Scheduling Issues in
Real-Time Systems '

Chia-Mei Chen
Institute for Advanced Computer Studies
Systems Design and Analysis Group
Department of Computer Science

University of Maryland, College Park, MD 20742

June 19, 1995

!This work is supported in part by ARPA and Philips Labs under contract DASG-92-0055 to
Department of Computer Science, University of Maryland. The views, opinions, and/or findings
contained in this report are those of the author(s) and should not be interpreted as representing the
official policies, either expressed or implied, of the Advanced Research Projects Agency, PL, or the
U.S. Government.

Chapter 1

Introduction

Real-time systems (RTS) have drawn a lot of attention and become an active area of re-
search, because of the importance of their applications, such as defense, avionics, robotics,
industrial automation, and stock trading. In particular, one of the most intensive research

area in RTS is the domain of scheduling [AGMS&8, Bur90, CJL89, CL9I0b].

The result of a real-time application is valid only if the application functions correctly
even with underlying faults and its real-time constraints are satisfied. Besides real-time
constraints, tasks usually have resource requirements, such as exclusive access of certain
resource or inter-task communication. Some real-time applications may have intensive data
processing; we call such system real-time database system (RTDBS) and the application
running on RTDBS is called transaction. Transactions must have data access requirements
because of their nature. Besides resource requirements, transactions also have real-time
constraints.

Scheduling tasks in RTS or scheduling transactions in RTDBS needs to consider real-
time constraints, resource requirements, and fault-tolerance goals. In this dissertation, we
address some scheduling issues, namely, scheduling tasks with resource requirements in
RTS, scheduling transactions with resource requirements in RTDBS, scheduling tasks with
fault-tolerance goals.

1.1 Motivation and Approaches

To schedule tasks with resource requirements in HRTS, resource synchronization or con-
trol protocol is employed to permit exclusive access to shared resources, while preventing
deadlocks and guaranteeing that timing constraints are satisfied.

One approach to synchronization involves extending priority-driven protocols. In this
class of protocols, each task has an associated priority that is used to determine access to
shared resources (including the processor). When synchronization is permitted, priority-
driven protocols are susceptible to potentially unpredictable delays due to priority inversion.
Priority inversion [SRL87] occurs where a higher priority task is forced to wait for lower pri-

ority task. Some amount of priority inversion is unavoidable to gunarantee mutual exclusion;
however, it must be bounded to allow schedulability analysis and minimized to improve
processor utilization bounds.

With the exception of Multiprocessor Priority Ceiling Protocol (MPCP) [RSL88], most
resource synchronization protocols, in the context of preemptive priority-driven scheduling,
have been developed solely for uniprocessor systems. MPCP does not allow nested accesses
to global resources, i.e., it does not allow a task to simultaneously lock more than one
global resource. A global resource is one that may be accessed by tasks assigned to different
processors. This limitation on the use of global resources may not satisfy varying resource
access requirements, and may lead to unnecessary blocking. For example, some tasks may
only need access to a small unit of global data, while other tasks may need to lock the
entire resource. With MPCP, all tasks are forced to lock the entire global resource to
guarantee consistency. The situation is analogous to using file locking, when record locking
would suffice. We know that a finer granularity of synchronization allows a greater degree
of concurrency, while coarser granularity imposes less overhead. A balanced application of
fine granularity can gain the advantages of parallelism in return for a reasonable overhead
cost. The insights motivate us to propose a priority ceiling based resource synchronization
protocol, for multiprocessor HRTS, that allows a task to simultaneously lock multiple global
resources.

Scheduling algorithms for data intensive real-time applications (transactions) need to
accompany with concurrency control to enforce data consistency and to satisfy timing con-
straints simultaneously. We call such system real-time database systems (RTDBS). One
major objective in traditional database systems is to minimize the average response time
of a transaction, while in RTDBS minimizing the number of transactions that miss their
deadlines is a major concern. Transaction scheduling and concurrency control in RTDBS
try to fulfill this objective while maintaining data integrity and consistency.

Priority-driven concurrency control methods usually favor high priority transactions.
However, higher priority transactions do not necessarily have urgent timing constraints.
For example, suppose a system predefines that every occurence of transaction H has higher
priority than that of transaction X and both have the same relative deadline. Suppose an
occurence of X arrives earlier than that of H. Therefore, low priority transaction X has
tigher timing contraint than H. It might be the case that low priority transaction X with
a tight timing constraint conflicts with higher priority transaction H with a looser timing
constraint and has to wait or restart. After all, the low priority transaction X might miss
its deadline. Let F4 and D4 be the execution time and the deadline of transaction A and
L4 be the latest time to start execution of A, i.e. Ly = (D4 — E4). A transaction A is
said to have a tighter timing constraint than transaction B, or be more urgent than B, if
Ly is less than Lp, i.e, the latest time to start execution of A is earlier than that of B.
A transaction A is restartable if its latest time to start execution is later than the current
time. By the concept of restartability, we can discard late (non-restartable) transactions
before their deadlines expire and save resources. These observations motivate our research
to examine if the knowledge of execution time can help us make better data resolution
decision.

The deployment of execution time information to improve the performance of optimistic
concurrency control algorithms is not trivial. One possibility is to give preferential treat-
ment to short transaction in data conflicts, for example, waiting for short transactions to
commit if the validating transaction conflicts with short transactions. However, for the
transaction with urgent timing constraint, such waiting might cause it to miss the deadline.
Therefore, the number of transactions that miss their deadlines might increase. Besides, giv-
ing preferential treatment to short or long transactions might not satisfy certain properties,
such as fairness and freedom of starvation. Therefore, this research studies the significance
of the knowledge of the execution time in optimistic concurrency control.

RTS should perform applications correctly and meet the deadline requirements even with
underlying failures. Hence, fault-tolerance is an inherent requirement for RTS. Faults can be
classified as hardware and software faults. A software fault refers to a design or coding fault
in a software system; a hardware fault refers to any deviation of a machine state from correct
state. Hardware faults can be caused by transient disturbance, environmental disturbance?
[KS89] and permanent failure of a component. The fault model for our research considers
transient and permanent faults.

The simplest way of achieving fault-tolerance is to use fully redundant hardware or to
replicate all the tasks in the system. These naive approaches increase the communication
cost and need a voting mechanism to get the results of execution. Hence, the overhead
and the resource usage are quite large in these cases. Besides, some systems might not
have enough resources to replicate all tasks, or does not have fully redundant hardware
architecture. But, they have fault-tolerance requirement. In non-real-time systems, a task
can rollback many times to skip a transient fault, since it does not have timing constraint.
Tasks in RTS might not have such luxury to roll back several times or even once. We are
interested in static fault-tolerant scheduling which can pre-analyze the execution profiles of
tasks. We may only need to replicate some tasks which have stringent timing constraints
and can achieve very high degree of system reliability.

1.2 Contributions

To summarize, the major contributions of this dissertation are:

e We present resource synchronization protocols for multiprocessor HRTS and the sim-
ulation results show that the performance of the proposed protocols is superior to
that of the existing protocols.

e We study the performance of optimistic concurrency control protocols with the knowl-
edge of execution time and the simulation results illustrate that proper use of execution
time information can improve the system performance.

o We present a static fault-tolerant scheduling algorithm which adaptively and dynam-
ically puts temporal and spatial redundancy into the schedule in order to improve

! Environmental disturbance, such as electromagnetic noise and radiation, often cause correlated transient
failures

system reliability.

o We utilize Markov chain models to estimate reliability for RTS using static scheduling
and demonstrate the correctness of the proposed reliability models by simulation.

o We demonstrate that our proposed fault-tolerant scheduling method provide more
reliable systems than the basic fault-tolerant scheduling schemes, replication and roll-

back.

1.3 Organization of the Dissertation

Chapter 2 is devoted to an overview of issues related to scheduling in RTS. This chap-
ter contains a survey of published research on the subject of scheduling algorithms and
synchronization protocols for RTS or RTDBS. Chapter 3 presents the proposed resource
synchronization protocols for RTS and evaluates the performance of the proposed and ex-
isting protocols. Chapter 4 presents a set of optimistic concurrency control protocols using
the knowledge of execution time. In this chapter, we give a review on the mechanism of op-
timistic concurrency control and the foundmental structure of the proposed protocols. We
also demonstrate the significance of the knowledge of execution time in improving system
performance. In Chapter 5, we propose a fault-tolerant scheduling algorithm. An abstract
system model, applicable to the proposed scheduling algorithm and reliability models, is
stated. The reliability models used for estimating system reliability are presented in Chap-
ter 6. In Chapter 7, we present the basic fault-tolerant scheduling algorithms which are used
as the baseline for evaluating the performance of the proposed scheduling algorithm. Then,
we evaluate and compare the performance of the proposed and basic scheduling algorithms.
Finally, Chapter 8 summarizes the results obtained in this dissertation and outlines future
avenues to explore.

Chapter 2

Related Work

The objective of RTS design is to produce outputs correctly and within deadlines, in spite
of occasional uncertainty. Most of research in real-time scheduling has been based on the
assumption of periodic workload with static characteristics. Scheduling can be carried out
off-line or on-line. Off-line (static) scheduling can provide predictable execution behavior
for a fixed set of tasks; while on-line scheduling can jointly accept periodic and aperiodic
tasks. To schedule tasks with hard deadlines, off-line scheduling is a frequent approach to
meeting timing constraints. For a system with dynamic workload, on-line scheduling is a
common proposal, which can adaptively adjust the system workload and reject tasks when
their constraints cannot be met.

In order to provide predictable behavior for real-time processing, the requirements or
constraints of the tasks must be known a priori. For scheduling tasks with exclusive accesses
to shared resources, resource control protocol is deployed to coordinate the accesses of
resources in maintaining data consistency and deadlock avoidance. For scheduling tasks with
fault-tolerance requirements, fault-tolerance scheme is used to improve system reliability.
Our research focuses on the issues on scheduling tasks with resource or fault-tolerance
requirements. Hence, in this chapter, we review published work in real-time scheduling
which considers resource synchronization, concurrency control, and fault-tolerance.

2.1 Scheduling with Resource Synchronization

It is a fundamental feature for RTS to allow a set of tasks to exclusively access physical
or logic shared resources. Real-time applications are hard to design on a system without
such feature. For preemptive scheduling, one frequently used strategy for resource control,
to have predictive execution behavior, is priority-driven protocols. This class of protocols
employs blocking to enforce synchronization. The advantages of priority-driven protocols
are that theoretically they provide worse case bounds for blocking time and schedulability
tests; the shortcomings are that they are conservative in estimating blocking time and ignore
the overhead of context switches. The former shortcoming is the price we need to pay for
schedulability tests. There is rare work on the issue of estimating the impact of context

switches.

Sha et al. introduced the concept of priority inheritance protocols to solve the priority
inversion problem [SRL87]. One of the more attractive protocols they proposed, the priority
ceiling protocol (PCP), prevents both deadlock and transitive blocking. Transitive blocking
occurs where a job J is blocked by job J; which is in turn blocked by another job. They
also developed sufficient schedulability conditions for a set of periodic tasks to be scheduled
via the PCP algorithm on a uniprocessor system. Rajkumar et al. subsequently developed
multiprocessor and distributed versions of PCP [RSL88].

Chen and Lin developed the dynamic priority ceiling protocol (DPCP) to enhance EDF
scheduling algorithm [CL90a]. Baker proposed a stack-based resource allocation policy
(SRP) which can be applied to either RM or EDF scheduling algorithms [Bak90]. PCP
for multiple-instance resources is also developed in [CL91]. Chen and Lin summarized the
schedulability conditions of several priority-driven protocols, and proposed a set of sufficient
schedulability conditions for EDF-based resource control protocols [CLIO0b].

A review of resource control for HRTS is published in [Aud91]. It identifies the possible
techniques for uniprocessor and multiprocessor systems.

For non-preemptive scheduling, mutually exclusive access of shared resources is solved
implicitly, since the access of shared resources will not be interrupted. Zhao and Ramam-
ritham proposed an on-line scheduling algorithm based on branch and bound approach to
scheduling tasks that arrive dynamically and have timing and resource constraints [ZR87].
Heuristics were devised to shrink the search space. Off-line scheduling algorithms can also
be developed by means of branch and bound approach. Xu and Parnas proposed such
algorithm for finding an optimal schedule on uniprocessor systems [XP90]. Herhoosel and
Hammer considered the problem of scheduling periodic tasks which have deadlines, resource
requirements, and precedence constraints in distributed HRTS [VLH91]. Instead of using
branch and bound approach, they adopted heuristic backtracking for searching feasible
schedule, since the search space is large.

2.2 Scheduling with Concurrency Control

Scheduling in RTDBS needs concurrency control protocol to enforce data consistency and
to satisfy timing constraints. Lin and Son gave a survey on the issues of schedulability and
serializability in RTDBS [LS93]. Since the objectives of RT'DBS are different from those of
conventional database systems, scheduling and concurrency control used for conventional
systems should be re-evaluated and might need to be extended for RTDBS. Several research
efforts have been carried out in evaluating the performance of concurrency control and the
impact of real-time constraints in RTDBS [AGMS&8, AGM&89, HSTRS&9, Son91]. Buchmann
et al. presented a framework for integrating real-time scheduling and concurrency control
and a summary of real-time concurrency control algorithms [BMHDS89].

Several priority ceiling based protocols were proposed; these protocols provide bounded
blocking times imposed by accessing data objects and schedulability tests for scheduling a
set of periodic tasks in uniprocessor RTDBS [SRSC91, Nak93]. Haritsa et al. proposed a

priority-based optimistic concurrency control algorithm WAIT-50 [HCL90] which performs
better than the traditional optimistic algorithm, OPT-BC [MN&82, Rob82]. They concluded
that priority information can improve the performance of optimistic concurrency control in
RTDBS. Ulusoy proposed several locking and timestamp based concurrency control proto-
cols for RTDBS [Ulu92]. He also developed single-site and distributed RTDBS models for
evaluating the proposed protocols.

Most of the proposed real-time concurrency control protocols mentioned above incor-
porate priority information into data resolution decision. None of the aforementioned work
makes use of execution time information to support the decision policies of concurrency
control. Qur research investigates the impact of execution time on data resolution decision
of concurrency control.

2.3 Scheduling with Fault-Tolerance

Rollback and redundancy are dominant approaches to fault-tolerance. Rollback schemes
often tightly connect to the checkpoint insertion methods. Several researchers have inves-
tigated the problem of selecting a checkpoint interval which is optimal with respect to a

certain objective [CR72, Upa90, US86, Gel79, NK83, GRWSS].

The earliest attempt to obtain highly reliable system was through redundancy [Neu56].
Redundancy schemes use several identical components operating in parallel and usually
need a voting mechanism to get the results of execution. Redundancy schemes can be
classified as hardware redundancy and software redundancy. Triple modular redundancy
(TMR) is an example of hardware redundancy [Mar67, Pie65]. A slight different way of
hardware redundancy is a hybrid system which uses TMR and standby spares switched
in when needed [MA70]. Much work has been done on fault-tolerant architectures using
redundancy strategy. Many of the techniques required either a number of spare processors
[BB87, Bat80, BCH91, KJC89, Ros92, RBK90], or a switching mechanism assumed to be
immune to faults [BB87, Bat80, BCH91, RBK90]. Walter et al. presented a multicomputer
architecture for fault-tolerance (MAFT) which was designed for RTS requiring both high
performance and reliability [WKF85]. System overhead tasks are executed at each node by a
special purpose device, operations controller (OC), and the application tasks are performed
on application processors (AP). A number of APs are connected together through OCs.
Multiple copies of a task can run on different APs; OCs will take care of consistency and
communication problems.

Software redundancy is to have multiple copies or versions of a software program run-
ning on different processors. Chen and Cherkassky devised k-circular shifting algorithm to
allocate tasks to processors statically and redundantly, so that if some processors fail during
the execution all tasks can be completed on the remaining processors [CC90].

Rollback strategy can be considered as temporal redundancy in which multiple copies
of a task are run in different time intervals. Typically transient errors subsides quickly;
one rollback often can skip an independent transient error. A permanent error might be
detected by encounting the same error on multiple retries. Usually a task does not roll back

from the beginning of the task, it rolls back to the most recent checkpoint and consumes
resources only when it needs to. However, for redundancy strategy, multiple copies of a
task run and consume resources regardless of errors. Hence, rollback strategy can save
more resources than redundancy strategy. In another point of view, rollback strategy can
accept larger workload. Rollback technique has time and space overheads for saving and
reloading system state, while redundancy techniques often have communication overhead
and time overhead on voting to get the results of execution. Redundancy strategy is more
deterministic in which redundant copies run no matter what happens. Hence, such system
has more predictable behavior and it is easy to meet timing constraints in RTS.

These two strategies have their own advantages and disadvantages, usually they are
complementary. Few efforts have been made on combining these two strategies to get a
reliable real-time system with the guarantee of satisfying timing requirements. This research
attempts to develop a hybrid technique to extract the benefits of both to build up a more
reliable system than that using only rollback or redundancy.

Chapter 3

Resource Synchronization
Protocols

Scheduling tasks with needs to exclusively access some resources must consider resource
synchronization problem. The common approach to synchronization in real-time systems
(RTS) is priority-driven protocols. The order of accessing resources is according to the pri-
ority of the task, that is, higher priority task gets the priority to access resources. Priority
inversion [SRL87] happens when a higher priority task tries to access a resource which is
currently accessing by a low priority task. The higher priority task has to be blocked in order
to maintain data integrity. Such blocking causes discontinuity in scheduling, results in un-
predictable behavior, and degrades schedulability. The proposed protocol tries to minimize
the priority inversion in order to obtain higher schedulability and system throughput.

In this chapter, we propose a synchronization approach based on priority ceiling protocol
for multiprocessor hard real-time systems (HRTS). The proposed approach can be used to
enhance rate monotonic (RM) or earliest deadline first (EDF) scheduling algorithms. In
addition, we extend MPCP [RSL88] to an EDF-based resource synchronization protocol.
We present the results of performance analysis of the proposed approach and MPCP and
show that the proposed approach improves schedulability. This improvement is due to the
fact that our approach allows a greater degree of parallelism.

In the next section, we state the assumptions of the proposed approach and present the
notation used in the rest of the chapter. Section 3.2 presents a new version of multiprocessor
synchronization protocol, along with its properties and schedulability analysis. MPCP is
investigated and extended in Section 3.3. Section 3.4 compares the performance of the
proposed approach and the existing approach.

3.1 Overview and Notation

Let P1,Ps, ..., Py be the processors of the system. Fach task is assigned to a specific pro-
cessor. A resource is any object that requires serialized access. Each resource is associated
with a binary semaphore which is used to guarantee mutual exclusion. A resource may be

either global or local. Global resources can be accessed by tasks assigned to some (possibly
complete) subset of the processors, while local resources are only accessible to the tasks on
that particular single processor. A set of n; periodic tasks is associated with each processor
P;. Each task T' can be described by a triple (w, e, L), where w is the period of the task; e
is the execution time of the task; and L is a list of resources accessed by the task. Access
to a shared resource occurs within the corresponding critical section (i.e. a sequence of
instructions preceded by a lock operation of the associated semaphore and followed by an
accompanying release operation). To distinguish between critical sections that access global
resources and those that access local resources, we call the former global critical sections and
the latter local critical sections. Furthermore, semaphores that guard global resources are
called global semaphores and those that guard local resources are called local semaphores.
We use the terms resource, critical section, or semaphore interchangeablely, depending on
the context.

For each task, an instance of the task, called a job, is generated for every period of
the task. The release time of a job is the beginning of the period and the deadline of a
job is the end of the period. P;(J) denotes the priority of the job J at time ¢ and P(J)
denotes the priority of the job J at the current time. Cy(.9) denotes the priority ceiling of
the semaphore S at time ¢ and similarly C'(.9) refers to the priority ceiling of the semaphore
S at the current time. When priorities are static, the subscript ¢ is dropped. The remote
processors of processor P are the processors which share global resources with P. Only
jobs assigned to remote processors of processor P can interfere with the jobs on processor
P. Let J be assigned to processor P. We define the remote jobs of J, or of P, as the jobs
assigned to the remote processors of processor P, and similarly the local jobs as the jobs
assigned to P. Jobs Ji,Jo, ..., J, are listed conventionally in descending order of priority
with J; having the highest priority, i.e., P(J1) > P(J2) > ... > P(J,). The jth critical
section of job J; is denoted by z; ;.

Even though the priority ceiling protocol (PCP) [SRL87] is based on RM scheduling
and the dynamic priority ceiling protocol (DPCP) [CL90a] is based on EDF, the concepts
underlying both protocols are similar, varying primarily in their definitions of priority. Both
protocols assign priority ceilings to semaphores which are used to defer some requests that
could potentially be granted. The purpose of deferring some requests is to reduce and bound
blocking due to priority inversion. The priority ceiling of a semaphore 5, C(.9), is defined as
the maximum priority of all jobs that are currently locking or will lock 5. For a particular
job J, 5% denotes the semaphore with the highest priority ceiling that is currently locked
by a job other than J. Whenever a job J wants to access a resource, it must first acquire
an exclusive lock on the semaphore associated with that resource. The lock is granted only
if P(J) > C(5%); otherwise job J is blocked until the lock may be granted. The job holding
semaphore 5™ inherits the priority of the highest priority job that is blocked by $*. When
a job exits from a critical section, it releases the semaphore, and the highest priority job
waiting for the semaphore can then lock the semaphore. There are two types of blocking?.
A job J is blocked if it attempts to lock some semaphore 5, while some lower priority job Jp,
has locked a semaphore 5" whose priority ceiling exceeds the priority of J, C'(S") > P(J).

!We use the term blocking to refer to sitnations when a higher priority job is temporarily denied a resource
(including the processor) due to a lower priority task.

10

The other form of blocking occurs when there is a higher priority job Jy that is already
blocked due to some lower priority job Jy. Though the concepts do not change substantially,
these protocols require careful modification to be extended to multiprocessor systems.

3.2 Multiprocessor Dynamic Priority Ceiling Protocol C
(MDPCP-C)

In this section, we present a dynamic priority multiprocessor version of the priority ceiling
protocol (MDPCP-C) based upon EDF scheduling. The protocol imposes a few restrictions
which we believe are often acceptable. MDPCP-C only allows global (local) critical sections
to be nested within other global (local) critical sections; in other words it is not possible
for a job to simultaneously lock both a global and a local semaphores. An outermost global
critical section and its nested inner global critical sections are viewed as a unit and can be
shared by a group of processors. Any global semaphores that are ever locked simultaneously
by the same job, (i.e. that ever appear in the same nested critical section), must be shared
by exactly the same set of processors. If a global semaphore 5 is shared by processors P; and
P;, we say that S is a global semaphore common to P; and P;. In the following subsections,
we present the fundamental concepts behind MDPCP-C, give proofs of some of its useful
properties, and analyze conditions under which a feasible schedule may be assured.

3.2.1 Basic Idea Behind MDPCP-C

Rajkumar et al. defined remote blocking as the blocking caused by remote jobs, regardless
of their priorities [RSL88]. They then proved that the remove blocking time of a job
blocked while attempting to enter a global critical section is a function of the access time of
critical sections if and only if a job within the global critical section cannot be preempted
by jobs executing outside critical sections. To ensure that blocking times are predictable,
MDPCP-C will not allow any job to preempt a job executing within a global critical section.
Since local critical sections may not overlap or nest with global critical sections, we can use
DPCP to synchronize access to local resources. Events which may affect global resources
such as locking or releasing a global semaphore or the arrival of a new job require more
attention as will be discussed shortly. Recall from the previous section that the priority
ceiling of a global semaphore 5, C'(9), is the priority of the highest priority job that is
currently holding or will hold the semaphore S at the current time. C'(5) may vary with
time as priorities are reassigned according to the EDF scheduling discipline. Let job J be
bound to processor P;.

1. The highest priority job eligible to execute on processor P; is assigned the processor
if no local job with lower priority is in a global critical section.

2. Before a job J enters a global critical section, it must lock the associated semaphore
5. Let §S§7 denote the set of global semaphores accessible from processor P; that are
currently locked by remote jobs of J. Job J is granted the lock and may enter the

11

critical section if it satisfies the locking condition:

P(J) > SIél;L;(*(C(S)).

Otherwise, it is blocked and joins the queue for semaphore 5. The queue is priority-
ordered, i.e., the job with the highest priority waiting in the queue locks the semaphore
when it is released.

3. If a job J is blocked and it has not locked any global semaphores, then a remote job .J.
with the priority lower than J may lock a global semaphore whose priority ceiling is
greater than or equal to P(J) only if J, was executing within a global critical section
when J blocked. This restriction holds even if the remote job satisfies the locking
condition described in rule 2.

4. A job J uses its original priority, unless it is in a critical section and blocks higher
priority jobs. In that case, it inherits the priority of the highest priority job that it
blocks. The original priority is restored upon exiting the critical section.

MDPCP-C gives rise to four distinct types of synchronization delay: indirect and direct
blocking, remote and implicit preemption. If a job Jy is in a global critical section, it will
block other local jobs with higher priorities (see rule 1). We use the term indirect blocking
to refer to such blocking. The blocking enforced by the locking condition described in rule
2 is called direct blocking or remote preemption, especially when the blocking is caused by
higher priority jobs. The blocking enforced by rule 3 is called implicit preemption. Note
that the blocking caused by synchronization of local resources is also called direct blocking
since the uniprocessor protocol uses the same locking condition described in rule 2.

Rule 1 implies that at most one job on each processor can be within a global critical
section. Hence, each semaphore in S§7 must be locked by a remote job of the blocked job.
In addition, the priority of a job that has locked a semaphore in S may be either higher
or lower than that of the blocked job.

Because of rule 2, a job J may be remotely preempted by a higher priority remote job.
For example, suppose J, is a remote job of J with higher priority than J and both are
waiting for the same global semaphore 5,. J, will lock the semaphore 5, before .J, since its
priority is higher than that of .J. J is directly blocked by .J, when J, locks S,. We call this
special case of direct blocking remote preemption. In uniprocessor systems, conventionally,
blocking occurs when a job is blocked by a lower priority job. Therefore, to conform with
the definition of blocking used in uniprocessor protocols, we will in the future only use the
term direct blocking when discussing blocking caused by lower priority jobs. We will refer
to blocking due to a higher priority remote job as remote preemption.

Implicit preemption ensures that a higher priority job will not be infinitely blocked
by lower priority remote jobs. The following two examples show the need for implicit
preemption.

Figure 3.1 shows the configuration of the system used in the next two examples. Py,
P32, and P53 are the processors of the system and .51, .53, and S5 are the global semaphores.

12

J3 Js
J1

Priority ceiling of

J2 J4
global semaphores:
ONON:
C(52) = P()
' C(53) = P(J5)

S S'3 S

Figure 3.1: Architecture used in examples.

(We don’t show any local semaphores.) 57 is accessible from P; and Ps. 53 is accessible
from Py and Ps, and S5 is accessible from P, and Ps. Job Jy is assigned to processor P,
jobs J, and J3 to Py, and jobs J4 and Js to Ps. 91 is accessed by jobs Jy, J4, and Js, and
99 is accessed by Jy, Jo, and J3. No job accesses 93.

Figure 3.2 illustrates how a job can be infinitely blocked by lower priority jobs, if we do
not impose rule 3. Consider the following sequence of events. Suppose that J; attempts to
lock global semaphore .57 while J; has locked global semaphore 55. In this case, J, directly
blocks Jy. Before J; releases semaphore S5, Jy locks 57, since 883 is empty. Therefore,
J1 is directly blocked once again. The same scenario can happen on processor P;. Before
J4 releases 54, J3 locks S5, and hence it blocks Jy. This sequence of events can repeat
indefinitely, and cause J; to be infinitely blocked. Figure 3.3 shows how, under the same
circumstances, job J; will not be infinitely blocked if rule 3 is enforced.

Synchronization of global resources contributes new blocking factors that do not arise
in uniprocessor systems. To facilitate computation of the worse case blocking time induced
by this protocol, we define two kinds of blocking sets: o and 3. We also define three sets of
jobs, GP(J), LP(J)and LLP(J), useful in computing o and 3. Each set of jobs contributes
different synchronization delays.

Let GP(J) be the set of remote jobs of job J whose priorities are higher than that of
J, and let LP(J) be the set of remote jobs of job J whose priorities are lower than that of
J. Finally, LLP(J) is defined to be the set of the local jobs of job J with priorities lower
than J.

o [3; 1 denotes the set of the critical sections of the lower priority job J; which can
directly block Ji. 3;pp(s;) denotes the set of critical sections of jobs in LP(J;) that
can directly block J;. §; ppp(J;) is defined similarly. Let §; be the set of critical sections
of all lower priority jobs of .J; that can directly block J;. 8; = B; Lp(s;)U B Lop(J;) and
Bi.pa) O Birp) = (. Let P be the processor to which job .J; is bound. Elements

13

Figure 3.2: An example without implicit preemption.

Py

r-r—-r——>~""->">"~>""™""™""™""™>""™""™"™""™"™"™>"™""™"""™"""™*"""~*""~>"~>"~""~*"~*"*>"~>~"~"~"~"~>*"%¥”"%¥”"¥”"”©” 7” =¥ =" =" =~~~ “— =—— ™7 !
I I
L A B [y l
! DB by J3 |
L e e o e o |
P

r-r-r—-—>"">">""™>"""™"™""™"™""™""™"™""™*™"™"™>"™""™~>"""™~*""~*""~*"~>""~>"~""~*"~*"~*Y""¥*"~"~>"~">”"%¥”"@¥”"@” " @” ©” =>”" 9" =~ = "~~~ “—~ “— —— 7 !

L e o |
P

:‘ ————————————————————— Phydy -~~~ """ """ TTT oo TTo oo ooo—- ‘:
- S — E— .
| 1B by J5 RP by Jy |
| |
A f [B v
I RP by J1 I
L e e e e e o e e o -

Figure 3.3: An example with implicit preemption. (IP = implicit preemption. RP = remote
preemption.)

14

in B3; prps;) are the local critical sections of processor P, while elements in 5; 1p(J;)
are the global critical sections of P.

e «a; 1 denotes the set of all critical sections of local job J;, which can indirectly block
J;. «; is defined similarly.

3.2.2 The Properties of MDPCP-C

Both DPCP and PCP prevent transitive blocking and deadlock. These useful properties
are preserved in MDPCP-C.

Lemma 3.1 Suppose Jy is directly blocked by a remote job Ji on global semaphore S.
Then under MDPCP-C, Jy is not within any critical section.

Suppose Jg is within a critical section guarded by S’ when it is directly blocked by J7, on
S. 5" must be a global semaphore and S’ and 5 are common to the processors to which Jg
and Jy, are bound. Jy must lock S’ either before or after J, locks 5. (1) First, suppose Jp,
locks S after Jg has locked S’. Then P(Jr) > C'(5'), and hence P(Jg) > P(Jr) > C(57).
However, C'(5') > P(Jg) due to the definition of priority ceiling. (2) Now, suppose Jy
locks S after J;, has locked 5. Thus P(Jy) > C(S5). But since Jy is blocked by S,

P(Jr) < C(S5). Since both cases lead to contradictions, the lemma follows.
a

Since global critical sections can be nested within other global critical sections, a job
can be within several critical sections simultaneously. The above lemma implies that once
a job enters an outermost critical section, it will not be blocked before it exits from that
critical section. Hence, no matter how many nested critical sections are entered during the
time the job is within the outermost critical section, the job will not be blocked by any
lower priority job. Note that the job still can be preempted by a higher priority job.

Theorem 3.2 MDPCP-C prevents transitive blocking.

Let J;3 directly or indirectly block J;2 and suppose that J;; directly or indirectly blocks
Ji. If Ji3 directly blocks J;2, by Lemma 3.1, J;» is not within any of its critical sections.
By the definition of MDPCP-C, J;2 cannot block any jobs indirectly or directly. If J;3
indirectly blocks J;2, by the definition of MDPCP-C, J;; has not started execution. Hence,

Jio cannot directly or indirectly block a job.
O

Theorem 3.3 MDPCP-C prevents deadlocks.

Suppose deadlock may occur and let {.Jy, Js,...,J,} be a set of jobs that cause a waiting
cycle. Since, by Theorem 3.2 there is no transitive blocking, at most two jobs can be in the

waiting cycle. The rest of the proof is similar to the proof of Theorem 3.2.
O

15

3.2.3 Schedulability Analysis of MDPCP-C

In this subsection, we develop a set of sufficient conditions which, when satisfied, guarantee
that m sets of periodic tasks assigned to m processors will complete execution within their
periods when scheduled using MDPCP-C. Liu and Layland proved the schedulability con-
dition for uniprocessor EDF scheduling [LL73]. A set of n periodic tasks can be scheduled
by EDF algorithm if

€n
—+ =4 ...+ —<1 (3.1)
w

If we find upper bounds for the blocking factors of MDPCP-C, we can then derive sufficient
schedulability conditions using equation 3.1. The blocking factors can be better understood
with the aid of the following lemma.

Lemma 3.4 Whenever Ji attempts to enter an outermost global critical section, it can be
directly blocked by lower priority remote jobs for at most the duration of the global critical
section with the longest access time in By pp(,)-

Let V' be the set of remote jobs which are currently within global critical sections in
Br,Lp(Jy) and that block Jp at the time Jp requests a lock on a semaphore corresponding
to an outermost global critical section. During the blocking by jobs in V', a remote job with
the priority lower than Jy cannot enter a critical section. The jobs in LP(Jy) — V are
the remote jobs with priorities lower than Ji; hence, they cannot contribute any blocking.
Therefore, Jy can be directly blocked by a remote job with lower priority for at most the

duration of the longest global critical section in Sy 1p(Jy)-
O

The above lemma provides an upper bound for the direct blocking caused by remote
jobs with lower priorities, for each time that a job attempts to enter an outermost global
critical section.

We now address the computation of blocking factors. First, we define additional nota-
tion. Let LBy ; be the worse case direct blocking time of job J;; induced by one of its lower
priority local jobs (i.e., the local blocking time of Ji ;). Let GBj; be the worse case direct
blocking time of job Ji; induced by its lower priority remote jobs (i.e., the remote blocking
time of Ji ;) each time that J;; attempts to enter an outermost global critical section. Let
1By ; be the worse case indirect blocking time of job Ji;. Finally, we define dj; as the
number of times that .Jj ; enters an outermost global critical section.

By the definition of MDPCP-C, indirect blocking can only occur once during the ex-
ecution of a job. Lemma 3.4 showed that each time a job Jj; attempts to enter an out-
ermost critical section, it can be directly blocked by its remote jobs with lower priority.
Thus, the worse case blocking time induced by indirect blocking and remote blocking is
IBy; + dy; * GBy;. As for local blocking, every time Ji; suspends itself when it tries
to enter a global critical section, its local jobs with lower priorities might enter local crit-
ical sections which can later cause Ji; to be blocked. Local blocking factors contribute
di; * LBy ; in the worse case.

16

In addition to the above blocking factors, remote and implicit preemption will also occur.
When a job Jj; attempts to lock a global semaphore, it might be remotely preempted
by its remote jobs with higher priorities. In the worse case, it has to wait for all its
remote jobs with higher priorities accessing the global critical sections common to processor
Pr. So, in the worse case the blocking time caused by the remote preemption, RPj;, is
ZJJ,heGP(Jk,,') Chijh * [Whi/w;p], where ¢ 5 is the total access time that job J;; spends in
the global critical sections common to Py.

Implicit preemption occurs when a job Ji; wants to lock a global semaphore 5 and finds
that one of its higher priority remote jobs, .J;,, is directly blocked by SS7 and c(s) >
P(J;5). According to the definition of MDPCP-C, Ji; is implicitly preempted by .J; .
Each time job Ji ; attempts to lock a global semaphore whose priority ceiling is higher than
or equal to the priority of one of its higher priority remote jobs, P(J;4), it is implicitly
preempted. In other words, each time when Jj; wants to lock a global semaphore S, Jj ;
can be implicitly preempted for at most max; , eap(J,) GBjn, where C(8)> P(J;). To
simplify the computation of the total implicit preemption time, we express the worse case
of implicit preemption time of job Jy;, I P ;, as dj; * MaxXj , eGP(J; ;) GBj . Hence, the
worse case total blocking time of a job Ji; induced by MDPCP-C, B%DPOP_O, can be
expressed as follows.

BMPFPCP=C — By 4 dy;* (GBri+ LBy;) +
Do crgn [wri/win] +

I3 n€GP(Jk i)

di; GB:y. 3.2
ki *ijhencl;%)((t]k’,‘) Bh (3.2)

We need to know the elements of the sets LLP(Jy;), LP(Jy;), and GP(Jy;) for each
job Ji; to compute the blocking sets and preemption factors. The set of local jobs with
lower priorities, LLP(Jy;), of job Ji; is the same as the set of the lower priority jobs of J ;
defined in uniprocessor systems, since both refer to the jobs on a single processor. A job Jj
in LLP(Jy;) must arrive earlier and lock a local semaphore. It is preempted by .Ji; when
it is holding the semaphore such that later J; ; will be blocked. Since .Ji; is preempted, it
must have a later deadline. Consequently, the period of a job in LLP(Jj; must be longer
than that of Jj ;.

However, the set of remote jobs with lower priorities, LP(Jy;), of job Ji; does not
possess the same nice properties as LLP(Jy ;). Jobsin LP(Jy ;) are the jobs whose deadlines
are later than that of Jj ;, but not necessarily with earlier arrival times. So, they can be any
jobs on the remote processors of processor Py. The same theory applies to the set GP(Jy ;).
Consequently, GP(J;) = LP(Jy;) = GP(Jy;) = LP(J; ;). The sufficient schedulability

conditions can be stated as follows:

Theorem 3.5 Given m sets of periodic tasks on a system with m processors, where a set
of ny periodic tasks is assigned to processor Py. The sels of tasks can be scheduled by EDF
with MDPCP-C' as the resource control protocol, if the following conditions are satisfied:

Vi, 1<k <m,

17

scheduling

syn &cheme | gy EDF
protocol

CT approach | MSPCP-C MDPCP-C

RSL approach| MSPCP-R MDPCP-R
(=MPCP)

Figure 3.4: The mapping of the abbreviations for different approaches.

ex1+ Bra | ex2+ Broa €kn, + B
)) _I_)) _I_ . _I_ L L S 1‘
WE,1 WE,2 Wk ny

(3.3)

3.3 Multiprocessor Dynamic Priority Ceiling Protocol R
(MDPCP-R)

The multiprocessor dynamic priority ceiling protocol R (MDPCP-R) is based on a previ-
ously developed static priority multiprocessor protocol known as MPCP [RSL&S8]. To clearly
distinguish our dynamic protocol MDPCP-C from the static protocol MPCP, we will sub-
sequently use the acronym MSPCP-R to refer to the original MPCP protocol. MSPCP
is short for multiprocessor static priority ceiling protocol. The suffix R indicates that the
same resource control scheme is used as in MDPCP-R, and does not signify a revision to the
original MPCP protocol. MDPCP-R relies upon an EDF scheduling policy, but is otherwise
identical to MSPCP-R.

Figure 3.4 shows a brief mapping of the proposed protocols to the scheduling schemes,
where RSL approach means the approach adopted by [RS1.88]. Unlike CT approach (our
approach), theirs does not allow nested global critical sections. Otherwise, the assumptions
made by theirs do not differ from those required by ours.

Due to the varying restrictions concerning nested global critical sections, Both ap-
proaches take dramatically different policies to controlling access to global resources. To
allow nested global critical sections, our approach relies upon priority ceilings to reflect the
importance of global resources throughout the system. Thus ours requires a lock check-
ing protocol that is similar to that used in uniprocessor systems, but must be much more
complex. By contrast, due to its prohibition against nested global critical sections, RSL ap-
proach can use simple efficient atomic operations, such as test-and-set, to implement global
locking. Both approaches may use a uniprocessor synchronization protocol to manage local
resources.

18

3.3.1 Basic Idea of MDPCP-R

We use a slightly different definition of priority ceiling that we used in MDPCP-C. The
priority ceiling of a local semaphore Sy, C'(5L), is defined to be the priority of the highest
priority job that is accessing or will access the semaphore at the current time. This is the
same definition used in the (uniprocessor) DPCP. Recall from Section 3.2.1 that, in order
to easily bound remote blocking times, it is necessary to prevent jobs executing within
global critical sections from being preempted by jobs executing outside of critical sections.
Consequently, a job within a global critical section must have a priority higher than every
job executing outside of global critical sections. This is easily handled by introducing the
concept of the base priority to denote the priority that is higher than the highest priority
job in the entire system.

A job J; bound to P; is assigned a new priority, P(Ji, S), when it locks a semaphore 5,
and reverts to its previous priority when it releases the semaphore. The extended priority
Py, 5 is defined to be P(J;)if S is a local semaphore, and P(J;) plus the base priority if S
is a global semaphore. Since the remote priority ceilings of all global semaphores have been
increased by the base priority, a job executing within a global critical section has a higher
priority than any job outside of a global critical section. This is assured that a job that has
locked a global semaphore may only be preempted by a local job that locks another global
semaphore that has a higher remote priority ceiling.

The protocol can be described as follows:

1. When job J wants to access a local critical section, it uses DPCP to see if it can lock
the associated semaphore. i.e., J can seize the lock, only if P(J) > C(S5F), where
57 denotes the semaphore with the highest priority ceiling of all local semaphores
currently locked by jobs other than J. DPCP is used to synchronize access to local
resources.

2. If job J attempts to access a global critical section, it locks the associated semaphore
S if no other job has already locked 5. Otherwise, it joins the priority-ordered queue
associated with S using its original priority P(.J),

3. A job J locking a global semaphore 5, inherits the extended priority]5159, and reverts
to its previous priority upon releasing .5,.

4. A job J can lock 5, and preempt another job J' within another global critical section
guarded by ', if P(J,5,) > P(J',5}).

5. Whenever a global semaphore is released, it will be given to the highest priority job
waiting if the associated queue is not empty.

While a job has locked any global semaphore, it cannot attempt to lock any other
semaphore, whether it is local or global. Thus a job cannot deadlock while holding a lock
for a global semaphore. Jobs can simultaneously lock multiple local semaphores, but since
MDPCP-R uses DPCP to manage the access of local critical sections, a job cannot become
deadlocked within a local critical section. So MDPCP-R is deadlock free.

19

3.3.2 Schedulability Analysis of MDPCP-R

Blocking times in MDPCP-R depend upon one type of blocking that does not arise in
MDPCP-C. In MDPCP-R, a job within a global critical section 5 can preempt a local job
within another global critical section S’. Hence, it can induce another form of blocking delay
to jobs that waits for $’. Blocking times in MDPCP-R fall into the following categories:

1. Blocking by local jobs with lower priorities within local critical sections. When a job
Ji; attempts to lock a global semaphore S, it may suspend while waiting for some
job to unlock 5. In the meantime, one of its local jobs might lock a local semaphore
which will later cause job Jj ; to be blocked. Let LL By ; be the worse case access time
of a local semaphore accessed by a lower priority local job of job Jj; that can block
Jri. Let di; denote the number of times that Jj; locks a global semaphore. The
worse case blocking time caused by this scenario can be expressed as dj; x LLBy, ;.

2. Blocking by local jobs with lower priorities accessing global critical sections. This type
of blocking is similar to the previous one, except that, in this case, a lower priority
local job can lock or be waiting for a global semaphore that might later cause J; ; to
be blocked when Jj ; executes outside of a critical section. Let LBy ;; be the worse
case access time of a global semaphore accessed by the lower priority job Jj; that
can block Jy ;. For every lower priority job Ji; of job Jy ;, this form of blocking can
contribute at most min(dy, dx; + 1) * GLBy ;; blocking delay.

3. Blocking by remote jobs with lower priorities. When job J; ; attempts to lock a global
semaphore, that semaphore might already be locked by a lower priority remote job.
Let GRBy; be the worse case access time of the global semaphore that is accessed
by job Ji; and a lower priority remote job. Then job Ji; can experience at most
di; * GRBy; blocking delay caused by this situation.

4. Blocking by remote jobs with higher priorities. When job Jj; tries to lock a global
semaphore, that semaphore might be locked or a higher priority remote job might
be waiting for it. Let dkci,m , be the number of times that job J,, 5 locks the global
semaphores which will be also accessed by Jii. Let GHBy ;. be the worse case
access time of the global semaphore accessed by J; and J,, . We call this form of
blocking remote preemption. The worse case blocking time caused by remote pre-
emption is di jm b * [Wki /W p| * GH By i 1, for each remote job J,, 5, with higher
priority, of job Jj ;.

5. Blocking by a remote job accessing a global critical section. Suppose job Jy ; is blocked
by a remote job .J,, ; accessing a global semaphore Sy;. Meanwhile, suppose another
remote job J,, , inherits a higher extended priority and preempts J,, ;, when J,,
locks another global semaphore S;2. Not only does job Jj; experience the blocking
delay caused by the semaphore 5, that it tried to lock; it also experiences a blocking
delay due to Sy2. The blocking by the former semaphore is considered above; the
blocking by the latter is considered here. Let df’i;m’x be the number of times that job

Jm,» locks the global semaphores with higher remote priority ceilings than a global

20

semaphore that is accessed by another local job of .J,, .. and that can block J; ;. We use
the notation G'H By, ;. - to refer to the worse case access time of the global semaphore
as described above. This type of the blocking time can be bound by the expression
dH

biomoz * [Wg i/ W 5| * GH By, i 5, for every remote job J,, , of job Ji ;.
The total blocking time of a job Jj; induced by MDPCP-R, B%DPCP_R, is the sum-
mation of the blocking factors described above.

B%DPOP_R = d“g * LLB]M +

> min(dg,, dr; + 1) * GLBr; 1+
JkyleLLP(Jkyz)

dr; * GRBy; +
> diim b * (Wi /Wi b |GH Bl i h +
Jm,heGP(Jk,i)

Z dgi§m790 * [wk,i/wm,x-‘ * GHBk,i;m,ac- (34)
VIm,zm#k

The definitions of the set of remote jobs with lower priorities and higher priorities and the
set of local jobs with lower priorities, LP(Jy;), GP(Jy,;), and LLP(Jy;), for a job Jy; are
the same as those defined in MDPCP-C, since both use dynamic priorities.

3.4 Performance Comparisons for Multiprocessor Priority
Ceiling Based Protocols

This section compares the performance of two static priority protocols, MSPCP-C and
MSPCP-R, and two dynamic priority protocols, MDPCP-C and MDPCP-R. The multipro-
cessor static priority ceiling protocol C, MSPCP-C is a variation of MDPCP-C which uses a
RM scheduling algorithm. The primary differences between MSPCP-C and MDPCP-C are
the definitions for priorities and priority ceilings. MDPCP-C defines P(.J) and C'(9) in ex-
actly the same fashion as uniprocessor PCP. MDPCP-C also preserves the useful MDPCP-C
properties: freedom from deadlock and prevention of transitive blocking. The proofs are
analogous to those for MDPCP-C. The blocking factors induced by MSPCP-C are similar
as well: indirect blocking, local and remote blocking, remote preemption, and implicit pre-
emption. Hence, the expression for the worse case blocking time of a job Jj ;, B%SPOP_O
is the same as that in MDPCP-C, B%DPOP_C. The only difference is the definitions of the
sets of lower (and higher) priority remote jobs, i.e., LP(Jy;) and GP(Jg;). LP(Jy,;) is the
set of remote jobs with longer periods than Jj ;, and G P(Jy ;) is the set of remote jobs with
shorter periods than Ji ;. A set of periodic tasks can be scheduled by RM if the following
condition is satisfied[LL73]:

S < 1), (3.5)

21

The metric used to compare the schedulability of these protocols is the maximum es-
timated consumed processor power (M EC PP). Inequality 3.1 shows the intuition behind
this measurement. When an EDF scheduling policy is used in a single processor system,
the utilization of the processor must be less than 1 in order to meet all the deadlines of the
periodic tasks in the system. The left-hand side of the inequality is the upper bound of the
processor utilization consumed by the tasks in the system. This upper bound, called the
estimated consumed processor power (ECPP), can be viewed as a measure of schedulability.
For a multiprocessor system, each processor P has its associated ECPP value, FC PPFy.
The deadlines of all tasks in the system will be met if all the ECPP values are less than
1; or equivalently, if the maximum of the ECPP values is less than 1. Consequently, the
maximum ECPP value (MECPP) is a natural performance metric for the schedulability of
multiprocessor hard real-time systems.

Given m sets of n tasks each assigned to an m multiprocessor system and each processor
accepts a set of » tasks. The estimated consumed processor power of processor Py (EC P Py)
is defined as) 7 - Tk + max;<i<n w— if RM scheduling is used and >~7_, Zk S;Bk 2 if EDF

37

is used, where By, ; is the worse case blockmg time of job J ; induced by the corresponding
resource synchronization protocol. The computation of By ; is described in Sections 3.2.3
and 3.3.2. MECPP is defined as maxi<g<, £/CPP;. Note that utilization for real work
(processor utilization without synchronization delay) is the same for both CT and RSL

approaches, i.e., > ZZJ for processor Pi. Therefore, the major factor of schedulability

depends on synchromzatlon delay. According to the schedulability condition proved in
Theorem 3.5, If FC PPy is smaller, we have greater chance that the set of tasks assigned
to processor Py is schedulable. Therefore, we say that a protocol performs better, if the
protocol leads to a smaller M EC PP.

3.4.1 Simulation Design

The simulator models a system with m processors and shared memory. It consists of two
components, the configuration model and the task model. The configuration model produces
global critical sections shared with different sets of processors and local critical sections for
each processor. The task model generates m sets of tasks; each set contains n periodic

tasks. The configuration model generates nested global critical sections since MSPCP-C
and MDPCP-C allow them. However, for MSPCP-R and MDPCP-R, a job must use a
coarser level of granularity for global semaphores.

The following parameters control the configuration of the simulated system:

e m is the number of processors in the system.
e n is the number of tasks accepted by each processor.

o NumL(CS is the maximum number of local semaphores for a processor. In our simu-
lation, NumLC'S is 4.

o NumGCYS is the maximum number of global semaphores for a processor. In our
simulation, NumGC'S is 4.

22

o TotalGCS is the total number of global semaphores in the whole system. In our
simulation, TotalGC S is 8.

o ('SAccessTime is the maximum access time of a critical section. In our simulation,
C S AccessTime is 4 time units. We assume that all tasks have the same access time
for executing the same global critical section.

o DegreeSharing is the probability that a global critical section is accessible from a
processor. Setting DegreeSharing to 0 means that no global critical sections are
shared by different processors (all global semaphores become local in this case), while
a value of 1 indicates that all global critical sections are accessible from every processor.
The greater the degree of sharing, the more frequently jobs interfere with each other.

The task model determines the attributes of the various tasks. The following parameters
control the task model.

o MinPeriod and PeriodIncrement defines the periods of tasks. For a task 7T} ;, the
period of task T} ;, wi; can be computed by

Wi =

)

MinPeriod + PeriodIncrement x R, ifi=1
wg;—1 + PeriodIncrement x R,, otherwise,

where R, is a number uniformly distributed over (0,1].

o LbTaskConsumedPower and UbTaskConsumedPower define the lower and upper
bounds of the task consumed processor power, the rate of the execution time to the
period of a task. The execution time of a task 7T} ;, ey, is defined as

€hi = Wi, * Re,
where R, is uniformly distributed between LbT askConsumedPower and UbT askConsumed Powe

e The list of critical sections accessed by a task is represented as a bit map which is
generated by a random number and uniformly distributed between 0 and the maximum
number of possible bit map patterns.

Our simulation does not generate workload based on processor utilization; different
workloads are generated by varying run-time parameters: the number of processors, the
number of tasks, and the degree of sharing. Under a fixed setting of the parameters, we
want to see how the protocols perform on various utilization. We define processor workload
as processor utilization of the real work. Therefore, the average workload for a processor
can be expressed as §(LbTaskConsumedPower + UbTaskConsumedPower).

Three run-time parameters are used to simulate various system workloads. Varying the
number of tasks provides a way to see how the protocol behaves as the processor workload
increases, and varying the number of processors shows how the protocol behaves as the sys-
tem size scales. Changing the degree of sharing illustrates the impact of synchronization for
access to global resources. In the following section, we give the results of several simulation
experiments. In each experiment, we varied only a single system parameter, and held all
the others constant.

23

3.4.2 Simulation Results

In order to see the impact of increases in the processor workload on performance, we varied
the number of tasks for a fixed number of processors. The results are shown in Figure 3.5.
We also changed the degree of sharing when varying processor workload, and found similar
results. Therefore, we only present the results for the case when the degree of sharing was
set equal to 0.5. Clearly, resource contention and blocking time increase as the workload
increases. The rate of increase of blocking by MSPCP-R and MDPCP-R are greater, because
blocking factors 4 and 5, described in Section 3.3.2, increase significantly as the number of
tasks increases. The slopes of MSPCP-C with m equal to 10 and 20 are almost identical.
The increased MECPP values for the case where m is 20 are primarily due to remote
preemption, and remain constant throughout the various processor loads. A job will have
more remote jobs with higher priorities when m is 20, which increases the amount of more
remote preemption for the job. The rate of increase of the number of higher priority remote
jobs remains stable as the processor workload increases; there is negligible difference between
the cases where m equals 10 and m equals 20. Consequently, the increase in MECPP
values is almost identical for the two cases. However, MDPCP-C behaves differently since
the blocking time of each task affects the MECPP; it is unlike MSPCP-C where only a
single blocking time matters. As processor workload increases, the discrepancies between
MSPCP-C and MSPCP-R (or between MDPCP-C and MDPCP-R) become significant.
MSPCP-C and MDPCP-C perform better under a wide range of processor workloads.

Figure 3.6 and Figure 3.7 show the simulated performance results as the degree of
sharing changes. For MDPCP-C and MSPCP-C, the increased concurrency allowed by
the fine granularity of resources becomes more significant as the degree of sharing increases.
Two jobs can simultaneously access different critical sections, in cases where MDPCP-R and
MSPCP-R would force them to be serialized. In general, the MECPP increases as the degree
of sharing increases. However, it increases much faster under MSPCP-R or MDPCP-R than
under MSPCP-C or MDPCP-C. Again, we see that MSPCP-C and MDPCP-C allow better

performance.

To study the effect of resource contention among processors, we varied the number of
processors while holding other system parameters fixed. We present the simulation results
from those experiments in Figure 3.8. MSPCP-C and MDPCP-C are less sensitive to
changes in system size than MSPCP-R and MDPCP-R, and have better performance as
well. These results have one similarity with the results from the experiments of varying
processor workload. The differences of the MECPP values for MSPCP-C remain constant,
while the differences of the MECPP values for MDPCP-C continue to increase. The cause
of such behavior is the same in both cases.

24

MECPP

B R P R R R R R R R
O B N W M OO0 O N O ©

180.
170.
160.
150.
140.
130.
120.
110.
100.
90.
80.
70.
60.
50.
40.
30.
20.
10.

SR N® MO O N®O

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

.00

5. 00 10. 00 15. 00 20. 00

5. 00 10. 00 15. 00 20. 00

Figure 3.5: Varying processor workload.

25

T MOPERIR (T

VEPCP-C (ne10)
WEBCR. B HELD)
NEPCP. € °(ME2D)
MBPCP-R { r20)

of tasks

NDPCP-C (m=10)
0)
MDPCP- C "(m=20)

_| MDPCP-R (n¥20)

of tasks

MECPP

.50

.00

.50

.00

.50

.00

.50

.00

.50

.00

.50

.00

.50

.00

MECPP

50.

45.

40.

35.

30.

25.

20.

15.

10.

00

00

00

00

00

00

00

00

00

.00

PCP- =1

| MBPCP-R (10 n=10)

‘ ‘ ‘ ‘ deg of sharing x 10-3
200. 00 400. 00 600. 00 800. 00

7 S VDPCP-C (mF10 n=10)
-7 MDPCP-R (=10 n=10)

‘ ‘ ‘ ‘ deg of sharing x 10-3
200. 00 400. 00 600. 00 800. 00

Figure 3.6: Varying the degree of sharing when m = 10.

26

MECPP

230.
220.
210.
200.
190.
180.
170.
160.
150.
140.
130.
120.
110.
100.
90.
80.
70.
60.
50.
40.
30.
20.
10.
.00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

MGPCP- C (n¥20 n=10)
— MBPCP-RT(mE20 n=10)
— MBPCP-C (mF20 n=20)
| MBPCP-R (=20 Nn=20)

200. 00

400. 00

600. 00

800. 00

Q

eg of sharing x 10-3

: VDPCP-C (mF20 n=20)
| MDPCP-R (720 'n=20)

200. 00

400. 00

600. 00

800. 00

eg of sharing x 10-3

Figure 3.7: Varying the degree of sharing when m = 20.

27

MECPP

18.

17.

16.

15.

14.

13.

12.

11.

10.

00

00

00

00

00

00

00

00

00

.00

.00

.00

.00

.00

.00

.00

MECPP

180.
170.
160.
150.
140.
130.
120.
110.
100.
90.
80.
70.
60.
50.
40.
30.
20.
10.

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

.00

.00 10. 00 15. 00 20. 00

.00 10. 00 15. 00 20. 00

Figure 3.8: Varying system size.

28

MEPCP-C (n=10)

_| MBPCPR(n=10)

VSPCP- C (n=20)
MBPCP-R (n=20)

of processors

VOPCP- C (n=20)
MDPCP-R (n=20)

of processors

Chapter 4

Optimistic Concurrency Control
Protocols

Optimistic concurrency control (OCC) mechanism assumes that data conflicts will be rare.
Its efficiency relies on the hope that conflicts among transactions will not occur. The
execution of a transaction under OCC mechanism can be divided into three phases: read
phase, validation phase, and possibly update phase. This is based on the observation that
reads are completely unrestricted but writes are severely restricted. Reading a value from
a data object does not lose data integrity; however, changing the value of an object needs
to be validated to see if data consistency is maintained. The first phase reads data objects,
processes the data objects that have been read, and prepares the data objects to be written.
Note that in this phase all writes take place on local copies of the objects. The second phase
invokes concurrency control algorithm, making sure that the changes made by the validating
transaction will not lose data integrity. A write phase is enabled only if the validation phase
succeeds (data integrity is maintained). Otherwise, the transaction might restart as a new
transaction or wait for the data conflicts being removed. In the write phase, the local copies
of the changes are made global.

A widely used criterion for validating the correctness of concurrent execution of transac-
tions is called serializability [EGLT76]. An interleaved execution sequence of transactions is
correct if it is serializable. If transaction A conflicts with transaction B, defined below, we
said that the interleaved execution sequence of these two transactions violates serializability
[Har84].

Each data object is associated with two locks: read and write locks. A data object can
only be write-locked by one transaction at a time, while it can be read-locked by many
transactions simultaneously. Let read set for transaction A, R4, be the set of data objects
that are read by transaction A and write set for transaction A, Wy, be the set of data
objects that are written by transaction A. Transaction A conflicts with transaction B if

WisNRE # .

The conflict set of transaction A is the set of the transactions with which transaction A
conflicts.

29

Our baseline OCC, OPT-BC (stands for Broadcast Commit), is classified as forward
oriented optimistic concurrency control (FOCC) [Har84] which checks whether the write
set of the validating transaction intersects with the read set of any transactions having not
yet finished their read phase. The idea of OPT-BC [KR81, MN&2] can be described as
follows. When a transaction commits, it notifies all the transactions with which it conflicts
and restarts all the conflicted transactions immediately. A transaction is restarted once it
is found to be in conflict with a validating transaction. Such restart is useful, not wasted
restart [HCL90], because a validating transaction is guaranteed to commit when it restarts
all the transactions in its conflict set. Wasted restart occurs when a transaction restarts
another one and later it misses its deadline. Mutual restart problem ! [HCL90] will not
happen in OPT-BC, because a validating transaction commits right after it restarts the
conflicting transactions. The validating transaction will not restart once it is in validation
phase.

The remaining chapter is organized as follows. A set of QCC algorithms using the
knowledge of execution time is described in the following section. In Section 4.2, we describe
the RTDBS model used for performance evaluation and compare the proposed algorithms
with the baseline algorithm. The simulation results show that a proper use of execution
time information can improve system performance.

4.1 The Proposed Concurrency Control Algorithms

Based on the observations mentioned in Section 1.1, we might be able to improve the
baseline OCC by making use of the knowledge of execution time. We will examine the
possible alternatives of conflict resolution and develop OCC algorithms which make conflict
resolution decision based on the knowledge of execution time. Although priority information
can be used to resolve conflicts, in this paper, we focus on the effects of the knowledge of
execution information and hence factor out the priority of transactions.

The proposed OCC algorithms belong to FOCC which checks if the write set of validating
transaction conflicts with the read sets of active transactions. Since conflicting transactions
have not yet committed, there are several alternatives on resolving data conflicts.

o Wait for conflicting transactions
A validating transaction waits for the transactions in its conflict set to complete. The
validating transaction is deferred and the validation needs to be retried later. As
it waits, new active transactions might cause data conflicts and could lengthen the
wait time. According to the assumption of OCC (conflicts happen rarely), waiting
eventually ends and the validating transaction commits.

e Remove conflicting transactions and commit
Since the conflicting transactions have not yet committed, data conflicts can be re-
moved by either restarting or aborting them. Although resources having been con-
sumed by the conflicting transactions are wasted, this strategy guarantees that the

"Mutual restart describes the phenomenon that two transactions restart each other.

30

all wailt-all

wait < restartability wait-NR,
subset<

transaction < short walt-S
size .
long wait-L
abort
- remove-ab
ConﬂICt I'emov/ restart :......'.....‘......:
resolution OPT‘BC o
combine remove-NR
all sacrifice-all

sacriﬁc< restartability sacrifice-NR
subset<

transaction short sacrifice-S
s1ze <
long

sacrifice-L

Figure 4.1: The family tree of the proposed OCC algorithms.

validating transaction can commit, not like the previous one where it might miss its
deadline or wait infinitely.

e Sacrifice validating transaction
In some cases, it might be beneficial that we sacrifice (restart) validating transaction.
For example, when a validating transaction conflicts with many transactions, waiting
for them might encounter more conflicts and lengthen the wait time, and removing
them might not compensate the performance gain (committing one transaction).

Based on the knowledge of execution time, we have two schemes to classify conflicting
transactions. One classification scheme uses restartability described in Section 1.1 and the
other classifies transactions by the length of execution time. The proposed OCC algorithms
make conflict resolution decision based on the classification of conflicting transactions. A
hybrid strategy of two conflicting resolution alternatives might be adopted in order to make
distinct decisions on different classes of conflict transactions. For the continuity of the
performance evaluation, we also develop and evaluate OCC algorithms without the use of
execution time.

Figure 4.1 shows the combinations of the conflict resolution alternatives and the clas-
sification schemes. They constitute the possible protocols for FOCC with or without the
knowledge of execution time. In the following subsections, we will describe the proposed
algorithms and discuss their potential shortcomings and strengths in an intuitive manner.

31

4.1.1 WAIT-ALL

WAIT-ALL does not utilize execution time information to classify conflicting transactions.
It waits for all conflicting transactions to complete. It depends on the assumption that
conflicts will occur rarely. Otherwise, it might wait infinitely, if it keeps conflicting with
new active transactions.

4.1.2 WAIT-NR

WAIT-NR stands for waiting for non-restartable transactions to commit. The decision for
conflict resolution depends on whether the conflicting transactions are restartable or not.
It waits whenever there is a non-restartable transaction in the conflict set. Such waiting is
worthwhile in the sense that if it does not wait, the conflicting non-restartable transactions
must miss their deadlines and the resources having been consumed by them are wasted.
Hence, it gives preferential treatment to non-restartable transactions. If the transactions in
the conflict set are all restartable, the algorithm restarts them and commits. This algorithm
is an example of using a hybrid strategy of two resolution alternatives, wait and remove.

4.1.3 WAIT-S

The algorithm waits for the conflicting transactions which are shorter than the validating
transaction. It attempts to minimize the wait time by only waiting for shorter transactions
and restarting longer transactions. With the minimized wait time, the validating transaction
could have a chance to commit earlier and hence the algorithm might achieve lower miss
ratio.

The algorithm biases on short transactions; hence its average response time should
be small. The problem on the algorithm and the algorithms, described below, which use
transaction size to classify conflicting transactions is fairness and starvation. For example,
an extremely long transaction might wait for short transactions, could be restarted many
times, and never has a chance to commit.

4.1.4 WAIT-L

This algorithm asserts that restarting long transactions might waste more resources than
restarting short transactions, so it waits for long transactions to complete and restarts short
ones instead. The average wait time of this algorithm might be longer than that of WAIT-S,
because it always waits for long transactions. In high data contention, conflicts might
increase substantially as the wait time increases. More data conflicts keeps a validating
transaction waiting or lets it restart more transactions in the conflict set.

32

4.1.5 REMOVE-AB

The algorithm resolves conflicts by aborting the conflicting transactions. Like OPT-BC,
its efficiency depends on the assumption that the data conflicts happen rarely. Other-
wise, the miss ratio could be high. Without careful evaluation, we cannot tell OPT-BC
or REMOVE-AB is better for R'DBS. We will be able to answer this question after the
simulation.

4.1.6 REMOVE-NR

REMOVE-NR does not wait. It aborts the conflicting transactions which are non-restartable,
restarts the rest of the conflicting transactions (which are restartable), and then commits
without waiting. This algorithm prefers to commit validating transaction as soon as possible
such that the wait time is minimized (actually, it is zero). The side benefit of the early com-
mit is the resource saving and the reduction of data contention. The resources saved from
the early discarded non-restartable transactions could be utilized by other transactions.
Further data contention might be reduced due to the less number of active transactions in
the system.

4.1.7 SACRIFICE-ALL

The algorithm sacrifices validating transaction as long as there is a conflicting transaction.
Such sacrifice is effective for limiting wait time, in case of many conflicting transactions.
Although sacrificing can avoid long waiting, a validating transaction might be restarted
many times, if a long transaction is in the conflict set.

4.1.8 SACRIFICE-NR

The algorithm sacrifices validating transaction conditionally. Non-restartable transactions
can not meet deadlines, if they are restarted. Therefore, SACRIFICE-NR restarts the
validating transaction, if the conflict set contains non-restartable transactions. It restarts
the conflicting transactions if they are all restartable and commits the validating transaction.

4.1.9 SACRIFICE-S

The algorithm asserts that short transactions are more possible to complete than long trans-
actions, even if they are restarted. The algorithm sacrifices (short) validating transaction
if it conflicts with longer transactions. SACRIFICE-S commits the validating transaction
only if the transactions in the conflict set are all shorter than the validating transaction and
they are restarted.

The potential weakness results from that long transactions last long in the system.
Hence, a validating transaction sacrificed once might be sacrificed again and later it misses

33

the deadline, due to the long duration of such transactions. Such sacrifice wastes resources
and causes performance degradation.

4.1.10 SACRIFICE-L

SACRIFICE-L has the same assertion as SACRIFICE-S, but it makes contrary decisions.
It prefers to let short transactions commit, rather than restart them. Hence, it sacrifices
validating transaction if it conflicts with short transactions. Its efficiency relies on the hope
that the sacrifice of a validating transaction can help many short transactions complete.
The algorithm restarts the conflicting transactions if they are all longer than the validating
transaction and commits the (short) validating transaction.

Restarting long transactions in a conflict set, in order to commit a validating transaction,
should be justified. One can argue that long transactions might have already consumed a
large amount of resources and it is not wise to sacrifice such transactions. Without a
performance study, we cannot distinguish which one, SACRIFICE-S or SACRIFICE-L,
makes a better conflict decision.

4.2 Performance Study for Real-Time Optimistic Concur-
rency Control

4.2.1 Simulation Design

Our real-time database system model simulates a multiprocessor system with disk resident
database. The simulation is written in C, using a process-oriented simulation package
CSIM [Sch90]. The database is modeled as a collection of pages evenly spread over the
disks in the simulated system. We assume that there is no buffer management associated
with the database. In real case, buffer management is essential to a database system,
while it is important to know the worst case performance in a real-time system. Our
simulation attempts to simulate the worst case performance, so the buffer management is
excluded. Hence, each read/write access involves disk I/O activity. We also assume that
each read/write page access is associated with a fixed period of time to access CPU for the
processing of the page, but disk write operations are deferred to update phase as mentioned
in Section 4. The same page and CPU access pattern occurs if a transaction restarts. If a
transaction cannot make its deadline, it is aborted and discarded.

Transaction arrivals are simulated as a Poisson distribution and each transaction is
associated with an execution time and a deadline. The calculation of the execution time
of a transaction is based on the number of read/write accesses made by the transaction
and the deadline depends on a randomly generated slack rate. The detail formula for the
deadline computation will be described later.

The simulation system mainly consists of three components: workload generator, RT-
DBS simulator, and statistic data collector as shown in Figure 4.2. Workload generator
is used to generate a variety of transactions with different database access patterns and

34

transaction sizes. It also controls the size of the simulated database. The system simulator
in RTDBS simulator is the main body of the simulation which accepts input transactions,
schedules and executes them, simulates the consumption of resources, and invokes OCC
to resolve data conflicts. To evaluate different OCC algorithms, we only need to change
the subcomponent, OCC simulation. Statistic data collector gets the statistic results for
performance analysis. The statistic information can help us to explain the behavior of the
algorithms, including the average wait time, the average response time for a committed
transaction, the average number of active transactions in a system, and the number of data
conflicts for a transaction. Note that an active transaction is visible to our statistic data
collector only after it makes the first read or write operation. The purpose of counting the
number of active transactions is to measure the level of concurrency, not to the level of
multiprogramming. Therefore, if an transaction does not make any database access, we do
not consider it as an active transaction in our simulated system.

Resource simulation considers two resources: CPUs and disks. There is only one queue
for all CPUs and separate queue for each disk. Earliest deadline first (EDF) policy is used
to schedule both resources. However, the service discipline of CPUs is preemptive-resume,
while that of disks is non-preemptive. From the observation addressed by Abbott and
Garcia-Molina [AGM92], we know that processor scheduling policy, such as first come first
serve (FCF'S), EDF, least slack time first, does not have much influence on the performance
of different concurrency control schemes. Our simulation also conduct the experiments
with FCFS as processor scheduling policy and have the similar observation: the relative
performance of the proposed concurrency control strategies remains under different proces-
sor scheduling policies. Since the aim of our simulation is to evaluate the effect of execution
time information on concurrency control, not to evaluate that in various scheduling poli-
cies, therefore we choose a simple and reasonable scheduling policy for the resources. The
following parameters control the resource simulation:

o NumC PU is the number of CPUs in the simulation system.
o NumDisks is the number of disks in the simulation system.
o C'PUAccessTime is the access time of CPU for processing a page.

o DiskAccessTime is the access time of disk for accessing a page on disk.

Workload generator is responsible for generating various system workloads to evalu-
ate concurrency control algorithms. The following parameters are used by the workload
generator to create transactions with various access patterns and the associated timing
constraints.

o DBSize defines the number of pages in the database. The data pages of the database
are uniformly spread over the disks.

o NumPages specifies the average number of pages to be accessed by a transaction.
The total number of pages accessed by transaction X, Total Pagesx, is computed by

Total Pagesx = NumPages * U,,

35

RTDBS simulator

workload system statistic
generator > | simulator > coﬁgttor

/[\

resource ||QCC

DB simulation| simulation

Figure 4.2: Structure of the simulation.

where U, is uniformly distributed over an interval, such as an interval between 0.5
and 1.5. The page requests of a transaction is a uniform distribution spreading over
the entire database. The execution time can be calculated based on the total number
of page accesses.

Wp is the probability that a transaction writes a page.

LbSlack Rate and UbSlack Rate, the lower bound and upper bound of the slack rate,
defines the range of the slack rate which is used to tune up the tightness of the
real-time constraints. Let Ay be the arrival time and Fxy be the execution time of
transaction X. The formula for computing the deadline of transaction X, Dy, is

Dx = Ax + Ex x Uy,
where Uy is uniformly distributed between LbSlackRate and UbSlackRate.

Inter ArrivalTime specifies the mean inter-arrival time (IAT) in millisecond between
two consecutive transactions which have an exponential distribution.

Workload of a simulated system can be computed as follows. We define resource usage

of a transaction X as D—EfAL, since the execution time counts CPU and disk usage. The
average workload for a system can be defined as the average resource usage times transaction
arrival rate.

4.2.2 Simulation Results

This section presents the simulation results for the performance evaluation of the proposed
0OCC algorithms under various system workloads and different levels of data conflict. For
each experiment, 20 runs with the same parameter settings are performed. Fach run of the
simulation continues until at least 20000 transactions are executed. The statistic data of an

36

Table 4.1: Common settings for the simulation.

‘ parameter ‘ value ‘
NumCPU 10
NumDisks 20

CPUAccessTime | 10 ms
DiskAccessTime | 20 ms
DBsize 1000 pages
NumPage 16 pages

experiment is then collected and averaged over the 20 runs. Totally, we have 11 algorithms
to be compared. In order to make the comparison more readable, we separate them into
two groups. The first group, G1, contains four variations using wait strategy (namely
WAIT-ALL, WAIT-NR, WAIT-S, and WAIT-1) and REMOVE-NR; The other group, G2,
has the baseline algorithm OPT-BC, REMOVE-AB, and the variations using sacrifice. We
will present the simulation results for each group. The performance comparison of the best
algorithms will be shown in the conclusion. Since most proposed algorithms make use of
the knowledge of the execution time, it is necessary to investigate the effect of the error on
the estimation of the execution time. In the following, we will discuss how we conduct the
experiments for the estimation error and their results.

Our primary performance metric is miss ratio, defined the number of transactions that
miss the deadlines over the total number of transactions, which is a major concern in
RTDBS. The parameter settings which are common to the evaluation of the proposed algo-
rithms are listed in Table 4.1. We intend to choose the values which can simulate a general
multiprocessor RTDBS and can display the performance differences among the proposed
algorithms. We conduct the experiments with different setting on the write probability.
Due to space limitations, we only show a subset of the results which best illustrate the
behavior and the performance of the algorithms.

Comparisons on the First Group

In this section, we discuss the performance of the algorithms in the first group. We vary
the inter-arrival time to evaluate the algorithms under various workloads and data conflict
rates. High write probability results in high data conflict rate. Our simulation assumes
that high load settings refer to the IAT up to 120 ms, that normal load settings refer to
IAT between 120 and 160 ms, and that low load settings refer to IAT greater than 160 ms.
Figures 4.3 to 4.5 show the miss ratios against the inter-arrival time with three different
write probabilities. The graphs are plotted based on the experiments with the slack rate
ranging from 3 to 3.5. The results for looser slack rates are experimented. Figures 4.6
and 4.7 present the results for the slack rate ranging from 3 to 12. Since the various slack
rates we experiment convey the similar behavior, unless stated otherwise, we only show the
simulation results with the slack rate ranging from 3 to 3.5.

37

Figure 4.3 graphs the results for low data conflict rate (W, = 0.25). As expected, all the
strategies yield larger miss ratios as the workload increases. REMOVIE-NR is superior for
nearly all load settings, but its performance margin over the others narrows, as the workload
decreases. WAIT-I, misses the most deadlines for nearly all loads. This is not surprising
because it lets the validating transaction commit only if all the conflicting transactions are
short and restarts all these short transactions which might complete soon. Such inefficiency
lengthens the response time. To confirm this observation, Figure 4.8 plots the average
response time in the corresponding experiments and shows that WAIT-L has the longest
response time over various loads.

Observing Figure 4.4, we see that REMOVE-NR has the best performance and that
its relative performance to the other algorithms remains. As the conflict rate is high, in
Figure 4.5, REMOVE-NR still performs best; WAIT-L performs poorly at heavy and normal
loads; WAIT-ALL yields larger performance gap between the others than the previous two
cases (W, = 0.25 and 0.50). In the following, we will examine the statistic data collected
during the experiments to further investigate the behavior of the algorithms.

The graphs of the statistic data for different write probabilities are similar, so we only
illustrate the graphs for W, = 0.75. Figure 4.9 confirms our expectation that WAIT-L has
longer response time than the others. Except WAIT-L, all the other algorithms have com-
parable response time. They have convex curves: short response time at high and low loads
and long response time at normal loads. In high loaded systems, high resource contention
causes that the committed transactions most likely complete without being restarted and
the restarted transactions might miss the deadlines. Note that the average response time
only counts for the committed transactions. Therefore the response time is short under
heavy loads. As the load decreases from high to normal loads, the restarted transactions
become possibly to commit and they contribute longer response times. At low load settings,
transactions arrive sparsely and data contention becomes less significant; transactions can
complete without being restarted or conflicting transactions, so the response time becomes
short again. WAIT-NR and REMOVE-NR have slightly longer response time than WAIT-S
and WAIT-ALL. It implies that the former strategies, using restartability concept, commit
more number of transactions and have lower miss ratio.

Figure 4.10 shows that, as expected, the number of active transactions increases when
the workload increases. WAIT-ALL has the most number of active transactions. Unlike
the others, WAIT-ALL does not restart, but rather waits for the conflicting transactions to
complete. It keeps transactions in the system until they either commit or miss the deadlines.
Therefore it has more active transactions than the others where restarts might occur. In
the figure, we see that WAIT-L has the least number of active transactions. It is primary
because WAIT-L waits for long transactions, while long transactions stay at the system
long. Therefore, in WAIT-1, transactions in the system tend to be long and the level of
concurrency is low. Such system results in less active transactions in the system.

Figure 4.11 graphs the wait time of the algorithms, excluding REMOVE-NR which has
no wait. In REMOVE-NR, the active transactions either utilize the resources or wait for
the resources, while, in the other algorithms, the active transactions might wait for some
transactions to complete and let the resources set idle there. However, large number of

38

active transactions does not mean low miss ratio, since wait time is another factor. We
expect that WAIT-ALL has the longest wait time, because it waits for every conflicting
transaction, and Figure 4.11 ensures our observation. This is the reason why it cannot
perform well, even though it has the highest level of concurrency. The graph in this figure
has the pattern that the wait time increases as the workload decreases, but it drops at
lowest loads. In the previous paragraph, we learn the reasons that the response time is
short at high loads. This figure confirms the reason that short response time results from
short wait time. WAIT-L yields an approximate 40 percent decrease in wait time over
WAIT-ALL. As expected, WAIT-5 and WAIT-NR have less wait time. The average wait
time of WAIT-NR becomes smaller as the arrival rate decreases, since the transactions are
more possibly restartable at low loads.

The statistic data shown in the above figures illustrates that WAIT-S has short response
time and short wait time. In Section 4.1, we learn that it tends to commit short transactions,
which matches our finding in the above figures.

Comparisons on the Second Group

Figures 4.12 to 4.14 plot the miss ratios under various load settings and three different write
probabilities. In Figure 4.12, the baseline algorithm OPT-BC performs worst at high and
normal load settings, it becomes comparable at low loads, REMOVE-AB outperforms the
baseline at most loads, and both graphs decrease steeply when the workload decreases. As
we observed that both efficiency is based on the assumption that data conflicts are rare,
therefore, they perform comparably at low arrival rates. The same observations hold true for
different write probabilities as well (Figure 4.13 and 4.14). In Figure 4.12, SACRIFICE-L
and SACRIFICE-NR have nearly identical performance and are superior to the others.
SACRIFICE-S performs slightly better than SACRIFICE-ALL. Examining Figures 4.13
and 4.14, we see that the performance margin of SACRIFICE-L and SACRIFICE-NR, over
SACRIFICE-S and SACRIFICE-ALL becomes significant, that SACRIFICE-L is slightly
better than SACRIFICE-NR at high loads, and that SACRIFICE-NR is slightly better
than SACRIFICE-L at low loads. As the range of the slack rate becomes wide, (graphs
are not shown) we find that SACRIFICE-NR performs best, that its performance gap over
SACRIFICE-S and SACRIFICE-ALL is still significant, and that SACRIFICE-L becomes
not as comparable as SACRIFICE-NR. We will explain the performance behavior later
when we discuss the statistic data.

Like the graphs in the previous section, the curves of the response time, shown in
Figure 4.15, are convex. The same reason holds true for this case. At high loads, OPT-BC
has the least response time and REMOVE-AB has slightly larger response time, because
the later algorithm has lower miss ratio and commits more transactions. As the workload
decreases, from normal to low loads, the later algorithm has the least response time, since it
does not restart, while the others do. SACRIFICE-S is expected to have long response time.
Based on the assumption of SACRIFICE-S described in Section 4.1.9, a short transaction
might be restarted several times before it commits, so the average response time tends to
be long. The figure ensures our observation. The response time of SACRIFICE-L is the
least among those algorithms with sacrifice. The reason for this behavior is similar to that

39

for WAIT-S, described in the above section.

Figure 4.15 plots the level of concurrency under various loads. Except OPT-BC and
REMOVE-AB, the average number of active transactions raises as the workload increases.
REMOVE-AB has the least level of concurrency at normal and light loads, because of the
nature of the algorithm: aborting transactions. At high loads, REMOVE-AB has higher
level of concurrency than OPT-BC. This confirms our observation mentioned in the previous
paragraph that REMOVE-AB commits more transactions at high loads. OPT-BC has com-
parably high number of active transactions at normal and low loads, because the restarted
transactions keep in the system. SACRIFICE-ALL has the highest level of concurrency,
mainly because it restarts only validating transaction and keeps all conflicting transactions
in the system. Recalling the definition of the active transactions in Section 4.2.1, we can
see that restart will decrease the level of concurrency at high loads. SACRIFICE-ALL does
not restart as often as the other algorithms in this group, so it behaves as we expected.
SACRIFICE-S has almost identical level of concurrency with SACRIFICE-ALL at high and
normal loads and its level of concurrency is slightly lower at light loads. We know that long
transactions last long in the system. At high and normal loads, it is more possible that
a validating transaction conflicts with a long transaction, consequently SACRIFICE-S be-
haves like SACRIFICE-ALL. By contrast, SACRIFICE-L has the less level of concurrency

at most loads.

Observing Figures 4.15 and 4.16, we learn that, SACRIFICE-L has shorter response time
and lower level of concurrency than SACRIFICE-S. This is mainly because SACRIFICE-L
favors short transactions and tends to complete short transactions. Hence it has lower miss
ratio. By contrast SACRIFICE-NR does not bias on short or long transactions. Its response
time and level of concurrency are between theirs. SACRIFICE-NR restarts the conflicting
transactions only if they are restartable. Overall, it has the less miss ratio in this group,
because of the concept of restartability.

The Effect of the Estimation Error

Most of the proposed concurrency control algorithms depend on the estimation of the exe-
cution time. To study how error of the estimation affects the performance of the algorithms,
we devise three experiments. The first experiment adds a random error, choosing from -0.5
to 0.5, into the estimation; the second experiment biases the estimation in one direction
such that the execution time is over-estimated (i.e., F' = F * (1 4+ 0.5), where F is the
execution time with no error and £’ is the estimated execution time); the third experiment
under-estimates the execution time with the same error (i.e., £/ = F % (1 — 0.5)). The
results of the experiments are compared with the results of the baseline experiment which
has zero estimation error.

Figure 4.17 graphs the miss ratio of SACRIFICE-S on different estimation errors with
W, = 0.75. SACRIFICE-S yields performance changes in the first experiment, but the
performance difference between the baseline and the first experiment is very little. This
algorithm uses the relative length of transactions to resolve conflicts. Since the second and
the third experiments bias the error in one direction and the relative length remains in such

40

Mss Ratio x 10-3

650. 00 — — W

600. 00

550. 00

500. 00

450. 00

400. 00

350. 00

300. 00

250. 00

200. 00

150. 00

100. 0O

50. 00

0. 00 — _

! ! ! ! ! | AT
100. 00 120. 00 140. 00 160. 00 180. 00

Figure 4.3: Miss ratios of G1 for Wp = 0.25.

Mss Ratio x 10-3

650.

600.

550.

500.

450.

400.

350.

300.

250.

200.

150.

100.

50.

\ \ \ \ \ | AT
100. 00 120. 00 140. 00 160. 00 180. 00

Figure 4.4: Miss ratios of G1 for Wp = 0.50.

41

Mss Ratio x 10-3

650.

600.

550.

500.

450.

400.

350.

300.

250.

200.

150.

100.

50.

! ! ! ! ! | AT
100. 00 120. 00 140. 00 160. 00 180. 00

Figure 4.5: Miss ratios of G1 for Wp = 0.75.

Mss Ratio x 10-3

650.

600.

550.

500.

450.

400.

350.

300.

250.

200.

150.

100.

50.

\ \ \ \ \ | AT
100. 00 120. 00 140. 00 160. 00 180. 00

Figure 4.6: Miss ratios of G1 for Wp = 0.25 and the wide range of slack rate.

42

Mss Ratio x 10-3

650.

600.

550.

500.

450.

400.

350.

300.

250.

200.

150.

100.

50.

! ! ! ! ! | AT
100. 00 120. 00 140. 00 160. 00 180. 00

Figure 4.7: Miss ratios of G1 for Wp = 0.75 and the wide range of slack rate.

Response Ti ne x 103
T

[y

© 0 0 0 0 o0 o0 0 00

I AT
100. 00 120. 00 140. 00 160. OO 180. 0O

Figure 4.8: Response times of G1 for Wp = 0.25.

43

Response Ti ne x 103

[y

I
[¢]
4

.08 —

.06 —

. 04

.02

© 000000000

gooaoanoeooo000000NNNNN-N-N

.10 — — W

oo

98

96

94

92

90

88

86

84

82

80

I AT

Figure 4.9: Response times of G1 for Wp = 0.75.

transacti ons
60
50 |
40)
30
20
10
oo
90
80
70
60
50
40
30
20
10
(e]6]
90
80
70
60
50

O
N\
| | | | | | |

I AT

80. 00 90.00 100.00 110.00 120.00 130.00 140.00 150.00

Figure 4.10: Concurrency level of G1 for Wp = 0.75.

44

Wi t

60.

55.

50.

45.

40.

35.

30.

25.

20.

15.

10.

650.

600.

550.

500.

450.

400.

350.

300.

250.

200.

150.

100.

50.

Ti

(e]]

oo

(e]6]

oo

oo

oo

oo

oo

(o]

(e]e]

oo

oo

. 00

. 00

4 | WA TTACL

‘ ‘ ‘ I AT
50. 00 100. 00 150. 00

Figure 4.11: Wait time of G1 for Wp = 0.75.

REMOVE- AB

| | | | | | AT
100. 00 120. 00 140. 00 160. 00 180. 00

Figure 4.12: Miss ratios of G2 for Wp = 0.25.

45

M ss

650.

600.

550.

500.

450.

400.

350.

300.

250.

200.

150.

100.

50.

650.

600.

550.

500.

450.

400.

350.

300.

250.

200.

150.

100.

50.

Rat

. 00

Rat

. 00

REMOVE- AB

! ! ! ! ! | AT
100. 00 120. 00 140. 00 160. 00 180. 00

Figure 4.13: Miss ratios of G2 for Wp = 0.50.

REMOVE- AB

| | | | | | AT
100. 00 120. 00 140. 00 160. 00 180. 00

Figure 4.14: Miss ratios of G2 for Wp = 0.75.

46

Response Ti ne

940.

920.

900.

880.

860.

840.

820.

800.

780.

760.

740.

720.

700.

680.

oo

(e]6]

oo

oo

(e]e]

oo

oo

oo

(e]e]

oo

oo

(e]e]

oo

oo

REMOVE- AB
\ \ \ \ \ > | AT
100. OO0 120. 00 140. 00 160. 00 180. 00
Figure 4.15: Response times of G2 for Wp = 0.75.
transacti ons
I

.50

. 00

.50

. 00

.50

.00

. 50

.00

.50

oo

.50

. 00

.50

. 00

REMOVE- AB

! ! ! ! | AT

100.

(e]e] 120. 00 140. 00 160. OO 180. 00

Figure 4.16: Concurrency level of G2 for Wp = 0.75.

47

Mss Ratio x 10-3

700. 00 —

650. 00 —

600. 00 —

550. 00 —

500. 00 —

450. 00 —

400. 00 —

350. 00 —

300. 00 —

250. 00 —

200. 00 —

150. 00 —

100. 00 —

50. 00 [— —
‘ ‘ ‘ I AT
50. 00 100. 00 150. 00

Figure 4.17: The effect of the estimation error on SACRIFICE-S for Wp = 0.75.

cases, the algorithm behaves nearly the same as the baseline experiment. We predict that
WAIT-L, WAIT-S, and SACRIFICE-L will have the similar behavior on the estimation

error, because they all use transaction size to direct conflict resolution decision.

Figure 4.18 plots the results of WAIT-NR. The figure shows that the miss ratio is slightly
improved when the execution time is under-estimated. Since the number of non-restartable
transactions decreases, when the execution time is under-estimated, the algorithm waits
less for non-restartable transactions and commits the validating transaction. Less waiting
results in a little bit better performance. By contrast the performance is slightly poor in
the case of over-estimation. The first experiment performs in between of the other two
experiments, since some transactions have less waiting and some have more. REMOVE-NR
and SACRIFICE-NR have similar graphs and hence we eliminate them.

48

Mss Ratio x 10°3
750.

700.
650.
600.
550.
500.
450.
400.
350.
300.
250.
200.
150.
100.

50.

(e]e]

oo

oo

oo

oo

oo

oo

oo

oo

oo

(]

oo

oo

oo

oo

50. 00

100. 00

‘ I AT

Figure 4.18: The effect of the estimation error on WAIT-NR for Wp = 0.75.

49

Chapter 5

Fault-Tolerant Scheduling

System reliability is becoming an increasing important factor in evaluating the behavior
of real-time systems, because the result of a real-time application may be valid only if the
application functions correctly even with underlying faults and its timing constraints are
satisfied. Fault-tolerance is a technique to enhance the reliability in case faults may occur.
A common approach used for fault-tolerance is through redundancy in time or in space.
Temporal redundancy is to activate a process at different time, while spatial redundancy is
to activate several copies of a process at the same time using different resources. Ideally,
we can achieve fault-tolerance by fully temporal redundancy or fully spatial redundancy.
However, since real-time systems have timing requirements. Temporal redundancy is not
always applicable to the tasks with tight timing constraints. Besides, a real-time system may
not have enough resources to provide spatial redundancy for every tasks. Combining both
redundancy techniques might be able to meet the fault-tolerance goals as well as timing
requirements. To distinguish them, we call spatial redundancy replication and temporal
redundancy rollback.

Oh and Son [0S94] prove that scheduling a set of non-preemptive hard real-time tasks to
tolerate one processor fault is NV P-complete. Since such fault-tolerant scheduling problems
are computationally intactable, we develop a heuristic fault-tolerant scheduling algorithm, a
hybrid method of spatial and temporal redundancy for the real-time systems which require
both system reliability and the guarantee of meeting deadlines. Based on the original
schedule without consideration of fault-tolerance, the proposed method utilizes the available
free slots and includes redundant copies of the tasks into the schedule. Some tasks have
rollback copy, if they have enough slack time to rerun the task; others have replicated copy, if
their timing constraints are tight. Our approach incrementally increases the fault-tolerance
capability without violating the real-time requirements. It can be deployed to the systems
with off-line scheduler. In the next chapter, we will devise analytical models to estimate
the reliability of the systems using the proposed approach.

The rest of the chapter is organized as follows. In the following section, we define
an abstract model for real-time systems (RTS) under which the proposed fault-tolerant
scheduling and analytical models can be deployed. In Section 5.2, we present the proposed
fault-tolerant scheduling. Section 5.3 discusses a rescheduling algorithm to incrementally

50

put a replicated or rollback copy into the schedule and Section 5.4 describes an approach
to migrating the workload of one processor to other processors.

5.1 Abstract System Model and Assumptions

Our system model is a real-time system consisting of a set of processors and a set of periodic
tasks. The system uses off-line scheduling to guarantee to meet the timing constraints of
all tasks and adopts rollback or replication technique as fault-tolerance strategy. Let the
elemental unit (EU) be the smallest non-preemptable execution unit [MA91]. Each EU is
characterized by its release time, execution time, and deadline. Each task can be described
by an elemental unit graph (EUG), where an EUG is a directed acyclic graph; each node
is an EU and each directed edge represents the precedence relation and communication
pattern.

Since tasks are periodic, the window size for examining the execution behavior of the
cyclic tasks can be the least common multiple (LCM) of the periods of all the tasks. We
define such time interval as a frame. Let minframe of an EU be the time interval between
its release time and its deadline. We adopt a fault model which permits transient and
permanent faults with fail-stop behavior [SS83], that is, non-Byzantine [LSP82]. We assume
that the inter-arrival time between two consecutive transient failures in a system is greater
than the longest minframe. It ensures that if a failed EU instance has a redundant copy
it can recover without experiencing a second transient fault. If a processor fails due to a
permanent fault, we assume that it will be replaced by a new processor within a frame period
of time. The assumption that the inter-arrival time between two consecutive permanent
failures is greater than a frame period of time is to make sure that a system has at most
one failed processor at any time.

Since each EU is the smallest non-preemptable executable unit, we can do checkpointing
for each EU before it exits. In this way, we do not have to restart the whole task if one of
its EUs fails. Instead, we can roll back the failed EU or get the result from its replicated
copy. Assume that the save time is equal to the load time for a given EU and the save
time is included in the execution time of the EU. We also assume that the system has a
fault detection mechanism which can detect faults before the failed EUs do checkpointing.
To ensure the correctness of the saved checkpoint, an acceptance test is applied to the
checkpoint before checkpointing is done [LA90]. The system recovers from a transient
failure once the failed EU rolls back or we obtain the result from its replicated copy. We
define that an EU is fault-tolerant if it has a replicated copy or a rollback copy to cope with
transient failures.

Although our fault model only considers transient and permanent faults, we believe that
they are the majority of the faults in a system. The assumptions on fault inter-arrival time
are used to simplify our analytical model for estimating reliability. We believe that faults
should not happen so often as task arrivals and the assumptions are reasonable and suitable
for real systems.

The task model of the underlying system model is adopted from a hard real-time oper-

51

ating system developed by the University of Maryland which has a prototype for distributed
systems. Besides, the task model can be extended easily without major modification. A task
in the system is represented by a task graph [CR72] where each vertex represents a module
and a directed edge (¢,7)is in the task graph if and only if module ¢ is followed by module j
with non-zero probability. The precedence relationship of modules is determined by the task
graphs and a module considered here is the smallest non-preemptable execution unit. Such
task model has been adopted by many researchers [Upa90, US86, Gel79, NK83, GRWS8S]
to investigate rollback recovery. The underlying system model may be applicable to real
systems.

5.2 The Proposed Adaptive Redundancy Approach

Our scheduling objective is twofold. The primary objective is to provide fault-tolerance
capability with the guarantee of meeting deadlines, and the secondary objective is to save
resources for aperiodic tasks. Rollback is more favorable than replication, since it can
achieve both objectives. However, when rollback cannot satisfy our primary objective, we
have to choose replication.

Our approach, called adaptive redundancy (AR), can be briefly described as follows.
For each EU instance x, first we try to use temporal redundancy (i.e., rollback) to achieve
fault-tolerance. The adjustment of the schedule is temporary, i.e., the modified schedule is
used only when the fault occurs; otherwise, the original schedule is used. In other words,
the system does not pre-allocate resources to the rollback copy of EU instance x, but it
does mark the resources dedicated to the rollback copy such that when the instance =z
experiences a fault it can rollback to recover. We say that an EU instance has stringent
timing constraint if it cannot use temporal redundancy to avoid transient faults. If rollback
fails to satisfy our primary objective, in the next step, we attempt to use spatial redundancy
(i.e., replication) to avert transient faults. The new schedule with the replicated EU instance
is used hereafter, if the modified schedule meets all deadlines.

AR method is dynamic in that temporal redundancy is used only when a fault actually
happens. Our approach is adaptive. We do not replicate the whole application; we only
replicate the EU instances with stringent timing constraints in order to achieve fault-tolerant
execution and high resource utilization.

We use an example to illustrate our approach. Suppose we have a two-processor system
running one application. The EUG and the execution time, release time, and deadline of
each EU are given in Figure 5.1(a); the original schedule, before applying our approach, is
shown in Figure 5.1(b); and the final schedule, after applying our approach, is shown in
Figure 5.1(c). Let us first examine EU-1. As described above, we first attempt to put the
rollback copy of EU-1 after the primary copy; we want to see if EU-1 can have a rollback
to avert a transient fault. We find that EU-1 cannot roll back to skip a transient fault,
since the rollback copy will finish at time 20, which exceeds its deadline. We then try out
second strategy (replication); therefore, it is replicated. The replicated copy of EU-1, 1/,
runs on processor Ps. Using the same technique, we find that the rollback copy of EU-2,
2', can be completed before its deadline, so it can use rollback to achieve our objectives.

52

The resources will be marked so that the rollback copy can use them if a transient failure
occurs. Similar argument applies to EU-3.

We assume that a feasible schedule!, with the guarantee of meeting all deadlines, is
given. We call the original schedule non-fault-tolerant schedule (NFT schedule) and that
resulting schedule from our approach is called fault-tolerant schedule (FT schedule). An
NFT schedule contains the scheduling times for the primary copies of all EU instances;
an FT schedule contains, besides primary copies, the scheduling times for the rollback or
replicated copies of EU instances.

The skeleton of our proposed approach is shown in Figure 5.2. Since applications are
periodic, an application can have many instances of the application within a frame; thereby
an EU can have many EU instances in a frame. All EU instances need to apply replica-
tion test, which checks if an EU can use rollback or replication to achieve fault-tolerance.
The detail algorithm for replication test is given in Figure 5.3. A data structure called
scheduling queue keeps track of the instances that wait to be scheduled. Part I considers
temporal redundancy. The routine rescheduling is to adjust the schedule when a (primary
or redundant) copy of an instance is put into the scheduling queue. Part I considers spatial
redundancy. When neither rollback nor replication can achieve our objective, in step 11.4,
we discard the replicated copy from the scheduling queue and the EU is not fault-tolerant.
The schedulability of an FT schedule depends on the order of applying the test and the
complexity of the rescheduling algorithm. We will propose a rescheduling algorithm and
show how to apply the test in the next section. However, rescheduling algorithm is not
limited to the one we are going to present; other rescheduling algorithms can be used.

5.3 A Proposed Rescheduling Algorithm

Because of our objectives mentioned above, temporal redundancy should be considered first.
Let all EU instances go through the part I of replication test first and then the part I1I. We
apply the test according to the ascending order of the ID of the EU instance.

The rescheduling algorithm keeps track of all the free slots all the time. When a rollback
copy is put into the scheduling queue, The algorithm first tries to schedule it on the same
processor where the primary copy is assigned. In order not to affect the scheduling times
of the successors and predecessors of an EU instance, we define two terms, the earliest
start time (EST) and the latest finish time (LFT), to quantify a scheduling window for the
redundant copy of an EU instance. Let EST of an EU instance be the scheduled start time
of the primary copy of the EU instance and LFT be the earliest scheduled start time of all
the immediate successors of the EU instance. With such scheduling window, the algorithm
can search the free slots of a given processor, such as the processor where the primary copy
is assigned, to see if there is any slot within the range of the scheduling window. If it
can not find such free slot, it will try to schedule both the primary and rollback copies on
other processor based on the similar strategy. After all EU instances apply the part I of
replication test, we have a partial FT schedule.

1The schedule includes the allocation of all EU instances and the resource allocation information.

53

(10,0,15) @
(5,20,40@ (10,20,40)

application A
(period = 40)

(a)
original schedule final schedule
1 2 1 2 2
& |1 - & .
0 20 40 0 20 40
3 1 3 3’
P2 I & 30 I R R
0 20 do 0 20 0
(b) (¢)

Figure 5.1: An example for illustrating AR method.

Input: NFT schedule

Decide a permutation 6 which specifies the order of the
rollback and replicated copies of all EU instances in a frame;
Apply replication test according to 6;

Output: FT schedule

Figure 5.2: The skeleton of AR method.

54

Part I:
1.1 Add the rollback copy xfo” of z; into the scheduling queue;
1.2 Call rescheduling;
1.3 If the adjusted schedule meets all deadlines,
x; passes replication test and exits;
1.4 Delete the rollback copy from the scheduling queue;

Part II:
II.1 Add the replicated copy xfepl of z; into the scheduling queue;
1.2 Call rescheduling;
1.3 If the adjusted schedule meets all deadlines,
x; passes replication test and exits;
11.4 (The schedule cannot accommodate the replicated copy.
If ; experiences a fault, the system can not recover.)
Delete the replicated copy from the scheduling queue;
(so that the system still can meet all deadlines
and complete the mission if
z; does not experience a fault.)

Figure 5.3: Replication test.

The following step is to apply the part II for those without rollback copies in the schedule.
Again, to avert the cascade effect mentioned above, we use EST and LFT to quantify a
scheduling window for replicated copies. Searching the list of all free slots, we can construct
a list of candidates of free slots which can accommodate the given replicated copy according
to the scheduling window of the XU instance.

The proposed rescheduling algorithm for the replicated copies is an extension of graph
matching algorithm [BM76]. First, we construct a bipartite graph GG describing the possible
assignments for all the replicated copies. Let T'U .S be the set of vertices and F be the set
of edges, where T' is the set of EU instances that need to go through the part II of the test;
S is the set of free slots in the system; edge (2;,s;) is in £ if the replicated copy of EU
instance z; can be scheduled in the free slot s;.

The replicated copies with only one edge in the bipartite graph should be assigned first,
since they do not have another choice of free slot. Having such initial assignment, we then
apply matching algorithm for the rest of replicated copies. We obtain the assignment for
the replicated copies of a subset of T', called T', and a new set of free slots, 5, left after the
assignment. Iteratively constructing a bipartite graph? as described above and applying
the matching algorithm until no more new assignment can be added, we finally get an FT
schedule. The pseudo code for the proposed method is given in Figure 5.4.

If we implement the data structure, the set, used throughout the algorithm as link

2(T — T) U S will be the vertex set in the next iteration.

55

list, the time complexity for constructing a bipartite graph is O(|7T'||S]) and that for the
matching algorithm is O(|T|*> 4+ |T'||S]), where |V] is the number of the elements in the set
V. In the worse case, the number of iterations we need to get all the assignments is |T'[; it
happens when each iteration adds one new assignment. Therefore, the complexity for the

proposed method is O(|T|* + |T|?|5]).

5.4 A Proposed Migration Algorithm

In case of a permanent fault, the system needs to migrate the EU instances on the failed
processor to other processors. In this section, we present a migration algorithm for the
proposed approach. We call the processor which experiences a permanent fault migrated
processor and the schedule after the migration algorithm is applied migration schedule. The
algorithm is based on the technique described in Section 5.3. EST and LFT defined in
Section 5.3 are used to quantify a scheduling window for the EU instances to be migrated.
According to the scheduling window of each EU instance to be migrated 2, we build up a
list of free slots which can accommodate it.

The proposed migration algorithm is an extension of graph matching algorithm [BM76].
We construct a bipartite graph G describing the possible assignments for all the EU instances
to be migrated. Let T"U S be the set of vertices and F be the set of edges, where T is the
set of U instances to be migrated; 5 is the set of free slots on the processors other than
the migrated processor; edge (z;,s;) is in E if the EU instance z; can be scheduled in the
free slot s;. T is structured as a priority queue where primary copies get higher priority
than redundant copies. The primary copies must be migrated; otherwise, the schedule
is infeasible. Therefore, they have the priority to be assigned first when the matching
algorithm selects a candidate for the assignment.

The primary copies with only one edge in the graph should be assigned first, since
they do not have another choice of free slot. Having such initial assignment, we then
apply the matching algorithm for the rest of the EU instances to be migrated. In the
resulted schedule after the match algorithm is applied, some primary copies might not be
migrated successfully. Since the primary copies have to be scheduled, we should sacrifice
some redundant copies in order to put such primary copies in. For the primary copies that
can not be migrated successfully by the matching algorithm described above, we look for
the slots which can accommodate them and are occupied by redundant copies. There are
several strategies for selecting the candidate to be sacrificed, such as best sacrifice and first
sacrifice. Best sacrifice strategy sacrifices the smallest slot among the possible slots, while
first sacrifice selects the first slot it finds. Finally, we get the migration schedule.

The complexity for constructing bipartite graph and the matching algorithm is the same
as above, which is O(|T|? + |T||S|). Best sacrifice has the complexity of O(|S|), while first
sacrifice has constant complexity. Overall, the migration algorithm has the polynomial

complexity O(|T|> + |T||5]).

®The EU instances mentioned in this section includes rollback or replicated copies of EU instances which
are originally scheduled on the migrated processor

56

Input: NFT schedule Aygr.

Let T be the set of all EU instances in Aygr;
ApT = ANFT;
For each EU instance x; € T
Compute EST; and LFT;;
For each EU instance x; € T
Apply the part I of replication test;
Let the processor j be the processor where the primary copy
of z; is assigned;
If a free slot s on processor j is within
the range of the scheduling window
Apr = Apr U {(27°",5)};
T=T-Ax};
else
For each processor, other than j
Find two free slots which are within the range of
the scheduling window or one which can accommodate
both copies;
Update Apr accordingly;
Repeat
Let 5 be the set of free slots in Apy;
Construct a bipartite graph G(V, F);
V=TuUS:5,;
E = ¢;
For each EU instance x; € T
For each free slot s; €
if the replicated copy of x; can be scheduled in s;
E=FEuU{(z,s;)};
T=¢
For each EU instance x; € T
if #; has only one edge (z;,s) in E
Apr = Apr U {(a,9)};
T=TU{z;};
Apply the matching algorithm;
Let T be the set of EU instances whose replicated
copies are just assigned;
T=T-T;
Until T =por T = ¢;

Output: FT schedule Apr.

Figure 5.4: Pseudo code for the proposed method.

57

Chapter 6

Reliability Models

In the previous chapter, we propose a fault-tolerant scheduling algorithm which adaptively
includes redundant copies into the schedule to achieve the fault-tolerance goals. The static
scheduling methods allow us to pre-analyze task execution behavior and to estimate system
reliability. In order to evaluate the reliability for systems using the proposed scheduling and
to compare the performance of different scheduling approaches, we estimate the reliability
through Markov chain model.

In this chapter, we propose an analytic model for a simple fault model that assumes
only transient faults. The model is extended to include permanent faults. We validate
the analytic models via simulation and the experimental results show that the estimated
reliability using our analytic models is within a very small range of error.

6.1 Analytic Model for Transient Faults

In this section, we present a Markov chain model, shown in Figure 6.1, to formalize systems
which consider only transient faults. Initially, the system is in the state N (the normal
state), if there is no failure. When a transient failure occurs, the system jumps to the state
R (the recovery state). It either tries to adjust the schedule to accommodate the rollback
of the EU instance that experiences the fault, or takes the result from the replicated copy
of the EU instance experiencing the fault. If the system can get the result either from the
rollback or replicated copy of the EU instance and can meet all the deadlines, it goes back
to the state N; otherwise, it enters the state I' (the failure state). In the state I, the system
goes back to the state N when a new instance of the failed task is regenerated.

A transient failure is said to be effective if it hits the primary copy of an EU instance.
Let A\g be the total transient failure rate of the system and A be the effective transient failure
rate. We define ¢ as primary EU occupation ratio, which is the ratio of the total execution
time of all primary copies to the total available processor time. In other words, we can
think of ¢ as the probability that a transient failure is effective. Then, A = gAp. Let p be
the repair rate and ¢ be the coverage factor, denoting the conditional probability that the
system recovers, given that a fault has occurred. We called (1—¢)u un-reschedulability rate

58

Figure 6.1: Markov chain model for transient faults.

and cu reschedulability rate. Let p be the regenerating rate. Assume that the interarrival
time of two failures is exponential distribution; the repair time is exponentially distributed;
and the time between two regenerating tasks also has an exponential distribution. The
following sections will describe how to compute system reliability and how to estimate the
repair rate u, coverage factor ¢, and regenerating rate p.

6.1.1 Reliability Analysis

Let Ps(t) be the probability that the system is in state s at time ¢, for s = N, R, I Initial
state is state N, so that

Pn(0) =1, Pr(0) = Pr(0) = 0.

First, we compute the steady state probabilities for the system [Tri82]. We can get the
steady state probabilities:

= fip
fp+ Ap + (1= c)p’
Ap
Pp = ,
BT+ A+ (1= o
(1 —c)pA

TR VRN,

To compute the mean time to failure (MTTF), we set state I' as an absorbing state.
The differential equations follow:

dPy

— = Pr — AP,
dt CULR N>
dPr

— = APy —uP
dt N HIR,
dPr

— = (1- Pr.
7 (1=c)uPr

59

Using Laplace transforms, the above equations reduce to:
SPy—1 = c,uPR — APx,
SPr = (1—c)uPg.

Solving this system of linear equations, we can get:

- (1 —c)pA 1 1 1
Pr = _
F) *041—042 S—|—O[2 S—|—O[1)7
where
(L+A) £V +2(1 - 2¢)ud + o?
aq, Qg = .

2

After an inverse Laplace transform, we can get Pr, the probability that the system is
in failure mode at time ¢t > 0. Let Y be the time to failure of the system. The reliability of
the system is:

R(t)=1— Pr(t).

The Laplace transform of the failure density,

_dR(t) _ dPp(t)
dt — dt

fr(t) =
is expressed as:

Ly(8) = f(9)
(I-—cpr, 1 1
ap—agy SH+ay S+ a

).

Inverting the transform in the above expression, we obtain:

- A
fy(t) = %(e—o&t _ €_a1t).

Hence, the MTTF of the system is given by:

gy = f " fy (y)dy

1 1 1
_ 1_0(;+X)' (6.1)

6.1.2 Estimation of System Parameters

To compute the system parameters: repair rate u, coverage factor ¢, and regenerating rate
p, we need the following assumptions and notations. Let n be the number of the EU
instances in a frame, x1, 9, ..., ¥,, be the EU instances with or without rollback copies,
but no replicated copies, in the schedule and «,,, 41, %n,+2,- .., 2%, be the EU instances with

60

replicated copy. Let F; be the random variable representing the execution time of the EU
instance a;, for i = 1,2,...,2,; E! be the random variable representing the time that the
system needs to report the unrecovered error condition because x; fails, for e = 1,2,...,n,;
R; be the random variable representing the processing time that the system needs to get
the result from the replicated copy of z;, for ¢ = n, + 1,n,. + 2,...,n. Assume that F; has

exponential distribution with the mean e;, for ¢ = 1,2,...,n; E/ has exponential distribution
with the mean e!, for i = 1,2,...,n,; and R; has exponential distribution with the mean
r; for i = n, + 1,n, +2,...,n. The purpose of making these assumptions is to simplify

our approximation procedure. Although such assumptions might not be realistic for RTS,
we will see from our simulation results that the Markov chain model performs well on
estimating system reliability.

The system parameters that need to be estimated relate to the probability that the
system recovers if a given EU instance fails. The system recovers from a transient fault
implies that the failed EU has a redundant copy in the schedule such that the EU instance
can be recovered by replication or rollback. We define p; as the probability that x; has a
redundant copy in the schedule. z; has a redundant copy implies that the redundant copy
of x; can be scheduled by the routine rescheduling and all deadlines are guaranteed. Since
our system employs static scheduling, we can determine in advance if an EU instance has
a redundant copy. For those with redundant copies in the schedule, they can cope with
transient faults by rollback or replication. Therefore, p; equals to 1 for such EU instances
and 0 for the instances with only primary copies in the F'T schedule.

Let w; be the probability that z; experiences the fault given that an effective fault has
occurred. We assume that a transient fault can happen at any time. Hence, w; can be
expressed as the ratio of the execution time of x; to the total execution time of all EU
instances. The coverage factor can be expressed as the probability that an EU can be
recovered from a transient fault when the system encounters a fault.

N
c = szpz (62)
=1

The repair rate p can be expressed as the average jumping-out rate. For an EU instance
x; with single copy, its jumping-out rate from the state R is (pzel—l +(1 - pz)el—,)7 for an EU
instance z; with replicated copy, its jumping-out rate from the state R (alwayls to the state
N)is Tl—l Hence, the computation for p is followed:

Ty N
1 1 L4 D> 1y (6.3)

=1 i

To estimate the regenerating rate, we need to know the probability that an EU instance
fails and the system enters the state F. Fortunately, we can obtain this probability from p;.
1 —p; is the probability that the EU instance z; only has a single copy (primary copy) in the
schedule, that is, the probability that z; enters the state F if #; has experienced a transient
fault. Since tasks are periodic, a new instance of a task is generated at the beginning of
its period. Let ¢; be the period of the task that contains z;. we express the regenerating

61

rate as the weighted probability that an EU instance enters the state I" multiplied by the
frequency, that is,

N 1

IOIZ — D

x (6.4)
SN (1_ 31’ :
We have devised the methods of computing the system parameters (¢, p and p), p;,

and system reliability. Once we get the values of the system parameters according to the
formula derived above, we can obtain the system reliability. By applying our proposed AR
approach, a hybrid method of temporal and spatial redundancy, we can get a very high
degree of coverage factor and hence a long MTTF. Besides, the system has higher resource
utilization, because it has more free resources can be used for aperiodic tasks.

6.1.3 Simulation

In this section, we validate the proposed model and demonstrate the model is a powerful
tool in estimating the reliability. To validate the analytic model in estimating the system
reliability, we compare the results from the simulations and the model and we use difference
ratio, which is defined as the percentage of the difference between the MTTF and the
simulated average time to failure (ATTF') over the ATTF, as our performance measurement.

A simulation program was written to capture the behavior of the transient faults and
the characteristics of the real-time system model described in Section 5.1. A number of
experiments were conducted to examine the performance of the proposed analytic model
over various system workloads and failure rates. For each experiment, we generate 500
simulated systems; for each simulated system, 1000 system failures are produced to obtain
the ATTF of the system. The final results were evaluated by averaging the difference ratios,
between ATTEF and MTTF, obtained from the 500 systems.

Simulation Model

The simulation program for the simulated RTS consists of four components: task generation,
fault injection, scheduler, and resource management, as shown in Figure 6.2. The task
generation is responsible for generating a set of periodic tasks associated with various timing
constraints and EUGs for the tasks; the fault injection component generates transient faults
and injects to the system according to the probability distribution of the faults. The
scheduler takes charge with allocating and scheduling the tasks; it constructs static off-
line FT schedule based on the proposed approach. The resource management component
maintains the state of the resources and consumes the resources according to the schedule.
Based on the FT schedule obtained from the scheduler, the analytic model computes the
system parameters defined in Section 6.1.2 and the MTTF for the simulated system.
Based on our model, the MTTF for a system using NFT schedule should be %, that
is q%o With the various values of simulation parameters described below, the average
difference ratio for NFT schedules is about 2.5%. It is quite stable under various system

62

RTS simulator analytic model

- | system
task generation '—-»| scheduler | = | parameter
computation
fault injection resource mgnt
ATTF MTTF

Figure 6.2: The overview structure of the simulation.

workloads and failure rates. The major interest in this section is to discuss the performance
of the Markov chain model in estimating the reliability for the systems using off-line F'T

schedule.

The simulation mainly depends on system workload and failure rate. Our simulation
contains the following parameters:

e Ncpu represents the number of processors in the system.
e Napp represents the number of applications in the system.

o NEUInApp represents the number of EUs in an application. It is uniformly dis-
tributed over the range of 2 to Max_N FUInApp for all experiments.

o MaxQutDegree represents the maximum outdegree of an EU in an EUG. It relates
to generate precedence relationship. The number of immediate successors of an EU is
uniformly distributed over the range of 0 to MaxQOutDegree. If the number of EUs in
an application is fixed, the larger MaxzQOutDegree is; the higher degree of parallelism
the application is. We have tried different values of MaxzQOutDegree. Since they
convey the similar behavior, we only show the results with the value of 4.

o PeriodScale represents the scale of a period. The period of an application is a multiple
of PeriodScale.

o MinFzelTtme and MaxFxzeTime determine the range of the execution time of an
EU. The execution time of an EU is uniformly distributed between Min FazeTtme and
Max FzeTvme.

o GetResultTime represents the processing time for obtaining the result from a repli-
cated copy.

o ErrorReportTime represents the processing time for reporting an unrecovered error
condition.

63

o TransArrivalTime denotes the inter-arrival time of two consecutive transient errors
(TAT), which determines the transient failure rate.

Because of the interleave execution of the instances of EUs and the random number of
EUs in an application, it is not easy to have a clear expression to define workload in this
simulation. Every simulation parameter may affect workload. Therefore, our simulation
attempts to cover most of the possible angles of changing workload.

Experiments show that the values of GetResultT'vme and ErrorReportTime do not
affect much on the performance of the model. Therefore, we choose fixed values of these
two parameters; both are 1 time unit.

We randomly generate EUGs according to the simulation parameters given above. We
adopt the allocation and scheduling algorithm proposed by Cheng et al. [CHA94] to obtain
NFT schedules. The algorithm is the framework of the allocator on MARUTI [SdSA94,
MSA92], a hard real-time operating system developed at the University of Maryland. The
maximum values of Nepu and Napp and the value of Max N FUInApp are set to 14, 4,
and 20, respectively, due to the implementation limitation of the NFT schedule generator
implemented by Cheng. We implement the fault-tolerant scheduling approach described in
Section 5.3 to get F'T schedules. Based on FT schedules and failure rate, we can compute
ATTF through the simulation and MTTF from equation 6.1.

Simulation Results

We will examine the sensitivity of the Markov chain model on failure rate and system
workload in this section. We have run many different settings on the experiments of changing
the failure rate. Since they convey the similar behavior, we only show several settings on
the experiments and the corresponding results.

We vary the parameter TransArrivalltme (TAT) under different workloads. Table 6.1
shows the settings for the experiment and Figure 6.3 gives the corresponding results. It can
be found that the difference ratios are very small and quite stable on various TAT. Hence,
we conclude that the analytical model is insensitive to TAT.

In order to see the performance on various system workloads, we vary the workload
simulation parameters, described in Section 6.1.3, one at a time. The settings are chosen to
reflect a diversity of workload, from heavy to light workload. The settings for the experiment
of varying the number of processors are shown in Table 6.2 and the results in Figure 6.4.
As the workload decreases, that is, the number of processors increases, the chance that
the rescheduling algorithm can find a free slot for a replicated or rollback copy increases.
Therefore, the chance for a system with full coverage (coverage factor equals 1) increases.
The difference ratio for such system is 0. When the workload decreases, the number of full
coverage systems increases and hence the average difference ratio decreases.

Simulation results for varying the scale of period are given in Figure 6.5 and the setting
in Table 6.3. The difference ratio goes slightly down as the scale of period increases, but
the proposed analytic model still can estimate the system reliability accurately.

64

Table 6.1: Settings for the experiment of varying TAT.

‘ parameter ‘ wkd 1 ‘ wkd 2 ‘ wkd 3 ‘ wkd 4 ‘ wkd 5 ‘
Nepu 6 7 8 9 10
Napp 2 2 3 3 3
PeriodScale 26 34 35 36 35
MinEzeTime (time units) 8 9 5 8 10
Maz ExeTime (time units) 14 15 12 12 14

Table 6.2: Settings for the experiment of varying Ncpu.

‘ parameter ‘ case 1 ‘ case 2 ‘ case 3 ‘
Napp 2 3 4
PeriodScale 32 32 32
MinExeTime (time units) 8 8 8
Mazx ExeTime (time units) 18 18 18
TAT (time units) 1000 1000 1000

The last experiment varies the range of the execution time. Fixing either the minimum
or the maximum execution time while changing the other gives the similar results, so we
only show the results with fixed minimum execution time in Figure 6.6. The settings are
given in Table 6.4. The workload increases and the slack time of EU instances decreases,
when the maximum execution time increases. As mentioned above, the number of full
coverage system inclines when the workload increases and hence the difference ratio raises
slightly. Again, the Markov chain model performs well on various ranges of the execution
time.

By averaging the difference ratios obtained from our simulation, we find that our ana-
lytical model performs well with the average difference ratio of 1.2 % over various system
workloads and failure rates. Hence, we conclude that the proposed Markov chain model can
be used to estimate with high accuracy the reliability of the system using static scheduling.

Table 6.3: Settings for the experiment of varying PeriodScale.

‘ parameter ‘ case 1 ‘ case 2 ‘ case 3 ‘
Nepu 6 8 10
Napp 2 3 4
MinExeTime (time units) 8 8 8
Mazx ExeTime (time units) 18 18 18
TAT (time units) 1000 1000 1000

65

Table 6.4: Settings for the experiment of varying the range of execution time.

parameter ‘ case 1 ‘ case 2 ‘ case 3 ‘

Nepu) 8 10
Napp 2 3 4
PeriodScale 32 32 32
MinExeTime (time units) 8 8 8
TAT (time units) 1000 | 1000 | 1000

diff ratio

00 |- e
00 (— -

00 |- — okd -
00 — ~| Wkd 75
00 |- —
00 |- —
00 |~ —
00 |- —
00 |~ —
00 |- —
00 [R e e e T e T —
00 |-

PORNGOMOON®OO

! ! ! ! ! ! “arlx 103

Figure 6.3: Results for varying TAT.

diff ratio

o
°

0o - _jcase .
00 - B
00 -
00 -
00 -
00 -
00 -
00 — -
oo
00

00 —

PORPNGWMOON®O

00 —

L L L L L Ll of processors
4. 00 6. 00 8. 00 10. 00 12. 00 14. 00

Figure 6.4: Results for varying the number of processors.

66

diff ratio

.
©

oo =TT
00 — T amrsn
00 — 1
00 — 1
00 — |
00 — |
00 — 1
00 — 1
00 —
00 —
00 —

erN®MGaON®O

‘ ‘ ‘ ‘ - riod scale
25. 00 30. 00 35. 00 40. 00

T

Figure 6.5: Results for varying the scale of period.

diff ratio

[
o

.00 —
00 —
00 — —
00 — —
00 — —
00 — —
00 — —
00 — —
00 —
00 —
00 —

ernNw Ao NSO

Figure 6.6: Results for varying the range of execution time.

67

§ Ci bt
A
pHp

1 — o)

Figure 6.7: Markov chain model for permanent and transient faults.

6.2 Analytic Model for Transient and Permanent Faults

We extend the analytic model presented in Section 6.1 to permanent faults, which is shown
in Figure 6.7. Initially, the system is assumed to be in the normal state (the state N). When
a processor encounters a permanent fault, the system enters the migration state (the state
M) and migrates the EU instances to other processors. If migration process succeeds (i.e.,
the EU instances on the failed processor with only one copy in the schedule are migrated),
the system goes back to the normal state. Otherwise, it enters the failure state (the state
I'). When a transient fault happened during the execution of an EU, the system enters the
recovery state (the state R). If the schedule has a redundant copy of the failed EU instance,
either rollback or replication copy, the system recovers from the fault and goes back to the
normal state. Otherwise, it enters the failure state.

A is the transient failure rate; ¢ is the permanent failure rate. Let u be the recovery rate
and ¢ be the coverage factor, denoting the conditional probability that the system recovers,
given that a fault has occurred. The subscript of the coverage factor ¢ and the recovery
rate u denotes the fault type, i.e., ¢, represents the coverage factor for permanent faults
and ¢; represents the coverage factor for transient faults. Same rule applies to the recovery
rate . We call ¢4y reschedulability rate, (1 — ¢)y un-reschedulability rate, ¢pp, migration
rate, and (1 — ¢,)p, un-repair rate. Assume that the inter-arrival time of two consecutive
permanent or two consecutive transient failures is exponential distribution; the recovery
time is exponentially distributed. The following section describes the system reliability
based on our assumptions.

68

6.2.1 Reliability Analysis

Let Py(t) be the probability that the system is in the state s at time ¢, for s = N, R, M,
and F. Initial state is the state N, so that

Py(0) = 1, Pr(0) = Py(0) = Pp(0) = 0.

To compute the MTTF, the differential equations follow:

dP
—dtN = eyt PR 4 cppipy Prr — (A4 6) Py,
dPgr
— = APy — P
dt N HilR,
d Py
— = 6Py —u, P
dt N — HpI'Af,
dP
d—tF = (I=ci)pePr+ (1= cp)upPar.

Using Laplace transforms, the above equations reduce to

SPy—1 = euPr+ cpppPrr — (A +68) P,
SPr = APy —uPr,
SPy = 6Py — P,
SPr = (1—c)pePr+ (1 —cp)py, Py

Solving this system of linear equations, we can get

pr = L (L= eo)Ae(S + pp) + (1 = €p)8pp(S + p1r)

SO+ A+)8+ p)(S + pp) — cehua(S + pip) — epdpip(S + pie)”

After an inverse Laplace transform, we can get Pp, the probability that the system is in the
failure state at time ¢t > 0. Since we are interested in the average behavior of the system,
instead of instance behavior, we do not necessarily have to know exactly what Pr is. Let
Y be the time to failure of the system. The reliability of the system is defined as

R(t)=1— Pr(t).
The Laplace transform of the failure density,

_dR(t) _ dPp(1)

() =-—4 dt

is expressed as

Ly(95) = fr($)
= SPF(S) — PF(O_)
(L —) Ape(S+ pp) + (1 — cp)0pp(5 + pre)
(S + A+ 0)(5+ pe) (S + pp) = cedpe(S + pip) — eppip(S + i)

69

Hence, the MTTF of the system is given by

dLy

EYT = =35

IS=0
frettp + Aptp + gt
(1= co) Ay + (1 = cp)opupy

(6.5)

6.2.2 Estimation of System Parameters

All the system parameters in the proposed analytic model relate to the conditional proba-
bility that the system recovers if an EU instance or a processor fails. In the following, we
present the strategy for how to compute these probabilities and then devise the formulae
for the system parameters.

Let P]p be the probability that the system has a feasible schedule given that processor j
has encountered a permanent fault, where a feasible schedule is defined as a schedule which
can schedule and complete all EUs before their deadlines expire. Since our system uses
static schedule, we can prepare one migration schedule for each processor in advance and
hereafter P]p can be determined. We call processor j is migratable if the migration schedule
for processor j is feasible.

Let P! denote the probability that EU instance #; has a redundant copy, either rollback
or replicated copy, in the schedule given that a transient fault has happened during the
execution of z;. As mentioned in Section 5.1, a failed processor will be replaced by a
processor functioning correctly within one frame period of time. To compute the conditional
probability P!, we should consider if there is a permanent fault happening during the last
frame. Let t be the current time; 7, be the time that the last permanent fault occurs; and
L be the length of a frame. If the last permanent fault happens during the last frame,
ie., (t —t,) < L, the system uses the migration schedule for the failed processor. In the
other case that (¢t —¢,) > L, the failed processor has been replaced and the system uses
the original FT schedule to schedule EU instances. The time that the last permanent fault
occurs determines which schedule, FT schedule or migration schedule, is used and therefore
it determines the probability that an EU instance has a redundant copy.

If a permanent fault occurs on a non-migratable processor, i.e., it is an un-recoverable
permanent fault, the system fails, enters the failure state, and never goes back to the normal
state. No transient fault will occur in such failed system after an un-recoverable permanent
fault is detected. Hence, the permanent faults considered here should be recoverable, that is,
they happen on migratable processors. The probability P/ is constituted by the following
two probabilities: the probability that the system recovers given that z; experiences a
transient fault and no permanent fault happened during the last frame and the probability
that the system recovers given that x; experiences a transient fault and a permanent fault

happened during the last frame.

We need the following notations to decompose the conditional probability P!. Let A;
represent the event that the EU instance z; recovers from a transient fault, H; be the event
that x; experiences a transient fault, U; be the event that a recoverable permanent fault

70

happened on processor j during the last frame, U be the event that a recoverable permanent
fault happened in the system during the last frame, and V' be the event that no permanent
fault happened in the last frame. P(U) denotes the probability that a recoverable perma-
nent fault happened in the last frame, similarly, we can define the probability P(V') and
the conditional probabilities P(A;|H;&V'), P(A;|H;&U), and P(A;|H;&U;). As mentioned
above that P! is built up by P(A;|H;&U) and P(A;|H;&V'), by the definition of conditional

probability, P/ can be expressed as follows:

P! = P(AH)

K3

= P(A|H&U) AU

P(V)
Py Py DAY 5

(V) + P(V)

Let m be the number of processors in the system, m,, be the number of the migratable
processors, and 5, be the set of the migratable processors. Since we assume that the
inter-arrival time between two permanent faults is exponentially distributed and that each
processor has equal chance to encounter a permanent fault, P(U) and P(V') can be computed
as follows:

PU) = (1-eh)Tr,

m

P(V) = L

P(A;|H;&U) can be obtained by summing up the probabilities that each migratable pro-
cessor contributes. Namely,

1
P(A:|H- — = L .
(A;|H;&U) o Z P(A; | H;&U;)
]esm
Like PP, P(A;|H;&V') can be obtained from the FT schedule and P(A;|H;&U;) can be get

according to the migration schedule.

To compute the coverage factor for transient fault ¢;, we assume that a transient fault
can happen at any time. Therefore, a long EU instance has a greater chance to experience
a transient fault than a short one. The coverage factor ¢; is computed as the sum of
the weighted probability that an EU instance recovers from a transient fault. Let w; be
the probability that EU instance x; experiences the fault given that a transient fault has
occurred. According to our assumption, it can be computed as the ratio of the execution
time of z; to the total execution time of all EU instances in a frame. ¢; be expressed as

e =3 wh. (6.6)
=1

The coverage factor for permanent fault ¢, is simpler. A permanent fault has equal
probability to happen on any processor. ¢, averages the probability that the system recovers

given that processor j has encountered a permanent fault, for j = 1,2,...,m, that is,
m
cp = PP (6.7)
i=1

To compute recovery rates, j; and p,, we need the following assumptions and notations.
Let n be the number of EU instances in a frame, 21, 29, ..., ,, be the EU instances with or
without rollback copies, but no replicated copies, in the schedule and z,,, +1, 2,42, .., T, be
the EU instances which have replicated copies in the schedule. Let F; be the random variable
representing the execution time of the EU instance z;, fori = 1,2,...,n, Ocrrop—report be the
random variable representing the overhead that the system needs to report an unrecoverable
error condition, Oget—resui¢ be the random variable representing the processing time that
the system needs to get the result from a replicated copy, and Oy,igration be the random
variable representing the overhead that the system needs to migrate the EU instances on a
failed processor to other processors. Assume that F; has an exponential distribution with
the mean e;, for ¢ = 1,2,...,7; Ocrror—reports Oget—result, aNd Omigration are exponentially
distributed with the mean oc,ror—reports Oget—resuits a0d Opigration, respectively. The purpose
of making these assumptions is to simplify our approximation procedure. Although such
assumptions might not be realistic to RTS, we will see from our simulation results that the
analytic model performs well on estimating system reliability.

The system enters the recovery state due to a transient fault. If the fault occurs during
the execution of an EU instance without redundant copy, the system goes to the failure
state with the rate of 7(Similarly, if an EU instance z; with a rollback copy

Oerror—repor
encounters a fault, the system goes back to the normal state with the rate of 2 = If the
failed EU instance has a replicated copy, the system enters the normal state Wlth the rate
of m The recovery rate p; can be expressed as the averaged jumping-out rate.
We already have the transition rates from the recovery state to other states for each EU
instance. u; can be calculated by averaging the jumping-out rates for all EU instances. The

formula for p; is

1 & 1
= Pt_ _py_ -
e n(;(€; * (!)Oerror—report) *
- t 1 t 1
Y, (Pl—— (1 -P)—). (6.8)
i=n,y41 Oget—result OeTTOT—TepOTt

The recovery rate for permanent fault ¢, can be computed similarly. If the failed pro-
cessor is migratable, the system goes back to the normal state with the rate of :

migration '
1

error—report

Otherwise, it enters the failure state with the rate of - . Hence, it can be computed

by the following expression:

i — + (1 - Pf)il))- (6.9)

=1 Ongratzon OeTTOT—TepOTt

We have presented the method of computing the system parameters used for the ana-
lytic model (¢, ¢p, 4, and) and the reliability. Once we get the values of the system
parameters, we can obtain the reliability. By applying our proposed fault-tolerant schedul-
ing approach, a hybrid method of temporal and spatial redundancy, we can get a very high
degree of coverage factor and hence a long MTTF. Besides, the system has higher resource
utilization, because it has more free resources can be used for aperiodic tasks.

72

6.2.3 Simulation

The simulation design mainly is an extension of the previous simulation described in Sec-
tion 6.1.3. Besides the simulation parameters described in that section, two extra simulation
parameters are needed for the simulation:

o PermArrivalTime denotes the inter-arrival time of two consecutive permanent faults
(PAT), which determines the permanent failure rate, .

o MigrationTime represents the overhead for migrating EU instances of the failed
processor.

The task generation component of the simulation program basically is the same as the
previous simulation. The fault injection component generates transient and permanent
faults independently and simultaneously once the simulated RTS starts. Besides F'T sched-
ule, the scheduler needs to construct migration schedule for each processor by applying the
migration algorithm presented in Section 5.4. For each simulated RTS, 1000 system failures
are generated to compute ATTF for a given system.

Analytic model simulation computes system parameters based on the FT schedule and
the migration schedules obtained from the scheduler. MTTF for a given system can be
determined by the values of the system parameters.

Simulation Results

This section discusses the experimental results for the validation of the proposed model.
For the sets of the experiments on various workloads, we change one simulation parameter
relating to workload at a time to observe the performance of the proposed model over a
wide range of workloads.

Table 6.5 gives the settings for the experiments that varies the number of processors
and Figure 6.8 presents the corresponding results. The figure shows that the difference
ratio drops as the number of the processors increases. The number of the systems with full
coverage (¢; and ¢, are 1) increases when the workload decreases, since the number of free
slots in the schedule increases and the probability that an EU instance has a redundant
copy increases. The estimated reliability of full coveraged system is exactly the same as
the simulated reliability which is infinity; such case has zero difference ratio. Therefore,
when the workload decreases, the number of the full coveraged systems increases and the
difference ratio decreases.

The settings for the experiments that varies the range of execution time are shown
in Table 6.6 and the corresponding results in Figure 6.9. The same reasoning described
above applies to this set of experiments, since the workload decreases when the maximum
execution time becomes small.

The settings and the results for the experiments on varying the scale of period are shown
in Table 6.7 and Figure 6.10, respectively. Because of the interleaving of EU instances in
the schedule, small period does not necessarily imply heavy workload. For each case of

73

Table 6.5: Settings for the experiment of varying Nepu for extended model.

‘ parameter ‘ case 1 ‘ case 2 ‘ case 3 ‘
Napp 2 3 4
PeriodScale 32 32 32
MinExeTime (time units) 8 8 8
Mazx ExeTime (time units) 18 18 18
PAT (time units) 3000 3000 3000
TAT (time units) 1000 1000 1000

Table 6.6: Settings for the experiment of varying the range of execution time for extended
model.

‘ parameter ‘ case 1 ‘ case 2 ‘ case 3 ‘
Nepu) 8 10
Napp 2 3 4
PeriodScale 32 34 36
MinExeTime (time units) 8 8 8
PAT (time units) 2500 2500 2500
TAT (time units) 1000 1000 1000

different scale of period, approximately 10% to 20% of generated systems has full coverage.
The results show that the analytic model performs quite stable on various scales of period.
In general, the model performs very well at various workloads.

We conduct the experiments that change the inter-arrival time between two transient
failures (TAT) or two permanent failures (PAT). The settings are presented in Tables 6.8
and 6.9 and the results are shown in Figure 6.12 and 6.11, respectively. The results show
that the analytic model performs stable at various failure rates. Hence, we conclude that the
proposed analytic model can estimate the reliability accurately at various system workload
and failure rates.

74

Table 6.7: Settings for the experiment of varying PertodScale for extended model.

‘ parameter ‘ case 1 ‘ case 2 ‘ case 3 ‘
Nepu 6 8 10
Napp 2 3 4
MinExeTime (time units) 8 8 8
Mazx ExeTime (time units) 18 18 18
PAT (time units) 2500 | 2500 | 2500
TAT (time units) 1000 1000 1000

Table 6.8: Settings for the experiment of varying TAT for extended model.

‘ parameter ‘ wkd 1 ‘ wkd 2 ‘ wkd 3 ‘ wkd 4 ‘ wkd 5 ‘
Nepu 6 7 8 9 10
Napp 2 2 3 3 3
PeriodScale 26 34 35 36 35
MinEzeTime (time units) 8 9 5 8 10
Maz ExeTime (time units) 14 15 12 12 14
PAT (time units) 3000 | 3000 | 3000 | 3000 | 3000

Table 6.9: Settings for the experiment of varying PAT for extended model.

‘ parameter ‘ wkd 1 ‘ wkd 2 ‘ wkd 3 ‘ wkd 4 ‘ wkd 5 ‘
Nepu 6 7 8 9 10
Napp 2 2 3 3 3
PeriodScale 26 34 35 36 35
MinEzeTime (time units) 8 9 5 8 10
Maz ExeTime (time units) 14 15 12 12 14
TAT (time units) 2000 | 2000 | 2000 | 2000 | 2000

75

diff ratio

-
°

oo T
00 — 1 case
00 — -
00 — -
00 — -
00 — -
00 — -
00 — -
00 —
00 —
00 —

OCRrN®WMOON®O

| | | | | L of processors
4. 00 6. 00 8. 00 10. 00 12. 00 14. 00

Figure 6.8: Results on evaluation of extened model for varying the number of processors.

diff ratio

i
o

.00} v " T _]case !
00 |- —
00 |- —
00 |- —
00 |- —
00 |- —
00 |~ —
00 |~ —
00 |- i
00 |-

00 — —
‘ ‘ ‘ wax exe tine

Or NG MO N®O

Figure 6.9: Results on evaluation of extened model for varying the range of execution time.

diff ratio

.00 =
00 |~ ¢
00 |~ -
00 — —
00 — —
00 — —
00 — —
00 —
00 —
00 |- -
00 - | | | |

i
o

erNwWwMOON®O

period scale

Figure 6.10: Results on evaluation of extened model for varying the scale of period.

76

diff ratio

10.00 [~ | —Jvkd 1
Wkd 2
8.00 — _ %q 73
da
6.00 — — a5
4.00 |-
2.00 |- B
0.00— | \ \ \ \ \ batly 103
0. 00 1.00 2.00 3.00 4.00 5. 00 6.00

Figure 6.11: Results on evaluation of extened model for varying PAT.

diff ratio
10.00 [| T wkd 1
WKd 2
8.00 - | Kd’3
da
wkd 5
6.00 [-
4.00 -
2.00 - —
0.00 ! ! ! ! ! darly 103

Figure 6.12: Results on evaluation of extened model for varying TAT.

7

Chapter 7

Performance Evaluation

In this chapter, we present two conventional fault-tolerant scheduling approaches: repli-
cation and rollback schemes and compare the performance of the proposed adaptive re-
dundancy (AR) scheduling approach with the basic fault-tolerant scheduling schemes. The
simulation results show that our proposed fault-tolerant scheduling, AR method, outper-
forms the replication and rollback schemes under various system workloads and failure
rates.

7.1 Basic Fault-Tolerant Scheduling

It has been proven that finding a feasible schedule for a multiprocessor system is an N P-
hard problem [Bur90, GJ75] and that adding a task into a schedule is also an N P-hard
problem [GJ79]. Thus, given a permutation of all the EU instances in the schedule, the
rescheduling algorithm for scheduling a redundant copy of an EU instance is still an N P-
hard problem. Exhaustive search on all the possible permutations wastes tremendous time
and resources. Considering the tradeoff between finding an optimal fault-tolerant sched-
ule and the computational time for the rescheduling algorithm, we adopt polynomial-time
rescheduling algorithms and propose branch and bound algorithms to eliminate unnecessary
search for both schemes to be presented.

7.1.1 Replication Scheme

We propose a branch and bound algorithm to find a suboptimal solution for replicating EU
instances. The search space is all the possible permutations of the EU instances in a frame.
We represent it as a search tree with n! leaf nodes. The root of the search tree, the node in
level 0, is the original NF'T schedule; an intermediate node is a partial F'T schedule; a son
of a node is an immediate extension of the partial FT schedule corresponding to the node.
A leaf node, specifying a complete sequence of all the EU instances, is a full F'T schedule.
The goal of the replication algorithm is to find a best FT schedule among all the possible
FT schedules obtained from the leaf nodes.

78

We use the heuristics to constraint the search space. The objective function of the branch
and bound algorithm is constituted by the heuristics. we mentioned, in Section 6.1.2, that
larger coverage factor has longer MTTEF. According to the equation 6.2 for computing the
coverage factor, a long EU instance has more contribution on the coverage factor than a
short one. Therefore, the objective function for a full FT schedule is defined as the total
execution time of the instances with replicated copies in the schedule. Hence we can say
that the goal of the algorithm is to search for an FT schedule which has the maximum value
of the objective function among those possible FT schedules.

In an intermediate node, we need an estimation function for the corresponding partial
FT schedule in order to decide if the node is worth expending. The estimated objection
function for an intermediate node should represent the best value of the objective function
that its descendants can get. It is defined as the total execution time of the instances whose
replicated copies are in the partial F'T schedule corresponding to the intermediate node plus
the execution times of all instances which are not in the permutation sequence of the node.
Let < 2, %4,,...,%;, > be the sequence associated with a node in level k. The estimated
objective function of the node can be computed as follows:

) k
F(< @i, igy.oywg, >) = > 8(xq) + exetime(zy,) +
=1
Z exe_time(x;), (7.1)

VIZ{in 02,0ty }

where exe_time(z;) gives the execution time of EU instance z;; the function used for
replication scheme is defined as:

0T6p1($')] 1 if the replicated copy of z; is in the partial schedule,
1 0 otherwise.

The estimated objective function also defines the objective function for the leaf nodes, where
the second term of the equation 7.1 is omitted. It is clear that the value of the estimated
objective function for a node is greater than or equal to the value of the objective function
for any one of its descendants.

During the search, we keep track of currently the best (largest) objective function value
BestVal and the corresponding FT schedule. At each intermediate node, we compute
the value of the estimated objective function defined above. If the value of the estimated
objective function is greater than the best value BestVal, we expand (branch) the node;
otherwise, we prune the node. When the search reaches a leaf node, the objective function
value for the leaf node is calculated and is compared with the current best value. BestV al
will be updated, if the new value is larger.

Rescheduling Algorithm for Replication Scheme
During the expansion of an intermediate node, the rescheduling algorithm is invoked to see

if the replicated copy can be put into the schedule. The proposed algorithm is described as
follows.

79

EST and LFT as defined in Section 5.3 construct a scheduling window for each EU
instance. Let x, be an instance whose scheduled start time to the finish time is within the
range of the scheduling window of the replicated copy to be scheduled. The rescheduling
algorithm keeps track of all free slots. We first try to allocate a free slot for the replicated
copy. If no such free slot exists, we then attempt to schedule the replicated copy by shifting
the scheduled start time of x,. Note that such shifting should not affect the scheduling
times of its successors, since x, is still scheduled within its scheduling window; otherwise,
the computational complexity of the proposed rescheduling algorithm is not polynomial.

7.1.2 Rollback Scheme

The branch and bound algorithm for rollback scheme resembles the algorithm proposed
for the replication scheme. The search space is the same, all the possible permutations of
EU instances in the schedule, and is represented as a search tree. The definitions for the
objective function and the estimated objective function are similar to those used for the
replication scheme. The objective function is defined as the total execution time of the
EU instances with rollback copies in the schedule; the estimated objective function for an
intermediate node is defined as the total execution time of the instances whose rollback
copies are in the partial FT schedule corresponding to the node plus the total execution
time of the instances that are not in the permutation sequence of the node. The function 6
in the equation 7.1 for computing the estimated objective function is defined as follows.

0””(90')] 1 if the rollback copy of x; is in the partial schedule,
71 0 otherwise.

Rescheduling Algorithm for Rollback Scheme

In order not to affect the scheduling times of the successors and predecessors of an EU
instance, we use EST and LFT defined in Section 5.3 to construct a scheduling window for
each EU instance. The rescheduling algorithm may move the scheduled start time of an
instance, only if it finishes before its LFT.

Since the rollback copy has to be on the same processor where the primary copy runs,
the choice for a free slot for the rollback copy is very limited. If we can not find such
slot in the same processor, we will try to find one large slot for accommodating both
primary and rollback copies or two slots for each of them in one processor. As mentioned
in previous section, this may involve shifting the scheduled start time of an EU instance
whose scheduling window overlaps with that of the rollback copy to be scheduled.

7.2 Simulation

The objective of the performance study is to investigate the usefulness of the proposed
AR method. We have shown that the analytic models can estimate the system reliability
accurately for the systems using static scheduling. Hence, we can use the theoretic value,

80

MTTF, as the reliability index for the simulated system, instead of ATTF which needs a
lot of computational time to get.

To reflect the improvement or degradation of the performance for the proposed approach
relative to the basic schemes, we adopt improvement gain defined below as our performance
index. Let MTTF4sp and MTT Fy, s be the mean time to failure of a system using AR and
the basic fault-tolerant scheduling approach, respectively; G(MTT Far, MTT Fyys;.) be the
improvement gain of the AR method relative to the basic scheme, which is defined as

0 if MTTFagr = oo

and MTT Fy,si. = 00,
1 if MTTFagr = oo
G(MTTFap, MTT Fyysc) = and MTT Fyysic # 0,
—1 if MTTFagr # oo

and MTT Fyysi = 00,
MITFAr—MTTFygeic .
ax(MTTFap,MTT Fygsic) otherwise.

For a system with full coverage, its MTTF is infinity (c0). We need to have a bounded
improvement gain; otherwise, it is hard to justify a system with infinity MTTF and one with
limited MTTF. Therefore, we use the maximum value of the MTTF from both approaches
as the denominator. A positive value of the improvement gain implies that a system using
our approach is more reliable than that using the basic approach.

7.2.1 Simulation Design

Figure 7.1 depicts the high level structure of the simulation for the performance study. Ba-
sically, this is an extension of the previous simulation. The component, system parameter
computation, is the same in these simulated systems with different fault-tolerant schedul-
ing approach, since they use the same method to estimate the system parameters. Their
only difference lies on the scheduler. The leftmost system simulates the system using our
proposed method; the center one simulates the system using the replication scheme; and
the rightmost one simulates the system using the rollback scheme. The detail reschedul-
ing algorithms for the corresponding schemes are described in Sections 5.3, 7.1.1, and 7.1.2.
However, these three systems deploy the same migration algorithm developed in Section 5.4,
because we intend to observe the performance among different fault-tolerant scheduling ap-
proaches, instead of migration algorithms.

In this simulation study, we follow the settings of the simulation parameters as we eval-
uate the performance of our extended analytic model for transient and permanent faults,
because we think the set of settings we employ can generate a wide range of workloads and
systems. For one set of the settings on the simulation parameters, the same 500 sets of task
sets are generated for each simulated system with different fault-tolerant approach. The
simulated system invokes the corresponding scheduler to obtain the FT schedule and mi-
gration schedules, computes the system parameters for both analytic models, and estimates
the MTTF for both models. The results of one experiment are calculated by averaging the

81

task generation

failure rates

[\

AR system replication sys rollback sys
AR replication rollback
scheduler scheduler scheduler
system system system
parameter parameter parameter
computation computation computation
MTTFsr MTTF,cp MTTF,

Figure 7.1: The simulation structure for performance study.

improvement gains obtained from all sets of the settings for that experiment listed in the
corresponding tables.

7.2.2 Simulation Results

We conduct experiments for evaluating the performance of the proposed scheme compared
with the basic fault-tolerant scheduling approaches under various system workloads and
failure rates. In the following figures, “REPL-1” represents the improvement gain of the
AR method relative to the replication scheme for the analytic model which models transient
faults only; “REPL-2” represents the improvement gain of the AR method relative to the
replication scheme for the analytic model which models transient and permanent faults;
“ROLL-1” represents the improvement gain of the AR method relative to the rollback
scheme for the analytic model which models transient faults only; “ROLL-2” represents the
improvement gain of the AR method relative to the rollback scheme for the analytic model
which models transient and permanent faults.

Figure 7.2 presents the results for the experiment for varying the permanent failure rate;
the settings are shown in Table 6.9. The replication scheme generally performs better than
the rollback scheme. It is primarily because a replicated copy has more choice of free slots
than a rollback copy. A rollback copy has to be in the same processor where the primary
copy runs, while a replicated copy does not have to. Therefore the replication scheme has
more redundant copies in the schedule than the rollback scheme and the improvement gain
relative to the replication scheme is lower comparing with the rollback scheme. The change

82

of permanent failure rate does not affect the performance. The AR method outperforms,
because it has positive values of improvement gain over various permanent failure rates.

Figure 7.3 dislays the results for the experiment that changes the transient failure rate
of the system. The improvement gains over various failure rates are quite stable, because
the resulted FT schedules remain the same under different failure rates. The performance
of these three approaches is insensitive to different failure rates. The AR method performs
better than the other two fault-tolerant scheduling schemes.

The results for the experiment varying the number of processors are shown in Figure 7.4.
As the number of processors increases, the system workload decreases and the number of free
slots increases. The replication scheme has more replicated copy under a light loaded system,
because the system has more free space. Therefore, its performance becomes competitive
in light loaded systems. When the workload is heavy, the NFT schedule has less space
for redundant copies, no matter what fault-tolerant scheduling we choose. However, even
with limited resources left, the AR method still has better performance, because it has two
options to choice for redundant copy and utilizes resources more efficiently.

As for the rollback scheme, its performance degrades comparatively as the workload
decreases. The primary reason for this phenomenon is because our proposed AR method
makes more systems with full coverage as the workload decreases. Hence, the improvement
gain relative to the rollback scheme raises.

The next experiment attempts to measure the impact on the change in the scale of
period. The experimental results are shown in Figure 7.5. Large scale of period does not
imply the decrease of workload, because of the interleaving of EU execution. However, the
scheduling window raises as the scale of period gets large. For larger scheduling window,
AR algorithm can shift the scheduled times of EUs so that it has the flexibility of put more
rollback or replicated copies into schedules. Its increased improvement gains are caused by
combining the merits of the other two algorithms.

Figure 7.6 shows the results for the experiment that changes the range of the execution
time to generate various workloads. As the maximum execution time increases, the average
execution time increases and the workload increases. With the same timing constraints, the
same release time and deadline, a long EU has less chance having a rollback copy than a
short one, because long EU has smaller slack time. The improvement gain relative to the
replication scheme declines as the average execution time raises. This is mainly because
EUs in such heavy loaded system most likely have replicated copies, instead of rollback
copies, and hence the benefit of having rollback copy in our method is less visible.

83

i nprovenment gain

00 —
95 —
90 —
85 —
80 —
75 —
70 —
65 —
60 —
55 — —]
50 — —]
45 — —
40 — —
35 — —]
30 — —]
25 — —
20 — —
15 — —]
10 — —]
05 — —
00 — —

05 L1 ! ! ! ! ! ! pAT x 103
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

©CO0O O QEOO0O000QE0O0000000000O0OoFRr

Figure 7.2: Results on evaluation of fault-tolerant scheduling approaches for varying PAT.

i nprovenent gain

00 -
95 —
90
85 —
80 —
75 -
70 -
65 —
60 —
55 — —
50 — —
45 |- -
40 | o
35 - —
30 - —
25 - —
20 —
15 |- —
10 —
05 — —
00 — —

o5 L1 \ \ \ \ \ \ At x 103
1.00 2.00 3.00 4.00 500 600 7.00 800

©CO0O O QEOO00O00QE0O0O0000Q00000QO0OoFRr

Figure 7.3: Results on evaluation of fault-tolerant scheduling approaches for varying TAT.

84

i nprovenent gain

00 [
95 [
90 |-
85 [
80 [
75 7 -
70 -
65
60 [
55 [
50 [
45 |-
a0
35
30
25 ;
20- /7 -
s 7 -
10 - -
05 -
00 |- -

05 | | | | | L#l of processors
4. 00 6. 00 8. 00 10. 00 12. 00 14. 00

©CO0O O QEOO00O0QEO0O0000Q000000QO0OoFRr

Figure 7.4: Results on evaluation of fault-tolerant scheduling approaches for varying the
number of processors.

i nprovenent gain

I
00 — —

95 — —
90 —
85 —
80 —
75
70 -
65 —
60 —
55 —
50 —
45 —
40 -
35 —
30 —
25 -
20 -
15 "

10 — -
05 — —
00 — —

05 | | | period scal e
25.00 30. 00 35. 00

©CO0 O QEPO0O0000QE0O00000QE00000O0OoFr

Figure 7.5: Results on evaluation of fault-tolerant scheduling approaches for varying the
scale of period.

85

i nprovenent gain

00
95 |-
90 -
85 -
80 -
75
70 -
65 —
60
55 -
50
45 |-
40 - -
35 -
30 - -
25 -
20 - -
15 — -
10 - -
05 - -
00 -

©COQOOEO0O000O0OEO00000Q000000O0OoFr

05 ‘ ‘ ‘ wax exe tinme
10. 00 15. 00 20. 00

Figure 7.6: Results on evaluation of fault-tolerant scheduling approaches for varying the
range of execution time.

86

Chapter 8

Conclusion

In this dissertation, we have addressed the real-time scheduling problem with a view of
providing support for satisfying resource and fault-tolerance constraints in a comprehensive
and efficient way. We propose a resource synchronization protocol for use in multiproces-
sor hard real-time systems that allows jobs to simultaneously lock more than one global
resource. The synchronization protocol may be applied to both static and dynamic pri-
ority scheduling, and prevents deadlock and transitive blocking. We also devise sufficient
utilization bounds to guarantee schedulability. Our experimental performance studies show
that the proposed protocols that allow nested global critical sections have better perfor-
mance than the protocols which do not allow a job to simultaneously lock multiple global
semaphores. The improvement is due to the fact that our protocols provide flexible granu-
larity of synchronization and hence allow a greater degree of parallelism.

In Chapter 4, we discuss the issues on incorporating execution time information into
optimistic concurrency control (OCC) algorithms and demonstrate that proper use of the
knowledge of execution time can improve data conflict resolution decision. Several OCC
algorithms using the knowledge of execution time are developed and evaluated. We develop
a simulation model to analyze the performance of the proposed algorithms. With the
knowledge of execution time, we can predict in advance if a transaction can not make
its deadline (i.e. mnon-restartable) and discard it earlier before its deadline expires. By
allocating the resources, saved from the early discarded non-restartable transactions, to
restartable transactions, the proposed protocols can commit more transactions than the
baseline algorithm and minimize the miss ratio.

We also present a scheduling algorithm to improve system reliability and to meet the
timing constraints. The proposed fault-tolerant scheduling method uses both rollback and
replication techniques while scheduling secondary copies of EUs. The experimental results
reveal that the hybrid technique combines the benefits of rollback only and replication only
schemes and has more secondary copies in schedules than the other two schemes. One side
benefit of the algorithm is that the resources reserved by rollback copies may be reclaimed
by aperiodic tasks, if no fault occurs.

We devise reliability models as a tool for real-time system designers to compare different

87

fault-tolerant scheduling schemes and develop an abstract system model to simulate RTS
employing different scheduling schemes. The models can also be used to evaluate alternative
rescheduling and migration algorithms used in the proposed approach. We use such tool to
demonstrate that the proposed approach provides more reliable systems than rollback only
and replication only schemes.

8.1 Future Research

There are several interesting extensions of the research.

Workload characteristics: The results obtained in this dissertation are based on
synthetic characteristics of workloads on an abstract system model. Further research is
necessary for the issues on the priori information about workload in the existing RTS and
the representation of workload characteristics.

Overheads on resource synchronization: Most of synchronization protocols require
many context switches, but the overhead is ignored in most research. Further investigation
is needed to find ways to limit or estimate such overhead.

Concurrency control: We have seen the significance of the knowledge of the execu-
tion time on data conflict resolution of OCC algorithms. The impact of such knowledge on
other classes of concurrency control needs to be explored. For example, locking protocols
use locks to control the access of shared resources and deploy conflict avoidance rules to
enforce data consistency and prevent deadlock. It would be interesting to see if execution
time information can help locking protocols make better conflict avoidance decision. On
the other hand, our proposed algorithms do not use such information to classify validating
transactions. For instance, an OCC algorithm, considering the restartability of validating
transactions, might not sacrifice validating transaction which is non-restartable. Extended
research can focus on the classification of validating transaction and propose algorithms that
make distinct conflict resolution decisions on different classes of validating transactions.

Fault-tolerant scheduling: The fault model used for the proposed fault-tolerant
scheduling algorithm does not assume correlated transient failures. Fxperimental stud-
ies are necessary to quantify and better understand the impact of such failures. In addition,
our research does not consider the criticality of applications in the same system. With
limited resources left for fault-tolerance purpose, it is practical to develop a fault-tolerant
scheduling algorithm which increases system reliability by maximizing the total criticality
of tasks having secondary copies in schedules. The proposed scheduling algorithm does
not consider communication cost. There is a need for research into distributed version of
fault-tolerant scheduling algorithms. It is necessary to devise a communication allocation
algorithm which minimizes communication overhead imposed by secondary copies.

88

Bibliography

[AGMSS]

[AGMS9]

[AGM92]

[Aud91]

[Bak90]

[Bat80]

[BB87]

[BCHI1]

[BM76]

[BMHDS9]

[Bur90]

R. Abbott and H. Garcia-Molina. Scheduling real-time transactions: A perfor-
mance evaluation. In Proceedings of the 14th on VLDB Conference, pages 1-12,
1988.

R. Abbott and H. Garcia-Molina. Scheduling real-time transactions with disk
resident data. In Proceedings of the 15th on VLDB Conference, pages 385-396,
1989.

R. Abbott and H. Garcia-Molina. Scheduling real-time transactions: A per-
formance evaluation. ACM Transactions on Database Systems, 17(3):513-560,
Sep. 1992.

N. C. Audsley. Resource control for hard real-time system: A review. Depart-
ment of Computer Science, University of York, UK, 1991.

T. P. Baker. A stack-based resource allocation policy for real-time processes.
In Proceedings of the Real Time Systems Symposium, pages 191-200, 1990.

K. E. Batcher. Design of massively parallel processor. IEFFE Transactions on
Computers, 29(9):836-840, Sep. 1980.

V. Balasubramanian and P. Banerjee. A fault-tolerant massively parallel pro-
cessing architecture. Journal of Parallel Distributed Computing, 4(4):363-383,
Aug. 1987.

J. Bruck, R. Cypher, and C. T. Ho. On the construction of fault-tolerant cube-
connected cycles networks. In Proceedings 1991 international Conference on
Parallel Processing, volume 1, pages 692-693, 1991.

J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North-
Holland, New York, 1976.

A.P. Buchmann, D. R. McCarthy, M. Hsu, and U. Dayal. Time-critical database
scheduling: A framework for integrating real-time scheduling and concurrency
control. In Proceedings of Data Engineering, pages 470-480, 1989.

A. Burns. Scheduling hard real-time systems: A review. Software Engineering
Journal, 6(3):116-128, 1990.

89

[CCY0]

[CHA94]

[CILSY]

[CL90a]

[CL90b]

[CLY1]

[CR72]

[CT93]

[CT94]

[CT95a)

[CT95b]

[CTBY4]

[CTCO4]

C. H. Chen and V. Cherkassky. Task reallocation for fault tolerance in mul-
tiprocessor systems. In Proceedings of the IEFE 1990 National Aerospace and
FElectronics Conference, pages 495-500, 1990.

S. Cheng, S. I. Hwang, and A. K. Agrawala. Mission-oriented replication of
periodic tasks in real-time distributed systems. submitted to IEEE Parallel and
Distributed Technology, 1994.

M. J. Carey, R. Jauhari, and M. Livny. Priority in dbms resource scheduling.
In Proceedings of the 15th on VLDB Conference, pages 397-410, 1989.

M. I. Chen and K. J. Lin. Dynamic Priority Ceilings: A concurrency control
protocol for real-time systems. Journal of Real Time Systems, 2:325-246, 1990.

M. I. Chen and K. J. Lin. Schedulability conditions of real-time periodic jobs
using shared resources. Technical Report UIUCDCS-R-91-1658, Dept. of Com-
puter Science, University of Illinois at Urbana-Champaign, 1990.

M. I. Chen and K. J. Lin. A Priority Ceiling Protocol for multiple-instance
resources. In Proceedings of the Real Time Systems Symposium, pages 141-148,
1991.

K. M. Chandy and C. V. Ramamoorthy. Rollback and recovery strategies for
computer programs. [EEE Transactions on Computers, 21(6):546-556, June
1972.

C. M. Chen and S. K. Tripathi. An optimistic concurrency control algorithm
in real-time database systems. In Proceedings of the ISCA International Con-
ference on Parallel and Distributed Computing, pages 275280, 1993.

C. M. Chen and S. K. Tripathi. Multiprocessor priority ceiling based protocols.
Technical Report CSTR-3253, UMICAS-TR-94-42, Dept. of Computer Science,
University of Maryland at College Park, 1994.

C. M. Chen and S. K. Tripathi. An analytic model for the reliability of real-time
systems. In TASTED International Conference on Applied Modelling, Simula-
tion and Optimization, 1995.

C. M. Chen and S. K. Tripathi. Fault-tolerance scheduling in real-time systems.
In ISCA International Conference on Computer Applications in Industry and
Engineering, 1995.

C. M. Chen, S. K. Tripathi, and A. Blackmore. A resource synchronization
protocol for multiprocessor real-time systems. In Proceedings of the 1994 Inter-
national Conference on Parallel Processing, volume 3, pages 159-162, 1994.

C. M. Chen, S. K. Tripathi, and S. Cheng. A fault-tolerance model for real-
time systems. In The 199/ IFEE Workshop on Fault-Tolerant and Distributed
Systems, 1994.

90

[EGLT76]

[GelT9]

[GJ75]

[GJI79]

[GRWSS]

[Har84]

[HCL90]

[HSTRSY]

[KJC89]

[KRS1]

[KS89]

[LA9O]

[LL73]

[LS93]

K. P. Eswaran, J. N. Gray, R. A. Lome, and I. L. Traiger. The notions of
consistency and predicate locks in a data base system. Communications of the

ACM, 19(11), Nov. 1976.

E. Gelenbe. On the optimum checkpoint interval. Journal of the Association
for Computing Machinery, 26(2):259-270, Apr. 1979.

M. R. Garey and D. 5. Johnson. Complexity results for multiprocessor schedul-
ing under resource constraints. SIAM Journal on Computing, 4(4):397-411,
Dec. 1975.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of N P-Completeness. San Francisco, 1979.

R. Geist, R. Reynolds, and J. Westall. Selection of a checkpoint interval in
a critical-task environment. IEEE Transactions on Reliability, 37(4):395-400,
Oct. 1988.

T. Harder. Observations on optimistic concurrency control schemes. Informa-
tion Systems, 9(2):111-120, 1984.

J. R. Haritsa, M. J. Carey, and M. Livny. Dynamic real-time optimistic con-
currency control. In Proceedings of the Real Time Systems Symposium, pages
94-103, 1990.

J. Huang, J. A. Stankovic, D. Towsley, and K. Ramamritham. FExperimental
evaluation of real-time transaction processing. In Proceedings of the Real Time
Systems Symposium, pages 144-153, 1989.

S. Y. Kung, S. N. Jean, and C. W. Chang. Fault-tolerant array processors using
single-track switches. IEEE Transactions on Computers, 38(4):501-514, Apr.
1989.

H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems, 6(2):213-226, June 1981.

C. M. Krishna and A. D. Singh. Modeling correlated transient failures in fault-
tolerant systems. In Proceedings IEFFE Fault-Tolerant Computing Symposium,
pages 374-381, 1989.

P. A. Lee and T. Anderson. Fault Tolerance, Principles and Practice. Springer-
Verlag, New York, NY, 1990.

C.L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the Association for Computing
Machinery, 20(1):46-61, Jan. 1973.

K. J. Lin and S. H. Son. Real-time database systems: Schedulability and seri-
alizability. 1993.

91

[LSPS2]

[MAT70]

[MA91]

[Mar67]

[MNS82]

[Mos93]

[MSA92]

[Nak93]

[Neub6]

[NK83]

[0594]

[Pie65]

[RBK90]

[Rob82]

L. Lamport, R. Shostak, and M Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382-401, July 1982.

F. P. Mathur and A. Avizienis. Reliability analysis of a hybrid-redundant digital
system: Generalized triple modular redundancy with self-repair. In 1970 Spring
Joint Comput. Conf., AFIPS Conf. Proc., volume 36, 1970.

D. Mossé and A. K. Agrawala. Resilient computation graphs for distributed real-
time environments. Technical Report CS-TR-2613, Dept. of Computer Science,
University of Maryland at College Park, 1991.

J. Martin. Design of Real-Time Computer Ssytems. Prentice-Hall, Englewood
Cliffs, NJ, 1967.

D. Menasce and T. Nakanishi. Optimistic versus pessimistic concurrency control
mechanisms in database management systems. Information Systems, 7(1):13-
27, 1982.

D. Mossé. A Framework for the Development and Deployment of Fault Tolerant
Applications in Real-Time Systems. PhD thesis, University of Maryland, 1993.

D. Mossé, Manas Saksena, and Ashok Agrawala. The Design of the MARUTI
System. In Proceedings Complex Systems Engineering Synthesis and Assessment
Technology Workshop. Naval Surface Warfare Center, July 1992.

H. Nakazato. Issues on Synchronizing and Scheduling Tasks in Real-Time
Database Systems. PhD thesis, University of Illinois at Urbana-Champaign,
Jan. 1993.

J. Von Neumann. Probabilistic logics and the synthesis of reliable organisms
from unreliable components. In Automata Studies, 1956.

Nicola and Kylstra. A model of checkpointing and recovery with a specified
number of transactions between checkpoints. In Proceedings of Performance
83, pages 83-99, 1983.

Y. Oh and S. H. Son. Scheduling hard real-time tasks with tolerance of multi-
processor failures. In Microprocessing and Microprogramming, pages 193-206,
1994.

W. H. Pierce. Failure Tolerant Computer Design. Academic Press, New York,
NY, 1965.

V. P. Roychowdhury, J. Bruck, and T. Kailath. Efficient algorithms for recon-
figuration in vlsi/wsi arrays. IFEE Transactions on Computers, 39(4):480-489,
Apr. 1990.

J. Robinson. Design of Concurrency Controls for Transaction Processing Sys-
tems. PhD thesis, Carnegie Mellon University, 1982.

92

[Ros92]

[RSLSS]

[Sch90]

[SASA94]

[Son91]

[SRLST]

[SRSCO1]

[5583]

[Tri82]

[Ulu92]

[Upa90]

[USS6]

[VLHO1]

[WKFS5]

A. L. Rosenberg. The diogenes approach to testable fault-tolerant vlsi processor
arrays. IEEE Transactions on Computers, 32(10):902-910, Sep. 1992.

R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols
for multiprocessors. In Proceedings of the Real Time Systems Symposium, pages
259-269, 1988.

H. D. Schwetman. CSIM reference manual (revision 14). Technical Report ACA-
ST-257-87 Rev 14, Microelectronics and Computer Technology Corporation,
1990.

M. Saksena, J. da Silva, and A. Agrawala. Design and Implementation of
Maruti-II. In Sang Son, editor, Principles of Real-Time Systems. Prentice Hall,
1994. Also available as CS-TR-2845, University of Maryland.

S. H. Son. Scheduling real-time transactions. In Proceedings of the Real Time
Systems Symposium, pages 25-32, 1991.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An ap-
proach to real-time synchronization. Technical Report CMU-CS-87-181, Dept.
of Computer Science, Carnegei-Mellon University, 1987.

L. Sha, R. Rajkumar, S. Son, and C. H. Chang. A real-time locking protocol.
IEEE Transactions on Computers, 40(7):793-799, July 1991.

R. Schlichting and F. Schneider. Fail-stop processors: An approach to designing
fault-tolerant computing systems. ACM Transactions on Computer Systems,
1(3):222-238, Aug. 1983.

K. S. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer
Science Applications. Prentice-Hall, Englewood Cliffs, NJ, 1982.

O. Ulusoy. Concurrency Control in Real-Time Database Systems. PhD thesis,
University of lllinois at Urbana-Champaign, July 1992.

S. J. Upadhyaya. Rollback recovery in real-time systems with dynamic con-
straints. In The 14th Annual International Computer Software and Applications
Conference COMPSAC 90, pages 524-529, 1990.

S.J. Upadhyaya and K. K. Saluja. A watchdog processor based general rollback
technique with multiple retries. IEFFE Transactions on Software Engineering,
12(1):87-95, Jan. 1986.

J. P. C. Verhoosel, E. J. Luit, and D. K. Hammer. A static scheduling algorithm
for distributed hard real-time systems. Journal of Real Time Systems, 3(3):227-
246, Sep. 1991.

C. J. Walter, R. M. Kiechhafer, and A. M. Finn. MAFT: a multicomputer
architecture for fault-tolerance in real-time control systems. In Proceedings of
the Real Time Systems Symposium, pages 133-140, 1985.

93

[XP90] J. Xu and D. L. Parnas. Scheduling processes with release times, deadlines,
precedence, and exclusion relations. IEFFE Transactions on Software Fngineer-
ing, 16(3):360-369, Mar. 1990.

[ZR87] W. Zhao and K. Ramamritham. Simple and integrated heuristic algorithms for
scheduling tasks with time and resource constraints. Journal of Systems and
Software, 7:195-205, 1987.

94

