sharing increases.Two jobs can simultaneously access di�erent critical sections, in cases where MDPCP-R andMSPCP-R would force them to be serialized. In general, the MECPP increases as the degreeof sharing increases. However, it increases much faster under MSPCP-R or MDPCP-R thanunder MSPCP-C or MDPCP-C. Again, we see that MSPCP-C and MDPCP-C allow betterperformance.To study the e�ect of resource contention among processors, we varied the number ofprocessors while holding other system parameters �xed. We present the simulation resultsfrom those experiments in Figure 3.8. MSPCP-C and MDPCP-C are less sensitive tochanges in system size than MSPCP-R and MDPCP-R, and have better performance aswell. These results have one similarity with the results from the experiments of varyingprocessor workload. The di�erences of the MECPP values for MSPCP-C remain constant,while the di�erences of the MECPP values for MDPCP-C continue to increase. The causeof such behavior is the same in both cases.
24

MSPCP-C (m=10)

MSPCP-R (m=10)

MSPCP-C (m=20)

MSPCP-R (m=20)

MECPP

of tasks0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

5.00 10.00 15.00 20.00

MDPCP-C (m=10)

MDPCP-R (m=10)

MDPCP-C (m=20)

MDPCP-R (m=20)

MECPP

of tasks

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

160.00

170.00

180.00

5.00 10.00 15.00 20.00Figure 3.5: Varying processor workload.25

MSPCP-C (m=10 n=5)

MSPCP-R (m=10 n=5)

MSPCP-C (m=10 n=10)

MSPCP-R (m=10 n=10)

MECPP

-3deg of sharing x 10
2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

200.00 400.00 600.00 800.00

MDPCP-C (m=10 n=5)

MDPCP-R (m=10 n=5)

MDPCP-C (m=10 n=10)

MDPCP-R (m=10 n=10)

MECPP

-3deg of sharing x 10

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

200.00 400.00 600.00 800.00Figure 3.6: Varying the degree of sharing when m = 10.26

MSPCP-C (m=20 n=10)

MSPCP-R (m=20 n=10)

MSPCP-C (m=20 n=20)

MSPCP-R (m=20 n=20)

MECPP

-3deg of sharing x 103.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

20.00

21.00

22.00

23.00

200.00 400.00 600.00 800.00

MDPCP-C (m=20 n=10)

MDPCP-R (m=20 n=10)

MDPCP-C (m=20 n=20)

MDPCP-R (m=20 n=20)

MECPP

-3deg of sharing x 10
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

160.00

170.00

180.00

190.00

200.00

210.00

220.00

230.00

200.00 400.00 600.00 800.00Figure 3.7: Varying the degree of sharing when m = 20.27

MSPCP-C (n=10)

MSPCP-R (n=10)

MSPCP-C (n=20)

MSPCP-R (n=20)

MECPP

of processors

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

5.00 10.00 15.00 20.00

MDPCP-C (n=10)

MDPCP-R (n=10)

MDPCP-C (n=20)

MDPCP-R (n=20)

MECPP

of processors
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

160.00

170.00

180.00

5.00 10.00 15.00 20.00Figure 3.8: Varying system size.28

Chapter 4Optimistic Concurrency ControlProtocolsOptimistic concurrency control (OCC) mechanism assumes that data con
icts will be rare.Its e�ciency relies on the hope that con
icts among transactions will not occur. Theexecution of a transaction under OCC mechanism can be divided into three phases: readphase, validation phase, and possibly update phase. This is based on the observation thatreads are completely unrestricted but writes are severely restricted. Reading a value froma data object does not lose data integrity; however, changing the value of an object needsto be validated to see if data consistency is maintained. The �rst phase reads data objects,processes the data objects that have been read, and prepares the data objects to be written.Note that in this phase all writes take place on local copies of the objects. The second phaseinvokes concurrency control algorithm, making sure that the changes made by the validatingtransaction will not lose data integrity. A write phase is enabled only if the validation phasesucceeds (data integrity is maintained). Otherwise, the transaction might restart as a newtransaction or wait for the data con
icts being removed. In the write phase, the local copiesof the changes are made global.A widely used criterion for validating the correctness of concurrent execution of transac-tions is called serializability [EGLT76]. An interleaved execution sequence of transactions iscorrect if it is serializable. If transaction A con
icts with transaction B, de�ned below, wesaid that the interleaved execution sequence of these two transactions violates serializability[Har84].Each data object is associated with two locks: read and write locks. A data object canonly be write-locked by one transaction at a time, while it can be read-locked by manytransactions simultaneously. Let read set for transaction A, RA, be the set of data objectsthat are read by transaction A and write set for transaction A, WA, be the set of dataobjects that are written by transaction A. Transaction A con
icts with transaction B ifWA \ RB 6= �:The con
ict set of transaction A is the set of the transactions with which transaction Acon
icts. 29

Our baseline OCC, OPT-BC (stands for Broadcast Commit), is classi�ed as forwardoriented optimistic concurrency control (FOCC) [Har84] which checks whether the writeset of the validating transaction intersects with the read set of any transactions having notyet �nished their read phase. The idea of OPT-BC [KR81, MN82] can be described asfollows. When a transaction commits, it noti�es all the transactions with which it con
ictsand restarts all the con
icted transactions immediately. A transaction is restarted once itis found to be in con
ict with a validating transaction. Such restart is useful, not wastedrestart [HCL90], because a validating transaction is guaranteed to commit when it restartsall the transactions in its con
ict set. Wasted restart occurs when a transaction restartsanother one and later it misses its deadline. Mutual restart problem 1 [HCL90] will nothappen in OPT-BC, because a validating transaction commits right after it restarts thecon
icting transactions. The validating transaction will not restart once it is in validationphase.The remaining chapter is organized as follows. A set of OCC algorithms using theknowledge of execution time is described in the following section. In Section 4.2, we describethe RTDBS model used for performance evaluation and compare the proposed algorithmswith the baseline algorithm. The simulation results show that a proper use of executiontime information can improve system performance.4.1 The Proposed Concurrency Control AlgorithmsBased on the observations mentioned in Section 1.1, we might be able to improve thebaseline OCC by making use of the knowledge of execution time. We will examine thepossible alternatives of con
ict resolution and develop OCC algorithms which make con
ictresolution decision based on the knowledge of execution time. Although priority informationcan be used to resolve con
icts, in this paper, we focus on the e�ects of the knowledge ofexecution information and hence factor out the priority of transactions.The proposed OCC algorithms belong to FOCC which checks if the write set of validatingtransaction con
icts with the read sets of active transactions. Since con
icting transactionshave not yet committed, there are several alternatives on resolving data con
icts.� Wait for con
icting transactionsA validating transaction waits for the transactions in its con
ict set to complete. Thevalidating transaction is deferred and the validation needs to be retried later. Asit waits, new active transactions might cause data con
icts and could lengthen thewait time. According to the assumption of OCC (con
icts happen rarely), waitingeventually ends and the validating transaction commits.� Remove con
icting transactions and commitSince the con
icting transactions have not yet committed, data con
icts can be re-moved by either restarting or aborting them. Although resources having been con-sumed by the con
icting transactions are wasted, this strategy guarantees that the1Mutual restart describes the phenomenon that two transactions restart each other.30

remove restartabortcombine remove-NRwait wait-allwait-NRwait-Swait-Lallsubset restartability shortlong sacri�ce-allsacri�ce-NRsacri�ce-Ssacri�ce-Lallsubset restartability shortlongsacri�ce sizetransactionsize
transaction OPT-BCcon
ictresolution remove-ab

Figure 4.1: The family tree of the proposed OCC algorithms.validating transaction can commit, not like the previous one where it might miss itsdeadline or wait in�nitely.� Sacri�ce validating transactionIn some cases, it might be bene�cial that we sacri�ce (restart) validating transaction.For example, when a validating transaction con
icts with many transactions, waitingfor them might encounter more con
icts and lengthen the wait time, and removingthem might not compensate the performance gain (committing one transaction).Based on the knowledge of execution time, we have two schemes to classify con
ictingtransactions. One classi�cation scheme uses restartability described in Section 1.1 and theother classi�es transactions by the length of execution time. The proposed OCC algorithmsmake con
ict resolution decision based on the classi�cation of con
icting transactions. Ahybrid strategy of two con
icting resolution alternatives might be adopted in order to makedistinct decisions on di�erent classes of con
ict transactions. For the continuity of theperformance evaluation, we also develop and evaluate OCC algorithms without the use ofexecution time.Figure 4.1 shows the combinations of the con
ict resolution alternatives and the clas-si�cation schemes. They constitute the possible protocols for FOCC with or without theknowledge of execution time. In the following subsections, we will describe the proposedalgorithms and discuss their potential shortcomings and strengths in an intuitive manner.31

4.1.1 WAIT-ALLWAIT-ALL does not utilize execution time information to classify con
icting transactions.It waits for all con
icting transactions to complete. It depends on the assumption thatcon
icts will occur rarely. Otherwise, it might wait in�nitely, if it keeps con
icting withnew active transactions.4.1.2 WAIT-NRWAIT-NR stands for waiting for non-restartable transactions to commit. The decision forcon
ict resolution depends on whether the con
icting transactions are restartable or not.It waits whenever there is a non-restartable transaction in the con
ict set. Such waiting isworthwhile in the sense that if it does not wait, the con
icting non-restartable transactionsmust miss their deadlines and the resources having been consumed by them are wasted.Hence, it gives preferential treatment to non-restartable transactions. If the transactions inthe con
ict set are all restartable, the algorithm restarts them and commits. This algorithmis an example of using a hybrid strategy of two resolution alternatives, wait and remove.4.1.3 WAIT-SThe algorithm waits for the con
icting transactions which are shorter than the validatingtransaction. It attempts to minimize the wait time by only waiting for shorter transactionsand restarting longer transactions. With the minimized wait time, the validating transactioncould have a chance to commit earlier and hence the algorithm might achieve lower missratio.The algorithm biases on short transactions; hence its average response time shouldbe small. The problem on the algorithm and the algorithms, described below, which usetransaction size to classify con
icting transactions is fairness and starvation. For example,an extremely long transaction might wait for short transactions, could be restarted manytimes, and never has a chance to commit.4.1.4 WAIT-LThis algorithm asserts that restarting long transactions might waste more resources thanrestarting short transactions, so it waits for long transactions to complete and restarts shortones instead. The average wait time of this algorithm might be longer than that of WAIT-S,because it always waits for long transactions. In high data contention, con
icts mightincrease substantially as the wait time increases. More data con
icts keeps a validatingtransaction waiting or lets it restart more transactions in the con
ict set.32

4.1.5 REMOVE-ABThe algorithm resolves con
icts by aborting the con
icting transactions. Like OPT-BC,its e�ciency depends on the assumption that the data con
icts happen rarely. Other-wise, the miss ratio could be high. Without careful evaluation, we cannot tell OPT-BCor REMOVE-AB is better for RTDBS. We will be able to answer this question after thesimulation.4.1.6 REMOVE-NRREMOVE-NR does not wait. It aborts the con
icting transactions which are non-restartable,restarts the rest of the con
icting transactions (which are restartable), and then commitswithout waiting. This algorithm prefers to commit validating transaction as soon as possiblesuch that the wait time is minimized (actually, it is zero). The side bene�t of the early com-mit is the resource saving and the reduction of data contention. The resources saved fromthe early discarded non-restartable transactions could be utilized by other transactions.Further data contention might be reduced due to the less number of active transactions inthe system.4.1.7 SACRIFICE-ALLThe algorithm sacri�ces validating transaction as long as there is a con
icting transaction.Such sacri�ce is e�ective for limiting wait time, in case of many con
icting transactions.Although sacri�cing can avoid long waiting, a validating transaction might be restartedmany times, if a long transaction is in the con
ict set.4.1.8 SACRIFICE-NRThe algorithm sacri�ces validating transaction conditionally. Non-restartable transactionscan not meet deadlines, if they are restarted. Therefore, SACRIFICE-NR restarts thevalidating transaction, if the con
ict set contains non-restartable transactions. It restartsthe con
icting transactions if they are all restartable and commits the validating transaction.4.1.9 SACRIFICE-SThe algorithm asserts that short transactions are more possible to complete than long trans-actions, even if they are restarted. The algorithm sacri�ces (short) validating transactionif it con
icts with longer transactions. SACRIFICE-S commits the validating transactiononly if the transactions in the con
ict set are all shorter than the validating transaction andthey are restarted.The potential weakness results from that long transactions last long in the system.Hence, a validating transaction sacri�ced once might be sacri�ced again and later it misses33

the deadline, due to the long duration of such transactions. Such sacri�ce wastes resourcesand causes performance degradation.4.1.10 SACRIFICE-LSACRIFICE-L has the same assertion as SACRIFICE-S, but it makes contrary decisions.It prefers to let short transactions commit, rather than restart them. Hence, it sacri�cesvalidating transaction if it con
icts with short transactions. Its e�ciency relies on the hopethat the sacri�ce of a validating transaction can help many short transactions complete.The algorithm restarts the con
icting transactions if they are all longer than the validatingtransaction and commits the (short) validating transaction.Restarting long transactions in a con
ict set, in order to commit a validating transaction,should be justi�ed. One can argue that long transactions might have already consumed alarge amount of resources and it is not wise to sacri�ce such transactions. Without aperformance study, we cannot distinguish which one, SACRIFICE-S or SACRIFICE-L,makes a better con
ict decision.4.2 Performance Study for Real-Time Optimistic Concur-rency Control4.2.1 Simulation DesignOur real-time database system model simulates a multiprocessor system with disk residentdatabase. The simulation is written in C, using a process-oriented simulation packageCSIM [Sch90]. The database is modeled as a collection of pages evenly spread over thedisks in the simulated system. We assume that there is no bu�er management associatedwith the database. In real case, bu�er management is essential to a database system,while it is important to know the worst case performance in a real-time system. Oursimulation attempts to simulate the worst case performance, so the bu�er management isexcluded. Hence, each read/write access involves disk I/O activity. We also assume thateach read/write page access is associated with a �xed period of time to access CPU for theprocessing of the page, but disk write operations are deferred to update phase as mentionedin Section 4. The same page and CPU access pattern occurs if a transaction restarts. If atransaction cannot make its deadline, it is aborted and discarded.Transaction arrivals are simulated as a Poisson distribution and each transaction isassociated with an execution time and a deadline. The calculation of the execution timeof a transaction is based on the number of read/write accesses made by the transactionand the deadline depends on a randomly generated slack rate. The detail formula for thedeadline computation will be described later.The simulation system mainly consists of three components: workload generator, RT-DBS simulator, and statistic data collector as shown in Figure 4.2. Workload generatoris used to generate a variety of transactions with di�erent database access patterns and34

transaction sizes. It also controls the size of the simulated database. The system simulatorin RTDBS simulator is the main body of the simulation which accepts input transactions,schedules and executes them, simulates the consumption of resources, and invokes OCCto resolve data con
icts. To evaluate di�erent OCC algorithms, we only need to changethe subcomponent, OCC simulation. Statistic data collector gets the statistic results forperformance analysis. The statistic information can help us to explain the behavior of thealgorithms, including the average wait time, the average response time for a committedtransaction, the average number of active transactions in a system, and the number of datacon
icts for a transaction. Note that an active transaction is visible to our statistic datacollector only after it makes the �rst read or write operation. The purpose of counting thenumber of active transactions is to measure the level of concurrency, not to the level ofmultiprogramming. Therefore, if an transaction does not make any database access, we donot consider it as an active transaction in our simulated system.Resource simulation considers two resources: CPUs and disks. There is only one queuefor all CPUs and separate queue for each disk. Earliest deadline �rst (EDF) policy is usedto schedule both resources. However, the service discipline of CPUs is preemptive-resume,while that of disks is non-preemptive. From the observation addressed by Abbott andGarcia-Molina [AGM92], we know that processor scheduling policy, such as �rst come �rstserve (FCFS), EDF, least slack time �rst, does not have much in
uence on the performanceof di�erent concurrency control schemes. Our simulation also conduct the experimentswith FCFS as processor scheduling policy and have the similar observation: the relativeperformance of the proposed concurrency control strategies remains under di�erent proces-sor scheduling policies. Since the aim of our simulation is to evaluate the e�ect of executiontime information on concurrency control, not to evaluate that in various scheduling poli-cies, therefore we choose a simple and reasonable scheduling policy for the resources. Thefollowing parameters control the resource simulation:� NumCPU is the number of CPUs in the simulation system.� NumDisks is the number of disks in the simulation system.� CPUAccessTime is the access time of CPU for processing a page.� DiskAccessTime is the access time of disk for accessing a page on disk.Workload generator is responsible for generating various system workloads to evalu-ate concurrency control algorithms. The following parameters are used by the workloadgenerator to create transactions with various access patterns and the associated timingconstraints.� DBSize de�nes the number of pages in the database. The data pages of the databaseare uniformly spread over the disks.� NumPages speci�es the average number of pages to be accessed by a transaction.The total number of pages accessed by transaction X , TotalPagesX , is computed byTotalPagesX = NumPages � Up;35

system statisticworkloadgenerator simulatorRTDBS simulatorresource OCCsimulationsimulation datacollectorDBFigure 4.2: Structure of the simulation.where Up is uniformly distributed over an interval, such as an interval between 0.5and 1.5. The page requests of a transaction is a uniform distribution spreading overthe entire database. The execution time can be calculated based on the total numberof page accesses.� Wp is the probability that a transaction writes a page.� LbSlackRate and UbSlackRate, the lower bound and upper bound of the slack rate,de�nes the range of the slack rate which is used to tune up the tightness of thereal-time constraints. Let AX be the arrival time and EX be the execution time oftransaction X . The formula for computing the deadline of transaction X , DX , isDX = AX + EX � Ud;where Ud is uniformly distributed between LbSlackRate and UbSlackRate.� InterArrivalT ime speci�es the mean inter-arrival time (IAT) in millisecond betweentwo consecutive transactions which have an exponential distribution.Workload of a simulated system can be computed as follows. We de�ne resource usageof a transaction X as EXDX�AX , since the execution time counts CPU and disk usage. Theaverage workload for a system can be de�ned as the average resource usage times transactionarrival rate.4.2.2 Simulation ResultsThis section presents the simulation results for the performance evaluation of the proposedOCC algorithms under various system workloads and di�erent levels of data con
ict. Foreach experiment, 20 runs with the same parameter settings are performed. Each run of thesimulation continues until at least 20000 transactions are executed. The statistic data of an36

Table 4.1: Common settings for the simulation.parameter valueNumCPU 10NumDisks 20CPUAccessTime 10 msDiskAccessTime 20 msDBsize 1000 pagesNumPage 16 pagesexperiment is then collected and averaged over the 20 runs. Totally, we have 11 algorithmsto be compared. In order to make the comparison more readable, we separate them intotwo groups. The �rst group, G1, contains four variations using wait strategy (namelyWAIT-ALL, WAIT-NR, WAIT-S, and WAIT-L) and REMOVE-NR; The other group, G2,has the baseline algorithm OPT-BC, REMOVE-AB, and the variations using sacri�ce. Wewill present the simulation results for each group. The performance comparison of the bestalgorithms will be shown in the conclusion. Since most proposed algorithms make use ofthe knowledge of the execution time, it is necessary to investigate the e�ect of the error onthe estimation of the execution time. In the following, we will discuss how we conduct theexperiments for the estimation error and their results.Our primary performance metric is miss ratio, de�ned the number of transactions thatmiss the deadlines over the total number of transactions, which is a major concern inRTDBS. The parameter settings which are common to the evaluation of the proposed algo-rithms are listed in Table 4.1. We intend to choose the values which can simulate a generalmultiprocessor RTDBS and can display the performance di�erences among the proposedalgorithms. We conduct the experiments with di�erent setting on the write probability.Due to space limitations, we only show a subset of the results which best illustrate thebehavior and the performance of the algorithms.Comparisons on the First GroupIn this section, we discuss the performance of the algorithms in the �rst group. We varythe inter-arrival time to evaluate the algorithms under various workloads and data con
ictrates. High write probability results in high data con
ict rate. Our simulation assumesthat high load settings refer to the IAT up to 120 ms, that normal load settings refer toIAT between 120 and 160 ms, and that low load settings refer to IAT greater than 160 ms.Figures 4.3 to 4.5 show the miss ratios against the inter-arrival time with three di�erentwrite probabilities. The graphs are plotted based on the experiments with the slack rateranging from 3 to 3.5. The results for looser slack rates are experimented. Figures 4.6and 4.7 present the results for the slack rate ranging from 3 to 12. Since the various slackrates we experiment convey the similar behavior, unless stated otherwise, we only show thesimulation results with the slack rate ranging from 3 to 3.5.37

Figure 4.3 graphs the results for low data con
ict rate (Wp = 0.25). As expected, all thestrategies yield larger miss ratios as the workload increases. REMOVE-NR is superior fornearly all load settings, but its performance margin over the others narrows, as the workloaddecreases. WAIT-L misses the most deadlines for nearly all loads. This is not surprisingbecause it lets the validating transaction commit only if all the con
icting transactions areshort and restarts all these short transactions which might complete soon. Such ine�ciencylengthens the response time. To con�rm this observation, Figure 4.8 plots the averageresponse time in the corresponding experiments and shows that WAIT-L has the longestresponse time over various loads.Observing Figure 4.4, we see that REMOVE-NR has the best performance and thatits relative performance to the other algorithms remains. As the con
ict rate is high, inFigure 4.5, REMOVE-NR still performs best; WAIT-L performs poorly at heavy and normalloads; WAIT-ALL yields larger performance gap between the others than the previous twocases (Wp = 0.25 and 0.50). In the following, we will examine the statistic data collectedduring the experiments to further investigate the behavior of the algorithms.The graphs of the statistic data for di�erent write probabilities are similar, so we onlyillustrate the graphs for Wp = 0.75. Figure 4.9 con�rms our expectation that WAIT-L haslonger response time than the others. Except WAIT-L, all the other algorithms have com-parable response time. They have convex curves: short response time at high and low loadsand long response time at normal loads. In high loaded systems, high resource contentioncauses that the committed transactions most likely complete without being restarted andthe restarted transactions might miss the deadlines. Note that the average response timeonly counts for the committed transactions. Therefore the response time is short underheavy loads. As the load decreases from high to normal loads, the restarted transactionsbecome possibly to commit and they contribute longer response times. At low load settings,transactions arrive sparsely and data contention becomes less signi�cant; transactions cancomplete without being restarted or con
icting transactions, so the response time becomesshort again. WAIT-NR and REMOVE-NR have slightly longer response time than WAIT-Sand WAIT-ALL. It implies that the former strategies, using restartability concept, commitmore number of transactions and have lower miss ratio.Figure 4.10 shows that, as expected, the number of active transactions increases whenthe workload increases. WAIT-ALL has the most number of active transactions. Unlikethe others, WAIT-ALL does not restart, but rather waits for the con
icting transactions tocomplete. It keeps transactions in the system until they either commit or miss the deadlines.Therefore it has more active transactions than the others where restarts might occur. Inthe �gure, we see that WAIT-L has the least number of active transactions. It is primarybecause WAIT-L waits for long transactions, while long transactions stay at the systemlong. Therefore, in WAIT-L, transactions in the system tend to be long and the level ofconcurrency is low. Such system results in less active transactions in the system.Figure 4.11 graphs the wait time of the algorithms, excluding REMOVE-NR which hasno wait. In REMOVE-NR, the active transactions either utilize the resources or wait forthe resources, while, in the other algorithms, the active transactions might wait for sometransactions to complete and let the resources set idle there. However, large number of38

active transactions does not mean low miss ratio, since wait time is another factor. Weexpect that WAIT-ALL has the longest wait time, because it waits for every con
ictingtransaction, and Figure 4.11 ensures our observation. This is the reason why it cannotperform well, even though it has the highest level of concurrency. The graph in this �gurehas the pattern that the wait time increases as the workload decreases, but it drops atlowest loads. In the previous paragraph, we learn the reasons that the response time isshort at high loads. This �gure con�rms the reason that short response time results fromshort wait time. WAIT-L yields an approximate 40 percent decrease in wait time overWAIT-ALL. As expected, WAIT-S and WAIT-NR have less wait time. The average waittime of WAIT-NR becomes smaller as the arrival rate decreases, since the transactions aremore possibly restartable at low loads.The statistic data shown in the above �gures illustrates that WAIT-S has short responsetime and short wait time. In Section 4.1, we learn that it tends to commit short transactions,which matches our �nding in the above �gures.Comparisons on the Second GroupFigures 4.12 to 4.14 plot the miss ratios under various load settings and three di�erent writeprobabilities. In Figure 4.12, the baseline algorithm OPT-BC performs worst at high andnormal load settings, it becomes comparable at low loads, REMOVE-AB outperforms thebaseline at most loads, and both graphs decrease steeply when the workload decreases. Aswe observed that both e�ciency is based on the assumption that data con
icts are rare,therefore, they perform comparably at low arrival rates. The same observations hold true fordi�erent write probabilities as well (Figure 4.13 and 4.14). In Figure 4.12, SACRIFICE-Land SACRIFICE-NR have nearly identical performance and are superior to the others.SACRIFICE-S performs slightly better than SACRIFICE-ALL. Examining Figures 4.13and 4.14, we see that the performance margin of SACRIFICE-L and SACRIFICE-NR overSACRIFICE-S and SACRIFICE-ALL becomes signi�cant, that SACRIFICE-L is slightlybetter than SACRIFICE-NR at high loads, and that SACRIFICE-NR is slightly betterthan SACRIFICE-L at low loads. As the range of the slack rate becomes wide, (graphsare not shown) we �nd that SACRIFICE-NR performs best, that its performance gap overSACRIFICE-S and SACRIFICE-ALL is still signi�cant, and that SACRIFICE-L becomesnot as comparable as SACRIFICE-NR. We will explain the performance behavior laterwhen we discuss the statistic data.Like the graphs in the previous section, the curves of the response time, shown inFigure 4.15, are convex. The same reason holds true for this case. At high loads, OPT-BChas the least response time and REMOVE-AB has slightly larger response time, becausethe later algorithm has lower miss ratio and commits more transactions. As the workloaddecreases, from normal to low loads, the later algorithm has the least response time, since itdoes not restart, while the others do. SACRIFICE-S is expected to have long response time.Based on the assumption of SACRIFICE-S described in Section 4.1.9, a short transactionmight be restarted several times before it commits, so the average response time tends tobe long. The �gure ensures our observation. The response time of SACRIFICE-L is theleast among those algorithms with sacri�ce. The reason for this behavior is similar to that39

for WAIT-S, described in the above section.Figure 4.15 plots the level of concurrency under various loads. Except OPT-BC andREMOVE-AB, the average number of active transactions raises as the workload increases.REMOVE-AB has the least level of concurrency at normal and light loads, because of thenature of the algorithm: aborting transactions. At high loads, REMOVE-AB has higherlevel of concurrency than OPT-BC. This con�rms our observation mentioned in the previousparagraph that REMOVE-AB commits more transactions at high loads. OPT-BC has com-parably high number of active transactions at normal and low loads, because the restartedtransactions keep in the system. SACRIFICE-ALL has the highest level of concurrency,mainly because it restarts only validating transaction and keeps all con
icting transactionsin the system. Recalling the de�nition of the active transactions in Section 4.2.1, we cansee that restart will decrease the level of concurrency at high loads. SACRIFICE-ALL doesnot restart as often as the other algorithms in this group, so it behaves as we expected.SACRIFICE-S has almost identical level of concurrency with SACRIFICE-ALL at high andnormal loads and its level of concurrency is slightly lower at light loads. We know that longtransactions last long in the system. At high and normal loads, it is more possible thata validating transaction con
icts with a long transaction, consequently SACRIFICE-S be-haves like SACRIFICE-ALL. By contrast, SACRIFICE-L has the less level of concurrencyat most loads.Observing Figures 4.15 and 4.16, we learn that, SACRIFICE-L has shorter response timeand lower level of concurrency than SACRIFICE-S. This is mainly because SACRIFICE-Lfavors short transactions and tends to complete short transactions. Hence it has lower missratio. By contrast SACRIFICE-NR does not bias on short or long transactions. Its responsetime and level of concurrency are between theirs. SACRIFICE-NR restarts the con
ictingtransactions only if they are restartable. Overall, it has the less miss ratio in this group,because of the concept of restartability.The E�ect of the Estimation ErrorMost of the proposed concurrency control algorithms depend on the estimation of the exe-cution time. To study how error of the estimation a�ects the performance of the algorithms,we devise three experiments. The �rst experiment adds a random error, choosing from -0.5to 0.5, into the estimation; the second experiment biases the estimation in one directionsuch that the execution time is over-estimated (i.e., E0 = E � (1 + 0:5), where E is theexecution time with no error and E 0 is the estimated execution time); the third experimentunder-estimates the execution time with the same error (i.e., E0 = E � (1 � 0:5)). Theresults of the experiments are compared with the results of the baseline experiment whichhas zero estimation error.Figure 4.17 graphs the miss ratio of SACRIFICE-S on di�erent estimation errors withWp = 0:75. SACRIFICE-S yields performance changes in the �rst experiment, but theperformance di�erence between the baseline and the �rst experiment is very little. Thisalgorithm uses the relative length of transactions to resolve con
icts. Since the second andthe third experiments bias the error in one direction and the relative length remains in such40

WAIT-NR

WAIT-S

WAIT-L

WAIT-ALL

REMOVE-NR

Miss Ratio x 10-3

IAT

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

100.00 120.00 140.00 160.00 180.00Figure 4.3: Miss ratios of G1 for Wp = 0:25.

WAIT-NR

WAIT-S

WAIT-L

WAIT-ALL

REMOVE-NR

Miss Ratio x 10-3

IAT

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

100.00 120.00 140.00 160.00 180.00Figure 4.4: Miss ratios of G1 for Wp = 0:50.41

WAIT-NR

WAIT-S

WAIT-L

WAIT-ALL

REMOVE-NR

Miss Ratio x 10-3

IAT

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

100.00 120.00 140.00 160.00 180.00Figure 4.5: Miss ratios of G1 for Wp = 0:75.

WAIT-NR

WAIT-S

WAIT-L

WAIT-ALL

REMOVE-NR

Miss Ratio x 10-3

IAT

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

100.00 120.00 140.00 160.00 180.00Figure 4.6: Miss ratios of G1 for Wp = 0:25 and the wide range of slack rate.42

WAIT-NR

WAIT-S

WAIT-L

WAIT-ALL

REMOVE-NR

Miss Ratio x 10-3

IAT

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

100.00 120.00 140.00 160.00 180.00Figure 4.7: Miss ratios of G1 for Wp = 0:75 and the wide range of slack rate.

WAIT-NR

WAIT-S

WAIT-L

WAIT-ALL

REMOVE-NR

Response Time x 103

IAT

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

100.00 120.00 140.00 160.00 180.00Figure 4.8: Response times of G1 for Wp = 0:25.43

WAIT-NR

WAIT-S

WAIT-L

WAIT-ALL

REMOVE-NR

Response Time x 103

IAT

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

100.00 120.00 140.00 160.00 180.00Figure 4.9: Response times of G1 for Wp = 0:75.

WAIT-NR

WAIT-S

WAIT-L

WAIT-ALL

REMOVE-NR

of transactions

IAT

5.50

5.60

5.70

5.80

5.90

6.00

6.10

6.20

6.30

6.40

6.50

6.60

6.70

6.80

6.90

7.00

7.10

7.20

7.30

7.40

7.50

7.60

80.00 90.00 100.00 110.00 120.00 130.00 140.00 150.00Figure 4.10: Concurrency level of G1 for Wp = 0:75.44

WAIT-NR

WAIT-S

WAIT-L

WAIT-ALL

Wait Time

IAT

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

50.00 100.00 150.00Figure 4.11: Wait time of G1 for Wp = 0:75.

SACRIFICE-NR

SACRIFICE-S

SACRIFICE-L

SACRIFICE-ALL

OPT-BC

REMOVE-AB

Miss Ratio x 10-3

IAT

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

100.00 120.00 140.00 160.00 180.00Figure 4.12: Miss ratios of G2 for Wp = 0:25.45

SACRIFICE-NR

SACRIFICE-S

SACRIFICE-L

SACRIFICE-ALL

OPT-BC

REMOVE-AB

Miss Ratio x 10-3

IAT

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

100.00 120.00 140.00 160.00 180.00Figure 4.13: Miss ratios of G2 for Wp = 0:50.

SACRIFICE-NR

SACRIFICE-S

SACRIFICE-L

SACRIFICE-ALL

OPT-BC

REMOVE-AB

Miss Ratio x 10-3

IAT

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

100.00 120.00 140.00 160.00 180.00Figure 4.14: Miss ratios of G2 for Wp = 0:75.46

SACRIFICE-NR

SACRIFICE-S

SACRIFICE-L

SACRIFICE-ALL

OPT-BC

REMOVE-AB

Response Time

IAT

680.00

700.00

720.00

740.00

760.00

780.00

800.00

820.00

840.00

860.00

880.00

900.00

920.00

940.00

100.00 120.00 140.00 160.00 180.00Figure 4.15: Response times of G2 for Wp = 0:75.

SACRIFICE-NR

SACRIFICE-S

SACRIFICE-L

SACRIFICE-ALL

OPT-BC

REMOVE-AB

of transactions

IAT

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

100.00 120.00 140.00 160.00 180.00Figure 4.16: Concurrency level of G2 for Wp = 0:75.47

S-S(0,0)

(0.5,0.5)

(-0.5,0.5)

(-0.5,-0.5)

Miss Ratio x 10-3

IAT
50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

50.00 100.00 150.00Figure 4.17: The e�ect of the estimation error on SACRIFICE-S for Wp = 0:75.cases, the algorithm behaves nearly the same as the baseline experiment. We predict thatWAIT-L, WAIT-S, and SACRIFICE-L will have the similar behavior on the estimationerror, because they all use transaction size to direct con
ict resolution decision.Figure 4.18 plots the results of WAIT-NR. The �gure shows that the miss ratio is slightlyimproved when the execution time is under-estimated. Since the number of non-restartabletransactions decreases, when the execution time is under-estimated, the algorithm waitsless for non-restartable transactions and commits the validating transaction. Less waitingresults in a little bit better performance. By contrast the performance is slightly poor inthe case of over-estimation. The �rst experiment performs in between of the other twoexperiments, since some transactions have less waiting and some have more. REMOVE-NRand SACRIFICE-NR have similar graphs and hence we eliminate them.
48

W-NR(0,0)

(0.5,0.5)

(-0.5,0.5)

(-0.5,-0.5)

Miss Ratio x 10-3

IAT

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

750.00

50.00 100.00 150.00Figure 4.18: The e�ect of the estimation error on WAIT-NR for Wp = 0:75.
49

Chapter 5Fault-Tolerant SchedulingSystem reliability is becoming an increasing important factor in evaluating the behaviorof real-time systems, because the result of a real-time application may be valid only if theapplication functions correctly even with underlying faults and its timing constraints aresatis�ed. Fault-tolerance is a technique to enhance the reliability in case faults may occur.A common approach used for fault-tolerance is through redundancy in time or in space.Temporal redundancy is to activate a process at di�erent time, while spatial redundancy isto activate several copies of a process at the same time using di�erent resources. Ideally,we can achieve fault-tolerance by fully temporal redundancy or fully spatial redundancy.However, since real-time systems have timing requirements. Temporal redundancy is notalways applicable to the tasks with tight timing constraints. Besides, a real-time systemmaynot have enough resources to provide spatial redundancy for every tasks. Combining bothredundancy techniques might be able to meet the fault-tolerance goals as well as timingrequirements. To distinguish them, we call spatial redundancy replication and temporalredundancy rollback.Oh and Son [OS94] prove that scheduling a set of non-preemptive hard real-time tasks totolerate one processor fault is NP -complete. Since such fault-tolerant scheduling problemsare computationally intactable, we develop a heuristic fault-tolerant scheduling algorithm, ahybrid method of spatial and temporal redundancy for the real-time systems which requireboth system reliability and the guarantee of meeting deadlines. Based on the originalschedule without consideration of fault-tolerance, the proposed method utilizes the availablefree slots and includes redundant copies of the tasks into the schedule. Some tasks haverollback copy, if they have enough slack time to rerun the task; others have replicated copy, iftheir timing constraints are tight. Our approach incrementally increases the fault-tolerancecapability without violating the real-time requirements. It can be deployed to the systemswith o�-line scheduler. In the next chapter, we will devise analytical models to estimatethe reliability of the systems using the proposed approach.The rest of the chapter is organized as follows. In the following section, we de�nean abstract model for real-time systems (RTS) under which the proposed fault-tolerantscheduling and analytical models can be deployed. In Section 5.2, we present the proposedfault-tolerant scheduling. Section 5.3 discusses a rescheduling algorithm to incrementally50

put a replicated or rollback copy into the schedule and Section 5.4 describes an approachto migrating the workload of one processor to other processors.5.1 Abstract System Model and AssumptionsOur system model is a real-time system consisting of a set of processors and a set of periodictasks. The system uses o�-line scheduling to guarantee to meet the timing constraints ofall tasks and adopts rollback or replication technique as fault-tolerance strategy. Let theelemental unit (EU) be the smallest non-preemptable execution unit [MA91]. Each EU ischaracterized by its release time, execution time, and deadline. Each task can be describedby an elemental unit graph (EUG), where an EUG is a directed acyclic graph; each nodeis an EU and each directed edge represents the precedence relation and communicationpattern.Since tasks are periodic, the window size for examining the execution behavior of thecyclic tasks can be the least common multiple (LCM) of the periods of all the tasks. Wede�ne such time interval as a frame. Let minframe of an EU be the time interval betweenits release time and its deadline. We adopt a fault model which permits transient andpermanent faults with fail-stop behavior [SS83], that is, non-Byzantine [LSP82]. We assumethat the inter-arrival time between two consecutive transient failures in a system is greaterthan the longest minframe. It ensures that if a failed EU instance has a redundant copyit can recover without experiencing a second transient fault. If a processor fails due to apermanent fault, we assume that it will be replaced by a new processor within a frame periodof time. The assumption that the inter-arrival time between two consecutive permanentfailures is greater than a frame period of time is to make sure that a system has at mostone failed processor at any time.Since each EU is the smallest non-preemptable executable unit, we can do checkpointingfor each EU before it exits. In this way, we do not have to restart the whole task if one ofits EUs fails. Instead, we can roll back the failed EU or get the result from its replicatedcopy. Assume that the save time is equal to the load time for a given EU and the savetime is included in the execution time of the EU. We also assume that the system has afault detection mechanism which can detect faults before the failed EUs do checkpointing.To ensure the correctness of the saved checkpoint, an acceptance test is applied to thecheckpoint before checkpointing is done [LA90]. The system recovers from a transientfailure once the failed EU rolls back or we obtain the result from its replicated copy. Wede�ne that an EU is fault-tolerant if it has a replicated copy or a rollback copy to cope withtransient failures.Although our fault model only considers transient and permanent faults, we believe thatthey are the majority of the faults in a system. The assumptions on fault inter-arrival timeare used to simplify our analytical model for estimating reliability. We believe that faultsshould not happen so often as task arrivals and the assumptions are reasonable and suitablefor real systems.The task model of the underlying system model is adopted from a hard real-time oper-51

ating system developed by the University of Maryland which has a prototype for distributedsystems. Besides, the task model can be extended easily without major modi�cation. A taskin the system is represented by a task graph [CR72] where each vertex represents a moduleand a directed edge (i; j) is in the task graph if and only if module i is followed by module jwith non-zero probability. The precedence relationship of modules is determined by the taskgraphs and a module considered here is the smallest non-preemptable execution unit. Suchtask model has been adopted by many researchers [Upa90, US86, Gel79, NK83, GRW88]to investigate rollback recovery. The underlying system model may be applicable to realsystems.5.2 The Proposed Adaptive Redundancy ApproachOur scheduling objective is twofold. The primary objective is to provide fault-tolerancecapability with the guarantee of meeting deadlines, and the secondary objective is to saveresources for aperiodic tasks. Rollback is more favorable than replication, since it canachieve both objectives. However, when rollback cannot satisfy our primary objective, wehave to choose replication.Our approach, called adaptive redundancy (AR), can be brie
y described as follows.For each EU instance x, �rst we try to use temporal redundancy (i.e., rollback) to achievefault-tolerance. The adjustment of the schedule is temporary, i.e., the modi�ed schedule isused only when the fault occurs; otherwise, the original schedule is used. In other words,the system does not pre-allocate resources to the rollback copy of EU instance x, but itdoes mark the resources dedicated to the rollback copy such that when the instance xexperiences a fault it can rollback to recover. We say that an EU instance has stringenttiming constraint if it cannot use temporal redundancy to avoid transient faults. If rollbackfails to satisfy our primary objective, in the next step, we attempt to use spatial redundancy(i.e., replication) to avert transient faults. The new schedule with the replicated EU instanceis used hereafter, if the modi�ed schedule meets all deadlines.AR method is dynamic in that temporal redundancy is used only when a fault actuallyhappens. Our approach is adaptive. We do not replicate the whole application; we onlyreplicate the EU instances with stringent timing constraints in order to achieve fault-tolerantexecution and high resource utilization.We use an example to illustrate our approach. Suppose we have a two-processor systemrunning one application. The EUG and the execution time, release time, and deadline ofeach EU are given in Figure 5.1(a); the original schedule, before applying our approach, isshown in Figure 5.1(b); and the �nal schedule, after applying our approach, is shown inFigure 5.1(c). Let us �rst examine EU-1. As described above, we �rst attempt to put therollback copy of EU-1 after the primary copy; we want to see if EU-1 can have a rollbackto avert a transient fault. We �nd that EU-1 cannot roll back to skip a transient fault,since the rollback copy will �nish at time 20, which exceeds its deadline. We then try outsecond strategy (replication); therefore, it is replicated. The replicated copy of EU-1, 10,runs on processor P2. Using the same technique, we �nd that the rollback copy of EU-2,20, can be completed before its deadline, so it can use rollback to achieve our objectives.52

The resources will be marked so that the rollback copy can use them if a transient failureoccurs. Similar argument applies to EU-3.We assume that a feasible schedule1, with the guarantee of meeting all deadlines, isgiven. We call the original schedule non-fault-tolerant schedule (NFT schedule) and thatresulting schedule from our approach is called fault-tolerant schedule (FT schedule). AnNFT schedule contains the scheduling times for the primary copies of all EU instances;an FT schedule contains, besides primary copies, the scheduling times for the rollback orreplicated copies of EU instances.The skeleton of our proposed approach is shown in Figure 5.2. Since applications areperiodic, an application can have many instances of the application within a frame; therebyan EU can have many EU instances in a frame. All EU instances need to apply replica-tion test, which checks if an EU can use rollback or replication to achieve fault-tolerance.The detail algorithm for replication test is given in Figure 5.3. A data structure calledscheduling queue keeps track of the instances that wait to be scheduled. Part I considerstemporal redundancy. The routine rescheduling is to adjust the schedule when a (primaryor redundant) copy of an instance is put into the scheduling queue. Part II considers spatialredundancy. When neither rollback nor replication can achieve our objective, in step II.4,we discard the replicated copy from the scheduling queue and the EU is not fault-tolerant.The schedulability of an FT schedule depends on the order of applying the test and thecomplexity of the rescheduling algorithm. We will propose a rescheduling algorithm andshow how to apply the test in the next section. However, rescheduling algorithm is notlimited to the one we are going to present; other rescheduling algorithms can be used.5.3 A Proposed Rescheduling AlgorithmBecause of our objectives mentioned above, temporal redundancy should be considered �rst.Let all EU instances go through the part I of replication test �rst and then the part II. Weapply the test according to the ascending order of the ID of the EU instance.The rescheduling algorithm keeps track of all the free slots all the time. When a rollbackcopy is put into the scheduling queue, The algorithm �rst tries to schedule it on the sameprocessor where the primary copy is assigned. In order not to a�ect the scheduling timesof the successors and predecessors of an EU instance, we de�ne two terms, the earlieststart time (EST) and the latest �nish time (LFT), to quantify a scheduling window for theredundant copy of an EU instance. Let EST of an EU instance be the scheduled start timeof the primary copy of the EU instance and LFT be the earliest scheduled start time of allthe immediate successors of the EU instance. With such scheduling window, the algorithmcan search the free slots of a given processor, such as the processor where the primary copyis assigned, to see if there is any slot within the range of the scheduling window. If itcan not �nd such free slot, it will try to schedule both the primary and rollback copies onother processor based on the similar strategy. After all EU instances apply the part I ofreplication test, we have a partial FT schedule.1The schedule includes the allocation of all EU instances and the resource allocation information.53

12 3 (10,20,40)application A(period = 40)(10,0,15)
original schedule0 20 400 20 40P2P1 0 20 400 20 40P2P1 �nal schedule(5,20,40) (a)

(b) (c)
2010 301 23 1 2 3Figure 5.1: An example for illustrating AR method.Input: NFT scheduleDecide a permutation � which speci�es the order of therollback and replicated copies of all EU instances in a frame;Apply replication test according to �;Output: FT schedule Figure 5.2: The skeleton of AR method.54

Part I:I.1 Add the rollback copy xrolli of xi into the scheduling queue;I.2 Call rescheduling;I.3 If the adjusted schedule meets all deadlines,xi passes replication test and exits;I.4 Delete the rollback copy from the scheduling queue;Part II:II.1 Add the replicated copy xrepli of xi into the scheduling queue;II.2 Call rescheduling;II.3 If the adjusted schedule meets all deadlines,xi passes replication test and exits;II.4 (The schedule cannot accommodate the replicated copy.If xi experiences a fault, the system can not recover.)Delete the replicated copy from the scheduling queue;(so that the system still can meet all deadlinesand complete the mission ifxi does not experience a fault.)Figure 5.3: Replication test.The following step is to apply the part II for those without rollback copies in the schedule.Again, to avert the cascade e�ect mentioned above, we use EST and LFT to quantify ascheduling window for replicated copies. Searching the list of all free slots, we can constructa list of candidates of free slots which can accommodate the given replicated copy accordingto the scheduling window of the EU instance.The proposed rescheduling algorithm for the replicated copies is an extension of graphmatching algorithm [BM76]. First, we construct a bipartite graph G describing the possibleassignments for all the replicated copies. Let T [S be the set of vertices and E be the setof edges, where T is the set of EU instances that need to go through the part II of the test;S is the set of free slots in the system; edge (xi; sj) is in E if the replicated copy of EUinstance xi can be scheduled in the free slot sj .The replicated copies with only one edge in the bipartite graph should be assigned �rst,since they do not have another choice of free slot. Having such initial assignment, we thenapply matching algorithm for the rest of replicated copies. We obtain the assignment forthe replicated copies of a subset of T , called ~T , and a new set of free slots, ~S, left after theassignment. Iteratively constructing a bipartite graph2 as described above and applyingthe matching algorithm until no more new assignment can be added, we �nally get an FTschedule. The pseudo code for the proposed method is given in Figure 5.4.If we implement the data structure, the set, used throughout the algorithm as link2(T � ~T) [~S will be the vertex set in the next iteration.55

list, the time complexity for constructing a bipartite graph is O(jT jjSj) and that for thematching algorithm is O(jT j3+ jT jjSj), where jV j is the number of the elements in the setV . In the worse case, the number of iterations we need to get all the assignments is jT j; ithappens when each iteration adds one new assignment. Therefore, the complexity for theproposed method is O(jT j4+ jT j2jSj).5.4 A Proposed Migration AlgorithmIn case of a permanent fault, the system needs to migrate the EU instances on the failedprocessor to other processors. In this section, we present a migration algorithm for theproposed approach. We call the processor which experiences a permanent fault migratedprocessor and the schedule after the migration algorithm is applied migration schedule. Thealgorithm is based on the technique described in Section 5.3. EST and LFT de�ned inSection 5.3 are used to quantify a scheduling window for the EU instances to be migrated.According to the scheduling window of each EU instance to be migrated 3, we build up alist of free slots which can accommodate it.The proposed migration algorithm is an extension of graph matching algorithm [BM76].We construct a bipartite graphG describing the possible assignments for all the EU instancesto be migrated. Let T [S be the set of vertices and E be the set of edges, where T is theset of EU instances to be migrated; S is the set of free slots on the processors other thanthe migrated processor; edge (xi; sj) is in E if the EU instance xi can be scheduled in thefree slot sj . T is structured as a priority queue where primary copies get higher prioritythan redundant copies. The primary copies must be migrated; otherwise, the scheduleis infeasible. Therefore, they have the priority to be assigned �rst when the matchingalgorithm selects a candidate for the assignment.The primary copies with only one edge in the graph should be assigned �rst, sincethey do not have another choice of free slot. Having such initial assignment, we thenapply the matching algorithm for the rest of the EU instances to be migrated. In theresulted schedule after the match algorithm is applied, some primary copies might not bemigrated successfully. Since the primary copies have to be scheduled, we should sacri�cesome redundant copies in order to put such primary copies in. For the primary copies thatcan not be migrated successfully by the matching algorithm described above, we look forthe slots which can accommodate them and are occupied by redundant copies. There areseveral strategies for selecting the candidate to be sacri�ced, such as best sacri�ce and �rstsacri�ce. Best sacri�ce strategy sacri�ces the smallest slot among the possible slots, while�rst sacri�ce selects the �rst slot it �nds. Finally, we get the migration schedule.The complexity for constructing bipartite graph and the matching algorithm is the sameas above, which is O(jT j3+ jT jjSj). Best sacri�ce has the complexity of O(jSj), while �rstsacri�ce has constant complexity. Overall, the migration algorithm has the polynomialcomplexity O(jT j3 + jT jjSj).3The EU instances mentioned in this section includes rollback or replicated copies of EU instances whichare originally scheduled on the migrated processor 56

Input: NFT schedule ANFT .Let T be the set of all EU instances in ANFT ;AFT = ANFT ;For each EU instance xi 2 TCompute ESTi and LFTi;For each EU instance xi 2 TApply the part I of replication test;Let the processor j be the processor where the primary copyof xi is assigned;If a free slot s on processor j is withinthe range of the scheduling windowAFT = AFT [f(xrolli ; s)g;T = T � fxig;else For each processor, other than jFind two free slots which are within the range ofthe scheduling window or one which can accommodateboth copies;Update AFT accordingly;RepeatLet S be the set of free slots in AFT ;Construct a bipartite graph G(V;E);V = T [S;E = �;For each EU instance xi 2 TFor each free slot sj 2 Sif the replicated copy of xi can be scheduled in sjE = E [f(xi; sj)g;~T = �;For each EU instance xi 2 Tif xi has only one edge (xi; s) in EAFT = AFT [f(xrepli ; s)g;~T = ~T [fxig;Apply the matching algorithm;Let ~T be the set of EU instances whose replicatedcopies are just assigned;T = T � ~T ;Until ~T = � or T = �;Output: FT schedule AFT .Figure 5.4: Pseudo code for the proposed method.57

Chapter 6Reliability ModelsIn the previous chapter, we propose a fault-tolerant scheduling algorithm which adaptivelyincludes redundant copies into the schedule to achieve the fault-tolerance goals. The staticscheduling methods allow us to pre-analyze task execution behavior and to estimate systemreliability. In order to evaluate the reliability for systems using the proposed scheduling andto compare the performance of di�erent scheduling approaches, we estimate the reliabilitythrough Markov chain model.In this chapter, we propose an analytic model for a simple fault model that assumesonly transient faults. The model is extended to include permanent faults. We validatethe analytic models via simulation and the experimental results show that the estimatedreliability using our analytic models is within a very small range of error.6.1 Analytic Model for Transient FaultsIn this section, we present a Markov chain model, shown in Figure 6.1, to formalize systemswhich consider only transient faults. Initially, the system is in the state N (the normalstate), if there is no failure. When a transient failure occurs, the system jumps to the stateR (the recovery state). It either tries to adjust the schedule to accommodate the rollbackof the EU instance that experiences the fault, or takes the result from the replicated copyof the EU instance experiencing the fault. If the system can get the result either from therollback or replicated copy of the EU instance and can meet all the deadlines, it goes backto the state N; otherwise, it enters the state F (the failure state). In the state F, the systemgoes back to the state N when a new instance of the failed task is regenerated.A transient failure is said to be e�ective if it hits the primary copy of an EU instance.Let �0 be the total transient failure rate of the system and � be the e�ective transient failurerate. We de�ne q as primary EU occupation ratio, which is the ratio of the total executiontime of all primary copies to the total available processor time. In other words, we canthink of q as the probability that a transient failure is e�ective. Then, � = q�0. Let � bethe repair rate and c be the coverage factor, denoting the conditional probability that thesystem recovers, given that a fault has occurred. We called (1�c)� un-reschedulability rate58

NR F� c�(1� c)� �Figure 6.1: Markov chain model for transient faults.and c� reschedulability rate. Let � be the regenerating rate. Assume that the interarrivaltime of two failures is exponential distribution; the repair time is exponentially distributed;and the time between two regenerating tasks also has an exponential distribution. Thefollowing sections will describe how to compute system reliability and how to estimate therepair rate �, coverage factor c, and regenerating rate �.6.1.1 Reliability AnalysisLet Ps(t) be the probability that the system is in state s at time t, for s = N, R, F. Initialstate is state N, so that PN (0) = 1; PR(0) = PF (0) = 0:First, we compute the steady state probabilities for the system [Tri82]. We can get thesteady state probabilities: PN = ����+ ��+ (1� c)��;PR = ����+ ��+ (1� c)��;PF = (1� c)����+ ��+ (1� c)��:To compute the mean time to failure (MTTF), we set state F as an absorbing state.The di�erential equations follow: dPNdt = c�PR � �PN ;dPRdt = �PN � �PR;dPFdt = (1� c)�PR:59

Using Laplace transforms, the above equations reduce to:S �PN � 1 = c� �PR � � �PN ;S �PR = � �PN � � �PR;S �PF = (1� c)� �PR:Solving this system of linear equations, we can get:�PF = (1� c)��S � 1�1 � �2 (1S + �2 � 1S + �1);where �1; �2 = (�+ �)� p�2 + 2(1� 2c)��+ �22 :After an inverse Laplace transform, we can get PF , the probability that the system isin failure mode at time t � 0. Let Y be the time to failure of the system. The reliability ofthe system is: R(t) = 1� PF (t):The Laplace transform of the failure density,fY (t) = �dR(t)dt = dPF (t)dt ;is expressed as: LY (S) = �fY (S)= (1� c)���1 � �2 (1S + �2 � 1S + �1):Inverting the transform in the above expression, we obtain:fY (t) = (1� c)���1 � �2 (e��2t � e��1t):Hence, the MTTF of the system is given by:E[Y] = Z 10 yfY (y)dy= 11� c(1� + 1�): (6.1)6.1.2 Estimation of System ParametersTo compute the system parameters: repair rate �, coverage factor c, and regenerating rate�, we need the following assumptions and notations. Let n be the number of the EUinstances in a frame, x1, x2, : : :, xnr be the EU instances with or without rollback copies,but no replicated copies, in the schedule and xnr+1; xnr+2; : : : ; xn be the EU instances with60

replicated copy. Let Ei be the random variable representing the execution time of the EUinstance xi, for i = 1; 2; : : : ; xn; E 0i be the random variable representing the time that thesystem needs to report the unrecovered error condition because xi fails, for i = 1; 2; : : : ; nr;Ri be the random variable representing the processing time that the system needs to getthe result from the replicated copy of xi, for i = nr + 1; nr + 2; : : : ; n. Assume that Ei hasexponential distribution with the mean ei, for i = 1; 2; : : : ; n; E 0i has exponential distributionwith the mean e0i, for i = 1; 2; : : : ; nr; and Ri has exponential distribution with the meanri for i = nr + 1; nr + 2; : : : ; n. The purpose of making these assumptions is to simplifyour approximation procedure. Although such assumptions might not be realistic for RTS,we will see from our simulation results that the Markov chain model performs well onestimating system reliability.The system parameters that need to be estimated relate to the probability that thesystem recovers if a given EU instance fails. The system recovers from a transient faultimplies that the failed EU has a redundant copy in the schedule such that the EU instancecan be recovered by replication or rollback. We de�ne pi as the probability that xi has aredundant copy in the schedule. xi has a redundant copy implies that the redundant copyof xi can be scheduled by the routine rescheduling and all deadlines are guaranteed. Sinceour system employs static scheduling, we can determine in advance if an EU instance hasa redundant copy. For those with redundant copies in the schedule, they can cope withtransient faults by rollback or replication. Therefore, pi equals to 1 for such EU instancesand 0 for the instances with only primary copies in the FT schedule.Let wi be the probability that xi experiences the fault given that an e�ective fault hasoccurred. We assume that a transient fault can happen at any time. Hence, wi can beexpressed as the ratio of the execution time of xi to the total execution time of all EUinstances. The coverage factor can be expressed as the probability that an EU can berecovered from a transient fault when the system encounters a fault.c = NXi=1wipi: (6.2)The repair rate � can be expressed as the average jumping-out rate. For an EU instancexi with single copy, its jumping-out rate from the state R is (pi 1ei + (1� pi) 1e0i); for an EUinstance xi with replicated copy, its jumping-out rate from the state R (always to the stateN) is 1ri . Hence, the computation for � is followed:� = 1N (nrXi=1(pi 1ei + (1� pi) 1e0i) + NXi=nr+1 1ri): (6.3)To estimate the regenerating rate, we need to know the probability that an EU instancefails and the system enters the state F. Fortunately, we can obtain this probability from pi.1�pi is the probability that the EU instance xi only has a single copy (primary copy) in theschedule, that is, the probability that xi enters the state F if xi has experienced a transientfault. Since tasks are periodic, a new instance of a task is generated at the beginning ofits period. Let ti be the period of the task that contains xi. we express the regenerating61

rate as the weighted probability that an EU instance enters the state F multiplied by thefrequency, that is, � = NXi=1 1� piPNj=1(1� pj) 1ti : (6.4)We have devised the methods of computing the system parameters (c, � and �), pi,and system reliability. Once we get the values of the system parameters according to theformula derived above, we can obtain the system reliability. By applying our proposed ARapproach, a hybrid method of temporal and spatial redundancy, we can get a very highdegree of coverage factor and hence a long MTTF. Besides, the system has higher resourceutilization, because it has more free resources can be used for aperiodic tasks.6.1.3 SimulationIn this section, we validate the proposed model and demonstrate the model is a powerfultool in estimating the reliability. To validate the analytic model in estimating the systemreliability, we compare the results from the simulations and the model and we use di�erenceratio, which is de�ned as the percentage of the di�erence between the MTTF and thesimulated average time to failure (ATTF) over the ATTF, as our performance measurement.A simulation program was written to capture the behavior of the transient faults andthe characteristics of the real-time system model described in Section 5.1. A number ofexperiments were conducted to examine the performance of the proposed analytic modelover various system workloads and failure rates. For each experiment, we generate 500simulated systems; for each simulated system, 1000 system failures are produced to obtainthe ATTF of the system. The �nal results were evaluated by averaging the di�erence ratios,between ATTF and MTTF, obtained from the 500 systems.Simulation ModelThe simulation program for the simulated RTS consists of four components: task generation,fault injection, scheduler, and resource management, as shown in Figure 6.2. The taskgeneration is responsible for generating a set of periodic tasks associated with various timingconstraints and EUGs for the tasks; the fault injection component generates transient faultsand injects to the system according to the probability distribution of the faults. Thescheduler takes charge with allocating and scheduling the tasks; it constructs static o�-line FT schedule based on the proposed approach. The resource management componentmaintains the state of the resources and consumes the resources according to the schedule.Based on the FT schedule obtained from the scheduler, the analytic model computes thesystem parameters de�ned in Section 6.1.2 and the MTTF for the simulated system.Based on our model, the MTTF for a system using NFT schedule should be 1� , thatis 1q�0 . With the various values of simulation parameters described below, the averagedi�erence ratio for NFT schedules is about 2.5%. It is quite stable under various system62

fault injection schedulerresource mgnttask generation ATTF
RTS simulator analytic model

MTTFsystemparametercomputationFigure 6.2: The overview structure of the simulation.workloads and failure rates. The major interest in this section is to discuss the performanceof the Markov chain model in estimating the reliability for the systems using o�-line FTschedule.The simulation mainly depends on system workload and failure rate. Our simulationcontains the following parameters:� Ncpu represents the number of processors in the system.� Napp represents the number of applications in the system.� NEUInApp represents the number of EUs in an application. It is uniformly dis-tributed over the range of 2 to Max NEUInApp for all experiments.� MaxOutDegree represents the maximum outdegree of an EU in an EUG. It relatesto generate precedence relationship. The number of immediate successors of an EU isuniformly distributed over the range of 0 toMaxOutDegree. If the number of EUs inan application is �xed, the larger MaxOutDegree is; the higher degree of parallelismthe application is. We have tried di�erent values of MaxOutDegree. Since theyconvey the similar behavior, we only show the results with the value of 4.� PeriodScale represents the scale of a period. The period of an application is a multipleof PeriodScale.� MinExeTime and MaxExeTime determine the range of the execution time of anEU. The execution time of an EU is uniformly distributed betweenMinExeTime andMaxExeTime.� GetResultT ime represents the processing time for obtaining the result from a repli-cated copy.� ErrorReportT ime represents the processing time for reporting an unrecovered errorcondition. 63

� TransArrivalT ime denotes the inter-arrival time of two consecutive transient errors(TAT), which determines the transient failure rate.Because of the interleave execution of the instances of EUs and the random number ofEUs in an application, it is not easy to have a clear expression to de�ne workload in thissimulation. Every simulation parameter may a�ect workload. Therefore, our simulationattempts to cover most of the possible angles of changing workload.Experiments show that the values of GetResultT ime and ErrorReportT ime do nota�ect much on the performance of the model. Therefore, we choose �xed values of thesetwo parameters; both are 1 time unit.We randomly generate EUGs according to the simulation parameters given above. Weadopt the allocation and scheduling algorithm proposed by Cheng et al. [CHA94] to obtainNFT schedules. The algorithm is the framework of the allocator on MARUTI [SdSA94,MSA92], a hard real-time operating system developed at the University of Maryland. Themaximum values of Ncpu and Napp and the value of Max NEUInApp are set to 14, 4,and 20, respectively, due to the implementation limitation of the NFT schedule generatorimplemented by Cheng. We implement the fault-tolerant scheduling approach described inSection 5.3 to get FT schedules. Based on FT schedules and failure rate, we can computeATTF through the simulation and MTTF from equation 6.1.Simulation ResultsWe will examine the sensitivity of the Markov chain model on failure rate and systemworkload in this section. We have run many di�erent settings on the experiments of changingthe failure rate. Since they convey the similar behavior, we only show several settings onthe experiments and the corresponding results.We vary the parameter TransArrivalT ime (TAT) under di�erent workloads. Table 6.1shows the settings for the experiment and Figure 6.3 gives the corresponding results. It canbe found that the di�erence ratios are very small and quite stable on various TAT. Hence,we conclude that the analytical model is insensitive to TAT.In order to see the performance on various system workloads, we vary the workloadsimulation parameters, described in Section 6.1.3, one at a time. The settings are chosen tore
ect a diversity of workload, from heavy to light workload. The settings for the experimentof varying the number of processors are shown in Table 6.2 and the results in Figure 6.4.As the workload decreases, that is, the number of processors increases, the chance thatthe rescheduling algorithm can �nd a free slot for a replicated or rollback copy increases.Therefore, the chance for a system with full coverage (coverage factor equals 1) increases.The di�erence ratio for such system is 0. When the workload decreases, the number of fullcoverage systems increases and hence the average di�erence ratio decreases.Simulation results for varying the scale of period are given in Figure 6.5 and the settingin Table 6.3. The di�erence ratio goes slightly down as the scale of period increases, butthe proposed analytic model still can estimate the system reliability accurately.64

Table 6.1: Settings for the experiment of varying TAT.parameter wkd 1 wkd 2 wkd 3 wkd 4 wkd 5Ncpu 6 7 8 9 10Napp 2 2 3 3 3PeriodScale 26 34 35 36 35MinExeTime (time units) 8 9 5 8 10MaxExeTime (time units) 14 15 12 12 14Table 6.2: Settings for the experiment of varying Ncpu.parameter case 1 case 2 case 3Napp 2 3 4PeriodScale 32 32 32MinExeTime (time units) 8 8 8MaxExeTime (time units) 18 18 18TAT (time units) 1000 1000 1000The last experiment varies the range of the execution time. Fixing either the minimumor the maximum execution time while changing the other gives the similar results, so weonly show the results with �xed minimum execution time in Figure 6.6. The settings aregiven in Table 6.4. The workload increases and the slack time of EU instances decreases,when the maximum execution time increases. As mentioned above, the number of fullcoverage system inclines when the workload increases and hence the di�erence ratio raisesslightly. Again, the Markov chain model performs well on various ranges of the executiontime.By averaging the di�erence ratios obtained from our simulation, we �nd that our ana-lytical model performs well with the average di�erence ratio of 1.2 % over various systemworkloads and failure rates. Hence, we conclude that the proposed Markov chain model canbe used to estimate with high accuracy the reliability of the system using static scheduling.Table 6.3: Settings for the experiment of varying PeriodScale.parameter case 1 case 2 case 3Ncpu 6 8 10Napp 2 3 4MinExeTime (time units) 8 8 8MaxExeTime (time units) 18 18 18TAT (time units) 1000 1000 100065

Table 6.4: Settings for the experiment of varying the range of execution time.parameter case 1 case 2 case 3Ncpu 5 8 10Napp 2 3 4PeriodScale 32 32 32MinExeTime (time units) 8 8 8TAT (time units) 1000 1000 1000

wkd 1

wkd 2

wkd 3

wkd 4

wkd 5

diff ratio

3TAT x 10
-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00Figure 6.3: Results for varying TAT.

case 1

case 2

case 3

diff ratio

of processors
-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

4.00 6.00 8.00 10.00 12.00 14.00Figure 6.4: Results for varying the number of processors.66

case 1

case 2

case 3

diff ratio

period scale
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

25.00 30.00 35.00 40.00Figure 6.5: Results for varying the scale of period.

case 1

case 2

case 3

diff ratio

max exe time
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

10.00 15.00 20.00 25.00 30.00Figure 6.6: Results for varying the range of execution time.67

R� NM � ct�t(1� cp)�pFcp�p (1� ct)�tFigure 6.7: Markov chain model for permanent and transient faults.6.2 Analytic Model for Transient and Permanent FaultsWe extend the analytic model presented in Section 6.1 to permanent faults, which is shownin Figure 6.7. Initially, the system is assumed to be in the normal state (the state N). Whena processor encounters a permanent fault, the system enters the migration state (the stateM) and migrates the EU instances to other processors. If migration process succeeds (i.e.,the EU instances on the failed processor with only one copy in the schedule are migrated),the system goes back to the normal state. Otherwise, it enters the failure state (the stateF). When a transient fault happened during the execution of an EU, the system enters therecovery state (the state R). If the schedule has a redundant copy of the failed EU instance,either rollback or replication copy, the system recovers from the fault and goes back to thenormal state. Otherwise, it enters the failure state.� is the transient failure rate; � is the permanent failure rate. Let � be the recovery rateand c be the coverage factor, denoting the conditional probability that the system recovers,given that a fault has occurred. The subscript of the coverage factor c and the recoveryrate � denotes the fault type, i.e., cp represents the coverage factor for permanent faultsand ct represents the coverage factor for transient faults. Same rule applies to the recoveryrate �. We call ct�t reschedulability rate, (1�ct)�t un-reschedulability rate, cp�p migrationrate, and (1� cp)�p un-repair rate. Assume that the inter-arrival time of two consecutivepermanent or two consecutive transient failures is exponential distribution; the recoverytime is exponentially distributed. The following section describes the system reliabilitybased on our assumptions. 68

6.2.1 Reliability AnalysisLet Ps(t) be the probability that the system is in the state s at time t, for s = N, R, M,and F. Initial state is the state N, so thatPN (0) = 1; PR(0) = PM (0) = PF (0) = 0:To compute the MTTF, the di�erential equations follow:dPNdt = ct�tPR + cp�pPM � (�+ �)PN ;dPRdt = �PN � �tPR;dPMdt = �PN � �pPM ;dPFdt = (1� ct)�tPR + (1� cp)�pPM :Using Laplace transforms, the above equations reduce toS �PN � 1 = ct�t �PR + cp�p �PM � (�+ �) �PN ;S �PR = � �PN � �t �PR;S �PM = � �PN � �p �PM ;S �PF = (1� ct)�t �PR + (1� cp)�p �PM :Solving this system of linear equations, we can get�PF = 1S (1� ct)��t(S + �p) + (1� cp)��p(S + �t)(S + �+ �)(S + �t)(S + �p)� ct��t(S + �p)� cp��p(S + �t) :After an inverse Laplace transform, we can get PF , the probability that the system is in thefailure state at time t � 0. Since we are interested in the average behavior of the system,instead of instance behavior, we do not necessarily have to know exactly what PF is. LetY be the time to failure of the system. The reliability of the system is de�ned asR(t) = 1� PF (t):The Laplace transform of the failure density,fY (t) = �dR(t)dt = dPF (t)dt ;is expressed asLY (S) = �fY (S)= S �PF (S)� PF (0�)= (1� ct)��t(S + �p) + (1� cp)��p(S + �t)(S + �+ �)(S + �t)(S + �p)� ct��t(S + �p)� cp��p(S + �t) :69

Hence, the MTTF of the system is given byE[Y] = �dLYdS S=0= �t�p + ��p + ��t(1� ct)��t�p + (1� cp)��t�p : (6.5)6.2.2 Estimation of System ParametersAll the system parameters in the proposed analytic model relate to the conditional proba-bility that the system recovers if an EU instance or a processor fails. In the following, wepresent the strategy for how to compute these probabilities and then devise the formulaefor the system parameters.Let P pj be the probability that the system has a feasible schedule given that processor jhas encountered a permanent fault, where a feasible schedule is de�ned as a schedule whichcan schedule and complete all EUs before their deadlines expire. Since our system usesstatic schedule, we can prepare one migration schedule for each processor in advance andhereafter P pj can be determined. We call processor j is migratable if the migration schedulefor processor j is feasible.Let P ti denote the probability that EU instance xi has a redundant copy, either rollbackor replicated copy, in the schedule given that a transient fault has happened during theexecution of xi. As mentioned in Section 5.1, a failed processor will be replaced by aprocessor functioning correctly within one frame period of time. To compute the conditionalprobability P ti , we should consider if there is a permanent fault happening during the lastframe. Let t be the current time; tp be the time that the last permanent fault occurs; andL be the length of a frame. If the last permanent fault happens during the last frame,i.e., (t � tp) � L, the system uses the migration schedule for the failed processor. In theother case that (t � tp) > L, the failed processor has been replaced and the system usesthe original FT schedule to schedule EU instances. The time that the last permanent faultoccurs determines which schedule, FT schedule or migration schedule, is used and thereforeit determines the probability that an EU instance has a redundant copy.If a permanent fault occurs on a non-migratable processor, i.e., it is an un-recoverablepermanent fault, the system fails, enters the failure state, and never goes back to the normalstate. No transient fault will occur in such failed system after an un-recoverable permanentfault is detected. Hence, the permanent faults considered here should be recoverable, that is,they happen on migratable processors. The probability P ti is constituted by the followingtwo probabilities: the probability that the system recovers given that xi experiences atransient fault and no permanent fault happened during the last frame and the probabilitythat the system recovers given that xi experiences a transient fault and a permanent faulthappened during the last frame.We need the following notations to decompose the conditional probability P ti . Let Airepresent the event that the EU instance xi recovers from a transient fault, Hi be the eventthat xi experiences a transient fault, Uj be the event that a recoverable permanent fault70

happened on processor j during the last frame, U be the event that a recoverable permanentfault happened in the system during the last frame, and V be the event that no permanentfault happened in the last frame. P (U) denotes the probability that a recoverable perma-nent fault happened in the last frame, similarly, we can de�ne the probability P (V) andthe conditional probabilities P (AijHi&V), P (AijHi&U), and P (AijHi&Uj). As mentionedabove that P ti is built up by P (AijHi&U) and P (AijHi&V), by the de�nition of conditionalprobability, P ti can be expressed as follows:P ti = P (AijHi)= P (AijHi&U) P (U)P (U) + P (V) + P (AijHi&V) P (V)P (U) + P (V) :Let m be the number of processors in the system, mm be the number of the migratableprocessors, and Sm be the set of the migratable processors. Since we assume that theinter-arrival time between two permanent faults is exponentially distributed and that eachprocessor has equal chance to encounter a permanent fault, P (U) and P (V) can be computedas follows: P (U) = (1� e��L)mmm ;P (V) = e��L:P (AijHi&U) can be obtained by summing up the probabilities that each migratable pro-cessor contributes. Namely,P (AijHi&U) = 1mm Xj2Sm P (AijHi&Uj):Like P pj , P (AijHi&V) can be obtained from the FT schedule and P (AijHi&Uj) can be getaccording to the migration schedule.To compute the coverage factor for transient fault ct, we assume that a transient faultcan happen at any time. Therefore, a long EU instance has a greater chance to experiencea transient fault than a short one. The coverage factor ct is computed as the sum ofthe weighted probability that an EU instance recovers from a transient fault. Let wi bethe probability that EU instance xi experiences the fault given that a transient fault hasoccurred. According to our assumption, it can be computed as the ratio of the executiontime of xi to the total execution time of all EU instances in a frame. ct be expressed asct = nXi=1wiP ti : (6.6)The coverage factor for permanent fault cp is simpler. A permanent fault has equalprobability to happen on any processor. cp averages the probability that the system recoversgiven that processor j has encountered a permanent fault, for j = 1; 2; : : : ; m, that is,cp = mXj=1P pj : (6.7)71

To compute recovery rates, �t and �p, we need the following assumptions and notations.Let n be the number of EU instances in a frame, x1, x2, : : :, xnr be the EU instances with orwithout rollback copies, but no replicated copies, in the schedule and xnr+1; xnr+2; : : : ; xn bethe EU instances which have replicated copies in the schedule. Let Ei be the random variablerepresenting the execution time of the EU instance xi, for i = 1; 2; : : : ; n, Oerror�report be therandom variable representing the overhead that the system needs to report an unrecoverableerror condition, Oget�result be the random variable representing the processing time thatthe system needs to get the result from a replicated copy, and Omigration be the randomvariable representing the overhead that the system needs to migrate the EU instances on afailed processor to other processors. Assume that Ei has an exponential distribution withthe mean ei, for i = 1; 2; : : : ; n; Oerror�report, Oget�result, and Omigration are exponentiallydistributed with the mean oerror�report, oget�result, and omigration, respectively. The purposeof making these assumptions is to simplify our approximation procedure. Although suchassumptions might not be realistic to RTS, we will see from our simulation results that theanalytic model performs well on estimating system reliability.The system enters the recovery state due to a transient fault. If the fault occurs duringthe execution of an EU instance without redundant copy, the system goes to the failurestate with the rate of 1oerror�report . Similarly, if an EU instance xi with a rollback copyencounters a fault, the system goes back to the normal state with the rate of 1ei . If thefailed EU instance has a replicated copy, the system enters the normal state with the rateof 1oget�result . The recovery rate �t can be expressed as the averaged jumping-out rate.We already have the transition rates from the recovery state to other states for each EUinstance. �t can be calculated by averaging the jumping-out rates for all EU instances. Theformula for �t is �t = 1n(nrXi=1(P ti 1ei + (1� P ti) 1oerror�report) +nXi=nr+1(P ti 1oget�result + (1� P ti) 1oerror�report): (6.8)The recovery rate for permanent fault cp can be computed similarly. If the failed pro-cessor is migratable, the system goes back to the normal state with the rate of 1omigration .Otherwise, it enters the failure state with the rate of 1oerror�report . Hence, it can be computedby the following expression:�p = 1m(mXj=1(P pj 1omigration + (1� P pj) 1oerror�report)): (6.9)We have presented the method of computing the system parameters used for the ana-lytic model (ct, cp, �t, and �p) and the reliability. Once we get the values of the systemparameters, we can obtain the reliability. By applying our proposed fault-tolerant schedul-ing approach, a hybrid method of temporal and spatial redundancy, we can get a very highdegree of coverage factor and hence a long MTTF. Besides, the system has higher resourceutilization, because it has more free resources can be used for aperiodic tasks.72

6.2.3 SimulationThe simulation design mainly is an extension of the previous simulation described in Sec-tion 6.1.3. Besides the simulation parameters described in that section, two extra simulationparameters are needed for the simulation:� PermArrivalT ime denotes the inter-arrival time of two consecutive permanent faults(PAT), which determines the permanent failure rate, �.� MigrationTime represents the overhead for migrating EU instances of the failedprocessor.The task generation component of the simulation program basically is the same as theprevious simulation. The fault injection component generates transient and permanentfaults independently and simultaneously once the simulated RTS starts. Besides FT sched-ule, the scheduler needs to construct migration schedule for each processor by applying themigration algorithm presented in Section 5.4. For each simulated RTS, 1000 system failuresare generated to compute ATTF for a given system.Analytic model simulation computes system parameters based on the FT schedule andthe migration schedules obtained from the scheduler. MTTF for a given system can bedetermined by the values of the system parameters.Simulation ResultsThis section discusses the experimental results for the validation of the proposed model.For the sets of the experiments on various workloads, we change one simulation parameterrelating to workload at a time to observe the performance of the proposed model over awide range of workloads.Table 6.5 gives the settings for the experiments that varies the number of processorsand Figure 6.8 presents the corresponding results. The �gure shows that the di�erenceratio drops as the number of the processors increases. The number of the systems with fullcoverage (ct and cp are 1) increases when the workload decreases, since the number of freeslots in the schedule increases and the probability that an EU instance has a redundantcopy increases. The estimated reliability of full coveraged system is exactly the same asthe simulated reliability which is in�nity; such case has zero di�erence ratio. Therefore,when the workload decreases, the number of the full coveraged systems increases and thedi�erence ratio decreases.The settings for the experiments that varies the range of execution time are shownin Table 6.6 and the corresponding results in Figure 6.9. The same reasoning describedabove applies to this set of experiments, since the workload decreases when the maximumexecution time becomes small.The settings and the results for the experiments on varying the scale of period are shownin Table 6.7 and Figure 6.10, respectively. Because of the interleaving of EU instances inthe schedule, small period does not necessarily imply heavy workload. For each case of73

Table 6.5: Settings for the experiment of varying Ncpu for extended model.parameter case 1 case 2 case 3Napp 2 3 4PeriodScale 32 32 32MinExeTime (time units) 8 8 8MaxExeTime (time units) 18 18 18PAT (time units) 3000 3000 3000TAT (time units) 1000 1000 1000Table 6.6: Settings for the experiment of varying the range of execution time for extendedmodel. parameter case 1 case 2 case 3Ncpu 5 8 10Napp 2 3 4PeriodScale 32 34 36MinExeTime (time units) 8 8 8PAT (time units) 2500 2500 2500TAT (time units) 1000 1000 1000di�erent scale of period, approximately 10% to 20% of generated systems has full coverage.The results show that the analytic model performs quite stable on various scales of period.In general, the model performs very well at various workloads.We conduct the experiments that change the inter-arrival time between two transientfailures (TAT) or two permanent failures (PAT). The settings are presented in Tables 6.8and 6.9 and the results are shown in Figure 6.12 and 6.11, respectively. The results showthat the analytic model performs stable at various failure rates. Hence, we conclude that theproposed analytic model can estimate the reliability accurately at various system workloadand failure rates.
74

Table 6.7: Settings for the experiment of varying PeriodScale for extended model.parameter case 1 case 2 case 3Ncpu 6 8 10Napp 2 3 4MinExeTime (time units) 8 8 8MaxExeTime (time units) 18 18 18PAT (time units) 2500 2500 2500TAT (time units) 1000 1000 1000Table 6.8: Settings for the experiment of varying TAT for extended model.parameter wkd 1 wkd 2 wkd 3 wkd 4 wkd 5Ncpu 6 7 8 9 10Napp 2 2 3 3 3PeriodScale 26 34 35 36 35MinExeTime (time units) 8 9 5 8 10MaxExeTime (time units) 14 15 12 12 14PAT (time units) 3000 3000 3000 3000 3000Table 6.9: Settings for the experiment of varying PAT for extended model.parameter wkd 1 wkd 2 wkd 3 wkd 4 wkd 5Ncpu 6 7 8 9 10Napp 2 2 3 3 3PeriodScale 26 34 35 36 35MinExeTime (time units) 8 9 5 8 10MaxExeTime (time units) 14 15 12 12 14TAT (time units) 2000 2000 2000 2000 200075

case 1

case 2

case 3

diff ratio

of processors

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

4.00 6.00 8.00 10.00 12.00 14.00Figure 6.8: Results on evaluation of extened model for varying the number of processors.

case 1

case 2

case 3

diff ratio

max exe time
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

10.00 15.00 20.00Figure 6.9: Results on evaluation of extened model for varying the range of execution time.

case 1

case 2

case 3

diff ratio

period scale
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

25.00 30.00 35.00 40.00Figure 6.10: Results on evaluation of extened model for varying the scale of period.76

wkd 1

wkd 2

wkd 3

wkd 4

wkd 5

diff ratio

3PAT x 10
0.00

2.00

4.00

6.00

8.00

10.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00Figure 6.11: Results on evaluation of extened model for varying PAT.

wkd 1

wkd 2

wkd 3

wkd 4

wkd 5

diff ratio

3TAT x 10
0.00

2.00

4.00

6.00

8.00

10.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00Figure 6.12: Results on evaluation of extened model for varying TAT.77

Chapter 7Performance EvaluationIn this chapter, we present two conventional fault-tolerant scheduling approaches: repli-cation and rollback schemes and compare the performance of the proposed adaptive re-dundancy (AR) scheduling approach with the basic fault-tolerant scheduling schemes. Thesimulation results show that our proposed fault-tolerant scheduling, AR method, outper-forms the replication and rollback schemes under various system workloads and failurerates.7.1 Basic Fault-Tolerant SchedulingIt has been proven that �nding a feasible schedule for a multiprocessor system is an NP -hard problem [Bur90, GJ75] and that adding a task into a schedule is also an NP -hardproblem [GJ79]. Thus, given a permutation of all the EU instances in the schedule, therescheduling algorithm for scheduling a redundant copy of an EU instance is still an NP -hard problem. Exhaustive search on all the possible permutations wastes tremendous timeand resources. Considering the tradeo� between �nding an optimal fault-tolerant sched-ule and the computational time for the rescheduling algorithm, we adopt polynomial-timerescheduling algorithms and propose branch and bound algorithms to eliminate unnecessarysearch for both schemes to be presented.7.1.1 Replication SchemeWe propose a branch and bound algorithm to �nd a suboptimal solution for replicating EUinstances. The search space is all the possible permutations of the EU instances in a frame.We represent it as a search tree with n! leaf nodes. The root of the search tree, the node inlevel 0, is the original NFT schedule; an intermediate node is a partial FT schedule; a sonof a node is an immediate extension of the partial FT schedule corresponding to the node.A leaf node, specifying a complete sequence of all the EU instances, is a full FT schedule.The goal of the replication algorithm is to �nd a best FT schedule among all the possibleFT schedules obtained from the leaf nodes. 78

We use the heuristics to constraint the search space. The objective function of the branchand bound algorithm is constituted by the heuristics. we mentioned, in Section 6.1.2, thatlarger coverage factor has longer MTTF. According to the equation 6.2 for computing thecoverage factor, a long EU instance has more contribution on the coverage factor than ashort one. Therefore, the objective function for a full FT schedule is de�ned as the totalexecution time of the instances with replicated copies in the schedule. Hence we can saythat the goal of the algorithm is to search for an FT schedule which has the maximum valueof the objective function among those possible FT schedules.In an intermediate node, we need an estimation function for the corresponding partialFT schedule in order to decide if the node is worth expending. The estimated objectionfunction for an intermediate node should represent the best value of the objective functionthat its descendants can get. It is de�ned as the total execution time of the instances whosereplicated copies are in the partial FT schedule corresponding to the intermediate node plusthe execution times of all instances which are not in the permutation sequence of the node.Let < xi1 ; xi2 ; : : : ; xik > be the sequence associated with a node in level k. The estimatedobjective function of the node can be computed as follows:F̂(< xi1 ; xi2; : : : ; xik >) = kXl=1 �(xil) � exe time(xil) +X8l62fi1;i2;:::;ikg exe time(xl); (7.1)where exe time(xi) gives the execution time of EU instance xi; the function � used forreplication scheme is de�ned as:�repl(xi) = (1 if the replicated copy of xi is in the partial schedule,0 otherwise.The estimated objective function also de�nes the objective function for the leaf nodes, wherethe second term of the equation 7.1 is omitted. It is clear that the value of the estimatedobjective function for a node is greater than or equal to the value of the objective functionfor any one of its descendants.During the search, we keep track of currently the best (largest) objective function valueBestV al and the corresponding FT schedule. At each intermediate node, we computethe value of the estimated objective function de�ned above. If the value of the estimatedobjective function is greater than the best value BestV al, we expand (branch) the node;otherwise, we prune the node. When the search reaches a leaf node, the objective functionvalue for the leaf node is calculated and is compared with the current best value. BestV alwill be updated, if the new value is larger.Rescheduling Algorithm for Replication SchemeDuring the expansion of an intermediate node, the rescheduling algorithm is invoked to seeif the replicated copy can be put into the schedule. The proposed algorithm is described asfollows. 79

EST and LFT as de�ned in Section 5.3 construct a scheduling window for each EUinstance. Let xz be an instance whose scheduled start time to the �nish time is within therange of the scheduling window of the replicated copy to be scheduled. The reschedulingalgorithm keeps track of all free slots. We �rst try to allocate a free slot for the replicatedcopy. If no such free slot exists, we then attempt to schedule the replicated copy by shiftingthe scheduled start time of xz . Note that such shifting should not a�ect the schedulingtimes of its successors, since xz is still scheduled within its scheduling window; otherwise,the computational complexity of the proposed rescheduling algorithm is not polynomial.7.1.2 Rollback SchemeThe branch and bound algorithm for rollback scheme resembles the algorithm proposedfor the replication scheme. The search space is the same, all the possible permutations ofEU instances in the schedule, and is represented as a search tree. The de�nitions for theobjective function and the estimated objective function are similar to those used for thereplication scheme. The objective function is de�ned as the total execution time of theEU instances with rollback copies in the schedule; the estimated objective function for anintermediate node is de�ned as the total execution time of the instances whose rollbackcopies are in the partial FT schedule corresponding to the node plus the total executiontime of the instances that are not in the permutation sequence of the node. The function �in the equation 7.1 for computing the estimated objective function is de�ned as follows.�roll(xi) = (1 if the rollback copy of xi is in the partial schedule,0 otherwise.Rescheduling Algorithm for Rollback SchemeIn order not to a�ect the scheduling times of the successors and predecessors of an EUinstance, we use EST and LFT de�ned in Section 5.3 to construct a scheduling window foreach EU instance. The rescheduling algorithm may move the scheduled start time of aninstance, only if it �nishes before its LFT.Since the rollback copy has to be on the same processor where the primary copy runs,the choice for a free slot for the rollback copy is very limited. If we can not �nd suchslot in the same processor, we will try to �nd one large slot for accommodating bothprimary and rollback copies or two slots for each of them in one processor. As mentionedin previous section, this may involve shifting the scheduled start time of an EU instancewhose scheduling window overlaps with that of the rollback copy to be scheduled.7.2 SimulationThe objective of the performance study is to investigate the usefulness of the proposedAR method. We have shown that the analytic models can estimate the system reliabilityaccurately for the systems using static scheduling. Hence, we can use the theoretic value,80

MTTF, as the reliability index for the simulated system, instead of ATTF which needs alot of computational time to get.To re
ect the improvement or degradation of the performance for the proposed approachrelative to the basic schemes, we adopt improvement gain de�ned below as our performanceindex. LetMTTFAR andMTTFbasic be the mean time to failure of a system using AR andthe basic fault-tolerant scheduling approach, respectively; G(MTTFAR;MTTFbasic) be theimprovement gain of the AR method relative to the basic scheme, which is de�ned asG(MTTFAR;MTTFbasic) = 8>>>>>>>>>><>>>>>>>>>>: 0 if MTTFAR =1and MTTFbasic =1,1 if MTTFAR =1and MTTFbasic 6=1,�1 if MTTFAR 6=1and MTTFbasic =1,MTTFAR�MTTFbasicmax(MTTFAR;MTTFbasic) otherwise.For a system with full coverage, its MTTF is in�nity (1). We need to have a boundedimprovement gain; otherwise, it is hard to justify a system with in�nity MTTF and one withlimited MTTF. Therefore, we use the maximum value of the MTTF from both approachesas the denominator. A positive value of the improvement gain implies that a system usingour approach is more reliable than that using the basic approach.7.2.1 Simulation DesignFigure 7.1 depicts the high level structure of the simulation for the performance study. Ba-sically, this is an extension of the previous simulation. The component, system parametercomputation, is the same in these simulated systems with di�erent fault-tolerant schedul-ing approach, since they use the same method to estimate the system parameters. Theironly di�erence lies on the scheduler. The leftmost system simulates the system using ourproposed method; the center one simulates the system using the replication scheme; andthe rightmost one simulates the system using the rollback scheme. The detail reschedul-ing algorithms for the corresponding schemes are described in Sections 5.3, 7.1.1, and 7.1.2.However, these three systems deploy the same migration algorithm developed in Section 5.4,because we intend to observe the performance among di�erent fault-tolerant scheduling ap-proaches, instead of migration algorithms.In this simulation study, we follow the settings of the simulation parameters as we eval-uate the performance of our extended analytic model for transient and permanent faults,because we think the set of settings we employ can generate a wide range of workloads andsystems. For one set of the settings on the simulation parameters, the same 500 sets of tasksets are generated for each simulated system with di�erent fault-tolerant approach. Thesimulated system invokes the corresponding scheduler to obtain the FT schedule and mi-gration schedules, computes the system parameters for both analytic models, and estimatesthe MTTF for both models. The results of one experiment are calculated by averaging the81

MTTFAR systemparametercomputation systemparametercomputation
task generation

systemparametercomputation MTTFrepl MTTFroll
AR system rollback sysfailure ratesschedulerAR schedulerreplication schedulerrollbackreplication sys

Figure 7.1: The simulation structure for performance study.improvement gains obtained from all sets of the settings for that experiment listed in thecorresponding tables.7.2.2 Simulation ResultsWe conduct experiments for evaluating the performance of the proposed scheme comparedwith the basic fault-tolerant scheduling approaches under various system workloads andfailure rates. In the following �gures, \REPL-1" represents the improvement gain of theAR method relative to the replication scheme for the analytic model which models transientfaults only; \REPL-2" represents the improvement gain of the AR method relative to thereplication scheme for the analytic model which models transient and permanent faults;\ROLL-1" represents the improvement gain of the AR method relative to the rollbackscheme for the analytic model which models transient faults only; \ROLL-2" represents theimprovement gain of the AR method relative to the rollback scheme for the analytic modelwhich models transient and permanent faults.Figure 7.2 presents the results for the experiment for varying the permanent failure rate;the settings are shown in Table 6.9. The replication scheme generally performs better thanthe rollback scheme. It is primarily because a replicated copy has more choice of free slotsthan a rollback copy. A rollback copy has to be in the same processor where the primarycopy runs, while a replicated copy does not have to. Therefore the replication scheme hasmore redundant copies in the schedule than the rollback scheme and the improvement gainrelative to the replication scheme is lower comparing with the rollback scheme. The change82

of permanent failure rate does not a�ect the performance. The AR method outperforms,because it has positive values of improvement gain over various permanent failure rates.Figure 7.3 dislays the results for the experiment that changes the transient failure rateof the system. The improvement gains over various failure rates are quite stable, becausethe resulted FT schedules remain the same under di�erent failure rates. The performanceof these three approaches is insensitive to di�erent failure rates. The AR method performsbetter than the other two fault-tolerant scheduling schemes.The results for the experiment varying the number of processors are shown in Figure 7.4.As the number of processors increases, the system workload decreases and the number of freeslots increases. The replication scheme has more replicated copy under a light loaded system,because the system has more free space. Therefore, its performance becomes competitivein light loaded systems. When the workload is heavy, the NFT schedule has less spacefor redundant copies, no matter what fault-tolerant scheduling we choose. However, evenwith limited resources left, the AR method still has better performance, because it has twooptions to choice for redundant copy and utilizes resources more e�ciently.As for the rollback scheme, its performance degrades comparatively as the workloaddecreases. The primary reason for this phenomenon is because our proposed AR methodmakes more systems with full coverage as the workload decreases. Hence, the improvementgain relative to the rollback scheme raises.The next experiment attempts to measure the impact on the change in the scale ofperiod. The experimental results are shown in Figure 7.5. Large scale of period does notimply the decrease of workload, because of the interleaving of EU execution. However, thescheduling window raises as the scale of period gets large. For larger scheduling window,AR algorithm can shift the scheduled times of EUs so that it has the
exibility of put morerollback or replicated copies into schedules. Its increased improvement gains are caused bycombining the merits of the other two algorithms.Figure 7.6 shows the results for the experiment that changes the range of the executiontime to generate various workloads. As the maximum execution time increases, the averageexecution time increases and the workload increases. With the same timing constraints, thesame release time and deadline, a long EU has less chance having a rollback copy than ashort one, because long EU has smaller slack time. The improvement gain relative to thereplication scheme declines as the average execution time raises. This is mainly becauseEUs in such heavy loaded system most likely have replicated copies, instead of rollbackcopies, and hence the bene�t of having rollback copy in our method is less visible.
83

REPL-1

REPL-2

ROLL-1

ROLL-2

improvement gain

3PAT x 10-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00Figure 7.2: Results on evaluation of fault-tolerant scheduling approaches for varying PAT.

REPL-1

REPL-2

ROLL-1

ROLL-2

improvement gain

3TAT x 10-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00Figure 7.3: Results on evaluation of fault-tolerant scheduling approaches for varying TAT.84

REPL-1

REPL-2

ROLL-1

ROLL-2

improvement gain

of processors-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

4.00 6.00 8.00 10.00 12.00 14.00Figure 7.4: Results on evaluation of fault-tolerant scheduling approaches for varying thenumber of processors.

REPL-1

REPL-2

ROLL-1

ROLL-2

improvement gain

period scale-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

25.00 30.00 35.00Figure 7.5: Results on evaluation of fault-tolerant scheduling approaches for varying thescale of period. 85

REPL-1

REPL-2

ROLL-1

ROLL-2

improvement gain

max exe time-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

10.00 15.00 20.00Figure 7.6: Results on evaluation of fault-tolerant scheduling approaches for varying therange of execution time.
86

Chapter 8ConclusionIn this dissertation, we have addressed the real-time scheduling problem with a view ofproviding support for satisfying resource and fault-tolerance constraints in a comprehensiveand e�cient way. We propose a resource synchronization protocol for use in multiproces-sor hard real-time systems that allows jobs to simultaneously lock more than one globalresource. The synchronization protocol may be applied to both static and dynamic pri-ority scheduling, and prevents deadlock and transitive blocking. We also devise su�cientutilization bounds to guarantee schedulability. Our experimental performance studies showthat the proposed protocols that allow nested global critical sections have better perfor-mance than the protocols which do not allow a job to simultaneously lock multiple globalsemaphores. The improvement is due to the fact that our protocols provide
exible granu-larity of synchronization and hence allow a greater degree of parallelism.In Chapter 4, we discuss the issues on incorporating execution time information intooptimistic concurrency control (OCC) algorithms and demonstrate that proper use of theknowledge of execution time can improve data con
ict resolution decision. Several OCCalgorithms using the knowledge of execution time are developed and evaluated. We developa simulation model to analyze the performance of the proposed algorithms. With theknowledge of execution time, we can predict in advance if a transaction can not makeits deadline (i.e. non-restartable) and discard it earlier before its deadline expires. Byallocating the resources, saved from the early discarded non-restartable transactions, torestartable transactions, the proposed protocols can commit more transactions than thebaseline algorithm and minimize the miss ratio.We also present a scheduling algorithm to improve system reliability and to meet thetiming constraints. The proposed fault-tolerant scheduling method uses both rollback andreplication techniques while scheduling secondary copies of EUs. The experimental resultsreveal that the hybrid technique combines the bene�ts of rollback only and replication onlyschemes and has more secondary copies in schedules than the other two schemes. One sidebene�t of the algorithm is that the resources reserved by rollback copies may be reclaimedby aperiodic tasks, if no fault occurs.We devise reliability models as a tool for real-time system designers to compare di�erent87

fault-tolerant scheduling schemes and develop an abstract system model to simulate RTSemploying di�erent scheduling schemes. The models can also be used to evaluate alternativerescheduling and migration algorithms used in the proposed approach. We use such tool todemonstrate that the proposed approach provides more reliable systems than rollback onlyand replication only schemes.8.1 Future ResearchThere are several interesting extensions of the research.Workload characteristics: The results obtained in this dissertation are based onsynthetic characteristics of workloads on an abstract system model. Further research isnecessary for the issues on the priori information about workload in the existing RTS andthe representation of workload characteristics.Overheads on resource synchronization: Most of synchronization protocols requiremany context switches, but the overhead is ignored in most research. Further investigationis needed to �nd ways to limit or estimate such overhead.Concurrency control: We have seen the signi�cance of the knowledge of the execu-tion time on data con
ict resolution of OCC algorithms. The impact of such knowledge onother classes of concurrency control needs to be explored. For example, locking protocolsuse locks to control the access of shared resources and deploy con
ict avoidance rules toenforce data consistency and prevent deadlock. It would be interesting to see if executiontime information can help locking protocols make better con
ict avoidance decision. Onthe other hand, our proposed algorithms do not use such information to classify validatingtransactions. For instance, an OCC algorithm, considering the restartability of validatingtransactions, might not sacri�ce validating transaction which is non-restartable. Extendedresearch can focus on the classi�cation of validating transaction and propose algorithms thatmake distinct con
ict resolution decisions on di�erent classes of validating transactions.Fault-tolerant scheduling: The fault model used for the proposed fault-tolerantscheduling algorithm does not assume correlated transient failures. Experimental stud-ies are necessary to quantify and better understand the impact of such failures. In addition,our research does not consider the criticality of applications in the same system. Withlimited resources left for fault-tolerance purpose, it is practical to develop a fault-tolerantscheduling algorithm which increases system reliability by maximizing the total criticalityof tasks having secondary copies in schedules. The proposed scheduling algorithm doesnot consider communication cost. There is a need for research into distributed version offault-tolerant scheduling algorithms. It is necessary to devise a communication allocationalgorithm which minimizes communication overhead imposed by secondary copies.88

Bibliography[AGM88] R. Abbott and H. Garcia-Molina. Scheduling real-time transactions: A perfor-mance evaluation. In Proceedings of the 14th on VLDB Conference, pages 1{12,1988.[AGM89] R. Abbott and H. Garcia-Molina. Scheduling real-time transactions with diskresident data. In Proceedings of the 15th on VLDB Conference, pages 385{396,1989.[AGM92] R. Abbott and H. Garcia-Molina. Scheduling real-time transactions: A per-formance evaluation. ACM Transactions on Database Systems, 17(3):513{560,Sep. 1992.[Aud91] N. C. Audsley. Resource control for hard real-time system: A review. Depart-ment of Computer Science, University of York, UK, 1991.[Bak90] T. P. Baker. A stack-based resource allocation policy for real-time processes.In Proceedings of the Real Time Systems Symposium, pages 191{200, 1990.[Bat80] K. E. Batcher. Design of massively parallel processor. IEEE Transactions onComputers, 29(9):836{840, Sep. 1980.[BB87] V. Balasubramanian and P. Banerjee. A fault-tolerant massively parallel pro-cessing architecture. Journal of Parallel Distributed Computing, 4(4):363{383,Aug. 1987.[BCH91] J. Bruck, R. Cypher, and C. T. Ho. On the construction of fault-tolerant cube-connected cycles networks. In Proceedings 1991 international Conference onParallel Processing, volume 1, pages 692{693, 1991.[BM76] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North-Holland, New York, 1976.[BMHD89] A. P. Buchmann, D. R. McCarthy, M. Hsu, and U. Dayal. Time-critical databasescheduling: A framework for integrating real-time scheduling and concurrencycontrol. In Proceedings of Data Engineering, pages 470{480, 1989.[Bur90] A. Burns. Scheduling hard real-time systems: A review. Software EngineeringJournal, 6(3):116{128, 1990. 89

[CC90] C. H. Chen and V. Cherkassky. Task reallocation for fault tolerance in mul-tiprocessor systems. In Proceedings of the IEEE 1990 National Aerospace andElectronics Conference, pages 495{500, 1990.[CHA94] S. Cheng, S. I. Hwang, and A. K. Agrawala. Mission-oriented replication ofperiodic tasks in real-time distributed systems. submitted to IEEE Parallel andDistributed Technology, 1994.[CJL89] M. J. Carey, R. Jauhari, and M. Livny. Priority in dbms resource scheduling.In Proceedings of the 15th on VLDB Conference, pages 397{410, 1989.[CL90a] M. I. Chen and K. J. Lin. Dynamic Priority Ceilings: A concurrency controlprotocol for real-time systems. Journal of Real Time Systems, 2:325{246, 1990.[CL90b] M. I. Chen and K. J. Lin. Schedulability conditions of real-time periodic jobsusing shared resources. Technical Report UIUCDCS-R-91-1658, Dept. of Com-puter Science, University of Illinois at Urbana-Champaign, 1990.[CL91] M. I. Chen and K. J. Lin. A Priority Ceiling Protocol for multiple-instanceresources. In Proceedings of the Real Time Systems Symposium, pages 141{148,1991.[CR72] K. M. Chandy and C. V. Ramamoorthy. Rollback and recovery strategies forcomputer programs. IEEE Transactions on Computers, 21(6):546{556, June1972.[CT93] C. M. Chen and S. K. Tripathi. An optimistic concurrency control algorithmin real-time database systems. In Proceedings of the ISCA International Con-ference on Parallel and Distributed Computing, pages 275{280, 1993.[CT94] C. M. Chen and S. K. Tripathi. Multiprocessor priority ceiling based protocols.Technical Report CSTR-3253, UMICAS-TR-94-42, Dept. of Computer Science,University of Maryland at College Park, 1994.[CT95a] C. M. Chen and S. K. Tripathi. An analytic model for the reliability of real-timesystems. In IASTED International Conference on Applied Modelling, Simula-tion and Optimization, 1995.[CT95b] C. M. Chen and S. K. Tripathi. Fault-tolerance scheduling in real-time systems.In ISCA International Conference on Computer Applications in Industry andEngineering, 1995.[CTB94] C. M. Chen, S. K. Tripathi, and A. Blackmore. A resource synchronizationprotocol for multiprocessor real-time systems. In Proceedings of the 1994 Inter-national Conference on Parallel Processing, volume 3, pages 159{162, 1994.[CTC94] C. M. Chen, S. K. Tripathi, and S. Cheng. A fault-tolerance model for real-time systems. In The 1994 IEEE Workshop on Fault-Tolerant and DistributedSystems, 1994. 90

[EGLT76] K. P. Eswaran, J. N. Gray, R. A. Lome, and I. L. Traiger. The notions ofconsistency and predicate locks in a data base system. Communications of theACM, 19(11), Nov. 1976.[Gel79] E. Gelenbe. On the optimum checkpoint interval. Journal of the Associationfor Computing Machinery, 26(2):259{270, Apr. 1979.[GJ75] M. R. Garey and D. S. Johnson. Complexity results for multiprocessor schedul-ing under resource constraints. SIAM Journal on Computing, 4(4):397{411,Dec. 1975.[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to theTheory of NP -Completeness. San Francisco, 1979.[GRW88] R. Geist, R. Reynolds, and J. Westall. Selection of a checkpoint interval ina critical-task environment. IEEE Transactions on Reliability, 37(4):395{400,Oct. 1988.[Har84] T. Harder. Observations on optimistic concurrency control schemes. Informa-tion Systems, 9(2):111{120, 1984.[HCL90] J. R. Haritsa, M. J. Carey, and M. Livny. Dynamic real-time optimistic con-currency control. In Proceedings of the Real Time Systems Symposium, pages94{103, 1990.[HSTR89] J. Huang, J. A. Stankovic, D. Towsley, and K. Ramamritham. Experimentalevaluation of real-time transaction processing. In Proceedings of the Real TimeSystems Symposium, pages 144{153, 1989.[KJC89] S. Y. Kung, S. N. Jean, and C. W. Chang. Fault-tolerant array processors usingsingle-track switches. IEEE Transactions on Computers, 38(4):501{514, Apr.1989.[KR81] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control.ACM Transactions on Database Systems, 6(2):213{226, June 1981.[KS89] C. M. Krishna and A. D. Singh. Modeling correlated transient failures in fault-tolerant systems. In Proceedings IEEE Fault-Tolerant Computing Symposium,pages 374{381, 1989.[LA90] P. A. Lee and T. Anderson. Fault Tolerance, Principles and Practice. Springer-Verlag, New York, NY, 1990.[LL73] C.L. Liu and J. W. Layland. Scheduling algorithms for multiprogrammingin a hard-real-time environment. Journal of the Association for ComputingMachinery, 20(1):46{61, Jan. 1973.[LS93] K. J. Lin and S. H. Son. Real-time database systems: Schedulability and seri-alizability. 1993. 91

[LSP82] L. Lamport, R. Shostak, and M Pease. The byzantine generals problem. ACMTransactions on Programming Languages and Systems, 4(3):382{401, July 1982.[MA70] F. P. Mathur and A. Avizienis. Reliability analysis of a hybrid-redundant digitalsystem: Generalized triple modular redundancy with self-repair. In 1970 SpringJoint Comput. Conf., AFIPS Conf. Proc., volume 36, 1970.[MA91] D. Moss�e and A. K. Agrawala. Resilient computation graphs for distributed real-time environments. Technical Report CS-TR-2613, Dept. of Computer Science,University of Maryland at College Park, 1991.[Mar67] J. Martin. Design of Real-Time Computer Ssytems. Prentice-Hall, EnglewoodCli�s, NJ, 1967.[MN82] D. Menasce and T. Nakanishi. Optimistic versus pessimistic concurrency controlmechanisms in database management systems. Information Systems, 7(1):13{27, 1982.[Mos93] D. Moss�e. A Framework for the Development and Deployment of Fault TolerantApplications in Real-Time Systems. PhD thesis, University of Maryland, 1993.[MSA92] D. Moss�e, Manas Saksena, and Ashok Agrawala. The Design of the MARUTISystem. In Proceedings Complex Systems Engineering Synthesis and AssessmentTechnology Workshop. Naval Surface Warfare Center, July 1992.[Nak93] H. Nakazato. Issues on Synchronizing and Scheduling Tasks in Real-TimeDatabase Systems. PhD thesis, University of Illinois at Urbana-Champaign,Jan. 1993.[Neu56] J. Von Neumann. Probabilistic logics and the synthesis of reliable organismsfrom unreliable components. In Automata Studies, 1956.[NK83] Nicola and Kylstra. A model of checkpointing and recovery with a speci�ednumber of transactions between checkpoints. In Proceedings of Performance83, pages 83{99, 1983.[OS94] Y. Oh and S. H. Son. Scheduling hard real-time tasks with tolerance of multi-processor failures. In Microprocessing and Microprogramming, pages 193{206,1994.[Pie65] W. H. Pierce. Failure Tolerant Computer Design. Academic Press, New York,NY, 1965.[RBK90] V. P. Roychowdhury, J. Bruck, and T. Kailath. E�cient algorithms for recon-�guration in vlsi/wsi arrays. IEEE Transactions on Computers, 39(4):480{489,Apr. 1990.[Rob82] J. Robinson. Design of Concurrency Controls for Transaction Processing Sys-tems. PhD thesis, Carnegie Mellon University, 1982.92

[Ros92] A. L. Rosenberg. The diogenes approach to testable fault-tolerant vlsi processorarrays. IEEE Transactions on Computers, 32(10):902{910, Sep. 1992.[RSL88] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocolsfor multiprocessors. In Proceedings of the Real Time Systems Symposium, pages259{269, 1988.[Sch90] H. D. Schwetman. CSIM reference manual (revision 14). Technical Report ACA-ST-257-87 Rev 14, Microelectronics and Computer Technology Corporation,1990.[SdSA94] M. Saksena, J. da Silva, and A. Agrawala. Design and Implementation ofMaruti-II. In Sang Son, editor, Principles of Real-Time Systems. Prentice Hall,1994. Also available as CS-TR-2845, University of Maryland.[Son91] S. H. Son. Scheduling real-time transactions. In Proceedings of the Real TimeSystems Symposium, pages 25{32, 1991.[SRL87] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An ap-proach to real-time synchronization. Technical Report CMU-CS-87-181, Dept.of Computer Science, Carnegei-Mellon University, 1987.[SRSC91] L. Sha, R. Rajkumar, S. Son, and C. H. Chang. A real-time locking protocol.IEEE Transactions on Computers, 40(7):793{799, July 1991.[SS83] R. Schlichting and F. Schneider. Fail-stop processors: An approach to designingfault-tolerant computing systems. ACM Transactions on Computer Systems,1(3):222{238, Aug. 1983.[Tri82] K. S. Trivedi. Probability and Statistics with Reliability, Queuing, and ComputerScience Applications. Prentice-Hall, Englewood Cli�s, NJ, 1982.[Ulu92] O. Ulusoy. Concurrency Control in Real-Time Database Systems. PhD thesis,University of Illinois at Urbana-Champaign, July 1992.[Upa90] S. J. Upadhyaya. Rollback recovery in real-time systems with dynamic con-straints. In The 14th Annual International Computer Software and ApplicationsConference COMPSAC 90, pages 524{529, 1990.[US86] S. J. Upadhyaya and K. K. Saluja. A watchdog processor based general rollbacktechnique with multiple retries. IEEE Transactions on Software Engineering,12(1):87{95, Jan. 1986.[VLH91] J. P. C. Verhoosel, E. J. Luit, and D. K. Hammer. A static scheduling algorithmfor distributed hard real-time systems. Journal of Real Time Systems, 3(3):227{246, Sep. 1991.[WKF85] C. J. Walter, R. M. Kiechhafer, and A. M. Finn. MAFT: a multicomputerarchitecture for fault-tolerance in real-time control systems. In Proceedings ofthe Real Time Systems Symposium, pages 133{140, 1985.93

[XP90] J. Xu and D. L. Parnas. Scheduling processes with release times, deadlines,precedence, and exclusion relations. IEEE Transactions on Software Engineer-ing, 16(3):360{369, Mar. 1990.[ZR87] W. Zhao and K. Ramamritham. Simple and integrated heuristic algorithms forscheduling tasks with time and resource constraints. Journal of Systems andSoftware, 7:195{205, 1987.

94

