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1 IntroductionCase-based reasoning (CBR) involves reasoning from cases: speci�c pieces ofexperience, the reasoner's or another's, that can be used to solve problems. Asa result, case representation is critical. A system's case representation mustsupport its operations: indexing, retrieval, and comparison or adaptation. Anincomplete case representation limits the system's reasoning power.E�ciency pushes systems in the direction of simpler representations. An ex-treme example of this is found in information-retrieval (IR) systems. Like CBRsystems, IR systems index and retrieve information, but without adaptationor further processing. Most IR systems have used very simple representations:essentially, each document is represented by the set of words it contains. Rep-resenting a document as a list of words is not necessarily trivial; but it isrelatively easy to automate, an important factor given that commercial IRsystems such as Dialog, Lexis, and Nexis incorporate hundreds of thousandsof documents.In this paper, we adopt the term \feature-based," used to describe these simpleIR representations [4], and use it to denote any representation that expressesfacts about individual objects in a case without relating them to each other.Such representations may be implemented using a set of attribute-value pairs,a feature vector, or frames with atomic slot-�llers.We use the term \structure-based" (also drawn from information-retrieval [4])for representations that express arbitrary relations among objects in a 
exibleway. Structure-based representations are often implemented as graph struc-tures such as semantic networks or as lists of concrete propositions in somelogic. Whether the representation is implemented as a list of propositions oras a graph is immaterial, since there is a simple translation from propositionalto graph representation [23]. What is important is that the topology of thegraph corresponding to the case representation varies from case to case.Balancing the need for an expressive representation with e�ciency considera-tions, most CBR systems have used representations that fall between feature-based and structure-based. Feature-based representations cannot express theinformation needed by CBR systems in complex real-world domains. Severalof these hybrids combine structure-based representations with feature-basedindexing (e.g., [11]). Others include some relational information but use thesame structure for each case (e.g., [3]).We believe that pure structure-based representations o�er signi�cant advan-tages, and thus we are investigating ways to implement such representationse�ciently. We make a \case-based argument" using examples from two sys-tems, chiron and caper, to show the bene�ts of a structure-based repre-2



sentation, particularly in case-based planning, and to illustrate approaches toovercoming its costs. Other systems that have used structure-based represen-tations include plexus [1], grebe [5], arcs [25], and sme [8], and cookie[20]. These systems are described brie
y in Section 5.2 Overview of caper and chironThis section gives a brief overview of chiron and caper. Details can be foundin [24] and [15].chiron is a hybrid rule-based and case-based system in the domain of taxplanning. It uses rules and structured cases to solve a cluster of problemshaving to do with buying, selling, renting, and owning residential housing.chiron's knowledge base includes representations of part of the United StatesInternal Revenue Code and approximately twenty-four cases under variousprovisions of that statute. It also includes safe harbor plans, or prototypes,that satisfy the rules; a representation of the relationship between the rules,prototypes, and cases; and �nally, a representation of the input description ofthe taxpayer's goals and current situation. The facts of both previous casesand the current situation are represented as lists of propositions in a temporalmodal logic.chiron's case-based reasoner takes partial plans generated by the hierarchicalplanner, re�nes them, and generates arguments in support of the resultingplan. Given a partial plan, the case-based planner �rst retrieves a prototypefor that plan and adapts it along directions suggested by previous cases, to theextent necessary to �t the current situation. It then retrieves all the previouscases that share any fact with the resulting plan. Next, it computes a mappingbetween the facts of each case and the facts of the current situation, in order todetermine the overlap between the two, and sorts the cases by inserting theminto a hypo-style case lattice [3]. It uses the case lattice to determine whetherthere is su�cient support for the plan being considered (generally, whetherthe plan falls between the prototype and previous successful cases of a givenstrategy), and if so, also uses the lattice to generate hypo-style arguments forand against the success of a plan.caper is a case-based planning system that makes use of massive parallelismto access a large casebase (currently several hundred cases) [17, 15]. caperuses structure-based representations for cases and conceptual knowledge, im-plemented as a single semantic network. Given the availability of fast parallelcase retrieval methods, memory does not have to be pre-indexed for e�ciency3



and thus can be accessed 
exibly and often.1 Retrieval is 
exible because anyfeature of the target problem description can be included in the retrieval probe,a graph to be matched against the subgraphs of the semantic net. A case canbe retrieved via any of its constituent nodes. Domain knowledge and planningtechinques are used to form probes at case retrieval time. Multiple plans (orsubplans) can be retrieved and merged into a target plan.caper's semantic network memory is implemented using Parka, a massivelyparallel frame-based knowledge representation system that runs on the Connec-tion Machine (CM-2 and CM-5) and provides very fast inferencing mechanisms[7]. A case includes the goals, initial situation, and plan/subplan hierarchy fora planning problem. Plan validation structures based on those used in thepriar system [14] are also stored. These capture interdependencies amongplan actions and are used by caper to detect interactions that arise duringplan adaptation and plan merging. caper is being tested in our transportlogistics planning domain.3 Bene�ts of Structure-Based RepresentationsStructure-based representations allow a system to capture a reasonably com-plete description of a case. By \reasonably complete," we mean a representa-tion that includes all the information about a case that is likely to be useful.As argued in [22], in order to maximize their usefulness, case representationsshould be as complete as possible. Complete representations increase a sys-tem's reasoning power: a system cannot reason with information that it doesnot have.In particular, a structure-based representation makes it possible to express therelations between objects. Consider the graph shown in Figure 1. This graphcorresponds to part of the representation of Hughston v. Commissioner, one ofthe cases in chiron's casebase. The nodes in the graph correspond to objectsin chiron's logical representation; edges correspond to binary predicates; andthe endpoints of an edge correspond to the predicate's parameters. For sim-plicity, the node labels are not shown in Figure 1, but every node has oneor more such labels. Node labels correspond to unary predicates on a givenobject. For example, Hughston is a lawyer; house1 is both a house and realproperty; Shell-Oil-Company is a corporation; and so forth. For the actualrepresentation and the original text of the case, see [24].In this case, the taxpayer, Hughston, was a lawyer for Shell Oil, in Texas.1We use \indexing" to mean the use of pointers for case retrieval, rather than a morerecent, broader interpretation of \indexing" that includes any domain knowledge used inthe retrieval of cases (e.g., [18]). 4
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Figure 1: Part of chiron's representation of Hughston v. Commissioner.When he was transferred to a new location in Texas, he sold his old house(which had a bathroom with a tile 
oor) and bought another, closer to hisnew place of work. He had three children, of whom the oldest was ten yearsold. At issue was the question of whether he would have to pay taxes onthe pro�t made on the �rst house. The relations between the objects in thiscase are important: the fact that the taxpayer is selling one house and buyinganother, for example; the facts (represented in the case, but not shown here),that the two houses are far apart, but the second one is close to the taxpayer'snew place of employment; and so forth. These could not be expressed in asimple feature vector.In caper, structure-based representations provide the required expressivity torepresent relations between objects and relations between plan actions. In ourtransport logistics domain the con�guration of packages with respect to vehi-cles in a problem's initial situation is important in retrieving a case to adapt tothe target problem. Consider the graph based on a piece of a case from caper'stransport logistics domain, shown in Figure 2. This case involves a plan todeliver a package, Pkg99, starting at 3 p.m. on March 15, 1994, in a truck(Truck22) whose original location is Boston. To represent information such asthe fact that Truck22 and Pkg99 have the same origin, structure-based repre-sentations are required. To match cases on such relations, \structure" queriesthat contain two or more variables are needed: e.g., \�nd all plans in whose ini-tial situation inst-of(t,Truck) ^ inst-of(p,Package) ^ origin(t; x) ^origin(p; x)." caper also needs to represent and match on plan validations{ relations among plan actions. 5
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Figure 2: Sample Piece of caper's Memory for Transportation Logistics Do-main. (\inst-of" links are \Instance Of" (2). \isa" links are � relations.)chiron's structure-based representation permits the system to capture thedetailed facts of its cases, and the system's algorithms for indexing, adapt-ing, comparing, and contrasting cases exploit this rich representation. Forexample, every case is indexed under each of the predicates used in its caserepresentation; thus, the system can identify as many partial matches as itsrich representation language can express. Every fact can form the basis for anargument. A fact shared with a previous successful case supports an argumentthat the taxpayer in the current situation should succeed; a fact shared witha previous unsuccessful case suggests a possible problem. Similarly, unsharedfacts suggest possible distinctions between the current situation and previouscases. Finally, any fact in one of the previous cases can potentially be addedto the prototype to make a new plan. Similarly, facts can be subtracted fromthe prototype, and their parameters can be varied.In general, a complete case description is desirable for several reasons. First, itis not always possible at case-representation time to be sure of the future use ofa case. A legal case may be used as the basis for analyzing a future situation,a plan, or a prediction of issues that might arise as the result of execution ofa plan. A plan for transporting a package may be used for constructing a newtransport plan or for recognizing the plan of another agent.Second, even if a case is reused for the same purpose, it is not always clearwhich facts of the original case were relevant to the result. For example, ataxpayer trying to avoid the loss sustained by the taxpayer in Hughston might6



succeed if he is not a lawyer; if he buys a house that is exactly comparableto the house sold; or simply if he takes advantage of a di�erent provision ofthe statute. In caper, we can express the fact that a delivery was made to orthrough a particular city (e.g., Boston, in Figure 2). Cities have idiosyncraticrestrictions on the types of packages and deliveries that pass through them.Finally, each new case has unpredictable idiosyncratic facts. Designers of hy-brid systems that use a �xed template for cases must either decide on thetemplate after examining all the cases to be included in their casebase, omitinformation from new cases, or revise the representation for all previous caseswhenever a new useful fact is encountered.Even if all the important facts are predictable, hybrid systems using a �xedstructure for cases must choose between completeness and economy of repre-sentation. The important facts may vary widely from one case to the next. Ifa critical fact occurs in one case out of a thousand in the casebase, it wouldbe wasteful to provide a slot for it in every single case representation.For example, chiron currently has seventy-�ve distinct predicates. caper has204. New ones are added with every new case represented. Many occur onlyin one or two cases, and no case includes them all. In chiron, for example,he fact that one taxpayer is a war veteran, or another is a lawyer, or a thirdis selling rights to a rent-controlled apartment rather than a house, are allpotentially signi�cant. If the system had a �xed representation, it would benecessary to choose between omitting these facts and wasting space in everycase represented. A structure-based representation allows both systems torepresent facts in the cases where they occur, without alloting space for themin cases where they are absent.4 Overcoming the costsThe bene�ts of structure-based representations described in the previous sec-tion come at the cost of increased computational complexity of matching andincreased case acquisition e�ort. The approaches taken to reducing these costsin caper, chiron, and several other systems are described in the followingsections.4.1 MatchingThe matching operation puts two cases in correspondence and is used for caseretrieval and comparison. For feature-based representations (feature vectors7



and frames with atomic slot-�llers), this operation is linear in the number offeatures. For hybrid representations with �xed structures, it is also linear.Using a structure-based representation increases the computational cost ofmatching. If cases were represented as unlabelled graphs, matching would bethe subgraph isomorphism problem, which is NP-complete [9]. If the graphshad node labels and no node label ever occurred more than once in a given case,matching would be linear in the sum of the number of nodes and the numberof edges. In practice, the complexity of matching cases with a structure-basedrepresentation lies somewhere between these two extremes.In chiron, for example, the matching algorithm works as follows. First, thesystem retrieves each case that shares any predicate (or in graph terms, anynode or edge label) with the current plan. Then, for each node in the descrip-tion of the current situation, the system identi�es the nodes in the previouscase that could match that node. In the case shown in Figure 1, for example,there are two houses; so if the current situation involves a house, the currenthouse could match either of these. Finally, the system considers each of thepossible mappings permitted by that list and returns the one that causes themost edges to match.In practice, the average case has forty-four facts, and there are often a coupleof \sellings," or two or three \objects," or a couple of \houses." There arebetween zero and three mappings for each node. Altogether, there are probablyno more than �fteen possible mappings for any case, and the search could bepruned so that not all of these are examined (as done in grebe [5]. For asmall casebase, in a domain where instantaneous response time is not required,chiron's response times (typically three to �ve minutes per problem) aretolerable. Still, the time required for matching is signi�cant, and increaseslinearly with the size of the casebase.Some serial systems with structure-based representations have used indexingto reduce the cost of matching. Indexing restricts the search for relevant casesto a subset of the casebase. Feature-based techniques are often employed suchas the construction of a discrimination network using selected case features(attributes). For example, CHEF indexes cooking plans under their mainingredients and cooking failures under sets of causally relevant features [11].Similarly, chaser indexes tort cases under features such as the harm causedand possible legal defenses [6]. The main disadvantage of indexing is that ithinders 
exibility at case retrieval time. Cases that share unindexed featureswith the target problem will not be retrieved. (See discussion in [22, 17, 15]).A few systems have used parallel techniques to reduce the cost of matching.PARADYME, for example, is a massively parallel frame system that has been8



used to implement a memory for a CBR system [19].2 In caper, the massivelyparallel mechanisms of the Parka Structure Matcher are used to match a probegraph to caper's semantic network memory [2].3To evaluate the average-case behavior of matching a (labelled) probe graph toa subgraph of caper's (labelled) memory graph, we have done some prelimi-nary experiments. We generated representative retrieval probes for a transportlogistics domain and recorded the time taken to process them by the ParkaStructure Matcher. The purpose of these experiments was to assess the abso-lute parallel retrieval times and the scalability of the parallel methods used, fora variety of representative retrieval probes (generated by hand) and casebasesizes. The probes were matched to an unindexed memory using Parka on aCM-2 and a serial version of Parka and the results are shown in �gure 3.4
Q1 Q2 Q3 Q4 Q5 Q6

1

10

100

1000

10000

T
im

e 
(m

se
c.

)

Query

20 cases

40 cases

60 cases

80 cases

100 cases

Figure 3: Parallel timings for sample queries on transport logistics casebasesof varying size (log scale).These results, detailed in [17], show parallel retrieval times of about a second,even for a 100 case memory which contained 1213 (sub)plans (8616 frames).Not only are the absolute parallel retrieval times low but they scale well tolarge casebases: the retrieval times appear to grow better than logarithmically2For a comparison of PARADYME to Parka, see [7].3A sample memory graph is shown in Figure 2. The probe graph contains nodes that areconstants or variables and links that are constants (predicates).4The CM-2 with 32K virtual (16K real) processors. An alternate, optimized serial imple-mentation on an indexed casebase would have O(logn) performance if a balanced discrimi-nation tree were used. Of course such a system would have the disadvantages of pre-indexingpreviously mentioned. 9



in the number of cases (frames). The complexity of the underlying subgraph-matching algorithm on actual casebases is much less than the worst case com-plexity (exponential in the number of binary constraints). For a detailed anal-ysis of the algorithm, see [2].4.2 Case AcquisitionThe cost of case acquisition can be high, particularly if a CBR system usesmany cases. Case acquisition includes the costs of representing and indexingindividual cases. The time cost of acquiring cases can be lower in systemsusing feature-based representations. In IR systems, for example, a documentis represented and indexed by the words it contains and does not have to behand-encoded nor hand-indexed: thus case acquisition can be fully automated.In most CBR systems, the initial cases are derived from the experience of thesystem designer or some other expert, rather than from a document. As aresult, a simple automated translation is not possible. The need to encode acase by hand makes case acquisition more costly.Some hybrid systems solve this problem by using the same structure for eachcase. For example, for each case a person might �ll a frame with �xed slotsor create a feature vector for predesignated features. Representing cases usinga �xed template is harder than translating a document into a set of words,but it is still fairly easy: having chosen a frame representation, the systemdesigner can use the representation as a checklist when entering cases. Thereis no need to analyze each case separately, and di�erent cases are likely to betreated consistently.In systems that use pure structure-based representations, a structure needs tobe created for each case during case representation. For example, in chiron,the facts of a case are hand-encoded into a graph representation. Since thefacts can vary widely from case to case, representing a case is more complicatedthan merely �lling in �xed slots in a frame.Automated methods can be used to create structure-based representations.caper uses a generative planner, UM Nonlin, to seed the initial casebase.Plans created by UM Nonlin on randomly generated problems are automati-cally converted to cases in caper's semantic net representation. As cases arenot indexed, the initial casebase acquisition process is completely automated.Natural language processing methods have also been employed to automati-cally generate cases. For example, cookie's RAS module scanned in recipesfrom a cookbook in English and converted them to case representations [21].10



5 Related WorkOther CBR systems that have used structure-based representations includeplexus, grebe, and cookie. ARCS and SME, two cognitive models of hu-man analogical reasoning, also used structure-based representations.plexus is an adaptive planning system in a commonsense reasoning domainthat uses case-based methods to adapt parts of a previous plan to a new situ-ation on the 
y [1]. plexus uses a structure-based representation (a semanticnet) and can ascend (descend) abstraction links to generalize (specialize) ac-tions in a plan being adapted. plexus interleaves plan adaptation and execu-tion.grebe is a case-based legal analysis system in the domain of workers' com-pensation. It uses a structure-based representation (a semantic net). As aserial structure-based system, it faced the same issues of matching and caseacquisition as chiron, but in the context of analysis rather than planning [5].cookie is an integrated case-based planning and execution system in the meal-preparation domain that examined the use of highly detailed case descriptions.A case in cookie is a list of propositions in a temporal logic of actions andfacts that represents meal-preparation episodes. Issues faced included how toretrieve multiple partially-matching cases that could be adapted and combinedinto a single solution [20].SME is a system for analogue mapping [8]. SME has been used to testthe structure-matching theory, which claims humans use structural similar-ity (isomorphism) on structure-based representations when mapping betweenanalogues [10]. Humans are able to �nd structural similarities between twoanalogues which are dissimilar on the surface: e.g., in proportional analogiessuch as 3:6 :: 2:4. Feature-based models of similarity are not able to accountfor analogies such as these [10]. SME can produce mappings found by humans.ARCS is a system for analogue retrieval built to test a theory that humans usethe constraints of semantic (surface) similarity, structural isomorphism, andpragmatic centrality (the purpose of the analogy, goals of the reasoner, etc.)when retrieving analogues [25, 12]. ARCS uses parallel constraint satisfac-tion techniques on structure-based representations. Its performance comparesfavorably with that of humans, and ARCS is better able to use structural sim-ilarity at retrieval time and thus can �nd relevant cases that a human mightnot. ACME is a system for analogue mapping that is very similar to ARCS[13]. 11



6 ConclusionsIn this paper we have argued for structure-based case representations, whichexpress arbitrary relations among objects in a 
exible way, over more limitedor in
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