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AbstractLinguistic ambiguity is the greatest obstacle to achieving practical computational sys-tems for natural language understanding. By contrast, people experience surprisingly littledi�culty in interpreting ambiguous linguistic input. This dissertation explores distributedcomputational techniques for mimicking the human ability to resolve syntactic ambiguitiese�ciently and e�ectively. The competitive attachment theory of parsing formulates theprocessing of an ambiguity as a competition for activation within a hybrid connectionist net-work. Determining the grammaticality of an input relies on a new approach to distributedcommunication that integrates numeric and symbolic constraints on passing features throughthe parsing network. The method establishes syntactic relations both incrementally and ef-�ciently, and underlies the ability of the model to establish long-distance syntactic relationsusing only local communication within a network. The competitive distribution of numericevidence focuses the activation of the network onto a particular structural interpretation ofthe input, resolving ambiguities. In contrast to previous approaches to ambiguity resolution,the model makes no use of explicit preference heuristics or revision strategies. Crucially, thestructural decisions of the model conform with human preferences, without those preferenceshaving been incorporated explicitly into the parser. Furthermore, the competitive dynamicsof the parsing network account for additional on-line processing data that other models ofsyntactic preferences have left unaddressed.
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Chapter 1IntroductionThe pervasiveness of ambiguity in language poses a major obstacle to achieving human-likeperformance in natural language understanding (NLU) systems. By contrast, people havesurprisingly little di�culty in processing and resolving linguistic ambiguities. In particu-lar, the human parser appears to immediately integrate each successive word of a sentenceinto a coherent syntactic structure, and people are generally not even aware that there aresyntactic ambiguities in the sentences that they hear. These observations lead to the twomotivating assumptions of this research. First, a deeper understanding of the computationalprocesses that underlie human linguistic ability is a prerequisite for achieving comparableabilities in an NLU system. Second, increasing our understanding relies on the investigationof computational models whose behavior accounts for psycholinguistic observations. Thisdissertation presents a computational theory of syntactic processing in which linguistically-and computationally-justi�ed processing mechanisms yield behavior that matches humanperformance in resolving syntactic ambiguities.1.1 MotivationConsider the situation of a natural language parser building the syntactic structure of asentence beginning Sara knows women. If the sentence ends at this point, then the parsermust attach women to the parse tree as the object of the verb know, as in Figure 1.1(a).1 Onthe other hand, if the sentence continues with the word succeed, then the object of know isthe subordinate clause women succeed. In this case, women must be attached as the subjectof the subordinate clause, as in Figure 1.1(b). When �rst processing the word women, theparser cannot know whether it should attach women as the direct object of the verb or asthe subject of a subordinate clause. Thus, the parser is faced with a syntactic attachmentambiguity.Choice points such as these arise quite frequently in the processing of normal linguisticinput, posing a potential problem for an NLU system, which is expected to arrive quickly1For simplicity, this �gure uses a traditional phrase structure representation; however, the parser devel-oped here uses X phrases. 1



VP

S

V

VP

V

VP

V

NP

(a) (b)

NP

knows

women

succeed

knows womenFigure 1.1: In the sentence beginning Sara knows women, the parser faces a syntactic ambi-guity at the word women: the NP may attach as the object of the verb, as in (a), or as thesubject of a sentential object of the verb, as in (b).at the best structural interpretation of the input. The situation is further complicated bythe fact that people generally have consistent strong preferences for a single reading of asyntactically ambiguous input. A computational parser must not only process attachmentambiguities as quickly as people do (essentially, as each word is heard or read), but shouldalso resolve any ambiguities in a manner that conforms with human expectations.Syntactic ambiguity thus presents a challenge in the design of natural language parsers;e�cient methods for keeping track of multiple structural alternatives and for choosing be-tween them have been an elusive goal. Building structure for all of the attachment alterna-tives for every word in the sentence would use a prohibitive amount of computing resources.Similarly, incorporating a large number of situation-speci�c heuristics to choose a preferredstructure is not only inelegant, but leads to a system that is di�cult to maintain and toextend. In order both to be e�cient and to match the structural interpretation of the inputthat people expect, a parser must have a principled and parsimonious method for carefullyselecting which attachment possibilities to maintain and which to discard.In order to accomplish this, a number of design decisions must be made in developing acomputational system for parsing natural language:1. When the parser is presented with a syntactic ambiguity, will it initially build multiplestructures corresponding to the attachment alternatives, or will it build only a singlestructure for the preferred interpretation?2. How will the parser determine what the preferred structural interpretation of the am-biguous input is?3. What will the parser do if the continuation of the input is incompatible with its cur-rently preferred structural hypothesis? Will it be able to revise its initial hypothesis,2



and if so, how will it proceed to do so?Each of these interrelated design decisions raises unresolved issues in natural language pro-cessing. Computational solutions that yield e�cient, human-like ambiguity resolution be-havior have not yet been achieved. However, what has been so di�cult to attain in NLUsystems appears e�ortless for the human parser. The computational mechanisms that un-derlie human syntactic processing enable people to e�ciently and consistently parse naturallanguage. The human parser may not only be the best model for the output behavior thatan NLU system is trying to achieve, but may in fact be the best model of how to achieve thatbehavior as well. This observation motivates the computational modeling of the mechanismsused by people in resolving syntactic ambiguity.While previous NLU systems have incorporated heuristics corresponding to descriptionsof human behavior, they have failed to capture the general principles underlying the compu-tational process of ambiguity resolution. An NLU system that instead incorporates deeperprinciples of the human parsing process has the potential to better match human expectationsin its behavior. Furthermore, a better understanding of the computational underpinnings ofhuman behavior will form the basis for an approach that is more likely to be extensible toa wider range of linguistic phenomena. Thus, the goal of the research here is to develop amodel in which human-like behavior is an emergent property of its fundamental computa-tional assumptions. The model must be evaluated by comparing its behavior to that of thehuman parser within the three areas of the ambiguity resolution process described above.1.2 Overview of the Competitive Attachment ModelThis dissertation develops novel computational techniques for producing human-like behaviorin a natural language parser, and tests their performance within a number of computersimulations on linguistic input. The techniques form the basis of a computational theory ofparsing that models the processing of an ambiguity as a competition for activation amonga set of structural alternatives within a hybrid connectionist network. The model providesa parsimonious account of syntactic ambiguity resolution in which the parsing decisionsthat conform to human expectations arise from a small set of independently motivatedcomputational assumptions.The �rst fundamental assumption is that parsing is a process of distributed decision-making within a hybrid symbolic/numeric connectionist architecture. The hybrid approachsupports the direct encoding of constraint-based linguistic competence using simple symbolicfeatures,2 and captures the weighting of performance e�ects using spreading activation. Likeother connectionist parsers, the model has no global controller; control of a parse is dis-tributed among the independent processing nodes of the parsing network. However, in2By a direct encoding, I mean that explicit constraint-based knowledge is used to determine the grammat-icality of parse tree attachments, rather than that knowledge being \compiled out" to yield phrase structurerules that guide the parse. See Dorr (1993), Fong (1991), Kashket (1991), and Merlo (1992), for other workexploring the use of constraint-based linguistic knowledge within natural language processing systems.3



contrast to other connectionist approaches, the network is not structured a priori accord-ing to context-free rule templates. The parser in fact makes no use of traditional phrasestructure rules. Thus, syntactic phrasal nodes must actively determine their structure bytrying to attach themselves together to form a valid parse tree. Valid syntactic relationsamong the phrasal nodes are established incrementally and e�ciently through a novel formof feature-passing. The communication method relies on an integration of symbolic andnumeric constraints on passing features through the parsing network. The feature-passingalgorithm enables the model to establish even long-distance syntactic relations using onlylocal communication within the network.The communication of symbolic features through the network determines all of the validattachment structures; numeric competition in the network is necessary to focus activationonto a winning subset of the attachments that form a legitimate parse state. The secondbasic assumption of the model is that competition in the parsing network is e�ected solelythrough the use of competition-based spreading activation (CBSA) (Reggia, 1987); the useof inhibitory links is not allowed. The sole use of CBSA in a network con�guration of thiscomplexity has not previously been attempted, and requires that there be additional limita-tions placed on the structure of the parsing network. The use of CBSA and its associatedconstraints yield a principled determination of which alternatives to consider when there isan attachment ambiguity. The competitive spread of numeric evidence through the restrictednetwork structure then focuses the numeric activation onto a particular interpretation of thelinguistic input, resolving ambiguities.The competition mechanism applies uniformly at all nodes to determine the syntacticattachment choices, eliminating the need for construction-speci�c preference heuristics inthe parser. Explicit revision strategies are also unnecessary|the competition mechanismconstrains both the initial structural choices that the parser makes, as well as its potentialfor revising erroneous decisions. The parsing decisions that emerge from this competitiveattachment process conform with human judgments of preference and acceptability. Thecompetitive dynamics of the model also mimic �ner-grained on-line processing e�ects inhuman ambiguity resolution.The �nal underlying assumption of the model contributes to the computational feasi-bility of the parsing approach; it speci�es that the network is dynamically constructed byallocating generic phrasal nodes in response to the input. The phrasal nodes are instantiatedwith simple symbolic features based on the features of the input words. Using dynamicallyinstantiated phrasal nodes avoids several computational problems found in other connection-ist parsers: the prior allocation of a large, �xed number of nodes; the duplication of nodeswithin multiple copies of rule templates; and the restriction to a �xed maximum sentencelength. Since the phrasal nodes can be activated only by the input, the parallelism of theparser is constrained to nodes with overt evidence. This gives the model better scale-uppotential by reducing the number of syntactic nodes and thereby decreasing the number ofattachments that must be considered at any particular point in the parse. The constrainedparallelism has further advantages for the model, since it leads to a better match with thedegree of parallelism observed in the human processing of ambiguities.4



The three fundamental assumptions of the model interact to de�ne its competitive at-tachment process. A computational parser was implemented that embodies these propertiesand serves as a testbed for the proposed model of parsing. A large number of simulations,discussed in Chapter 5, establish the e�ectiveness of the competitive attachment parsingmechanism by demonstrating its consistent and correct attachment behavior across a rangeof structural con�gurations. Further tests of the parser in Chapter 7 focus on examples fromthe psycholinguistic literature. These simulations attest to the ability of the model to mimichuman behavior along the three dimensions of ambiguity resolution discussed in Section 1.1:the degree of parallelism it displays, the syntactic preferences it exhibits, and the manner inwhich it revises structural decisions. Since the observed behavior of the model emerges fromits underlying properties, the competitive attachment approach is proposed as a principledmodel of the ambiguity resolution process in the human parser.1.3 Organization of the ThesisThis chapter has briey discussed the problem of syntactic ambiguity for NLU systems, andthe motivations for the approach to parsing taken here. Chapter 2 describes previous ap-proaches to resolving syntactic ambiguities in natural language parsing; both computationaland psycholinguistic models will be reviewed. Since the network architecture of the com-petitive attachment model is its key feature, other massively parallel approaches to NLUwill be discussed as well. Chapter 3 gives the detailed computational and linguistic justi�-cations for each of the three fundamental design assumptions discussed above. Chapter 4then follows with a high-level overview of the competitive attachment model. The chapterpresents an example parse and describes the critical attachment behaviors that result fromthe underlying properties of the model.The next three chapters describe the computational parser that was built based on theproposed model, and present the results of its evaluation. Chapter 5 describes the numericprocessing components of the parser, including the competitive activation functions respon-sible for the attachment decisions of the parser. The results of a large number of simulationsare presented, demonstrating the e�ectiveness of the competitive attachment approach inparsing. Chapter 6 next presents the symbolic processing components of the parser, describ-ing the symbolic features and message-passing facilities derived from the linguistic theory.The chapter demonstrates how the message-passing functions of the parser incorporate thegrammatical restrictions on establishing syntactic relations among the nodes of the parsingnetwork. In Chapter 7, the results of the parser on a number of psycholinguistically relevantexamples are presented. The chapter describes in detail the correspondence between thebehavior of the model in processing syntactic ambiguities, and human behavior revealed inexperimental work.Chapter 8 concludes the dissertation with a summary of its contributions and a discussionof some future directions for the research. 5



Chapter 2Related WorkThis chapter provides an overview of research related to the competitive attachment ap-proach. Section 2.1 describes previous work in computational linguistics and psycholinguis-tics whose aim is to model human behavior in processing syntactic ambiguities. Becausedistributed network processing is a crucial property of the competitive attachment model,Section 2.2 turns to a discussion of related work in massively parallel parsing.2.1 Parsing Syntactic AmbiguitiesIn order to parse syntactic ambiguities in a way that is compatible with human behavior, anatural language parsing model must be constrained such that the decisions it makes matchesthose of the human parser. Research in computational linguistics and psycholinguistics hastaken a number of broad approaches in pursuing this goal. The most common has beento augment a traditional serial parser with heuristics to guide its syntactic decisions whenfaced with an ambiguity. Another approach has been to determine a set of well-motivatedcomputational restrictions on a serial mechanism that will give rise to the observed humanchoices. A variation on this type of approach is to derive these computational constraintsdirectly from properties of a linguistic theory. Recently, approaches using non-traditionalparallel mechanisms have arisen, which emphasize the centrality of soft constraints in contrastto discrete rules or strategies. Finally, some research has focused on semantic processingaccounts of the human resolution of syntactic ambiguity. This section will give a briefoverview of key research in each of these areas.2.1.1 Serial Models with HeuristicsBeginning over twenty years ago, researchers have tried to determined what processing strate-gies, in conjunction with purely grammatical knowledge, could account for human preferencesin parsing ambiguous or temporarily ambiguous linguistic input. Early work took the formof positing explicit heuristics that would apply to speci�c syntactic constructions to guidethe parser to the preferred structural analysis (Fodor, Bever, & Garrett, 1974; Kimball,1973). Kimball's inuential work inspired the best known and longest-lived model of this6



type, which has been developed and re�ned by Frazier and her colleagues (Frazier, 1978;Frazier, 1987; Frazier, Clifton, & Randall, 1983; Frazier & Fodor, 1978; Frazier & Rayner,1982). In Frazier's serial model, parsing decisions are guided by a small number of gener-ally applicable structural heuristics|most notably, Minimal Attachment and Late Closure.These heuristics might resolve a temporary ambiguity within a sentence in a way that is in-compatible with the continuation of the sentence; in those situations, the structural analysisof the input must be corrected by explicit revision strategies. The primary shortcomingsof the theory arise from the lack of generality of its preference and recovery mechanisms:multiple, unrelated preference heuristics are required, and the proposed revision strategiescrucially rely on construction-speci�c properties.McRoy & Hirst (1990) propose a \race-based" parser based on Frazier's model thatimproves the account of human behavior by providing a uni�ed computational frameworkfor capturing a range of structural preferences.1 The research addresses the fact that theset of previously proposed structural heuristics were unrelated and had weak computationalmotivation. McRoy & Hirst demonstrate that a number of preference strategies (includingFrazier's and others) can all be interpreted in terms of their e�ect on the time it takes forthe parser to create various structures in response to an ambiguity. A single parsing strategyresults, which is to prefer the structure that is built most quickly. While McRoy & Hirst'smodel provides a more parsimonious account of initial human preferences, the parser, likeFrazier's, continues to rely on construction-speci�c revision strategies.In a related approach, Gorrell (1987) proposes a \ranked parallel" model in which therankings of syntactic alternatives are similarly based on the outcome of a parsing race|thatis, the analyses are pursued in parallel, but ranked according to how quickly they are initiallyconstructed. The ranking of parallel alternatives is claimed to underlie the observed serialbehavior of the human parser, since higher ranked structures are assumed to be more salientor more readily accessible to higher-level processing. The model accounts both for someimportant preference data, as well as for evidence of the maintenance of multiple structuresin the human parser. Although limited in computational detail and in scope (addressingonly \Minimal Attachment" structures), the crucial idea of weighted parallel alternatives insyntactic processing survives in various current models (for example, compare Gibson, 1991;MacDonald, Pearlmutter, and Seidenberg, 1993).Both Shieber (1983) and Abney (1989) propose serial models in which parsing heuristicsare formulated as built-in conict resolution strategies that guide the parser when it hasmore than one action it can perform in response to a new input token. Shieber proposesa rule-based shift-reduce parser in which shifting is preferred over reducing, and long rulereductions are preferred over short ones. These simple conict resolution strategies providean elegant account of certain cases of Minimal Attachment and Late Closure preferences.However, the model is limited in its account of on-line processing behavior; for example, theresearch does not address the issue of how easy or di�cult it is to revise the initially preferred1Although Frazier had described her model as involving a structure-building race, this was not the centralfocus of the work, and McRoy & Hirst were the �rst to describe the computational processing of such a race-based parser in detail. 7



structures. Abney adopts similar conict resolution strategies within a more linguisticallyplausible licensing parser. The model also incorporates an explicit backtracking procedure toreanalyze erroneous initial structures; a \right-edge continuation" heuristic determines thechoice point to backtrack to. Abney's model accounts for the distinction between revisableand non-revisable errors, but does not account for the range of di�culty observed in makingallowable revisions.Ford, Bresnan, & Kaplan (1982) also propose a serial backtracking parser, which is bestknown for the integration of lexical preferences into its parsing decisions. While previousmodels relied on purely structural properties to guide syntactic analysis, Ford, Bresnan,& Kaplan recognized the key role of speci�c lexical information in guiding a parse. Theapproach has a number of empirical shortcomings, arising from the formulation of the parseras a rule-based, serial, backtracking mechanism. However, the model had great inuencein demonstrating the importance of incorporating lexical information into the ambiguityresolution process.Fodor and Inoue (Fodor & Inoue, 1994; Inoue & Fodor, in press) have more recentlyproposed new models within the general approach of serial parsing guided by heuristics,with the goal of providing a universal parsing mechanism that matches human behavior inprocessing both English and Japanese. In the \information-paced" parser (Inoue & Fodor, inpress), a serial mechanism determines the best structure that is compatible with the availableevidence derived from the input, and a record of choice points is maintained to ease anynecessary revisions. Given the power of the parser to arbitrarily go back and revise earlierdecisions, Inoue & Fodor develop a constraint on restructuring that restricts the revision ofthematic role interpretations. This thematic restructuring constraint captures limitations onreanalysis in English and Japanese examples. In Fodor & Inoue (1994), a \diagnosis" modelis proposed in which the process of revision is made more central to their account of cross-linguistic data. The behavior of the model is determined primarily by its ability to diagnosestructuring errors and recover from them, utilizing principles such as \Attach Anyway" and\Steal." Although the emphasis is shifted from preference behavior to reanalysis, thesemodels still crucially rely on the enumeration of speci�c processing heuristics.2.1.2 Serial Models with Computational RestrictionsThe models described in the previous section all attempt to match human structural pref-erences by incorporating processing strategies that mimic human behavior. Another impor-tant line of research has instead focused on independently-justi�ed computational restric-tions that could lead to the observed behavior, without having to build in that behaviordirectly. One of the founding pieces of work along these lines is the deterministic parser ofMarcus (1980), in which a small set of well-motivated computational assumptions underliethe parser's human-like behavior in processing a number of types of ambiguities. Milne(1982, 1986) extends Marcus's parser, in an attempt to give a more extensive account ofhuman behavior in resolving lexical ambiguities and of human inability to parse well-knowngrammatical constructions. However, the model relies on very speci�c processing rules and8



assumptions around the amount of allowable lookahead. Kwasny & Faisal (1992) develop ahybrid connectionist model within the deterministic parsing framework that addresses someof the problems with Milne's approach. In their model, a Marcus parser is augmented witha network component that decides which of multiple actions to pursue at each point in theparse. The generalization ability of the network avoids the need for a large number of veryspeci�c rules. However, the model is limited in its grammatical scope, as well as in its abilityto match human performance in processing syntactic ambiguities.More recent work inspired by the \determinism hypothesis" has combined constraintsimposed by a serial, deterministic mechanism with assumptions about the necessity of fast,incremental interpretation. Weinberg's (1991) Minimal Commitment model draws on amethod of minimally speci�ed representation (\D-theory" of Marcus, Hindle, & Fleck (1983))to provide a principled form of limited parallelism in maintaining multiple structural analy-ses. In conjunction with an explicit strategy that favors immediate thematic interpretation,her model accounts for a wide range of human preference phenomena in both English andJapanese. Gorrell (in press) uses similar D-theoretic motivations, relying on restrictions onthe reanalysis of precedence relations to extend the account of human behavior. In both ofthese models, the reanalysis process is de-emphasized, and an account of the observed rangeof recoverability from parsing errors is lacking.Crocker (1992) proposes another model in which computational restrictions arising fromthe interpretation process constrain the parser's operations in response to an ambiguity. Hisprinciple-based syntactic parser is guided by the global requirement to maximize the interpre-tation of an input. Crocker claims that this fundamental assumption accounts for a numberof structural preferences in English, German, and Dutch, obviating the need for explicitpreference heuristics. Crocker's model matches some critical initial preference data, and un-derlines the importance of cross-linguistic veri�cation of more general attachment principles.The requirement to maximize interpretation, however, is realized through the incorporationof generalized preference heuristics (\Argument Attachment" and \Deep-Structure Attach-ment") that are not necessary computational properties of the parsing mechanism.2.1.3 Grammatically-Based Computational RestrictionsPritchett (1992) has developed a serial parsing model in which a constraint-based approach togrammar plays a central role in de�ning the computational restrictions on syntactic process-ing operations.2 In this framework, the grammatical constraints from the linguistic theoryare directly interpreted as processing constraints on the parser. The approach promises amore principled determination of processing constraints, by deriving them from indepen-dently motivated linguistic factors. However, in practice the grammatical knowledge is notsu�ciently constraining to explain human processing limitations. In order to complete hisaccount, Pritchett must postulate an additional mechanism, the \On-Line Locality Con-straint," which restricts the types of revisions that his serial parser can perform.2An implementation of Pritchett's theory is described in Paolucci (1993).9



The parallel model developed by Gibson (Gibson, 1991; Gibson et al., 1993) beginswith a similar basis in linguistic theory.3 The parser pursues all possible analyses of aninput in parallel, and calculates the costs of maintaining each structural alternative. Aprincipled method for determining the relative cost of each alternative derives from howwell the structure satis�es its grammatical constraints. The costs are then used as the basisfor pruning the space of possible structural analyses. Gibson develops a \beam search"algorithm in which structures that are close enough in cost are maintained in parallel, whilethose that have signi�cantly greater costs are discarded.4 The resulting parsing model attainsan impressive coverage of human preference and recovery data. The primary shortcomingof the work is the lack of a theory to constrain the processing costs that can be postulated.To the extent that the costs can be derived from the linguistic theory, the assumptionsunderlying the model's behavior receive independent motivation. However, as in Pritchett'smodel, the linguistic theory is unable to yield su�cient processing constraints to provide anadequate match with human behavior. In order to account for a wider range of empiricaldata, Gibson must postulate additional cost mechanisms, such as \Recency Preference" and\Predicate Proximity," whose independent justi�cation is less clear.2.1.4 Parallel Models with Soft ConstraintsGibson's model is an example of the move toward a more continuous ranking of alterna-tive structural analyses within approaches to mimicking human parsing. Many recent psy-cholinguistic studies present evidence that human behavior is guided by the application of anumber of soft constraints (for example, MacDonald, 1994; Spivey-Knowlton, Trueswell, &Tanenhaus, 1993; Taraban & McClelland, 1990). The results emphasize the importance andtiming of information that derives from individual lexical entries. To account for this data,MacDonald, Pearlmutter, & Seidenberg (1993) outline an approach to a constraint-basedlexicalist parser. The model depends crucially on numeric competition among activatedpartial structures to resolve ambiguities. The activation levels that determine parsing pref-erences derive entirely from di�erential frequencies of lexical associations. MacDonald andher colleagues do not propose an underlying grammatical or computational explanation ofthe relevant frequency distributions, assuming instead that they merely reect the statisticalpatterns of the language.5Although there are no implemented parsing systems within this paradigm, the proposal of3See Gibson (1987) and Clark (1988) for earlier proposals within this framework.4It is interesting to note that the beam search restriction that Gibson imposes on his parser can beinterpreted as a high level view of the type of competitive processing that naturally falls out of the compet-itive attachment architecture developed here: In a competition for activation, alternatives that are close inactivation will compete over a lengthy period of time, while a great di�erence in activation will allow onealternative to quickly dominate another.5The research here complements that of MacDonald and her colleagues in searching for underlying dif-ferences in computational complexity that could account for the observed frequencies of possible structuralcon�gurations. 10



Schubert (1984, 1986) anticipates the importance of developing computational mechanismsto support the integration of multiple preference sources. Schubert sketches a framework inwhich numeric combination of syntactic and semantic inuences plays a key role in accountingfor human structural preferences. Factors such as recency of attachment and strength ofexpectations interact to determine the best interpretation of an input. Schubert assumes a\full-paths" parser, which pursues all analyses in parallel and relies solely on the numericweights to determine the most preferred structure. The proposal leaves unaddressed theissue of revising erroneous initial preferences.Other computational approaches that rely on the satisfaction of soft constraints will bediscussed in the section below on massively parallel parsing.2.1.5 Semantically-Based ModelsA number of approaches to modeling human behavior in processing syntactic ambiguitieshave proposed that structural preferences arise from semantic rather than syntactic sourcesof constraining information. Within the sentence processing literature, Altmann, Crain,and Steedman have proposed that discourse context and presuppositional constraints areinstrumental in disambiguating syntactic ambiguities, and that syntactic structure itself doesnot play a role (for example, Altmann, 1988; Altmann & Steedman, 1988; Crain & Steedman,1985). However, because of their fundamental assumptions, they are unable to account forthe purely syntactic inuences on initial parsing preferences that have been identi�ed (forexample, see the discussion in Gibson, 1991). Furthermore, the context-based proposalsfail to explain how semantic and pragmatic information alone can guide the reanalysis oferroneous syntactic structure.In Arti�cial Intelligence, it is not uncommon for researchers to propose parsing modelsbased on \semantic grammars," in which syntactic knowledge is assumed to play a peripheralrole. Cardie & Lehnert (1991) claim that their parser mimics a number of so-called syntac-tic preferences with a semantic account. However, some e�ects in their model in fact arisefrom syntactic processing (for example, reactivation of antecedents), while others arise fromsemantic processing (for example, the �lled-gap e�ect). Furthermore, there are e�ects suchas structural constraints on extraction that their syntactically-impoverished model cannotexplain. Although they demonstrate that certain so-called syntactic processing e�ects havean alternative semantic explanation, they are unable to give a uni�ed account of syntacticprocessing phenomena purely in terms of semantics. In related work, Jurafsky (1991) pro-poses a uni�ed semantic grammar approach to parsing. His model is also unable to explainsome key syntactic distinctions in a well-motivated way; for example, as in the Cardie &Lehnert model, constraints on extraction pose di�culties for his semantic gap account. Thusit appears that while semantics and constraints on interpretation contribute to the resolutionof ambiguity, some purely syntactic properties must be taken into account as well.11



2.1.6 SummaryIn conclusion, parsing models have made tremendous progress in their ability to mimic hu-man structural preferences. The move from discrete heuristics to continuous measures ofacceptability shows great promise. However, most approaches still rely to some extent onstipulating constraints rather than deriving the processing restrictions from more funda-mental properties of linguistics or computation. Furthermore, the emphasis has been onaccounting for initial preferences and processing breakdown. Revision processes have onlyrecently received critical attention, and models of the recovery process thus far have beenstrategy-based, leaving a need for more integrated accounts of revision.2.2 Massively Parallel ParsingThere has been a great deal of interest in exploring the fruitfulness of non-traditional parallelarchitectures for natural language processing. This section will describe work on connection-ist parsing models using both local and distributed representations, and work aimed ataddressing some of the problems that arise in connectionist approaches. The section willalso discuss a number of parallel architectures that are not purely connectionist, but thatexploit massively parallel or distributed processing technology to address open problems inparsing natural language.2.2.1 Connectionist Parsing ModelsConnectionist parsers have commonly used localist representations of rule-based syntacticknowledge,6 in which the network is structured a priori to represent context-free rule tem-plates (for example, Cottrell, 1989; Fanty, 1985, Selman & Hirst, 1985). This type of modelis limited to representing sentences of a maximum �xed length from a context-free language.In spite of the shortcomings for natural language parsing, the work of Cottrell (1989) wasimportant not only for its modeling of word-sense disambiguation (a research problem thatwill not be addressed here), but for its account of \Minimal Attachment" behavior in humanparsing. In Cottrell's system, simpler (\minimal") structures accrue activation more quicklythan complex structures, elegantly explaining the observed Minimal Attachment preferences.Howells (1988) proposes a more dynamic localist model of parsing, but it too is limited toknowledge of tree structure which is representable as context-free rules. Furthermore, theparser cannot be interpreted as an on-line model of human parsing since it depends onsimultaneous activation of the input tokens.The localist context-free parsing techniques appear to be overly simplistic for the problemof understanding human language. However, the use of distributed representations, whilepromising more exibility, has acheived limited success. Hanson & Kegl (1987) use dis-tributed representations to exploit the learning ability of connectionist networks, but their6In a localist representation, processing nodes and symbolic concepts stand in a one-to-one relationship.12



model is limited to part-of-speech tagging and prediction of the next syntactic categoryin a linear pattern. Chalmers (1992) proposes a model which can generalize a simpli�edactive/passive transformation over distributed representations of sentential input, but thesyntactic capability of the model is again quite restricted. McClelland & Kawamoto (1986)also exploit the generalization properties of distributed representations, but their model islimited to matching phrases to the roles they play in a sentence. Sopena (1992) develops amodel in which roles are determined within embedded syntactic structures, but the syntacticcapabilities of the network are again quite impoverished.To explore the possibilities of connectionism for capturing more realistic human linguisticknowledge, Rager & Berg (1992) use existing connectionist techniques to encode a subsetof Government-Binding theory. However, the restrictions imposed by the connectionist en-coding scheme necessitate a large and unwieldy representation of the syntactic knowledge.Other researchers have focused on extending the connectionist techniques themselves to en-able more direct and elegant representational mechanisms for parsing. Henderson (to appear)presents a model of parsing founded on connectionist techniques that allow the simultaneousbinding of multiple variables. This framework not only allows him to represent a linguisti-cally plausible grammatical formalism, but also leads to some psycholinguistically relevantprocessing behavior regarding long-distance dependencies and center-embedding.The major focus in extending connectionist methods for natural language parsing hasbeen to develop techniques to enable more dynamic behavior. In order to support theirmodel of semantic disambiguation, Waltz & Pollack (1985) had to use a traditional chartparser as a front end to their network creation process. This inspired Pollack (1985) to exploretrue connectionist techniques in the form of multiplicative connections and context-adjustingprocessing nodes for achieving the network dynamism necessary for parsing. However, thecontribution is in the exploration of low-level connectionist techniques, and not in the pro-posal of a natural language parsing model. Charniak & Santos (1987) develop a techniqueof shifting information sequentially across the nodes of a parsing network to avoid the prob-lems of a static network structure, but it is unlikely that the technique would scale up torealistic sized parsing problems. More recently, Reilly (1992) combines the techniques of re-cursive auto-associative memory (RAAM) and simple recurrent networks (SRNs) to exploitthe possibilities of incrementally building embedded structure, as is required by the on-lineparsing problem. However, as Reilly notes, the RAAM technique does not provide adequategeneralization ability, limiting the practicality of the approach.2.2.2 Other Massively Parallel ApproachesOther distributed processing approaches have in general fared better than pure connection-ist methods at enabling the development of more comprehensive natural language parsingsystems. Small (1981) proposes a model in which input words instantiate independent pro-cessing nodes according to the individual lexical entries of the words. The model is able tosuccessfully resolve a number of lexical and semantic ambiguities using only distributed pro-cessing among the \word experts." Each word expert has to be completely hand-coded|the13



individual processors are not constrained to perform the same algorithms as in most massivelyparallel frameworks. Small's model is therefore on the other end of the continuum from thesimple, uniform processing nodes of a connectionist approach. Abney & Cole (1985) developan actor-based implementation of Government-Binding theory, which also lacks uniformityof processing. Some nodes represent individual parsing entities, while others encode entiresub-modules of the linguistic theory. Because of the centralization of much of the knowledgewithin these complex processors, the model has di�culties with resolving conicts amongthe knowledge sources.The Active Production Network (APN) approach of Jones (1987) moves away from theseless constrained distributed models towards a more connectionist-like approach. The APNframework captures syntactic knowledge in rule-based network templates, and uses spread-ing activation to encode feature co-occurrence among the processing nodes. The use ofrules in the network is essential to providing a local environment for the binding of features.The parser developed by Lin (1993) relies instead on a message-passing implementation ofGovernment-Binding theory, providing increased exibility for capturing grammatical rela-tions in the network. However, Lin's approach does not use simple processing nodes thatperform the same algorithms across the network; the phrasal nodes of his parser executedi�erent message-passing computations depending on the category of the phrase. In eitherJones' or Lin's models, ambiguity resolution procedures are not an integral part of the pars-ing mechanism, and would have to be added onto the existing parser. In neither case doesobserved human behavior in the processing of ambiguity follow directly from the proposedcomputational mechanisms.Kempen and Vosse (Kempen & Vosse, 1989; Vosse & Kempen, 1991) propose a computa-tional model of human parsing that is similar in spirit to the approach developed here. Theirmodel exploits the use of hybrid symbolic/numeric techniques within a network of simple,uniform processors. The resulting Uni�cation Space parser is a massively parallel, rule-basedapproach that models parsing as a simulated annealing process. In contrast to most othermassively parallel parsers, the model matches a wide range of human structural preferences,in Dutch as well as in English. As in the proposal of Schubert (1984), the preference be-havior of the Uni�cation Space model is determined primarily by speci�c numerical strengthand decay values. Attempts at reanalysis of erroneous structures appear to be limited onlythrough the mechanism of decay.2.2.3 SummaryAt this point in the development of connectionist techniques, the ability to support high-level modeling of human parsing has not been demonstrated.7 The issues of dynamicallyencoding structure and representing the non-local relationships necessary in syntax remainopen problems. On the other hand, massively parallel models that incorporate symbolic ca-pabilities show promise in their ability to model human linguistic performance. This success7However, recent work on Optimality Theory (Prince & Smolensky, 1993) has potential to relate high-levelsymbolic representations of linguistic knowledge to well-established connectionist processing techniques.14



encourages the exploration of hybrid connectionist techniques that can support syntactic am-biguity resolution, while at the same time reaping the bene�ts of distributed parsing withina network of simple, uniform processing nodes.
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Chapter 3Architectural AssumptionsThis chapter describes the fundamental architectural assumptions that underlie the princi-pled model of human parsing developed here. The competitive attachment model is ableto predict a number of critical attachment behaviors of the human sentence processor. Themodel is highly restricted in that its computational architecture is constrained by indepen-dent computational and linguistic factors. The behavior of the model is not explicitly builtinto its architecture, but rather emerges from the interaction of these independently moti-vated assumptions. Although it may be possible to achieve human-like performance with aless constrained parser|for example, by building in human behaviors as explicit heuristics|a model that does so yields little insight into the computational properties underlying thehuman ability to process attachment ambiguities. By developing a model whose attachmentbehaviors fall out from its restricted computational design, we can gain a deeper understand-ing of the problem of natural language parsing and how to capture this complex behavior ina computational system.The design of the competitive attachment model is based on three primary architecturalassumptions that determine the essential characteristics of the parser. The �rst assump-tion is that the model is a hybrid connectionist network in which processors that representsyntactic phrases locally communicate simple symbolic features and numeric activation todetermine their parse tree structure. This framework entails that there is no global controllerin the parser; rather, all parsing decisions are made in a distributed fashion by the syntacticphrasal processors. The chief restrictions on the model follow from two additional assump-tions: There are no inhibitory connections between nodes in the network, and the networkstructure is determined dynamically in response to the input. This chapter describes thesethree fundamental computational assumptions that constrain the architecture of the parser.Each of these design decisions is discussed with regard to its computational and linguisticmotivations.3.1 A Hybrid Connectionist Parsing NetworkRecent research in Arti�cial Intelligence (AI) has focused on determining the relative meritsof two competing paradigms of human information processing. Traditionally, intelligent16



behavior has been modeled within a serial, symbolic processing paradigm. In this approach,a powerful global processor manipulates symbols that represent information in the problemdomain. The symbolic information typically takes the form of rules that encode the generalstructure of a solution to a given class of problems. These rules are applied to an input tobuild a structure that corresponds to a solution to a particular problem.Newer approaches in AI have described intelligent processes as the global behavior thatemerges within a massively parallel network of computationally simple processing units (forexample, Anderson, 1983; Fahlman, 1981; Feldman & Ballard, 1982; McClelland et al., 1986;Reggia & Sutton, 1988; Rumelhart et al., 1986; Smolensky, 1988). Each processor can onlyperform simple computations on numeric values, and communicate the results in parallelto all of its neighboring nodes in the network. The solution to a problem consists of apattern of numeric activation distributed across the processors. There is no process thatcentrally controls or interprets this distributed information, hence the global behavior of thesystem arises solely from local numeric computations in the network. This connectionistparadigm has strengths and weaknesses that are complementary to the traditional models ofintelligence;1 this fact has led to investigations of combining the two approaches in so-calledhybrid models of intelligence (for example, Hendler, 1987; Kimura, Suzuoka, & Amano, 1992;Slack, 1991; Vosse & Kempen, 1991; Waltz & Pollack, 1985; Wermter & Lehnert, 1989).A close examination of the problem of structural disambiguation in natural languageparsing has motivated the design of a hybrid model in the research presented here. Theprocess of resolving an ambiguity has two components: identifying the grammatical attach-ments for a syntactic phrase, and choosing the preferred attachment from among those.Thus, one aspect of structural disambiguation involves the competence of the parser, sincelinguistic knowledge determines which attachment alternatives are grammatical. The otheraspect of the task brings in performance factors; computational restrictions prune the spaceof attachment possibilities, and determine which of the valid attachments to adopt.2This bipartite division of the factors involved in structural disambiguation mirrors theopposing approaches to modeling intelligence in AI. Traditional symbolic processing mod-els have proven successful at encoding and manipulating discrete competence knowledge.This paradigm allows a natural language parser to directly represent the symbolic linguisticknowledge needed to describe tree structures and the grammatical relationships within them.Connectionist models, on the other hand, have demonstrated their usefulness for integratingthe multitude of factors a�ecting performance. Connectionist approaches to NLU can natu-rally simulate the extralinguistic conditions, such as priming e�ects, that play an importantrole in determining the preferred interpretation of a sentence (for example, Cottrell, 1989;Waltz & Pollack, 1985). The motivation for a hybrid approach to structural disambiguationarises from the necessity of capturing within a single model the abilities of each of these two1For an in-depth discussion of the potential weaknesses of connectionist approaches within the domain oflanguage processing, see Pinker & Prince (1988).2By separating the structural disambiguation task into these two components, I am not claiming thatthey are independent subtasks. The division is simply a characterization of the types of information broughtto bear on the problem. 17



information processing paradigms.The question, of course, is how to combine these divergent approaches in a principledway. In fact, linguistic and computational factors independently motivate the basis for thecompetitive attachment model as a massively parallel network integrating the two tech-niques of symbolic constraint satisfaction and numeric spreading activation. First of all, anetwork architecture allows for a direct mapping of the necessary linguistic knowledge intothe computational framework. A recent advance in linguistic theory has been to adopt aso-called \principles and parameters" approach to capturing human linguistic knowledge(Chomsky, 1981, 1986a). This type of approach is a reaction to serious drawbacks of rule-based systems, in which the construction-speci�c nature of rules can lead to extremely largegrammars, with rules that do not generalize well to new constructions or to other languages.Government-Binding theory (GB), which embodies the principles and parameters approach,replaces traditional rules with a set of simple features and general (non-construction-speci�c)constraints. In GB, the validity of syntactic structures is achieved by locally satisfying thegrammatical constraints among neighboring syntactic phrases. The distributed networkmodel developed here is able to directly encode this formulation of linguistic knowledge asa set of simultaneous local constraints. Syntactic phrases are independent processors thatactively try to satisfy the constraints on potential attachments through the strictly localcommunication of relevant grammatical features.In addition to its ability to directly capture a well-motivated linguistic theory, the natureof the proposed model also allows it to avoid the computational problems associated withtraditional rule-based systems. Even with a parallel architecture, memory limitations arequickly exceeded if reasonable coverage of a language is attempted through construction-speci�c rules. Furthermore, it is di�cult to extend a set of rules to increase its coverage of alanguage, and a set of rules developed for one language can rarely serve as the basis for thegrammar of another language. Representing grammatical knowledge as a set of simultaneousdeclarative constraints makes the parser's knowledge base more compact and more amenableto future extensions (Berwick, 1982).Further computational considerations of the parsing process motivate the proposal of ahybrid architecture that integrates spreading activation into the symbolic network model.First, a local, discrete decision-making process among parallel alternatives can get \stuck"in an inconsistent solution without the bene�t of a global overseer. By gradually amassingactivation within a mutually supporting set of attachments, spreading activation methodscan avoid the complex communication protocols required by purely symbolic approaches tolocal, distributed decision-making. Second, spreading activation is able to capture diverseperformance factors within a single mechanism. For example, recency, frequency, and saliencecan all be translated directly into activation through the use of decay, weights, and priming,as shown in Figure 3.1. Level of activation then provides a meaningful way of comparingthe relative inuence of these various performance e�ects, as well as a means of encodingthe result of their interaction.In conclusion, this �rst computational assumption establishes the basic framework of themodel as a massively parallel, distributed network that integrates aspects of symbolic and18
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Figure 3.1: Sample network in which spreading activation can integrate diverse performancefactors. The i (input) nodes are activated serially; their activation decays over time, cap-turing recency e�ects. The weights from the i nodes to the a (answer) nodes can encodefrequency information. The p nodes represent salient information; they prime certain a nodesby outputting activation to them. The input to the a nodes is a function of the weighted ac-tivation from the i and p nodes, and thus the level of activation of each answer is determinedby a combination of these recency, frequency, and salience e�ects.numeric processing. The parser has the ability to manipulate symbolic linguistic informationand to build structure, but processing is limited to local communication of simple featuresand numeric activation. Spreading activation captures the performance factors involved insyntactic processing, such as weighing evidence for alternative attachment possibilities. Sincethere is no global overseer, control of the parsing process is distributed among the processorsthat represent syntactic phrases. Each syntactic processor must immediately and actively tryto group itself with previously structured phrases in the developing parse tree. This active,distributed parsing process is constrained in a principled way by the other fundamentalproperties of the model, described below. 19
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contrast, with the use of CBSA the competitive relationships are implicitly determined bythe output function of a node, with no structural e�ect on the network. Competition isinstead realized through a method of allocating activation from a source to its neighbors.Determining which of these approaches is most appropriate to the model here requires �rstconsidering the role of competition within the parser|that is, what do the processing nodesrepresent, and what competitive relationships are necessary in order to achieve a consistentnetwork solution?As stated in the previous section, the competitive attachment parsing network is com-posed of processors representing syntactic phrases. Furthermore, additional processing unitsrepresent the potential attachments between those syntactic phrases.4 Figure 3.4 shows partof an example network.5 The syntactic nodes in the network are activated in response tothe input words of a sentence, and remain active throughout the parse (although their levelof activation does decay over time). An attachment node, on the other hand, is createdbetween a pair of syntactic nodes that are potential sisters in the developing parse tree; itbecomes active to the degree to which there is grammatical and extragrammatical evidencefor its inclusion in the tree. When the network is in an acceptable state, the set of activeattachment units will represent the attachments comprising the syntactic structure that theparser is building. Clearly not all potential attachments can be included in the parse tree;some attachments are incompatible with each other within a well-de�ned tree structure.Thus, since the network must focus activation onto a subset of the attachment nodes, itis those nodes that are relevant to an examination of the competitive relationships in thenetwork.For example, the subnetwork depicted in Figure 3.4 has more attachment nodes thanare allowed to be activated in a valid parse tree. Here the verb know , represented by theV node, may have the NP node or the IP node as its sister in the parse tree; the possibleattachments are represented by attachment nodes a1 and a2 respectively. (In the parser, theobject of know is attached as a sister to the V node.) Only one of these attachment nodesmay be active when the network settles, since know can only have a single object; a1 anda2 are therefore competing nodes in the network. This fact may be represented either bycreating a direct inhibitory link between them, as in Figure 3.5, or by having the V nodeemploy a CBSA output function to bring about their indirect competition, as in Figure 3.6.CBSA was selected as the mechanism by which to choose between sister attachmentsbecause the approach directly captures the relevant characteristics of this type of competitiverelationship. It is natural for a node to have information about the type of sisters it prefers,4Explicit representation of an attachment as a processor is a necessity in this type of model. A connectionin the network between two syntactic units cannot represent an attachment in the parse tree, since therewould be no way of distinguishing which connections between phrases are the actual syntactic attachmentsand which are simply network communication links.5In the parser, attachment nodes represent a sister relation between phrasal nodes in the parse tree. Inthis and all other �gures, attachment nodes are depicted as small squares, which are white when inactiveand black when fully activated. Phrasal nodes are shown as large circles with the category of the phrasedisplayed inside. 22
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of the model. For that reason, it is especially important to note that, as with the �rstfundamental design decision, this one too is well-motivated by computational and linguisticconsiderations.Several computational bene�ts directly follow from the sole use of CBSA to e�ect com-petition, and the lack of inhibitory links in the model. First, some space e�ciency is gained,since the need for a large number of inhibitory links is eliminated. In a parsing network ofn phrases, there are O(n2) possible attachments;7 thus, in an approach based on pairwiseinhibition between competing attachment nodes, there are O(n4) potential inhibitory links.8Second, the use of CBSA is actually more exible in its ability to easily allow for a multiple-winners-take-all relationship among a set of competing nodes (Reggia, 1987). This ability iscrucial to the correct behavior of the stack data structure in the parser, which is discussedin Section 4.1.3.A third important computational bene�t follows from the restrictiveness of these assump-tions. If direct inhibition is used, any two processing units in a network may be made tocompete by establishing inhibitory links between them. Using inhibitory links, a parser couldcreate all possible attachments, and direct inhibition would in principle be able to prune theset of attachments down to those that form a valid tree. The use of CBSA, on the otherhand, relies on the competing units being connected to a common unit that brings aboutthe competition between them. The network must be structured so that any incompatibleattachment nodes that are created are able to compete through CBSA. The parser is forcedto perform some of the pruning of incompatible attachment nodes by actually limiting whichattachments are created.9 The e�ect is to reduce the number of attachments that are estab-lished at each step of the parse. While the total number of possible attachments among nphrases is n(n+1), a maximum of 4n of these is allowed under the restrictions of the CBSAapproach.The restrictiveness of the network structure that falls out from the CBSA assumptionis also motivated by linguistic considerations. An important aspect of Government-Bindingtheory is the notion of locality: constraints on grammatical relations among syntactic phrasesapply within very restricted local domains|for example, between sisters in the parse tree(Chomsky, 1986b; Rizzi, 1990). By requiring a direct mapping from the parse tree semanticsto the network structure, the model ensures that a local relation between two nodes in the7The exact number of possible attachments among n phrases in the network is: Pni=1 2i = n(n+ 1).8In one formulation of the network, which used CBSA where possible, and direct inhibition for all otherpairs of incompatible attachment nodes, the precise number of inhibitory links required was (n4�4n3+8n2�5n)=6. Thus the sentence Women know Sara ran, whose representation uses 8 syntactic phrases, required420 inhibitory links. Note that this large number is in fact a reduction over a pure direct inhibition approach,since CBSA was employed wherever possible.9Note that this means that the use of CBSA, like the use of inhibitory links, does in fact entail that thestructure of the network be altered in response to the requirements of the competitive relations. However,with CBSA the necessary change in structure is a decrease in the size and complexity of the network, whilethe use of inhibitory links involves a dramatic increase in size and complexity. Precisely how the restrictionsimposed by CBSA determine which attachments can be created will be made clearer in Section 4.1.3.25



network is a local relation within the parse tree represented. That is, two nodes are directlyconnected in the network only if they are neighbors in the parse tree. Thus, locality in thenetwork is equivalent to locality in the parse tree. By comparison, allowing inhibitory linksbetween arbitrary attachment nodes could clearly violate the locality restrictions derivedfrom the parse tree semantics. It would be possible for two nodes that are distant in theparse tree to directly communicate with and a�ect each other in the network. In thatsituation, adhering to local communication in the network would not guarantee that thelocality conditions of GB were respected. By prohibiting inhibitory links, the model imposeslimitations on the network structure that help to maintain the locality constraints of GB.3.3 Dynamic Instantiation of Syntactic PhrasesIn the design of a hybrid symbolic/connectionist processing model, one of the issues that mustbe decided is how structure is manipulated in order to solve a problem. Traditional symbolicmodels typically build new structure as the solution to a problem, while connectionist modelssolve problems by activating a subset of the pre-existing structures that have been built intothe network. The traditional approach imposes fewer constraints on the possible solutionstructures, since it is not necessary for the solution to exactly match a pre-determined, �xedstructure. Rather, symbolic rules provide a means for creating and combining structures ina general way, allowing a more exible response to conditions in the input. This exibilityhas a price, however, in that any needed structure must be computed on-line during theproblem-solving process.The connectionist approach avoids this complex, on-line computation by replacing thecreation of solutions with the recognition of solutions. One e�ect of this technique is tomore highly constrain the solution space by restricting the possible solutions to a set ofpre-computed, �xed patterns. But while the restrictiveness of this approach avoids thepotentially expensive on-line computation, it entails a di�erent kind of ine�ciency. Becauseall possible solutions must be anticipated in the structure of the network, there can be agreat deal of redundancy in the network that can use an inordinate amount of space.This is in fact a potential problem in many connectionist models of natural languageparsing. Grammatical knowledge in these systems has typically been encoded in context-free \rule templates," such as those shown in Figure 3.7 (Cottrell, 1989; Fanty, 1985; Selman& Hirst, 1985). The problem is that the number of each type of rule template in the networkmust be the maximum necessary to parse some arbitrary sentence in the language. Butthis number might be much larger than that needed to parse the vast majority of sentencesthat the model would be exposed to.10 Although not a real disadvantage in demonstration10Of course, because of the unbounded recursive structure of natural language, there is no maximumnumber of templates for a particular rule type that would allow all the sentences of a language to be parsed.Thus, this type of connectionist approach is in fact limited to parsing �xed length sentences. To avoid thislimitation in practice requires imposing a relatively high maximum on the number of templates. The pointis that any maximum adopted|for example, one based on when human performance breaks down|would26
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The decision to dynamically create the parsing network raises the issue then of preciselywhen these generic phrasal templates are instantiated and connected to the developing parsetree. Most natural language parsers perform some degree of top-down hypothesizing ofphrase structure. For example, when a parser for English encounters a determiner such asthe word the in the input, in all likelihood it will immediately build the structure for a nounphrase, even though it has not yet seen the noun. While the presence of a determiner inEnglish is proof of a noun to follow, there are other cases that may not be so clear. Forexample, although an adjective usually occurs within a noun phrase, it might not; considerThe children are happy campers and The children are happy. Especially in models thatconsider multiple attachment possibilities in parallel, it is common for a parser to buildsyntactic phrases that are based on inconclusive evidence, and that may end up not beingpart of the �nal parse tree.In a parser that consists of active syntactic processors, hypothesizing syntactic phrasesin this way can greatly complicate the local communication and decision-making methods,since hypothesized phrasal nodes would have to behave di�erently from other phrasal nodes.More crucially, in a network that considers a large number of alternatives in parallel, acti-vating phrases based on incomplete evidence could quickly overload the system. Thus theapproach taken here of dynamically building the parsing network naturally leads to a restric-tion on top-down precomputation of structure. The competitive attachment parser can (andmust) establish all potential attachments between existing phrases, but it can only activatethe syntactic phrases themselves in response to overt, incontrovertible evidence in the input.The remainder of this section will discuss the motivations for these two design decisions|thedynamic instantiation of �xed phrasal templates, and the prohibition on top-down precom-putation that follows from this assumption.The computational reasons for building the network by instantiating uniform templateshave already been presented above as the motivating factors for this approach. It wasargued that this decision allows the model to achieve a balance in the space/time trade-o�of structure building versus structure recognition. The approach also incorporates a lexically-driven aspect into the model that enables the parser to respond to conditions in the inputin a straightforward yet exible way.The decision to limit the activation and instantiation of phrases to those with overtevidence in the input also has several computational justi�cations. It reduces the numberof di�erent types of nodes in the network and simpli�es the speci�cation of the processingalgorithms they use, since hypothesized nodes would have di�erent properties from \normal"phrases. This assumption also avoids the necessity of stipulating a cut-o� point in how muchstructure is hypothesized. It is clear that unbounded hypothesizing of structure could leadto a network that is too large to be practical, so some bound must be determined. Activatingphrases only in response to overt evidence yields the advantage of not having to establishsome arbitrary bound. It also has e�ciency bene�ts, because the number of active phrases iskept to a minimum. Furthermore, since hypothesized phrases are not activated, attachmentsto them cannot be represented in the network, and thus the number of attachment nodesthat are established is also reduced. 29



Linguistic motivations for these two related design decisions were also of great importance.The use of a generic phrasal template in the parser is inspired by the lack of phrase structurerules in GB. X theory, a subsystem of GB, characterizes all phrases as having the same �xedstructural shape, with di�erences in grammatical behavior entailed by features inheritedfrom the lexical entry corresponding to the input. The lack of top-down precomputation inthe model is also mirrored in the grammatical theory on which it is based, and is another casein which the linguistic principles map directly to the computational framework. A centralnotion in GB is that a syntactic phrase is projected from essential features of its head|forexample, a noun is the head of a noun phrase, and its core features determine the existenceof the NP, as well as its speci�c properties. The restriction to activating phrases only givenbottom-up evidence in the input is the computational correlate of the condition of projectinga phrase from the features of its head.3.4 SummaryThis chapter has described the background and motivations for the three primary architec-tural assumptions of the competitive attachment model of parsing. Much of the justi�ca-tion for the design decisions stem from a desire to build a restricted computational parsingarchitecture|one whose computational power is limited by algorithmic simplicity and e�-ciency, as well as linguistic plausibility. Restrictions on the operation of the parser that arewell-grounded in computational and linguistic considerations are much more likely to leadto behavior that matches human expectations in a principled manner. The remainder of thethesis will describe the properties of the model that result from these assumptions, and thebehavior that emerges from them.
30



Chapter 4Overview of the ModelThis chapter provides a high-level description of the competitive attachment parsing model.Section 4.1 presents an overview of the model, explaining in detail how the design constraintsfrom Chapter 3 are reected in the features of the model and in the restrictions on its pro-cessing abilities. In Section 4.2, an example parse demonstrates the resulting operation of theparser. Section 4.3 concludes the chapter with an explication of the parser's critical attach-ment behaviors that underlie its ability to process ambiguities in a human-like manner. Itwill be shown that each of the crucial aspects of the model's behavior is a direct consequenceof the well-motivated assumptions that form the basis for the parser's design. The intent ofthis chapter is to provide an understanding of the overall design of the parsing model andthe key aspects of its attachment behavior. The description of the implementation of theparser in Chapters 5 and 6 will �ll in more complete details of the model, and Chapter 7will fully explicate the results of the system on example syntactic ambiguities.4.1 Description of the ModelThis section gives an overview of how the parser operates, describing the details of theparsing model that follow from the design constraints presented earlier. Section 4.1.1 focuseson the properties of the processing nodes and how they are structured in the network.Section 4.1.2 explains how symbolic knowledge and numeric activation are integrated withinthe approach. Section 4.1.3 describes the additional constraints on the structure of thenetwork that follow from the decision to use competition-based spreading activation as thesole focusing mechanism in the model.4.1.1 The Network StructureA syntactic phrase is represented by three nodes, an X, X0, and XP, each of which is anindependent processor; the label \X" is a generic name for a parsing node that can be in-stantiated as, for example, N (noun) or V (verb). Having one processor for each of the threephrasal nodes, rather than one processor for the complete phrase, encourages a modular de-sign in which processors are specialized by phrase level. All syntactic processors perform the31
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complement of XFigure 4.1: (a) Basic con�guration of a phrase in X theory. (b) Representation of the Xattachment relations within the competitive attachment model.same algorithms, but the types of features that they store and communicate vary accordingto their level in the phrase. The resulting processors are simpler and less powerful than theprocessor for an entire phrase would have to be. For example, the processor for each nodemediates exactly one attachment site|an attachment to its potential sister node.The restriction of representing a phrase with a �xed number of nodes follows from thedecision to dynamically build the network by instantiating �xed phrasal templates. Theprecise number of nodes is determined by considerations of X theory, which speci�es theproperties of each level of structure within a syntactic phrase. A complement of a phrase,such as the object of a verb or preposition, is attached as a sister to the right of the lowestlevel node, the X. A speci�er of a phrase, such as the determiner in an NP, is attachedas a sister to the left of the middle level node, the X0.1 The highest level of the phrase,the XP node, is what in turn attaches as a speci�er or complement to some other phrase.These X attachment relations are shown in Figure 4.1.2 Note that in the parser, a parse treeconnection between two separate X phrases is encoded as a sisterhood relation.3Even though they are independent processors, multiple nodes of a single syntactic phraseobviously have a close relationship to each other. The three nodes constitute a single phrasalentity and are attached to each other in any parse tree containing the phrase. In the parsingnetwork, the three processors are thus connected to each other by direct communicationlinks, which are distinguished from other network links. These links implicitly representbranches in the parse tree. The additional branches of the parse tree are represented explicitlyby processing units called attachment nodes. There are bidirectional links between eachattachment node and two phrasal nodes; these phrasal nodes are potential sisters in the1The direction of attachment is language-dependent; the attachment directions given in the text are forEnglish.2In this and remaining �gures, fully activated attachment nodes are shaded black.3In the current implementation of the parser, only speci�er and complement attachments are made. Theextensions to handle adjuncts are discussed in Chapter 8.32
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is an abstract grammatical feature such as Nominative or Accusative.5� Theta Criterion: An XP in certain syntactic con�gurations must be assigned a thetarole, which is an abstract grammatical feature indicating the role (for example, agentor theme) of the phrase with respect to some predicate.6It should be emphasized that these constraints are applied at an attachment node. That is,the constraints do not apply directly to an XP node, but rather to an XP node in a certainattachment relation to another node.The e�ect of the constraint algorithm is to increase the potential activation level of anattachment node in proportion to the degree to which the given constraints are satis�ed.Furthermore, a general computational restriction states that two di�erent values speci�edfor the same feature must be compatible; if this restriction is violated, the attachment nodeis invalid and set its activation level to 0. For example, an attachment node might receive afeature from its X node stating that it expects an XP sister of category verb, and a featurefrom its XP node stating that its category is noun. Since these two features specify twodi�erent values for the category of the XP node, the attachment node would immediatelybecome inactive.In addition to the e�ect of symbolic constraint satisfaction, the activation level of anattachment node depends directly on the numeric input from its associated phrasal nodes.In order for an attachment node to become fully active, it must receive the entire outputfrom each of the two phrasal nodes. In fact, for the network to represent a consistent parsetree, the two phrasal nodes connected to each attachment node must \agree" either to turnthe attachment node on, by both sending it all of their output, or to turn it o�, by bothsending it none of their output. Each of the phrasal nodes determines its output to anattachment node using a competition-based spreading activation function. A phrasal nodemay be connected to a number of attachment nodes, and it divides its output activationamong them, proportional to their current activation level.7 When the iterative processingof information in the network brings about an acceptable state, each phrasal node will havechosen a single attachment node to activate.85Case in Government-Binding theory is a technical term that refers to an abstract feature that is some-times, but not always, visible in the phonetic form of a word. For example, the word he has NominativeCase, while him has Accusative Case. However, Case in English is not generally reected in the form of anoun.6Those readers familiar with GB will recognize that this is only \half" of the Theta Criterion. The otherpart of the Theta Criterion states that a predicate assigns each of its theta roles to exactly one phrase. Thisis accomplished indirectly in the parser through constraints on the number of attachments to a node.7The phrasal node's output function also takes into account the weights on the links to the attachmentnodes, as in the CBSA function shown in equation 3.1 on page 21. The role of weights in the parser will bediscussed in more detail in Chapter 7; for now all weights will be assumed to be 1.0.8Empty nodes are an exception. Each empty node connects to a single attachment node that may or maynot become activated. If the attachment node turns o�, the empty node is deactivated as well, since it haslost its connection to the rest of the parse tree. 35
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4.2 A Parsing ExampleThe previous section provided an overview of the parser's structuring operations, and thesymbolic and numeric processing that takes place in the resulting network. This sectionprovides a high-level description of how the model parses an example sentence, The womanknows Sara ran. Details of the symbolic information underlying the attachment decisions ofthe parser, and the numeric processing that carries out the decision making, will be deferredto the following two chapters. The intent here is to give a higher-level view of how the parserproceeds step by step through the input, gradually building up a tree structure representationof the sentence by activating the appropriate attachment nodes. However, it should be notedthat, although the description is at a high level, the behavior described here is precisely thatof the implemented parser.13The input to the parser is a list of tokens corresponding to the words of the sentence.For simplicity, a verb is speci�ed by two tokens, one representing the tense features of theverb (for example, present or past), and one the root of the verb (for example, know orrun).14 This step is taken because tense features such as present are the \overt evidence"the parser requires to build a sentential clause; the prior analysis of the verb makes theparser's task easier by extracting these features ahead of time. The input token list for theexample sentence is thus \(the woman present know Sara past run)."When an input token is processed, the preprocessor of the parser looks up the word inthe lexicon, then activates a phrasal template and instantiates it with the features from thelexical entry.15 For example, the instantiation of a phrasal template in response to the wordknow is shown in Figure 4.16. Along with the activation of each phrase, two empty nodesare also activated; one of the empty nodes is connected with an attachment node to the Xnode, and one is connected with an attachment node to the X0 node.16 (For this example,the reader may assume that an attachment to an empty node acts as the default attachmentfor an X or X0 node. If a non-empty XP node attaches to the site instead, then both theempty node and its associated attachment node are deallocated.) An attachment node isalso set up between the XP node of the new phrase and the stack; this is the stack's CURRattachment node. Next, all the potential speci�er and complement attachment nodes areestablished between the current phrase and the right edge of the tree attached to the stack'sTOS node, as was shown in Figure 4.5 on page 37.17 After the new input phrase is thus13The parser is implemented in Allegro Common Lisp, using the CLOS object oriented package. Theparser in actuality runs serially, simulating the parallel processing of the network.14Note that this is done solely to simplify the implementation, and is not intended to be an implicit claimthat such a preprocessing step is morphologically plausible.15The parser is simpli�ed by having a preprocessor perform certain tasks that are di�cult to achieve ina strict connectionist framework, and whose behavior is essentially irrelevant to the ambiguity processingmechanisms of interest here.16The initial con�guration of a phrase with its empty nodes was shown in Figure 4.3 on page 34.17Although at present this task is also performed by the preprocessor, it is easily accomplished in a44



XP

X

X'

VP

V

V'

has_Case: *none*
has_category: V

selects_category: *none*

assigns_Case: Acc
assigns_theta: theme
selects_category: (N I C)

know

XP

X

X'

XP

X

X'

Input

"know"

Lexical Entry

KNOW: complement-list = (N I C)

CATEGORY KNOWLEDGE

Instantiated PhraseTemplatesFigure 4.16: The lexical entry corresponding to an input word, along with associated categoryinformation, is used to instantiate a newly activated phrasal template.connected to the stack and the developing parse tree, the iterative symbolic and numericprocessing of the resulting network is triggered. The processing loop halts when the networksettles on an acceptable state.18 At this point, the losing attachment nodes are deallocated,and the stack's pointers are appropriately revised. The parser is then ready to process thenext input token.Let's turn now to the actions of the parser given the input \(the woman present knowSara past run)." The initial state of the parser is shown in Figure 4.17. The stack node hasno connections to attachment nodes, so its CURR and TOS pointers are nil.19 Figure 4.18shows the network after the �rst token, the, is processed, and a determiner phrase DtP isdistributed fashion given the feature-passing capabilities of the parsing network.18Recall that an acceptable state is one in which each attachment node is either fully activated or isinactive. In some rare cases discussed in Chapter 5, the network does not achieve such a state, and theprocessing loop is halted when the number of iterations surpasses some constant. In this case, the network isin a state in which at least one phrasal node has not made a clear choice between its attachment possibilities.This situation did not occur in any of the simulations on actual linguistic input; see Chapter 5 for furtherdiscussion.19Since the stack's REST list is not needed in this example, it will not be depicted in the �gures. Thevalue of REST is nil throughout the parse. 45



STACK

TOS : nil CURR : nilFigure 4.17: The initial state of the parser has a single stack node with no phrasal orattachment nodes activated yet.
STACK

TOS: nil

DtP

Dt'

Dt e

CURR

e

theFigure 4.18: When the is processed, a determiner phrase is allocated and connected to thestack. (The phrasal nodes of a determiner phrase are labeled DtP, Dt0, and Dt.)allocated for it.20 Since there is no phrase already on the stack (its TOS pointer is nil), thereare no other potential attachments to be created. Note that this means that each of thethree attachment nodes shown in Figure 4.18 have no attachments with which they compete.At this point, the parser initiates the symbolic and numeric processing within the network.When the network settles, the three existing attachment nodes are active. The CURR nodebeing active means that the current input phrase has pushed itself onto the stack; it nowbecomes the top of the stack, as shown in Figure 4.19.The parser now activates a phrase for woman, and connects it to the stack through theCURR attachment node. Because there is a phrase on the stack, all potential attachmentsbetween it and the current phrase must be established. These are shown in Figure 4.20;there is a potential speci�er attachment between the DtP node and the N0, and a potentialcomplement attachment between the Dt node and the NP. Now there are sets of competingattachments: a1 and a2; a2 and a7; a4 and a5; a4 and a6. Once again the network's iterative20A determiner does not actually trigger a full phrasal structure; the full structure is shown in this examplejust to make the determiner phrase the same as other phrases. This does not a�ect the attachment decisionsmade by the network. 46



DtP

Dt'

Dt e

e

STACK

TOS CURR : nil

theFigure 4.19: The DtP has pushed itself onto the stack.
DtP

Dt'

Dt e

e

the

STACK
TOS CURR

NP

N

N'

e e

woman

a1 a2

a3
a4

a5

a6

a7

a8Figure 4.20: The parser allocates an NP for woman, and connects it to the stack and theTOS phrase.processing is initiated; when it settles, the DtP has attached as the speci�er of the NP.21Figure 4.21 shows which attachment nodes are now active. The DtP has popped itself fromthe stack, and the NP has pushed itself onto the stack. Once the losing attachment nodesare deallocated and the stack's pointers updated, the state of the parser is as shown inFigure 4.22.The parser now reads the next input token, present . The lexical entry for present triggers21Determiners of a noun occupy the speci�er position in the noun phrase. There is nothing in the parserthat prohibits the alternative DP analysis of the determiner/NP relationship, which is a common approachin GB theories of phrase structure (Abney, 1986; Speas, 1990).47



DtP

Dt'

Dt e

e

the

STACK
TOS CURR

NP

N

N'

e e

womanFigure 4.21: The attachment of the DtP to the N0 is active after the network settles.
NP

N

N'

e

woman

DtP

Dt'

Dt

e

e

the

STACK
TOS

CURR : nil

Figure 4.22: State of the parser after the losing attachment nodes are deleted and the stackpointers are updated.the instantiation of a sentential phrase, which is known as an IP (inection phrase) in Xtheory.22 The IP is connected to the stack, and all logical attachment possibilities between it22A full sentential phrase in X theory is actually a CP (complementizer phrase), of which the IP is asubtree. The parser does build a full CP and IP pair of phrases for tensed clauses, but this example issimpli�ed to only display the IP. No attachment decisions are altered by this simpli�cation. Chapter 7presents examples with full sentential structure. 48



NP

N

N'

e

woman

DtP

Dt'

Dt

e

e

the

STACK
TOS CURR

e e

IP

I'

I

presentFigure 4.23: Attachment nodes established between the NP on the stack and the new IP.and the NP on the stack are established; see Figure 4.23. Note that no attachment nodes areset up between the determiner phrase and the current input. Since the determiner phraseis not along the right edge of the tree on the top of the stack, it is unavailable for furtherattachments. The parser again triggers the iterative processing of the network. In X theory,the subject of a sentence is represented as the speci�er of the inection phrase. Thus whenthe network settles, the NP has attached to the I0, and the IP has pushed itself on the stack.Figure 4.24 shows the network after the inactive attachment nodes are removed and thestack's pointers are updated.The parser next activates a VP and connects this phrase as before to the stack. Onceagain, potential speci�er and complement attachment nodes are established between thecurrent phrase (the VP) and the phrase on top of the stack (the IP). The VP of a sentenceattaches as the complement of the inection phrase; the active attachments after the networksettles are shown in Figure 4.25. This is the �rst time in the parse that the current phrasehas not pushed itself onto the stack. Since the stack must activate at least one of TOS andCURR, the IP remains on the top of the stack.The parser now processes the input token Sara, and connects its phrase to the existingnetwork. Figure 4.26 shows that the parser establishes attachment nodes between the currentphrase and the entire right edge of the tree on top of the stack. The NP has a valid attachmentpossibility as the complement of the V, and so it makes this attachment; the outcome is shownin Figure 4.27. However, this attachment cannot be part of the �nal parse of the sentence,in which the clause Sara ran is the complement of the V. When the parser processes thenext token, past , it allocates the IP phrase that represents this clause. The new attachmentnodes are shown in Figure 4.28. The appropriate parse of the sentence can be achieved by49



e

e

IP

I'

I

present

e

NP

N

N'DtP

Dt'

Dt

e

the

woman

STACK
TOS

CURR : nil

Figure 4.24: State of the parser after the losing attachment nodes are deleted and the stackpointers are updated.
ee

e

e

IP

I'

I

present

e

NP

N

N'DtP

Dt'

Dt

e

the

woman

STACK
TOS CURR

VP

V

V'

knowFigure 4.25: Active attachments after the network settles on the VP to I attachment.50



e

e

ee

VP

V

V'

know

e

IP

I'

I

present

e

NP

N

N'DtP

Dt'

Dt

e

the

woman

STACK
TOS CURR

NP

N

N'

SaraFigure 4.26: All potential attachments between the current NP and the phrase on top of thestack.turning o� the attachment of the NP to the V, and turning on the attachments of the IP tothe V and the NP to the I0. The network settles on this solution, as shown in Figure 4.29.The parser processes the �nal input token, run, and attaches the current VP to the mostrecent I node. Figure 4.30 depicts the �nal state of the parsing network. A parse is successfulwhen, as in this case, both CURR and REST are nil, TOS is non-nil, and all phrasal nodes areconnected to exactly one active attachment node. The TOS attachment node then points tothe root of the parse tree for the input sentence. The parse tree represented by this networkis shown in Figure 4.31.4.3 Critical Attachment BehaviorsThis section concludes the chapter with a discussion of the key aspects of the behavior of thecompetitive attachment model, which are a direct result of the design decisions presented inChapter 3. Recall the three fundamental computational assumptions of the model: (1) Thebasic architecture is that of a hybrid connectionist network integrating symbolic and numericcomputation. (2) Numeric decision-making is focused through competition-based spreadingactivation (CBSA), and the parser uses no inhibitory links. (3) The network is establishedthrough dynamic instantiation of generic template nodes, and top-down hypothesizing ofstructure is prohibited. The critical attachment behaviors of the parser will be presented51



e e

NP

N

N'

Sara

e

VP

V

V'

know

e

IP

I'

I

present

e

NP

N

N'DtP

Dt'

Dt

e

the

woman

STACK
TOS

CURR : nil

Figure 4.27: State of parser after the losing attachment nodes are deleted and the stackpointers are updated.here in terms of the design assumptions from which they arise, referring to the example inSection 4.2 to illustrate the properties that are discussed.The distributed network architecture gives rise to the parser's basic style of competitiveattachment behavior, which follows from attachments being active, independent processingunits. All potential attachment nodes that have been established are active simultaneously,and many of these attachments may compete with each other. Because there is no globaldecision-making mechanism in the model, the syntactic phrases must connect up with eachother to form a network of communicating phrases|a phrase that is unconnected to the restof the network can have no e�ect on the parse. Thus, if an attachment node is valid|that is,if its two phrasal nodes communicate compatible feature values to it|then the node activelycompetes for activation and tries to turn itself on. It is imperative that attachment nodesdo so, since this establishes the connections in the parsing network. It is also crucial thatthe stack's ability to activate attachment nodes be somewhat weaker than that of phrasalnodes. Since the attachment to the stack is always a valid option for a new phrase, if thatattachment node (CURR) were activated as strongly as parse tree attachments, processing52



e

e

e

e

NP

N

N'

Sara

VP

V

V'

know

e

IP

I'

I

present

e

NP

N

N'DtP

Dt'

Dt

e

the

woman

STACK
TOS CURR

IP

I'

I
e

past

Figure 4.28: All potential attachments between the current IP and the phrase on top of thestack.a sentence could consist of pushing each of the input phrases onto the stack and neverattaching them to each other within a parse tree structure. The result of these competitiveattachment behaviors is that phrases try to quickly attach themselves into an unambiguoussyntactic structure; Chapter 7 will illustrate how this behavior leads to preferred resolutionsof ambiguities that match human preferences.The hybrid nature of the network is also crucial to its attachment behavior. Attachmentdecisions depend entirely on local, distributed decision-making among the stack, phrasal,and attachment nodes. Grammaticality is determined by symbolic feature-passing throughthe parsing network. Deciding between grammatical alternatives is made possible by the useof spreading activation to gradually settle on a globally consistent and preferred solution.For example, consider the point in the example of Section 4.2 at which the parser revisesits initial attachment of the NP; see Figure 4.28 on page 53. There is more than one setof grammatically valid attachments that may logically be activated. The NP may maintainits current attachment to the V, while the IP pushes itself on the stack; alternatively, theNP may revise its attachment and become the speci�er of the IP, which in turn replaces53
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tural disambiguation to be presented in Chapter 7. Because each behavior can be traced backto basic assumptions about the natural language parsing process, we can directly evaluatehow well these underlying principles are supported by the results of the model.

from the theory, and more emphasis on the architectural encoding of a constraint-based style of syntacticrepresentation. 59



Chapter 5Numeric Processing in the ParserThis chapter provides a detailed description of the numeric processing aspects of the com-petitive attachment parsing model. Parsing natural language within a massively parallelframework, without the use of rule-based knowledge to a priori constrain the network struc-ture, is an unprecedented challenge to the competitive activation approach. The numericactivation techniques developed here represent a successful extension of competitive acti-vation methods to the most complex and unstructured networks yet attempted. A largenumber of systematic simulations demonstrate the e�ectiveness of the techniques for con-trolling the spread of activation within a wide range of parsing con�gurations. The numericfunctions enable the processing nodes to converge on a correct and consistent set of parsetree attachments in over 98% of the 1365 test con�gurations, establishing the competitiveattachment model as a robust approach to natural language parsing.Section 5.1 begins with a brief introduction to numeric processing in the parsing net-work. Section 5.2 describes the input, activation, and output functions that constitute thecompetitive spreading activation process in the network. Section 5.3 presents the results ofthe numeric functions within a large number of network con�gurations; these simulationsdemonstrate the basic attachment behaviors that arise from the numeric processing of theparser. Section 5.4 concludes with a discussion of some of the limitations of the numericfunctions and parameters used by the parser.5.1 Overview of the Numeric ProcessingEach time the parser processes a new input word, by allocating its X phrase and connectingthe phrase to the existing network, the numeric processing of the network is triggered. Eachnode performs a numeric update/output processing loop, which re-computes the node'snumeric functions. The nodes in the network are synchronized so that the update routinesare performed simultaneously within each node, followed by the simultaneous computationof output. Updating a node consists of determining the amount of its numeric input, andcalculating its new activation level accordingly. The output portion of the loop computesthe amount of activation to be sent from a node to each of its neighbors. This spreading60



begin fProcess Input Sentencegwhile there are more input tokens dofEach pass through this loop is a run of the network.gGet next input token.Allocate an X phrase for the current input token.Initialize attachment nodes between the current phraseand the top of the stack.Reinitialize competing attachment nodes.until the network is an acceptable state dofEach pass through this loop is an iteration of the network.gfor each node in the network doUpdate(node).for each node in the network doOutput(node).end fProcess Input SentencegFigure 5.1: The iterative algorithm for processing the nodes of the network.activation loop continues until the network reaches an acceptable state.1 An acceptablestate of the network is de�ned as one in which each phrasal node sends all of its activationto exactly one of its attachment nodes, and each attachment node is either turned on (fullyactive) or o� (inactive) by its phrasal nodes. In such a state, the active portion of thenetwork forms a valid parse of the input seen thus far.In the following, a run of the network refers to one complete cycle of network processing,beginning with the creation of a new X phrase and ending when the network achieves anacceptable state that incorporates the phrase into the parse. There is a run of the networkfor each token that is input to the parser. An iteration of the network is a single step throughthe update/output loop for all of the nodes in the network. Since the network iterates untilit reaches an acceptable state, the number of iterations per run depends on properties of thecompeting attachment nodes within that run. An overview of the network processing is givenin Figure 5.1. The remainder of this chapter will �ll in the details of this numeric processingalgorithm, and demonstrate the algorithm's e�ectiveness on a wide range of inputs.1In some rare con�gurations, the network does not reach an acceptable state, and so the loop has abound on the number of iterations it can perform. The cases in which the network does not converge on anacceptable set of attachments are discussed in detail in Section 5.3.4.61



Function De�nitionext-in The input to a node from a source that is external to thenetwork.in The input to a node from other nodes within the network (re-ferred to as the \within-network input").act The activation level of a node.out The output of a node to other nodes in the network.Table 5.1: The four numeric activation functions used in the parser.5.2 Spreading Activation FunctionsAs noted above, spreading activation in the parser is implemented by a loop of update andoutput functions called by each node in the network. The nodes of the network are de�nedby an object-oriented hierarchy in which di�erent types of objects are processing nodes thathave appropriate methods de�ned for computing the given functions.2 There are four typesof nodes: phrasal nodes (p-nodes), empty phrasal nodes, attachment nodes (a-nodes), andthe stack node. Empty nodes are a subtype of p-node in the object hierarchy. Surprisingly,the stack node is also a subtype of p-node; the stack, both symbolically and numerically,behaves like a degenerate phrasal node. Attachment nodes are quite di�erent from theseother three types of nodes, although a-nodes and p-nodes share a common parent called\numeric node."All numeric nodes call the same functions within the update/output loop of the network,but the particular computation performed for each function depends on the type of node.That is, each spreading activation function is a generic function whose e�ect in a givencontext depends on the type of node that calls it. There are four such numeric functionsde�ned; see Table 5.1.3 Since there are four types of node objects, each function name issubscripted with a symbol to indicate the appropriate method of computing the function.For example, inp refers to the within-network input calculation for a p-node; outap refers tothe method of computing the output from a p-node to an a-node. Symbols may be furthersubscripted to indicate the particular node performing the calculation: outajpi refers to theoutput of p-node pi to a-node aj.The update portion of the spreading activation loop consists of a sequence of calls to theext-in, in, and act functions; the output portion of the loop consists of calling the single2As stated earlier, the parser is implemented using the CLOS object oriented package of Allegro CommonLisp.3This does not mean that there are 16 di�erent functions (4 functions � 4 node types) de�ned in theparser, since a subtype of a node often inherits a given function from its parent type. There are actually 9di�erent functions de�ned: the four basic functions for p-nodes, all of which are shared by the stack nodeand three of which are shared by empty phrasal nodes; a separate activation function for empty phrasalnodes; and the four basic functions for a-nodes. Three of the functions shared by the subtypes of p-nodesuse a single di�erent constant value in the inherited function.62



function out. The loop is executed at each tick of the network's discrete time clock; thus,each function is recomputed at each time t. This time parameter is not explicitly shown inthe following formulas, unless the calculation of a function refers to two di�erent times (thecurrent time t and the preceding time t� 1). In the default case, the time of each functionwithin a formula refers to the same time t.The value of each function is in the range 0 to 1.0, unless explicitly stated otherwise inthe text.5.2.1 Phrasal NodesEach phrasal node, or p-node, receives a �xed external input of 1.0; this external inputrepresents the activation of the p-node by an input token.4 The p-node also receives inputfrom the a-nodes to which it is attached; this latter input is summed to yield the p-node'sin function (whose result may be greater than 1.0):inpi(t) =Xj outpiaj(t� 1) (5.1)where:inpi(t) is the within-network input to p-node pi at time t.outpiaj(t) is the output from a-node aj to pi at time t.The activation level of the p-node is set to the maximum of its external input and thesummed input from its a-nodes, minus a decay factor:actpi = max[ext-inp; inpi]� �pi (5.2)where:actpi is the activation level for p-node pi.ext-inp is the external input for p-nodes (currently set to 1.0).inpi is the within-network input for pi.�pi is the decay factor for pi.Since the summed input from its a-nodes may be less than 1.0, the external input places aminimum of 1.0 on the value of a p-node's activation. This is important because it means thatthe amount of activation that a p-node has for dividing among its competing attachments ishigh even at the beginning of a run of the network. This strong input to the a-nodes allowsthem to more quickly increase in activation.While the external input places a minimum on the activation level of a p-node, thesummed input from the a-nodes has the e�ect that the p-node's activation level may in factbe greater, in proportion to the input from its a-nodes. This ensures that the p-node has4Lexical ambiguity would lead to multiple projections for a single input word; the external input wouldthen be divided among these projections. See Section 8.2.1.63
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�rst. When a p-node participates in a new attachment, however, the amount of its decayneeds to reect that more recent participation in the parse tree. Thus the decay factor mustbe a function of the di�erence between the current time, t, and the time of the most recentattachment for a phrase, tpi. In the current implementation, the following linear function isused: :05(t� tpi).The output function of a p-node is a little more complex than its input and activationfunctions. As described in Chapter 4, a p-node must proportionally allocate its activationamong its a-nodes using a competition-based spreading activation (CBSA) mechanism. Theprecise function used by p-nodes is the following:outajpi = (actajv + q)wgtjiXk (actakv + q)wgtkiactpi (5.3)where:outajpi is the output from p-node pi to a-node aj.actaj is the activation of a-node aj.actpi is the activation of p-node pi.wgtji is the (positive) weight on the connection between p-node pi anda-node aj (weights are symmetric).k ranges over all a-nodes connected to p-node pi.v is the competitive exponent (explained in the text).q is the competitive additive factor (explained in the text).This function is a variant of the CBSA function given in equation 3.1 on page 21; it statesthat a p-node divides up its output activation to its a-nodes in proportion to their weightedactivation. The weighted activation: (actajv + q)wgtji (5.4)includes the constants v and q, which determine the degree of competition induced by theoutap function.5 Increasing the value of the exponent v makes the competition more pro-nounced, since any di�erence in the activation of the competing a-nodes is magni�ed by,for example, squaring or cubing the activation values. Increasing the value of the additivefactor q, on the other hand, makes the competition less pronounced, by \swamping out" thedi�erences between a-node activations with this additive factor.In the parser, v is gradually increased from 1 to 3 (in steps of 1) during each run of thenetwork, so that competition is increased over time. This scheme provides an initial timeperiod in which all of the a-nodes have a chance to amass some activation under conditionsthat are not extremely competitive. This less competitive period is crucial because it allowsthe network the opportunity to �nd a globally satisfying set of attachments, rather than5With v having the default value of 1 and q having the default value of 0, equation 5.3 reduces toequation 3.1. 65



just immediately focusing on the initially preferred set of a-nodes (which might not forma consistent set of attachments). The competitiveness of the a-nodes must be graduallyincreased, however, in order to force the p-nodes to eventually choose a single a-node toactivate, and thus ensure that the network reaches an acceptable state.The value of q in the parser is e�ectively 0; it is set to a very small number (10�15)solely for the purpose of avoiding errors of division by 0 in the case where all of the a-nodesconnected to a p-node are inactive.Not shown in equation 5.3 is the fact that the output is thresholded; if output to somea-node is less than the threshold (currently set to .15),6 then the p-node sends an outputactivation of 0. This thresholding contributes to cleaner competitive behavior, since theresult is that a weakly competing a-node will be turned o� more quickly. Output fromp-nodes is also capped; it cannot be greater than 1.0.5.2.2 Empty NodesEmpty nodes are a special kind of phrasal node; in the parser's object hierarchy of nodesthey are a subtype of p-node. The di�erences in the numeric processing of these two types ofnodes arise from the following fundamental properties. Ordinary phrasal nodes are allocatedin response to evidence in the list of lexical items that are input to the parser, and mustparticipate in the �nal parse tree for that sentence. By contrast, empty nodes are automat-ically allocated with each phrase, but in fact may not be used in the �nal parse. Evidencefor the existence of an empty node in the parse tree must be gathered from other parts ofthe tree. This basic di�erence in the licensing of the syntactic objects represented by thesetwo types of nodes is reected in their spreading activation functions.It was noted above that the external input of 1.0 to a p-node represents its activation bya token in the input. Since an empty node has no direct evidence in the input, its externalinput is set to a minimal value, and its input from within the network thus takes on greatersigni�cance. The function for computing the within-network input to an empty node isexactly the same as that for a non-empty p-node, which was shown in equation 5.1. Anempty node has only one potential attachment|a single a-node to which it is connected|giving the sum a single term.The activation function for an empty node reects the primary di�erence between it andan ordinary p-node|the fact that while a p-node is strongly activated and gradually decaysover time, an empty node is weakly activated and must gradually amass activation over timein order to not become inactive (and thus be deallocated). The activation function for anempty node is similar to that of a p-node in that it involves taking the maximum of itsexternal input and a function of its within-network input, and incorporates an element ofdecay. But the precise formulation is di�erent from that of the p-node activation functionin equation 5.2, and this di�erence allows the activation level of an empty node to reect its6The value of this threshold, and all other constants mentioned in this chapter, were determinedempirically. 66



strength of evidence within the tree. In order to keep the activation level from oscillating,the activation function is one in which the new activation level is computed as a small changefrom the old activation level:actei(t) = max[ext-ine; (5.5)(1 � �ei)actei(t� 1) + �eiinei(t)]where:actei(t) is the activation level for empty node ei at time t.ext-ine is the external input for empty nodes (currently set to .33).�e is the decay rate for empty nodes (currently set to .1).inei(t) is the within-network input for ei at time t (ine � inp).The current activation level of an empty node is thus the decayed value of its old activationplus a small portion of the input from its a-node, with a minimum result of ext-ine. Thepercentage of decay of the activation level and the percentage of input that is added are thesame, �e.Finally, the output function for empty nodes is the same as the output function for p-nodes. As with the input function, this function greatly simpli�es due to the fact that emptynodes have a single potential attachment|an empty node outputs all of its activation to thesingle a-node.In summary, the input and output functions for empty nodes are inherited from p-nodes, although their e�ect is simpler due to the fact that empty nodes connect to a singleattachment node. The external input to an empty node is a fraction of the amount ofexternal input to an ordinary p-node, because an empty node needs additional evidence tojustify its participation in the parse tree. Although sharing some of the same elements, theactivation function for an empty node must be di�erent from that of a p-node, because theactivation of an empty node reects the gradual amassing of evidence for its existence in thetree.5.2.3 The Stack NodeThe stack node in essence behaves like a degenerate p-node; it is de�ned as a subtype of p-node, and its numeric processing is quite similar to that of a non-empty p-node. The externalinput to the stack is the same as for p-nodes|it is a �xed input of 1.0. Its within-networkinput is computed with the same function as that used by p-nodes (equation 5.1)|that is,ins is the summed input to the stack from its a-nodes. The stack's activation function is alsoinherited from p-nodes (equation 5.2). However, a di�erence between the stack and otherp-nodes that a�ects its activation level is that the stack's decay factor �s is set to 0. Becausethe stack node must remain active throughout the parse, there is no decay of the stack'sactivation; besides, there is no need, as there is with p-nodes, to make its node available forre-use.The output function used by the stack is also the same as the output function for p-nodes(equation 5.3). The only di�erence is that the stack's output threshold is 0, so that output67



from the stack is not thresholded. An additional di�erence in behavior arises from the factthat during a run of the network, the competitive exponent v for the stack node increasesfrom 1 to 2 only, instead of from 1 to 3 as for syntactic p-nodes. Both of these factors|thelack of thresholding and the limit on increasing the level of competition|serve to decreasethe level of competition between the TOS and CURR a-nodes connected to the stack. Thesetwo di�erences in the stack's output computation are motivated by the need for the stackto be able to activate both TOS and CURR simultaneously. Unlike p-nodes, the stack nodedoes not have to choose exactly one a-node to activate, it simply must activate at least one,and sometimes the necessary behavior is to activate both. The surprising result is that withonly these minor di�erences between the numeric functions of the stack and p-nodes, thereis a major di�erence in the resulting behavior. The stack may appropriately activate eitheror both of TOS and CURR, while a p-node always chooses a single a-node to activate.5.2.4 Attachment NodesPhrasal nodes, empty phrasal nodes, and even the stack node, all have very similar numericactivation functions. This similarity arises from the fact that, although they have importantdi�erences between them, all of these node types have the same basic role within the contextof numeric processing in the network: their primary purpose is to decide whether or not toactivate some attachment node. This section will describe the numeric functions of theseattachment nodes. These functions are quite dissimilar from the ones presented above,because a-nodes have the very di�erent role within the network of weighing alternativeevidence and boosting or lessening their activation level accordingly.An a-node has no external input, because its activation depends entirely on the evidencefor its existence that it receives from the phrasal nodes to which it is connected. An a-nodeai has three numeric values that are used in determining its within-network input function:inputaipj , inputaipk , and stateai. The values inputaipj and inputaipk are the numeric inputsthat it receives from its two p-nodes pj and pk; inputaipn is equivalent to outaipn describedabove|that is, the output of p-node pn to a-node ai. For those a-nodes that are connectedto an empty node or the stack, inputaip refers to input from those nodes as well, since theyare subtypes of p-node. The value stateai is computed based on the symbolic features thatare passed to a-node ai. The more grammatical constraints that the a-node's features satisfy,the higher the state value; invalid features cause the state value to drop to 0. These threenumeric values, inputaipj , inputaipk , and stateai, are combined in numerical versions of andand or operations to produce the input function for an a-node. The inand, inor, and inafunctions described below were inspired by the corresponding functions in Reggia, Marsland,& Berndt (1988).The and function is as follows:inandi = inputaipj � inputaipk � stateai (5.6)Taking the product of the three values indicates that the input to an a-node should be high tothe extent that all three of these values are high. That is, an a-node must receive activation68



from both its p-nodes, as well as reasonably satisfying the grammatical constraints on it,in order to get strong numeric input. This function alone is not a su�cient input function,however; the a-node must be given a chance to get some activation even if only one of thesecomponents is high. For example, very strong input from one of the p-nodes may convincethe other p-node to increase its output to that a-node.In order to allow for these numeric components of the a-node to a�ect the input moreindividually, there is an or function taken into account as well:inori = 1� (1 � inputaipj)(1� inputaipk)(1� stateai � state-weight) (5.7)This function is a non-linear accumulative function of the a-node's three numeric values, andallows the individual components to have a greater impact on the combined value than doesthe and function. The and function says that in order for the input to be high, all threeof the components must be high; by contrast, the or function says that in order for theinput to be high, at least one of the components must be high. Only a portion of stateai isused in the or function (currently state-weight = :25) to ensure that the state value won'tdominate the result; it is more important for the p-node inputs to have an individual e�ect.The within-network input function for an a-node is a weighted sum of the and and orfunctions: inai = inandi � actai (5.8)+ inori(1� actai)� inoriactaikwhere:inai is the within-network input for ai.actai is the activation level for a-node ai. (This function is described below.)k is a constant between 0 and 1.0 (currently set to .5).Consider the �rst two lines of equation 5.8. These two lines have the e�ect of weighting theor component of the function more when the activation of the a-node is low, and weightingthe and component of the function more when the activation of the a-node is high. Thisessentially means that, initially, an a-node receives activation as long as at least one ofits numeric components (the inputs from its p-nodes or the state) is active. However, asthe a-node increases in activation, it is necessary that all of its numeric components arehighly active for it to continue to receive activation. Thus as the evidence for an attachmentincreases, it becomes crucial for this evidence to agree. The higher weighting of the andfunction when the activation of the a-node increases captures the critical semantics of anactive attachment|that it must reasonably satisfy its symbolic constraints (its state valueis high), and it must receive all of the output from each of its two p-nodes (both of its inputvalues are high).The last line of the function further emphasizes the centrality of the and componentin capturing the semantics of an a-node: it subtracts o� a fraction of the or function, in69



order to ensure that the or component of the input combining function is not weightedtoo strongly. The amount subtracted is in proportion to the level of activation; again, thisallows for incomplete evidence for an attachment to initially have some e�ect, but forces theevidence to be complete as it becomes stronger.Finally, the input function has one further component not shown in equation 5.8: if eitherof the two input values or the state is 0, then inai is set to 0. If the state value is 0, thatmeans that the attachment violates some grammatical constraint and is therefore invalid;it must be turned o�. If either of the two inputs is 0, that means that the p-node that issending no output to the a-node has made a choice not to activate this attachment; again,the a-node should be turned o�.The initial version of the activation function that employed this input was the following:actai(t) = inai(t) (5.9)+ (1 � inai(t))[2actai2(t� 1)� actai(t� 1)]where:actai(t) is the activation level for a-node ai at time t.inai(t) is the within-network input for ai at time t.This is the same function as that used for computing activation levels in the print-to-soundnetwork of Reggia, Marsland, & Berndt (1988).7 The e�ect of the function is that the currentactivation level of an a-node ai is set to the current input inai, plus or minus a fraction of(1�inai) that is equal to twice the previous activation squared minus the previous activation(the term 2actai2(t � 1) � actai(t � 1)). The fraction of (1 � inai) that is added to inai ispositive when the previous activation is greater than .5, and negative when the previousactivation is less than .5. Thus when the activation level of an a-node is greater than .5, thenew activation will be set to the proportionately increased input value; when the activationlevel is less than .5, the new activation will be set to the proportionately decreased inputvalue. As long as the input level is less than or equal to 1.0, the activation level will alsohave a maximum of 1.0, since it equals the input plus or minus a fraction of 1 minus theinput.8In the parser, an additional term was added to equation 5.9 to yield the following �nalactivation function for a-nodes:actai(t) = inai(t) (5.10)+ (1 � inai(t))[2actai2(t� 1)� actai(t� 1)]+ �aiactai(t� 1)7The activation function in that work is stated as the change in activation of a node, and therefore appearsdi�erent in form.8While it is possible for this function to take on values less than 0, this does not happen in practice; itrequires the input to be quite small, and the thresholding of output to the a-nodes prevents this.70



where:actai(t) is the activation level for a-node ai at time t.inai(t) is the within-network input for ai at time t.�ai is the reinforcement factor for ai (explained in the text).This function reects the fact that an a-node is self-reinforcing over time; that is, in additionto its input function, an a-node receives additional activation from itself in proportion to itsage. The amount of additional activation added is the old activation level times �ai , whichis the rate of reinforcement for that a-node. The reinforcing term is necessary to counteractthe gradual decay of the p-nodes to which an a-node is attached; it is desirable for an activea-node to have a fairly stable activation level, and without this self-reinforcement it willdecay too quickly. In the current implementation, �ai = :025(t � tai), where tai is the timethat ai was allocated.9There are some �nal details of the activation function that are not shown in equation 5.10.First, the reinforcement term that has been added means that the activation level may exceed1.0; to avoid this, the function has an explicit ceiling of 1.0. Second, the activation level isset to 0 if the input is 0, regardless of the result of the above function. This ensures cleanercompetitive behavior among the a-nodes.The output function for an a-node is very straightforward; an a-node simply sends itsweighted activation to its p-nodes: outpjai = wgtjiactai (5.11)where:outpjai is the output from a-node ai to p-node pj .wgtji is the (positive) weight on the connection between a-node ai andp-node pj (weights are symmetric).actai is the activation of a-node ai.A-nodes that are connected to the stack use this same output function to send activation toit. The TOS and CURR a-nodes have a weight of 1.0 on their links, so they send their entireactivation to the stack. The a-nodes on the REST list have a weight of 0 on their links, sothat they send no activation to the stack.Given the numeric functions described above, a-nodes are very unlikely to gain in activa-tion once their activation level falls below .05, and are very unlikely to decrease in activationonce their activation level rises above .4. Thus, these values are used as the thresholds in de-termining when the network is in an acceptable state|de�ned as one in which the activationlevel of each a-node is either below .05 or above .4.9In fact, � can be stated in terms of the decay factor for p-nodes, directly reecting the fact that theself-reinforcement of a-nodes counteracts the decay of p-nodes: �ai = :5�pj , where pj is the more recent ofthe two p-nodes that ai connects to. 71



Property De�nitionConvergence The network must reach an acceptable state within areasonable number of iterations.Correctness The solution set of active a-nodes must form a valid setof parse tree attachments.Reasonableness If there is more than one correct solution, the parser mustmake a choice that is appropriate and predictable.Consistency The network must exhibit similar behavior in the solutionon which it converges across a range of inputs.Table 5.2: The four criteria according to which the attachment behavior of the parser isevaluated.5.3 Numeric Processing ExperimentsThis section presents an evaluation of the parsing behavior induced by the spreading activa-tion functions presented above. The goal of the parsing network is to incorporate each inputphrase into a valid parse. To consider the parser to have achieved this goal, its behavior inresponse to an input must be shown to have the properties listed in Table 5.2. This sectionbegins with a presentation of the motivations for testing the parser at this stage, and a dis-cussion of the development of the appropriate test cases. The results of running the parsingnetwork on these test cases are then presented. The results demonstrate that the numericfunctions presented in Section 5.2 produce network behavior that meets the four criteria ofconvergence, correctness, reasonableness, and consistency.5.3.1 MotivationsTwo properties of the network make it possible to test the numeric processing of the parser,before introducing the further complexity of its symbolic capabilities. First, the attachmentbehavior relies purely on numeric processing; the numeric state value of the a-nodes capturesall of the symbolic information that is relevant to attachment decisions. Because the statevalue provides the sole bridge between symbolic and numeric processing, it is straightforwardto test the numeric processing behavior that determines attachments by manually settingthe state value to reect the desired test cases.The second fact that simpli�es testing is the following. Before each run of the network,all existing attachment nodes are reinitialized|that is, their activation level is set to 0.(See Figure 5.1 on page 61.) This step is taken in order to simplify numeric processingby having all competing attachment nodes, both new and old, begin with the same levelof activation. The reinitialization has the side e�ect that, for each run, the only relevantinformation from prior runs is the set of discrete attachment decisions that were made, notthe precise activation levels of the a-nodes. If activation persisted from one run to the next,the results to evaluate would be the series of attachment decisions that the parser makes72



on a given input sequence. But since the only relevant information is the result of priorattachment decisions, which are encoded in the structure of the network, each test case canconsist of a single network con�guration. In this case, a result is much simpler to evaluate,since it consists of the attachment decision made by the parser in a single run.It is not only possible to test the attachment behavior of the parser at this point, itis highly desirable as well. The introduction of actual linguistic knowledge into the parsermakes the state of the network very complex. It is extremely di�cult to devise a set ofthorough, methodical tests based on real lexical items. Even if it were possible, the testcases risk being too dependent on the particular lexical items that are chosen. The approachtaken here is to provide a more systematic set of tests by abstracting away from the precisesymbolic input. The network behavior will be demonstrated on a highly structured set ofsample inputs. The goal is to demonstrate that the network's properties of convergence,correctness, reasonableness, and consistency hold across a broad range of input conditions;they do not arise only in a hand-picked set of example sentences.This is not to deny the importance of evaluating the behavior of the complete parser onactual linguistic input. Chapter 7 is devoted to such results, which demonstrate how theparser processes syntactic ambiguities within a range of example sentences. The numericexperiments reveal the basic attachment behavior of the parser, while Chapter 7 relatesthis behavior to relevant examples from the psycholinguistic literature. By showing thatthe attachment decisions that mimic human behavior are not merely an artifact of theparticular examples, these numeric simulations provide a foundation for the later discussion.Chapter 7 is not only supported by, but in turn reinforces, the conclusions of this section:Since it is impossible for the numeric simulations to test every con�guration of the parser,the simulations of Chapter 7 will provide evidence that the attachment behaviors observedhere do in fact hold under conditions arising from actual linguistic input.5.3.2 Test CasesIn order to reasonably test the numeric behavior of the parser, it must be determined whatthe relevant inputs are to a run of the network, so that these can be varied in a meaningfulway. Each run of the network results in a set of attachment decisions that encode how thenewest input phrase is incorporated into the existing parsing network. The nodes of interestare those a-nodes that represent attachments that are competing for activation in this run.The set of competing a-nodes consists of all the new a-nodes established for the current inputphrase, plus any existing a-nodes that these new ones compete with. An example networkwith the competing a-nodes highlighted is shown in Figure 5.3.One relevant input to the network is the state value of each of these competing a-nodes.The state value encodes important symbolic information, and is a strong contributor to theactivation level of an a-node. The other relevant factor in a run of the network is the actualstructure of the parsing network, which is determined by the result of any prior attachmentdecisions. Since the current input phrase is only connected to the right edge of the partialparse tree on the top of the stack, the only pertinent aspect of the existing network is the73
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Figure 5.3: Example network with the set of competing a-nodes highlighted.structure of this right edge. Furthermore, the only structural aspect of this right edge thatcan vary is its depth. The depth of the right edge of the partial parse tree on the stack isimportant because it determines the number of competing a-nodes.The test cases for the set of numeric simulations will thus be enumerated by varying boththe state values of the competing a-nodes and the depth of the tree on the stack. Depth ofa tree in the following will mean the number of phrases (not the number of nodes) along theright edge of the tree. Let ns denote the number of di�erent state values that the a-nodeswill be allowed to take on, d denote the depth of the tree on top of the stack, and f(d)denote the number of competing a-nodes. Then the number of possible initial con�gurationsof the network for a tree of a particular depth on the top of the stack is nsf(d). The value off(d) is determined by the structure of the network: f(d) = new(d)+old(d), where new(d) isthe number of new a-nodes allocated for the current input phrase, and old(d) is the numberof pre-existing a-nodes that the new ones compete with. The current XP has a new a-nodefor each of the d X nodes on the stack, plus a new a-node connecting to the stack (CURR);the current X0 node has a new a-node for each of the d XP nodes on the stack, plus a newa-node connecting to an empty node. Thus, new(d) = 2(d + 1). Each of the d X nodes on74



the stack connects to an existing a-node, plus the root XP node connects to the existingTOS a-node, yielding old(d) = d+1 when d > 0. If d = 0, then there are no existing phrasesor attachments, and old(d) = 0. Thus, f(d) = 3(d + 1) if d > 0, and f(d) = 2(d + 1) = 2if d = 0. We must therefore determine values of ns and a maximum depth D for whichPDd=0 nsf(d) is a reasonable number of test cases.In the current implementation of the parser, the state of an a-node can take on the values0, .5, .6, .7, .8, or .9; the algorithm for computing these particular values will be discussedin Chapter 6. If all of these values are to be tested, then ns = 6; the number of possibleinitial con�gurations of the network for a tree of depth d > 0 on the top of stack wouldbe 63(d+1). For example, for a tree 5 phrases deep, the number of test cases would be 618.This is clearly not a reasonable number of simulations to run for even a single depth value.Given the exponential nature of the function for the number of test cases, it is necessary todecrease the number of state values that are to be tested, as well as the number of a-nodeswhose state value is varied.The precise values given above for the state of an a-node are not so important; what isimportant is that the state can take on the value 0 to represent an invalid attachment, plusa range of non-zero values to represent the degree of grammatical constraint satisfactionof a valid attachment. In light of this, it was decided to limit the numeric simulationshere to vary the state between two values only: 0 for an invalid attachment, and a �xed,non-zero value for a valid attachment. The non-zero value chosen was based on applyingthe state computation algorithm of Chapter 6 to a typical symbolic con�guration. Sincean attachment that is valid normally satis�es its grammatical constraints to a fairly highdegree, the simulated symbolic features were chosen to reect this type of situation. Underthese conditions, the algorithm yields the value .9 for a complement attachment and .8 fora speci�er attachment; these values are .7 and .6 respectively if one of the p-nodes is anempty node.10 The properties of the stack are such that the value for a stack attachmentis always .6. Figure 5.4 illustrates these possible state values in an example network. Sinceeach a-node can now take on either the value 0 or the appropriate non-zero value, the valueof ns has been reduced from 6 to 2.The decision to limit the variation of state values to a binary choice permits the numberof test cases to be further reduced by decreasing the number of a-nodes whose state valuemay be varied. The only allowable state variation is between two values that represent thechoice of a valid or invalid attachment. Under these conditions, it only makes sense to varythe state values of the a-nodes that connect the current input phrase to the tree on thestack; these are the new a-nodes that connect to non-empty, non-stack p-nodes. Pre-existinga-nodes, as well as those that connect to empty nodes, must be valid; the stack a-nodes notonly are always valid, but always have the same value. Thus, any pre-existing a-nodes, aswell as those that connect to the stack or to empty nodes, are given the �xed, non-zero state10After these simulations were conducted, the state computation algorithm was re�ned in an e�ort tomake it simpler and more consistent. The current algorithm used by the parser would return .5 instead of.6 for a speci�er attachment involving an empty node; this change is not large enough to signi�cantly a�ectthe results presented here. 75
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ConvergenceThe network converges on an acceptable state for over 98% of the initial con�gurations tested.In the case of the simplest attachment decision that the network faces, in which no new a-nodes have a non-zero state value and the current phrase must push itself onto the stack,the number of iterations to reach an acceptable state is 10{15, for all sizes of the network.The number of iterations for all other cases is consistently in the 30 to 70 range.11 Thenumber of iterations tends to increase as the number of a-nodes with non-zero state valuesincreases, especially if those a-nodes form multiple compatible sets of attachments. Thisbehavior makes sense: the more correct possibilities that the network is choosing between,the longer it takes to settle on one, particularly in these \canned" simulations where all ofthe attachment alternatives are equally strong. The exception to this behavior occurs whenthe \easiest" attachment possible is a valid one. The easiest attachment, for reasons to bediscussed below, is the attachment of the XP node of the current phrase to the X node ofthe lowest phrase in the existing tree; this con�guration is shown in Figure 5.6 for a networkof depth 3. In these cases, the number of iterations actually decreases as the number of valida-nodes increases; the overwhelming tendency for the easy attachment to dominate is justheightened by the spreading out of available activation to the other nodes.Another property that a�ects the number of iterations to convergence is the distancebetween the valid attachments that the network is choosing between. Phrases that are higherup in the tree on the stack were allocated less recently, and so their activation has decayedmore than that of phrases lower in the tree. Attachments to the higher phrases will thereforeget less input. One e�ect of this is that the current phrase prefers lower attachments to theexisting tree; this behavior is discussed below under the property of \Reasonableness." Thedecay of p-nodes not only a�ects which attachment decision the network makes, but thenumber of iterations it takes for it to converge on this choice as well. If the lowest possibleattachment is competing with an attachment that is only slightly higher in the tree, it willtake longer to converge than if the competing attachment is much higher in the tree|thecloser attachment gets more input from its p-nodes and therefore competes more strongly.Figures 5.7 and 5.8 illustrate an example of this situation.The network does not converge on an acceptable state for 17 of the 1365 initial con�g-urations. In each instance, there is at least one p-node that is partially activating multiplea-nodes; that is, the p-node does not exhibit a clear choice of a single attachment to activate.Sixteen of those cases occur in the set of simulations in which the tree on the stack has adepth of 5, which was the maximum depth that was systematically tested. For this size net-work, there are 2d = 10 new a-nodes whose state value will be varied across the simulations.In each of the cases of non-convergence, at least 6 of these 10 new a-nodes had a non-zerostate value; most of these cases (11 out of 16) had 8{10 new a-nodes with non-zero statevalues. The high percentage of new a-nodes with non-zero state values means that thereare a large number of a-nodes competing for the output from a single p-node. When the11It is perhaps worth noting that this is within the limit of \less than a hundred time steps" discussed byFeldman & Ballard (1982). 78
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them less competitive with other a-nodes that represent real attachments. It is interestingto note that the behavior of the stacking mechanism as a last resort action is not directlybuilt into the parser, but rather \falls out" from these independently motivated propertiesof the stack.The second guideline necessary to ensure that the individual attachment decisions ofthe parser are reasonable is that the network must take into account varying degrees ofevidence or preference for the di�erent alternatives it is faced with. How well the networkweighs evidence is a complex phenomenon to evaluate. One of the motivations for usingspreading activation in the �rst place was that it provides a uniform mechanism for comparingdi�erent sources of evidence; however, numerically combining evidence in this way can hidethe underlying sources of the e�ects. In spite of this, the simulation results show clearly thatthe network combines and compares evidence in a reasonable way. It has already been shownthat the a-nodes connected to the stack are less favored than other a-nodes, and that theirlower state value is in part responsible for this.12 While in the 1365 simulations all non-stackattachments of the same type were given the same state value, additional simulations wereperformed that demonstrated that di�ering state values (on a-nodes other than TOS andCURR) have a noticeable e�ect on the attachment decision that is made. The set of 1365simulations are also highly uniform in that the weights on all of the connections are set to1.0; this property was varied in further testing as well. The e�ects of di�erent state valuesand weights will be exhibited on concrete examples in Chapter 7.One extremely important source of evidence for an attachment that does show variationin this set of simulations is the amount of input from the phrasal nodes. The simulationresults show that the network reasonably and consistently combines and compares this sourceof evidence. Because p-nodes that are lower in the tree have decayed less, they have moreactivation to output to their a-nodes. This varying degree of support for an attachmentcauses the network to consistently choose the lowest of the possible attachments to theparse tree. In every one of the 1342 converging simulations in which there is at least onevalid attachment between the current phrase and the tree on the stack, the attachmentdecision that the network settles on is the lowest set of a-nodes that represent a logicalattachment possibility. The strong, consistent recency e�ect displayed by these results isa direct consequence of the decay mechanism that is necessary for managing the pool ofphrasal nodes. Because of evidence in the psycholinguistic literature for the role of recency,Chapter 7 will return to this issue.ConsistencyThe detailed aspects of the behavior of the network that were discussed above hold acrossall of the simulations in which an acceptable state was reached. The number of iterationsto convergence is always within the range of 10{70, and the exact number within this range12Simulations were performed to directly support this claim. For example, as the state value of the CURRa-node is increased, the current phrase becomes more likely to attach to the stack even when there are validattachments to the existing parse tree. 84



varies consistently with the size and state settings of the network. The attachment decisionsthat the network settles on are not only correct in all cases, but further conform to theproperties of reasonable behavior outlined above. The consistency of these results is quiteimportant; in spite of the fact that 1365 seems like a large number of simulations, the size ofthe networks tested is still limited. The fact that these simulations display such consistencygives support to the hypothesis that the same attachment behaviors will hold in largernetworks (that is, those with deeper trees on the stack). The parser was in fact tested onvarious networks with deeper trees on the stack|up to a depth of 8|and these simulationsalways converged on a solution that was both correct and reasonable.13 Furthermore, theexamples in Chapter 7 that involve trees of depth greater than 5 also behave in a mannerconsistent with the results presented here.5.4 Limitations of the Numeric ProcessingThe biggest limitation of the approach is that the numeric functions and parameters lack solidtheoretical motivation. In each case, there is justi�cation for the approach that is taken, butthe precise settings are largely empirically motivated. However, considering the complexity ofthe problem, the spreading activation functions that were developed are surprisingly simpleand uniform. The phrasal nodes and the stack node use almost exactly the same functions,even though they play a very di�erent role in the processing of the network. Although theattachment nodes use a distinct set of functions that are more complex, they are quite similarto the functions used by Reggia, Marsland, & Berndt (1988). The fact that these functionscould be easily adapted across diverse applications supports the view that they capture agenerally useful mechanism for weighing evidence from di�erent sources.Another limitation of the numeric processing is that the network is very sensitive tocertain changes in the functions and parameters. Most of the functions and parameters areinterrelated, so that it is di�cult to isolate the e�ects of one, or to try out new values forone without adjusting several others. On the other hand, the gross behavior of the networkis fairly robust. Under conditions that allow the network to make attachments, the behaviorunder di�erent parameter settings is quite consistent.Other issues are not actually problems in principle, but are just limitations arising frompractical constraints on the implementation. The parser was not tested on all combinations ofstate values for the attachments because the number of simulations required is prohibitive.However, Section 5.3.2 motivated the subset of test con�gurations that was chosen, andthe robust behavior of the parser over this large number of simulations is encouraging.One problem that this set of tests does not reveal is that the nodes of the network cannothandle a situation in which there are ties among all of the competing alternatives. If theevidence for the a-nodes that a p-node attaches to is very close to being equal, the p-nodewill \get stuck" splitting its output evenly among them. A non-deterministic component13These results were not presented here since they were not tests of systematically varying state valuesand depths, but rather were \spot checks" of plausible linguistic con�gurations.85



needs to be integrated into the output function of p-nodes to enable them to recover fromthis situation. However, since a tie between competing a-nodes never arose in the set ofsimulations presented here, or any simulations on actual linguistic input, the developmentof a tie-breaking scheme was not a high priority.In conclusion, the results of the numeric processing simulations support the claim that,in spite of the concerns discussed here, the competitive attachment parsing approach haspromise. Although the precise numeric formulations were derived experimentally, the func-tions and parameters are easily explained, and their e�ects are simple and understandable.Furthermore, they lead to overall behavior that is quite elegant and robust, indicating thattheir empirical nature, and their sensitivity to change, are not signi�cant drawbacks for theapproach.
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Chapter 6Symbolic Processing in the ParserThis chapter provides details about the symbolic features and message-passing methods usedby the parser.1 The proposed techniques underlie a novel approach to natural language pars-ing using constraint-based grammatical knowledge within a massively parallel network. Pre-vious approaches in connectionist parsing have built rule-based knowledge into the structureof the network to determine the space of possible syntactic analyses. With a constraint-basedlinguistic theory, this straightforward approach of recognizing built-in structure is not avail-able. The techniques described here achieve a direct encoding of a constraint-based syntactictheory using only local operations on very simple symbolic features. A key component ofthe approach is the development of a message-passing algorithm that utilizes appropriategrammatical restrictions to limit the path of a feature through the network. Using only localdistributed communication among the network nodes, the message-passing method success-fully ensures that even long-distance syntactic relations are correctly established within theparse tree represented by the network. Thus, the numeric and symbolic techniques of thecompetitive attachment parser together yield a robust distributed parsing mechanism usingonly simple and uniform processing nodes.Section 6.1 gives an overview of symbolic processing in the parsing network. Section 6.2�rst briey introduces the linguistic constraints that the parser encodes, then describes thesymbolic features of the di�erent types of nodes in the network. The section explains howthe local processing of these features enables the parser to capture the declarative constraintsimposed by the linguistic theory. Section 6.3 explains the symbolic output routine in whichgrammatical knowledge constrains the path of features through the parsing network. It isthis novel feature-passing method that ensures that only valid syntactic con�gurations areestablished. Section 6.4 concludes the chapter with a discussion of the limitations of thesymbolic processing component of the parser.1The communication of symbolic features through the parsing network will be referred to as feature-passing or message-passing. However, it is important to note up front that the parser does not have thesymbolic capabilities to support the creation and propagation of general messages or feature structures. Infact, although the symbolic network communication is currently implemented as a feature-passing method,the simplicity of the features that are used here would allow a strict marker-passing implementation, usinga small set of �xed markers. 87



6.1 Overview of the Symbolic ProcessingSymbolic processing determines to what degree each of the potential attachments in thenetwork satis�es its syntactic constraints. While numeric processing consists of an up-date/output spreading activation loop, symbolic processing consists of an update/outputmessage-passing loop. As with the numeric functions, the symbolic update and output rou-tines are synchronized so that the update routines are performed simultaneously by all nodesin the network, followed by the simultaneous computation of output. The symbolic updat-ing of a node consists of processing its symbolic input|that is, the features that were justpassed to it. The symbolic output routine determines which of its own features, as well asthose just input to it, a node should pass on to each of its neighbors.A feature is passed in a packet , which gives the feature and its value, the node that createdthe packet (the original source node in the message-passing path), and the last node thatpassed the feature packet (the most recent source node). Whether or not a feature packet ispassed from a node to each of its neighbors is determined by the grammatical properties ofthe feature itself, as well as those of the potential source and destination nodes. There aretwo major types of features, local and long-distance; this categorization is a direct encodingof the grammatical distinction between local and long-distance relationships in Government-Binding theory. In the parser, local features can be communicated only between the phrasalnodes (p-nodes) of a single X phrase, or between a phrasal node and its attachment nodes(a-nodes), which represent potential sisterhood relations in the parse tree. Long-distancefeatures can be communicated between more distant nodes in the tree along an appropriatepath through the parsing network. Di�erent types of long-distance features have di�erentrestrictions on their communication from one node to another; this restricted marker-passingprocess will be discussed in detail in Section 6.3.In the parsing network, symbolic and numeric computation proceed concurrently, withnumeric activation \gating" the communication of symbolic features. A feature packet canbe passed to its neighbor only by a node that has su�cient activation|that is, an activationlevel above a certain threshold �. This gating mechanism has the desirable e�ect of focusingsymbolic processing within the active portion of the parsing network. In the current imple-mentation, the level of the gating threshold � permits any p-node to pass symbolic features,but an a-node must be fully active in order to propagate the features that it receives. Thus,a p-node can initially pass any feature packets among the p-nodes of its own phrase, aswell as to its a-nodes. However, an a-node cannot propagate these features further until thenumeric activation of the network is focused onto a set of attachment nodes that representthe attachment decisions of the parser. The e�ect is that only local features can reach theirdestination before the numeric processing yields an acceptable network state. The local fea-tures determine the initial state values of the competing a-nodes, which are crucial in thenumeric activation functions. Once the network settles, and the gating threshold for a-nodesis reached, then full symbolic processing (including long-distance features) can occur. Fig-ure 6.1 shows the network processing algorithm of Figure 5.1 with the symbolic componentsadded in. 88



begin fProcess Input Sentencegwhile there are more input tokens dofEach pass through this loop is a run of the network.gGet next input token.Look up lexical entry for the current input token.Allocate an X phrase for the current input token, withsymbolic features initialized based on the lexical entry.Initialize attachment nodes between the current phraseand the top of the stack.Reinitialize competing attachment nodes.until the network is an acceptable state dofEach pass through this loop is an iteration of the network.gfor each node in the network doUpdateSym(node).UpdateNum(node).for each node in the network doOutputSym(node).OutputNum(node).for 1..n dofContinue symbolic processing for a �xed number of iterations.gfor each node in the network doUpdateSym(node).for each node in the network doOutputSym(node).end fProcess Input SentencegFigure 6.1: The complete iterative algorithm for processing the nodes of the network.6.2 Symbolic KnowledgeThe symbolic features used by the parser are a direct encoding of a subset of the grammaticalfeatures of Government-Binding theory (GB).2 GB is divided into a number of \modules"that deal with distinct aspects of the grammar. The constraints imposed by each of thesegrammatical subsystems interact to determine the validity of a syntactic structure. Forexample, one module deals with predicate/argument relations, while another determineswhether two phrases can be coreferential. While it is infeasible to implement all of GB,the division of knowledge into modules makes it relatively straightforward to implement a2This section presents information about GB that is necessary for understanding the implementation ofthe competitive attachment parsing model. For a brief introduction to the motivation and development ofGB as a linguistic theory, non-linguists may �nd Sells (1985) helpful.89



coherent subset of the theory. The modules that were chosen to be included in the parserare those that determine the basic attachment structure of the input: X theory, � theory,Case theory, and (a subset of) the binding theory. A brief overview of the relevant syntacticconstraints imposed by each of these modules will be presented in Section 6.2.1, followed inSection 6.2.2 by a description of how this knowledge is represented within the parser.6.2.1 Constraints from the Linguistic TheoryThe X module determines the structure of the parse tree, by specifying the content ofsyntactic phrases and the basic relations that hold between the phrases within a tree.3 Xtheory states that every phrase has a head (the X node), amaximal projection (the XP node),and some number of intermediate projections (the X0 node(s)). Some properties of thesephrases are very general and may hold for all types of phrases in a language. For example, inEnglish, speci�ers always precede the head of a phrase, while complements follow the head.Other properties of a phrase are determined by more speci�c syntactic information, such asthe category of the phrase. For example, categorial information establishes which types ofXPs may be in a speci�er relation to a given phrase. There are additional properties thatare determined by even more speci�c information given in individual entries in the lexicon.For example, while the types of complements allowed for a phrase in some cases may bedetermined by the category of the head, many are determined by an explicit subcategorizationlist given in the lexical entry for the head. In addition to the general conditions on phrasestructure, X theory imposes the selectional requirement that two potential sister phrasesmust be of the appropriate categories to be attached to each other.Theta theory is the module of GB that is concerned with the relations among the phrasesthat participate in predicates of the sentence. Each predicate has a theta grid , which lists theroles, such as Agent, Theme, or Instrument, that phrases may play in an interpretation ofthat predicate; these roles are called theta roles. For example, the verb know has a theta gridthat includes the theta roles Agent (the one who knows) and Theme (that which is known).The assignment of theta roles is constrained by the Theta Criterion, which is the centralprinciple of Theta Theory. The Theta Criterion states that each phrase in an argumentposition in the parse tree must be assigned exactly one theta role, and that each theta roleof a theta grid must be assigned to exactly one argument phrase. The category of a phrasedetermines which of its speci�er and complement positions are argument positions. Theroles of a theta grid may be assigned to phrases only under certain syntactic con�gurations.There may be one special theta role, speci�ed as the external theta role, that is assignedunder the condition of speci�er/head agreement ; this structural relation will be described inSection 6.3. The typical case of external theta role assignment occurs when the verb phrase3GB theorists have attempted to describe many properties of the basic tree structure as side e�ects ofother modules (Abney, 1986; Stowell, 1981). For example, the categories of allowable complements for aphrase may be derivable from the lexical semantic properties of its head. For simplicity of presentation, allbasic tree structure and categorial relations will be described here as part of the description of X theory.90



assigns the Agent theta role to the subject position of the sentence.4 All other internal thetaroles in the theta grid must be assigned from an X node to a sister node in the parse tree.Case theory imposes an additional constraint on any argument positions that are �lledwith noun phrases. The Case Filter states that all NP arguments must receive Case. Casein GB is an abstract grammatical feature that is a generalization of the overt case markings,such as Nominative or Accusative, that are used in many languages to explicitly mark nounphrases in particular con�gurations. GB assumes that these are the overt manifestation ofthe abstract feature Case that is assigned to noun phrase arguments in all languages. AnX node of category verb, inection, or complementizer assigns structural Case to an NP ina head government relation (to be described below), but the other X nodes assign inherentCase to a sister NP.The binding theory speci�es the required structural relationships that must hold betweenphrases that are coreferential. Such phrases are coindexed|assigned the same referentialindex|under certain structural con�gurations. The parser implements only the portion ofthe binding theory that concerns the licensing of traces.5 Recall that a trace represents aphrase that has been displaced from its underlying position in the sentence. For example,in Who did Mary kiss e? , the trace e in the object position of kiss is a place-holder forthe displaced object, who. The binding theory states that a trace must be bound by beingcoindexed with an appropriate binder (the displaced phrase). This coindexation relationmust meet the structural restrictions of antecedent government , which will be described inSection 6.3.6The grammatical information described above comprises the symbolic knowledge thatmust be represented by the limited symbolic processing capabilities of the parser. Part ofthe knowledge is the structure of individual X phrases and the direction of attachmentsbetween them; these aspects are captured in the parser's mechanism for allocating phrasesand attachment nodes. In addition, the four modules of GB contribute to the knowledge ofthe parser the four explicit constraints shown in Table 6.1.7 As stated earlier in Section 4.1.2,these constraints in the parsing network are veri�ed at the attachment nodes. Thus, althoughthey are stated as constraints on the properties of XP nodes, the constraints actually do notapply directly to an XP node, but rather to an XP node in a certain attachment relationto another node. The next section describes the symbolic features that are needed within4In the parser, the external theta role is passed from the VP to its sister I node, which then assignsthe theta role to its subject by speci�er/head agreement. This formulation is not standard in GB, and isadopted partly for convenience and partly to demonstrate use of the speci�er/head agreement relation. Seethe discussion in Section 6.3.1.5The parser incorporates the passing of the necessary binding features between an overt phrase and itsunderlying trace. However, the competitive coindexation nodes that are needed to explicitly represent abinding relation are not included in this version of the parser. See Stevenson (1993a) for a discussion ofcompetitive relations among multiple potential coindexation nodes.6The portion of the binding theory encoded here is an adaptation of the version of the Empty CategoryPrinciple (ECP) developed by Rizzi (1990).7The �rst three of these constraints were presented in Chapter 4.91



Constraint De�nitionSelection Constraint The category of an XP must match the category ex-pected by its sister X or X0.Theta Criterion An XP in an argument position must be assigned ex-actly one theta role.aCase Filter An NP in an argument position must be assignedCase.Binding Constraint Every XP must be bound.b, caThe other part of the Theta Criterion, which states that a predicate assigns each of its theta roles toexactly one phrase, is accomplished indirectly in the parser through constraints on the number of attachmentsto a node.bA non-empty XP is \bound" by itself.cThe binding theory also prohibits vacuous quanti�cation; for example, a fronted WH-word, as in aquestion, must bind some trace. This is accomplished in the parser by requiring quanti�ers, such as WH-words, to participate in a binding relation.Table 6.1: The four syntactic constraints used in the parser.each node type to support the veri�cation of these constraints. Section 6.3 then presents themessage-passing algorithm that ensures that the structural con�gurations under which thefeatures must be assigned are respected.6.2.2 Symbolic Features and Their ValuesThe parser relies on a small number of syntactic features to represent the grammaticalknowledge described above. The features are implemented as slots that take on a limitedrange of values speci�ed by the grammatical theory. For example, the feature Case can takeon the value Nominative, Accusative, Oblique, or Genitive; a category feature can take onthe value of Noun, Adjective, Preposition, Verb, Inection, Complementizer, or Determiner.The value of a feature can also be a disjunction of a subset of its allowable atomic features,which is indicated by a list; for example, Case = (Accusative Oblique) means that the Caseof the node can be Accusative or Oblique.Section 6.2.1 presented two types of constraints that apply to symbolic features: restric-tions on the values of the features, and restrictions on the con�gurations under which thefeatures can be assigned from one node to another. This section explains how the parser cap-tures the �rst type of constraint by requiring that certain features of attachment nodes takeon particular values. The symbolic features of each node type will be described, includinghow their values are initialized and updated during the parse. Most feature slots of a nodeare �lled with atomic values or lists of these atomic values; these slots will be referred to asthe simple features of a node. In addition to its simple features, one of the most importantsymbolic feature slots of a node holds a list of feature packets (feature slot/value pairs) that92



the node potentially passes to its neighbors. Part of the update procedure for an attachmentnode is to determine how well its grammatical constraints are satis�ed, based on the featuresthat are input to it from its phrasal nodes. The �nal step of the update process for a nodeof any type is to transfer to its output list the symbolic features that it received during theprevious iteration of the network, so that they can be further propagated during the currentiteration.Phrasal NodesSymbolic features in the parsing network originate in the lexicon. Lexical entries are de�nedwithin an object-oriented network of categorial features, in which each object determines thevalues of some subset of symbolic features. The set of categorial features and their e�ectson the settings of other symbolic feature values are shown in Table 6.2. The leaf objects inthe object-oriented network are the syntactic categories Noun, Adjective, Preposition, Verb,Inection, Complementizer, and Determiner. The settings of the categorial features for eachof the syntactic categories is shown in Table 6.3.8 A lexical entry is de�ned as an instance ofa category leaf object within the feature network, and inherits most of its symbolic featuresettings from its ancestors. The only information that must be explicitly given in the lexicalentry is that which is idiosyncratic to the particular word or morpheme being de�ned. Infact, for now, the only features determined by the individual lexical entries are the numberof a noun (singular or plural), the subcategorization of a verb (a list of possible categoriesof its complement), and the tense of an inection (past or present). All other features areinherited from the categorial network.The symbolic features of the p-nodes constituting an X phrase are determined by thelexical entry of the head of the phrase. A p-node has only three simple features, plus the slotfor its list of potential output feature packets. Each of the three simple features is initializedwhen the p-node is created, and remains unchanged throughout the parse. One simplefeature, with value true or false, tells whether or not the phrase is a lexical category. Thelexical categories are, loosely, those with more semantic content (noun, adjective, preposition,and verb), while the non-lexical (or functional) categories are those that play a more purelysyntactic role (inection, complementizer, and determiner). The second simple feature, whichalso takes on the value true or false, indicates whether or not the sister of an X0 nodeis an argument position. The argument positions are the complements of lexical X nodes,and the speci�ers of N0, I0, and C0. Both of these features are used in determining whethercertain feature packets that land at a node can be propagated beyond it. The third featureis a list of the frequency information for the allowable categories of the sister of the p-nodein the parse tree. The frequency list is used to set the weights on the links between an X orX0 node and the a-nodes that it connects to.98The breakdown of the syntactic categories into these features and the meanings of the features areadapted from proposals within GB theory, but the particular formulation was developed in the researchhere.9Chapter 7 will demonstrate how setting weights based on the frequency information leads the parser to93



Feature Setting MeaningNominal + The sister of an X0 node is an argument.� The sister of an X0 node is not an argument.Verbal + An X node assigns structural Case.The sister of an X node is selected.� An X node assigns inherent Case.The sister of an X node is not selected.Lexical + The sister of an X node is an argument.An X node assigns a theta role to its complement.� The sister of an X node is not an argument.Case + An X node can directly assign Case.Assigner � An X node cannot directly assign Case.aDegenerate + Only an XP node is projected from the input.� A full X phrase is projected from the input.aThis feature refers to the necessity of a noun or adjective in English to be accompanied by the Case-assigning morpheme of in order to discharge Case to its complement, as in queen of England or proud ofSara.Table 6.2: Categorial features and their e�ects on the settings of other symbolic featurevalues. Categorial FeatureSyntactic CaseCategory Nominal Verbal Lexical Assigner DegenerateNoun + � + � �Adjective � � + � �Preposition � � + + �Verb � + + + �Inection + + � � �Complementizer + + � + �Determiner � � � � +Table 6.3: The syntactic categories with their settings for each of the categorial featuresde�ned in Table 6.2. 94



The features included on the output feature packet list of a p-node are those that arerequired to support the constraint-checking carried out by attachment nodes. To enablethe checking of the selection constraint, each p-node outputs the category of itself and/or alist of the possible categories of its sister in the parse tree. The list of possible categoriesmay include the special value none, which indicates that the p-node is allowed to have nosister. Since a p-node must always activate exactly one attachment, this is accomplished byactivating an attachment to an empty node and assigning it the category none. To supportthe veri�cation of the Theta Criterion, each X node outputs whether or not it assigns a thetarole to its sister XP.10 The Case Filter depends on knowing from X nodes which Case theyassign, if any, and from XP nodes which Case they expect.11 The binding theory directlyrelies on two features, one from an XP node that speci�es whether or not that phrase isbound, and one from an X or X0 node that speci�es whether or not its sister in the parse treeis an argument position. The latter feature is used in determining an appropriate binder foran empty node. A �nal feature from an X or X0 node indicates whether or not its sister isselected ; the property of being a selected position is, like the property of being an argumentposition, determined by details of GB that are irrelevant here. The only selected positionsare the complements of V, I, and C nodes (Cinque, 1990; Rizzi, 1990). This is again a featurethat is used solely to determine how features can be propagated through the network.Table 6.4 summarizes the features initially on the output list of each type of p-node (XP,X0, and X), and sample values for nodes of di�erent categories. Like all network processingnodes, a p-node updates this output feature list at each iteration, by adding to it the symbolicfeature packets that it just received on its input list.Empty NodesChapter 5 noted that empty nodes are a subtype of p-node. In fact, they are further speci�edas a subtype of XP node, and inherit the symbolic features of an XP. The only simple featurethat is applicable to an empty node is the one that states whether or not a node is lexical (inthe technical sense described above); this feature is false for all empty nodes. Like all othernodes, an empty node has an output list of feature packets, and the features included on thislist are also inherited from the XP node object. When the empty node is �rst created, thevalue of the output feature is-bound is false. Because the empty node is not yet bound,much of its remaining symbolic information is undetermined. The XP-category, X0-category,and has-Case output features are assigned the special value unspecified to indicate that amore precise statement of the value is unknown. This value allows constraints that refer tocategory and Case values to assume that an empty node may take on values that are relevanttake lexical preferences into account in disambiguation.10An XP node might also assign the external theta role of the predicate of the head of the phrase; forexample, the VP assigns the external theta role of the verb to the subject of the clause.11In English, the latter is usually not relevant, since only pronouns restrict which Case they can be assigned;for example, the pronoun we must receive Nominative Case, and us Accusative or Oblique.95



XP Output Features Noun Verb In CompXP-category N V I CX0-category (N I C) (none) (none) (none)aassigns-external-theta false true false falsehas-Case anya none none noneis-bound true true true trueX0 Output Features Noun Verb In CompXP-category (D A none) (none) (N I C) (Wh C none)X0-category N V I Csister-is-argument true false true falsesister-is-selected false false false falseX Output Features Noun Verb In CompXP-category (N)a (N C)a (V) (I)assigns-theta truea truea false falseassigns-Case Gen Acc none Nomsister-is-argument true true false falsesister-is-selected false true true trueaExample value only; the precise value will depend on the lexical entry.Table 6.4: Initial output features of p-nodes, with sample values for XP, X0, and X nodes ofvarious categories: Noun, Verb, In (inection), and Comp (complementizer).to the constraint. These output features might change during the parse, since the featuresof the empty node will be determined by the corresponding features of its binder. When avalid binding relation is established for the empty node, its is-bound output feature is setto true, and its XP-category, X0-category, and has-Case output features will be updated tobe equal to those of the binder.12 The output feature assigns-external-theta is always falsefor empty nodes, because there is no head of the phrase from which to assign a theta role.Table 6.5 summarizes the initial values of the output features of an empty node.The Stack NodeJust as an empty node is further speci�ed symbolically as an XP node, the stack node is asubtype of p-node that is further speci�ed as an X node. Analogous to an X node activating12In the results described in this dissertation, every empty node will remain unbound throughout theparsing process. See Stevenson (1993a) for a presentation of how the competitive attachment model supportsthe binding of empty nodes in a manner that accounts for the psycholinguistic data on �ller/gap processingfrom Carlson & Tanenhaus (1988), Frazier (1987), and Stowe (1986).96



Empty Node InitialOutput Features ValuesXP-category unspecifiedX0-category unspecifiedassigns-external-theta falsehas-Case unspecifiedis-bound falseTable 6.5: Initial output features of empty nodes.Stack Node InitialOutput Features ValuesXP-category unspecifiedassigns-theta falseassigns-Case nonesister-is-argument truesister-is-selected N/ATable 6.6: Initial output features of the stack node.a complement attachment to an XP, the stack node activates attachments to XPs that pushthemselves onto the stack. However, the stack is purely a computational mechanism, andhas no meaningful identity within the linguistic theory; thus, it is a degenerate X nodewith regard to its symbolic features. Its features are given initial values reecting this, andremain unchanged during the parse. The simple symbolic features of the stack state that itis not lexical, and that it assigns equal frequency to the categories of nodes that can attachto it. The features on its output list are set as follows. The XP-category feature has thevalue unspecified (any phrase can push itself onto the stack), assigns-theta is false, andassigns-Case is none. However, since the �nal parse tree on the stack is presumably inputto semantic and discourse processing mechanisms, the sister-is-argument output feature ofthe stack node is set to true. This extends the notion of argument position from GB toencompass arguments in the discourse. The value of the �nal output feature of X nodes,sister-is-selected, is irrelevant for the stack because it is used only in determining how to passfeatures through the tree.13 Table 6.6 summarizes the initial values of the output featuresof the stack node.13Since the stack is at the top of the tree, features from within the tree cannot be passed up beyond it;since the stack has only sister features to communicate, features from it need not be passed down into thetree beyond its a-nodes. 97



Attachment NodesThe important symbolic work of a p-node is to communicate features to the a-nodes thatrepresent its potential attachments. Thus, the list of its potential output feature packets isthe seat of the real information of a p-node. It is the a-nodes that process these featuresto determine the syntactic validity of any given attachment. Not surprisingly, the a-nodesare symbolically complementary to the p-nodes: they create no output feature packets oftheir own, but they have a large number of feature slots for recording the values of all ofthe symbolic features relevant to an attachment. The features that are created and outputby the p-nodes are combined by the a-nodes to determine to what degree its grammaticalconstraints are satis�ed. The set of symbolic features of a-nodes thus must be the union ofthe features communicated by the p-nodes:� XP-category� X0-category� receives-theta14� has-Case� receives-Case15� is-bound� sister-is-argument� sister-is-selectedWhen an a-node is created, all of its features are initialized to the default value any, and itsoutput feature packet list is empty. To update its symbolic information, an a-node processesany features that were input to it during the previous network iteration, recomputes itsnumeric state value based on its updated symbolic information, and, like all nodes, transfersits list of input features to its output feature list. The remainder of this section will describethe processing of input features and the recomputation of the state value.When an a-node receives an input feature, it uni�es its current value for that feature withthe new value. Unifying the new value with the initial value any gives the new value as theresult. Since GB requires that the theta and Case assigners for a node be unique, assigns-theta and assigns-Case features can be assigned only once. This is ensured by having thosefeatures able to unify successfully only with the value any; thus, once one value has beenassigned, additional attempts to assign a new value will not unify with the current value. Forall other features, the current and new values unify successfully if they are the same atomicvalue, or if one is an atomic value and the other is a list of atomic values that contains the �rst(the result being the atomic value). The only exception is uni�cation involving the specialvalue unspecified. If one of the terms being uni�ed is the value unspecified or a listcontaining the value unspecified, the result of uni�cation is the value unspecified. If the14The receives-theta feature at an a-node corresponds to the theta assignment features of p-nodes.15The receives-Case feature at an a-node corresponds to the Case assignment features of p-nodes.98



current and new values for a feature do not unify, then the feature is given the value invalidand the a-node becomes inactive. Table 6.7 shows an example of an a-node representing acomplement attachment, and the result of unifying the input features from its X and XPnodes with its default values. Table 6.8 similarly shows an example of a speci�er a-node,and the result of unifying the input features from its X0 and XP nodes.After an a-node updates its feature settings by unifying its input features with its currentfeature values, the a-node then updates its numeric state value by applying the constraintalgorithm shown in Figure 6.2. The algorithm encodes the four constraints on XP featurevalues that were presented in Table 6.1 on page 92. In order to arrive at the new state valuefor an a-node, the constraint-checking algorithm takes the simple approach of assuminga high initial state value and then deducting a constant value for each constraint that isunsatis�ed. For example, given the constants currently used in the algorithm, the a-nodeof Table 6.7 computes its state value to be 0.9, because none of its constraints are violated.The a-node of Table 6.8, on the other hand, currently violates both the Theta Criterion andthe Case Filter, and thus determines its state value to be 0.7.Note that the computation of a constraint violation is conservative when given indeter-minate values. This is shown explicitly for the Selection Constraint: if the category of theXP is unspecified (that is, unknown), then the algorithm assumes that the attachmentmight not satisfy the constraint. The Case Filter is also conservative, since a value of un-specified can \match" the value N. Since only the stack node and empty nodes can givean XP-category feature the value unspecified, the e�ect of this conservative approach isto decrease the state value of an attachment to the stack or to an empty node (in the lattercase, until the empty node is bound).SummaryRecall that in Chapter 5, phrasal nodes and attachment nodes were shown to play comple-mentary roles in the numeric processing of the parsing network. A phrasal node distributesthe numeric evidence that indicates how strongly it prefers each of its potential attachments.An attachment node combines its numeric input to arrive at its activation level, which in-dicates how strongly that attachment is preferred to be part of the parse. Here the twonode types have been shown to play the corresponding complementary roles in the symbolicprocessing of the parser as well. A phrasal node creates and outputs features that are usedto determine the grammaticality of potential attachments. An attachment node uni�es thefeatures it receives and applies a constraint-checking algorithm to compute its state value,which indicates the degree to which its grammatical constraints are satis�ed.The constraint-checking process at the attachment nodes implements one type of con-straint imposed on symbolic features by the grammatical theory, achieving part of the goal ofdistributed, constraint-based parsing. The next section describes how the message-passingalgorithm of the parser enforces the other type of grammatical constraint, which restrictsthe structural con�gurations under which features can be assigned.99



A-Node Input Values Input Values NewFeatures from V Node from NP Node ValuesXP-category (N I C) N NX0-category (I) N/Areceives-theta true truehas-Case Acc (Nom Acc Obl) Accreceives-Case true trueis-bound true truesister-is-argument true truesister-is-selected true trueTable 6.7: The sample a-node represents a complement attachment between the verb knowand the NP Sara. The initial value of each of its features is any. Since it is a complementa-node, the X0-category feature is not applicable.A-Node Input Values Input Values NewFeatures from I0 Node from NP Node ValuesXP-category (N I C) N NX0-category I (I) Ireceives-theta anyhas-Case (Nom Acc Obl) (Nom Acc Obl)receives-Case anyis-bound true truesister-is-argument true truesister-is-selected false falseTable 6.8: The sample a-node represents a speci�er attachment between the I0 of a phraseheaded by the tense morpheme to and the NP Sara. The initial value of each of its featuresis any. Note that since an untensed inection phrase cannot assign Case, the receives-Casefeature retains the value any, indicating that the NP does not yet receive Case in thisattachment relation. Also, the NP does not yet receive a theta role, since that must bepassed to it from the VP. 100



begin fConstraint-Checking and State Computationgif the a-node has any invalid features thenSet the state value of the a-node to 0.exitendifSet the state value of the a-node to 0.9.if XP-category = unspecified then fSelection ConstraintgDecrement state value by 0.1.endifif sister-is-argument = true fTheta Criteriongand receives-theta 6= true thenDecrement state value by 0.1.endifif sister-is-argument = true fCase Filtergand XP-category = Nand receives-Case 6= true thenDecrement state value by 0.1.endifif is-bound = false then fBinding ConstraintgDecrement state value by 0.1.endifend fConstraint-Checking and State ComputationgFigure 6.2: The grammatical constraint-checking algorithm that determines the state valuefor an a-node. Since the category value unspecified can match any category, \XP-category= N" is true when the feature has the value N or unspecified.101



6.3 Restricted Feature-PassingSection 6.2.2 showed how certain constraints from GB are encoded as simple equality tests onthe values of the attributes of an attachment node. However, to ensure grammaticality, it isclearly not su�cient to pass features indiscriminately through the network and then run theconstraint-checking algorithm at the a-nodes. The constraint-checking algorithm can ensurethat each XP in a given attachment relation has certain required features, but it cannotensure that the attachment node received those features in an appropriate manner. Noris it su�cient to control the passing of features purely by distance or degree of activation,as in many previous marker-passing approaches (for example, Charniak, 1986; Hendler,1987), since it is the structure of the path between two nodes that must constrained, ratherthan its length. Approaches that constrain paths through a network according to a regularexpression speci�cation are also inappropriate (Norvig, 1989; Yu & Simmons, 1990); here,dynamic properties of both nodes and links must be taken into account in determining avalid path through the network.16The challenge then is to verify the structural con�gurations from GB that must holdbetween two nodes in a given syntactic relation|for example, that structural Case is assignedwithin a head government relation. Features assigned under sisterhood can be easily madeto obey this constraint by prohibiting those features from being further propagated afterleaving their source node. However, the other syntactic relations involve longer-distancestructural con�gurations that are not directly described as relations between neighboringnodes in the parse tree. Since a connectionist network has no global perspective on its ownstructure, even non-local parsing decisions such as these must be made solely on the basisof local communication.17A solution for achieving local veri�cation of structural constraints in the parser exploitstwo facts: (1) A syntactic relation between two nodes involves features that must be assignedor shared between them; and (2) Features passed between nodes must travel through thenetwork, which is a direct representation of the parse tree structure. Thus, the parser canenforce structural constraints on a syntactic relation by ensuring that the feature-passingpath along which the relevant features are passed conforms to those structural restrictions.Because the network is limited to local interactions among the nodes, this must be achievedby constraining each segment of the feature-passing path to adhere to the grammaticalrestrictions that apply to the particular feature being communicated. The success of theapproach relies on the insight that the structural constraints on any relation between twonodes in a parse tree can be broken down into local components. The set of local restrictionscan then be veri�ed entirely between pairs of directly neighboring nodes along the path inthe tree between the two dependent nodes.Section 6.3.1 presents the structural con�gurations from GB that must be veri�ed in16The solution adopted here could be viewed as a generalization of the regular expression approach, usinga distributed de�nition of the allowable path components.17The limited symbolic capabilities of the parser prevent it from building in global information; nodes areunable to create feature structures that could encode the history of a feature-passing path.102



Module Feature Structural ConstraintTheta Theory internal theta role sisterhoodexternal theta role speci�er/head agreementaCase Theory inherent Case sisterhoodstructural Case head governmentBinding Theory binding of a trace antecedent government.baThe use of speci�er/head agreement for external theta role assignment is explained in the text.bThe antecedent government relation is further speci�ed depending on the type of movement that gaverise to the trace; this is explained in the text.Table 6.9: Structural constraints on feature assignment.order to support the grammatical constraints implemented by the parser. It is worth notingthat while the parser encodes only a portion of the linguistic theory, this subset of structuralrestrictions covers the major syntactic relations of GB. Section 6.3.2 follows with a de-scription of the message-passing algorithm of the parser, which ensures that these structuralconstraints are upheld.6.3.1 Structural Constraints from GBSection 6.2.1 noted that di�erent grammatical features must be assigned from one nodeto another under di�erent structural con�gurations, as summarized in Table 6.9. Detailedexplanations of each of the structural relations relies on an exposition of GB theory thatis beyond the scope of this discussion. Furthermore, GB is an evolving theory in whichthe precise set of de�nitions underlying these relations is continually being re�ned. It isnot the intention of the research here to propose the de�nitive version of the theory thatshould be implemented. Rather, the goal is to demonstrate the ability of the computationaltechniques to implement a constraint-based theory of this style. Hence, a brief de�nition ofeach structural relation will be given, along with an illustration of the typical con�guration(s)within which it applies. Note that the de�nitions of the government relations are derivedfrom the proposal of Rizzi (1990), because it provides the most uniform account of theselong-distance relations, and therefore supports a straightforward implementation. However,the success of the parser's approach does not rely on Rizzi's precise linguistic arguments.The government relation plays a key role in the linguistic theory, reected in the nameof the theory itself, \Government-Binding." Since government underlies both the head gov-ernment and antecedent government relations, its de�nition will be given �rst.1818Here I have extracted the common pieces of Rizzi's head government and antecedent government de�-nitions and labeled them government , although Rizzi (1990) does not separate them out in this way.103
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have a certain government relation to another node y if there is no closer node z that canhave that relation to y. For example, the binder of a trace must be the node at a minimaldistance from the trace that satis�es the other syntactic constraints on the binding relation.Given the above statement of the government relation, the head government and an-tecedent government de�nitions are quite simple.22Head Government: x head governs y i�i. x is a head,23 andii. x governs y.Antecedent Government: x antecedent governs y i�i. x and y are coindexed, andii. x governs y.There are three subtypes of antecedent government: A-antecedent government for tracesof NP-movement (as in passive and raising); �A-antecedent government for traces of WH-movement (as in WH-questions); and X-antecedent government for traces of head movement(that is, movement of the head of a phrase).Figures 6.4, 6.5, and 6.6 illustrate the typical government con�gurations yielded by theabove de�nitions. (Since X-antecedent government isn't currently used in the parser, it isnot shown.)The �nal relation of speci�er/head agreement is much simpler than the government re-lations. Speci�er/head agreement simply states that the head of a phrase (the X node) andthe speci�er position of the phrase must share certain features. For example, this relationis usually used to account for subject/verb agreement in English: the person and numberfeatures of the speci�er of the inection phrase and the corresponding features of the I nodemust agree.24 Here speci�er/head agreement is used to assign the external theta role fromthe I node (which it receives from its sister VP) to the phrase in subject position. Thisis a non-standard explanation of the transmission of the external theta role. As noted inSection 6.2.1, this is not intended to make a claim about the linguistic theory, but ratheris meant to demonstrate the ability of the parser to implement speci�er/head agreementwithin the framework developed for the other long-distance relations it uses. The otherpossibility for implementing external theta role transmission is to use a version of headgovernment based on m-command . This would also be easily speci�ed within the parser'smessage-passing algorithm.22Again, the de�nitions are from Rizzi (1990), with the modi�cations to refer to government .23Technically, one of the following heads: A, N, P, V, Agr, or T. For the purposes here, the fact that itis a head|that is, an X node|is enough. In the parser, only X nodes of the appropriate types have headgovernment features to assign.24There are a number of formulations of how these features are communicated between the verb and theI node; these issues are not addressed here. 105
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such as �A-antecedent government|is a long-distance feature of the parser. Such a featurecan be passed along any number of sisterhood or projection links in the network, subjectto each of the communication constraints imposed by the restrictions on the grammaticalrelations that it inherits.Since the de�nition of a feature includes the restrictions on how it may be communicated,the feature packets that are passed through the network implicitly include this information.All of the nodes in the parsing network use the same feature-passing algorithm for all features.The di�erence in how a feature is passed through the network arises solely from the particularcommunication restrictions that it inherits. At each node where the feature lands, therestrictions determine whether the node can pass on the feature to each of its neighbors. Thisuniform feature-passing mechanism ensures both local and non-local structural constraintson syntactic relations, using only local information at each node along a feature-passing path.The resulting method has been successfully applied to correctly pass features according toeach of the structural restrictions described above in Section 6.3.1.To examine the feature-passing mechanism in more detail, consider Figure 6.8 in which aWH-phrase must bind a trace that it antecedent governs. The binding feature from the WH-phrase Who is de�ned as an instance of an �A-antecedent government feature, and thereforeinherits the feature-passing restrictions from the �A-antecedent government object in thegrammatical hierarchy. The c-command restriction entails that a feature can be passed onlyon a downward link within an X phrase, and also prevents the original source node frompassing the feature within its own phrase. These two conditions ensure that a node onlyc-commands the nodes in the subtree of its sister. The government restriction entails thata feature cannot be passed across an a-node whose sister-is-selected feature is false. Thec-command and government restrictions thus result in the binding feature from Who beingpassed only to nodes that are c-commanded by Who, with no barriers intervening. The �A-speci�er relation imposes the appropriate Relativized Minimality constraint by disallowinga feature from being passed below an �A speci�er position. The binding feature from theWH-phrase cannot pass the location of a potential �A binder, since that position is a closerpotential binder for the trace.These results demonstrate how feature-passing in the parser is constrained accordingto the grammatical hierarchy, by verifying local restrictions at each decision point along afeature-passing path. The analysis of each non-local structural con�guration26 into a set oflocal feature-passing primitives is an important component of the computational theory ofparsing developed here, since it allows the parser to implement the structural constraints ofthe theory without the use of phrase structure rules or a global control mechanism. The con-strained feature-passing method, in conjunction with the feature uni�cation and constraint-checking mechanisms described in Section 6.2.2, forms the basis of a unique distributedparsing approach for constraint-based linguistic theories. These symbolic mechanisms de-termine the grammaticality of node con�gurations in the parsing network, and the numericprocessing functions choose the preferred attachments from among those. Chapter 7 will26That is, not a sister or projection relation. 110
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demonstrate how the techniques apply to actual linguistic input in the processing of syntac-tic ambiguities.6.4 Limitations of the Symbolic ProcessingThe obvious limitation of the symbolic processing of the parser is that only a fairly smallsubset of Government-Binding theory is implemented. However, the intent of the researchwas not to exhibit broad coverage of English syntax, but to demonstrate the feasibility ofthe proposed hybrid connectionist techniques for providing a direct implementation of aconstraint-based grammatical theory. The important question then is whether the additionof more syntactic features, constraints, or grammatical relations will slow down the parserto the point of diminishing the usefulness of the approach.There are several reasons to believe that the techniques will scale up to handle morecomprehensive syntactic knowledge. One relevant factor is that the parser does not currentlyexploit a high degree of parallelism. Adding a large number of features to the model as itstands would slow things down considerably, because each node in the network would haveto sequentially process many symbolic features. However, a straightforward extension of themodel would replace each processing node with a set of nodes, one for each type of feature.All types of features could then be processed in parallel. The extra space would not be aproblem, given that the parser now only uses a maximum of 8n+3 processing nodes duringa parse of an input of length n.27Similarly, additional syntactic constraints could be e�ciently added to such a model:since most constraints would apply to only a small subset of features, veri�cation of all ofthe constraints would proceed largely in parallel. Enhancing the ability of the message-passing algorithm to verify additional structural relations would also not have a great e�ecton the parser's e�ciency, since very few of the primitive restrictions apply at any particularnode. Furthermore, as discussed in Section 6.3, the parser already has the ability to capturemost of the important structural relations referred to by GB. Although increasing the degreeof parallelism exploited by the model is left for future research, it is clear that the currentrestriction of the parser to a small subset of the linguistic theory is not a limitation that isinherent to the approach.
274n a-nodes, 3n p-nodes, n+ 2 empty nodes, and 1 stack node, for a total of 8n+ 3.112



Chapter 7Results of Parsing Syntactic AmbiguitiesSince an adequate characterization of how people process and resolve syntactic ambiguitieshas not yet been achieved, designing a computational parser that processes these ambigu-ities in a way that matches human behavior has proven di�cult. Recall the motivationsfor developing a principled model of parsing, in which human-like behavior results from in-dependently motivated computational assumptions: to gain a better understanding of thecomputational basis of human behavior, and to achieve a better match with human perfor-mance. This chapter describes how the competitive attachment model realizes both of thesegoals. The model has been tested on a number of key syntactic ambiguities that have re-ceived considerable attention in the psycholinguistic and computational linguistic literature.The competitive attachment process will be shown to account for a number of well-knownhuman structural preferences, without the use of construction-speci�c preference heuristics.Revisability of preferred analyses and associated acceptability judgments in the model alsomatch human performance, without the use of explicit revision strategies. Furthermore, thecompetitive dynamics of the model mimic �ner-grained on-line processing e�ects, explainingobservations of both serial and parallel processing in human parsing. Thus, the underlyingassumptions of the model and the resulting competitive attachment process will be shownto provide a principled account of human structural disambiguation that conforms with abroad range of psycholinguistic data.Section 7.1 reviews the goals that were set for the model, and relates them to speci�cclasses of psycholinguistic data that the competitive attachment process of the parser will beshown to account for. Section 7.2 demonstrates the ability of the model to achieve these goals,by comparing the detailed results of running the parser to the experimental observations.Section 7.3 concludes the chapter by summarizing the key results of the model.7.1 Overview of the ResultsChapter 1 argued that a principled model of parsing must explain three aspects of theprocessing of an ambiguity in the human parser: (1) the structure or structures that aremaintained, (2) the preference for one structure over another, and (3) the ability or inabilityto revise attachment decisions. In order to evaluate the parsing model with regard to these113



three issues, we can ask the following corresponding questions, comparing its behavior tothat of the human parser:1. Serialism vs. Parallelism: When presented with an ambiguity, does the parser buildand maintain a single structure or multiple structures?2. Structural Preferences: How does the parser determine the preference for one pos-sible structure over another?3. Reanalysis: If the continuation of the input is incompatible with the preferred struc-ture, how easily, if at all, is the parser able to revise its initial hypothesis?The performance of the model must be evaluated within the context of psycholinguisticdata relevant to these three aspects of human parsing. Speci�cally, the model must accountfor the following empirical observations:1. The \contradictory" experimental evidence for serialism and parallelism.2. The wealth of preference data across a range of linguistic constructions.3. The exhibited range of di�culty in reanalyzing erroneous attachments.Furthermore, to stand as a general and well-motivated account, the behavior of the modelmust not be built-in in an ad hoc manner, but must be shown to emerge from its indepen-dently justi�ed computational assumptions.In fact, the behavior of the parser that is relevant to these issues arises directly fromits basic competitive attachment operation. A syntactic ambiguity by de�nition has thepotential to give rise to multiple grammatical attachment choices. When more than one at-tachment for a phrasal node (p-node) is valid, the multiple attachment nodes (a-nodes) mustcompete for the output activation from the p-node. In the model, the resolution of syntacticambiguity is formulated as the competitive distribution of activation through the network ofattachment possibilities that the ambiguity gives rise to. The parallel competitive processof ambiguity resolution underlies the human-like behavior of the model in the three areasnoted above. First, the restricted network structure of the model constrains the competitiveattachment process in a way that yields insight into the question of whether human parsingproceeds serially or in parallel. Second, the competitive attachment decisions made by theparser result in a unifying characterization of human structural preferences. Third, becausethe competition mechanism attaches the current input phrase and revises earlier attachmentssimultaneously, within a restricted parallel atomic operation, the model provides a preciseformulation of the conditions under which reanalysis is possible. In each case, the desiredbehavior has not been built into the model, but rather follows from its principled design.The next section describes in detail how the model's competitive attachment processunderlies a principled account of the resolution of syntactic ambiguities. The discussion willfocus on the processing of subcategorization ambiguities|that is, structural ambiguities that114



arise from the ability of a verb to take more than one kind of complement.1 For example,the verb know has a subcategorization ambiguity because it can occur with either a nounphrase or sentential complement; the verb race can occur with a noun phrase complement orwith no complement (that is, it can be used intransitively). Because of the key role playedby verbal information in the syntactic structuring of a sentence,2 a principled account of theprocessing of subcategorization ambiguities is an important step in an adequate characteri-zation of human parsing behavior. Chapter 8 will discuss how resolving ambiguity throughthe competitive distribution of activation can extend to other types of ambiguity as well,such as lexical ambiguity and argument/adjunct ambiguity.7.2 Evaluation of the ModelThe following three subsections present results of the model that are relevant to each ofthe three areas of inquiry discussed above|that is, serialism vs. parallelism, structural pref-erences, and reanalysis. The parser will be run on a number of example sentences thatdemonstrate how it mimics the human behavior in question. The examples are drawn forma large body of empirical data on human processing of syntactic ambiguities. Furthermore,these sentences exemplify key structural con�gurations that have been a focus of psycholin-guistic research. Note that it is the structural properties of the examples that are important,not the particular words being used.3 Thus, each sentence actually represents a class of sen-tence types, for which the particular input items chosen are one instantiation; the relevantsyntactic characteristics of each example will be pointed out.Recall from previous chapters that, in parsing a sentence, a preprocessing routine sequen-tially processes the sequence of input tokens. The preprocessor looks up each input token inthe lexicon, and appropriately initializes a new syntactic phrase.4 The new phrase is thenconnected to the existing parsing network. The spreading activation/message-passing loopof the network nodes is then triggered, with the distributed network processing continuinguntil an acceptable state of the network is reached.5 Each example sentence will have one1Since, in the current implementation of the parser, a phrasal node can only activate a single attachmentnode, only verbs with single complements will be considered.2For extended discussion of the importance of the so-called combinatory information associated withverbs, see Boland (1991) and references therein.3The e�ects on the results of using di�erent lexical items will be ignored, except where issues surroundinglexical preferences are directly addressed. Di�erent lexical items can have varying lexical preferences, whichlead to di�erent weights on connections to attachments in the model. However, in all simulations except thelexical preference examples, weights are assumed to be 1.0, so that there is no e�ect of di�ering lexical items.4The parser currently operates with a small lexicon of about 25 entries su�cient to support the rangeof syntactic constructions relevant to the ambiguities of interest. Scaling up to a reasonable sized lexiconwould entail developing an e�cient parallel indexing algorithm, but this issue was not addressed here.5Recall that in an acceptable state of the network, each p-node sends all of its activation to exactly oneof its a-nodes, and each a-node is either turned on (fully active) or o� (inactive) by its p-nodes.115



or more input words whose attachment within the network is particularly revealing of theparser's performance as it relates to human behavior. At each of these critical points inthe parse, the state of the network will be examined in some detail. The properties of theparsing network that are important to evaluating its behavior are the following:� the attachments that are possible, given the partial parse tree and the current inputword;� the set of a-nodes that are active when the network of possible attachments reaches anacceptable state;� the number of iterations that it takes for the network to reach that state;� the amount of activation that each active a-node has in that state.The last two factors|the number of iterations required for the network to settle and theamount of activation of each a-node at that point|will be used as a measure of relativedi�culty of the attachment of an input word. The number of iterations that it takes for aninput word to be incorporated into the parse state is the amount of time that the networkrequired to decide on a valid set of attachments that included that word. This measure oftime is assumed to correspond to word-by-word reading times in human parsing; as in inter-preting human reading times, longer network times indicate increased processing di�culty.The amount of activation of an a-node also indicates the level of di�culty in making anattachment, since attachment nodes with less activation are weaker hypotheses about theparse tree structure. These and the other properties listed above will be presented whererelevant in the description of the network at each of the critical processing points in theexample sentences.7.2.1 Serialism vs. ParallelismConsider the following sentence, in which the verb has a noun phrase/sentential complementambiguity; the post-verbal NP may be attached directly to the verb phrase, or as the subjectof the sentential complement of the verb:6(7.1) Sara believes women: : :. [end of sentence] fPreferred resolution.g: : : to be successful. fNon-preferred resolution.g6The verb believe subcategorizes for an NP, IP, or CP complement; for simplicity of presentation, thediscussion here will focus on the choice between an NP and an IP. Although all of the reported results arecomparing NP and IP attachments, CP attachments behave exactly the same as the IP attachments. Thatis, the fact that both an IP and a CP are projected for a CP complement has no e�ect on the numberof iterations required to make the relevant attachments; the numbers obtained in simulations using a CPcomplement were exactly the same as for an IP complement.116



People strongly prefer to attach the NP directly to the verb phrase as the complementof the verb; this preference for the \simpler" alternative is commonly known as MinimalAttachment (Frazier, 1978).Various sources of psycholinguistic evidence concerning the processing of these types ofambiguities appear to support contradictory sentence processing models. People exhibitconsistent strong preferences for one continuation of the sentence over the other|a con-tinuation compatible with the noun phrase complement analysis|supporting the view thatthe human parser creates and maintains a single structure for the ambiguous initial string(Frazier, 1978; Frazier & Rayner, 1982). The serial model hypothesis gains additional sup-port from experimental evidence indicating that people require time to revise the preferredhypothesis when the sentence continues in the non-preferred way (Frazier & Rayner, 1982).However, proponents of a parallel parsing model point to the fact that people have no con-scious di�culty in parsing a non-preferred continuation|that is, a sentential complement.Furthermore, syntactic priming experiments contribute evidence that the human parser hasaccess to the non-preferred structural alternative prior to having seen explicit evidence forthat alternative in the input (Gorrell, 1987). The priming data have been interpreted assupport for the parallel construction and maintenance of the alternative complement possi-bilities. This section will demonstrate how the competitive attachment model accounts ina natural way for each of these results, providing a unifying account of serial and parallele�ects in processing syntactic ambiguities.Preference for a Single ReadingIn the proposed model, given a sentence with a noun phrase/sentential complement ambigu-ity as in example (7.1), the so-called Minimal Attachment preference is a direct result of theproperties of the competitive attachment process and the lack of top-down precomputation.The parsing network at the point of processing the NP women is shown in Figure 7.1.7 TheNP has valid attachments to the stack (a-node a0) and to the V (a-node a1). The lack of top-down precomputation prevents the network from creating an inection phrase correspondingto the sentential complement possibility. Thus, at this point in the parse, the network hasno representation of a potential attachment of the NP as the subject of an embedded clause.Since the default stack attachment is of necessity less competitive than an attachment to thedeveloping parse tree,8 a-node a1 (the NP-to-V attachment) becomes highly activated, withthe network settling in only 17 iterations. The parsing network after the losing a-nodes aredeallocated is shown in Figure 7.2. The basic assumptions of the model force it to settle on asingle analysis of the input, as in a serial model, thus accounting for the observed preference.7Note that although a tensed verb such as believes projects a full sentential structure (that is, CP/IP/VP),the �gures here are simpli�ed by omitting display of the CP of root clauses. The �gures are further simpli�edby omitting grammatically invalid a-nodes and irrelevant empty nodes.8See the discussion on \Reasonableness," beginning on page 82 in Section 5.3.4, for a discussion of thecompetitive properties of the stack node in comparison to other phrasal nodes.117
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Figure 7.1: The network after projecting the NP women, in the sentence beginning Sarabelieves women.In fact, a closer examination of the data regarding this preference reveals that the com-petitive attachment model is more compatible with human processing than are most otherserial or parallel models. Race-based serial models (for example, Frazier, 1987; Frazier &Rayner, 1982; McRoy & Hirst, 1990), as well as parallel models that build multiple structuresin response to an ambiguity (for example, Gibson, 1991; Gorrell, 1987), predict an increasedprocessing load at the point of processing a verb with a subcategorization ambiguity.9 Psy-cholinguistic experiments have found no evidence of such a processing load (see the discussionin Frazier, 1987). For example, in an on-line judgment experiment by Gorrell (1987), reac-tion times to sentences with unambiguous NP complement verbs were the same as reactiontimes to sentences with ambiguous NP/sentential complement verbs that were used withan NP complement. Both of these reaction times were signi�cantly faster than those tosentences with ambiguous NP/sentential complement verbs where the verb was used witha sentential complement. Parsing models that build multiple structures in response to asubcategorization ambiguity are most compatible with an increase in response time for theambiguous verb in either of its usages. In the competitive attachment parser, the inherentrestrictions on the model constrain it to consider only a single analysis, and so there is no9Serial models are normally believed to not lead to an increased processing load at an ambiguity. However,serial models in which the choice of which structure to maintain is based on a race (or other ranking procedure,as in Inoue & Fodor, in press) necessarily depend on the preliminary exploration of the multiple choices inparallel. 118
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Figure 7.2: The network after attaching the NP women to the verb.increase in processing load. The model thus conforms better with the experimental data.Priming of the Non-Preferred AlternativeOne of the pieces of evidence for a parallel model that builds and maintains multiple struc-tures is the data from Gorrell (1987) that showed that the non-preferred alternative of thesesubcategorization ambiguities could prime a lexical decision task that immediately followsthe post-verbal NP. Subjects were shown (word-by-word) sentences containing a verb with anNP/sentential complement ambiguity, and at the end of the post-verbal NP were presentedwith a target for a lexical decision task.10 In this experimental paradigm, subjects appearto try to integrate the lexical decision target into the syntactic structure of the displayedsentence. Targets were either pronouns or modal verbs. A pronoun target could not be agrammatical continuation of the sentence, regardless of the resolution of the subcategoriza-tion ambiguity of the prior verb. However, a modal verb target could be a grammatical10The target word was displayed above the words of the sentence being presented; subjects were asked topress one of two buttons indicating whether the target was a word or not.119



continuation if the ambiguous verb was interpreted as taking a sentential complement. Gor-rell found that the lexical decision task for modal verbs was signi�cantly faster than forpronouns following an ambiguous verb and the post-verbal NP; that is, a target compatiblewith a sentential continuation is primed relative to the pronoun target. Furthermore, therewas no di�erence in speed of decision between a modal verb following an ambiguous verb,and a modal verb following an unambiguous sentential complement verb. Thus, process-ing a sentential continuation appears to be equally easy for an ambiguous NP/sententialcomplement verb and an unambiguous sentential complement verb. Gorrell argued that thetiming of the lexical decision task entailed that any model that performed reanalysis giventhe non-preferred continuation would be unable to account for this data, since reanalysis inthe ambiguous verb case would entail a slow-down in processing the target modal verb. Thisis a potential problem for the competitive attachment model. Because only the so-calledMinimal Attachment structure is initially created, the parser must revise its analysis whenpresented with the evidence for a sentential complement. However, the parallel competi-tive attachment operation of the parser in fact leads to a natural account of priming of thenon-preferred alternative.Mimicking the format of the syntactic priming task, assume the parser is given the lexicaldecision target to after processing the initial sentence fragment of example (7.1), and triesto integrate that word into the current parse tree:11(7.2) Sara believes women [to]At the word to, the parser projects an IP; its initial connections to the network are shownin Figure 7.3.12 Note that the multiple complement possibilities of the verb are activesimultaneously|that is, the two complement attachments to the verb, a1 and a2, are com-peting for activation from the V node. The subcategorization of believe for an IP raises thestate value of a-node a2 between the V node and the IP node. Thus, the attachment of toto believe is activated (\primed") by the expectation of believe for an IP complement, ac-counting for the priming e�ect found by Gorrell. It is important to note that it is the activeexpectation for the IP, not the pre-computation of sentential structure, that is responsible forthe priming e�ect. Also, since the parallel attachment operation of the parser immediatelyintegrates the IP into the parse tree, the model can account for the timing of the lexical de-cision task and the priming e�ect, unlike a serial model with reanalysis. The result dependson the automatic postulation of all possible attachments between the IP and the existingparse tree. It should therefore be emphasized that the a-nodes as explicit representations ofpossible attachments are an integral and necessary part of the parser. That is, the activeexpectations embodied in the a-nodes are not an ad hoc mechanism added onto the parsermerely to achieve this kind of priming e�ect.11Here I am using the in�nitive marker to as the \lexical target" to be consistent with the other examplesin this chapter; using a modal verb as in Gorrell's experiment would lead to equivalent behavior in the model.12Since the parser currently does not handle lexical ambiguity, the word to is projected only as an inectionphrase. 120
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Figure 7.3: The network at the point of processing the word to after processing Sara believeswomen.Since priming is a process of relative facilitation of processing, the complete picture of thepriming e�ect requires an examination of how the network behaves given a target that wouldconstitute an ungrammatical continuation of the sentence. The assumption is that, whilethe expectation for a target that would indicate an IP continuation eases the lexical decisiontask, the increased di�culty of processing a target that would indicate an ungrammaticalcontinuation interferes with the lexical decision task; see Gorrell (1987). When processinga target compatible with the IP continuation, as in Figure 7.3, the network reaches anacceptable state in 24 iterations. By contrast, given an ungrammatical continuation (usinga pronoun as the target word, as in the Gorrell experiment), the network takes 33 iterationsto settle. Thus there is a clear facilitation of the processing of a target compatible witha sentential complement continuation in comparison to one constituting an ungrammaticalcontinuation.The network accounts for the priming of the non-preferred alternative as the consequenceof active expectations in the form of multiple potential attachment nodes that simultaneouslycompete for activation. The approach is quite di�erent from parallel models that maintain121



and rank multiple alternatives, such as in Gibson (1991) or Gorrell (1987). A ranked-parallelmodel must incorporate additional assumptions to explain the following two facts: �rst,that NP complement structures are judged grammatical faster than sentential complementstructures, and second, that equivalent priming of a sentential complement is obtained forambiguous NP/sentential complement verbs and unambiguous sentential complement verbs.To account for the judgment data, a ranked-parallel model must specify that the judgmenttask is sensitive to the ranking of the structures. On the other hand, to account for thepriming data, it must be further speci�ed that the lexical decision task is not sensitive toranking. The competitive attachment model avoids such stipulations in the sensitivity ofparticular tasks, because the preference shown by the parser does not rely on a rankingof two existing structures. Its explanation of the preference data and the priming data istherefore more parsimonious than these previous approaches.Evidence for ReanalysisIn addition to the syntactic priming data, proponents of a parallel model point to the fact thatthe non-preferred resolution of this type of ambiguity is easy for people to process. However,detailed eye-movement studies (Frazier & Rayner, 1982) have shown that people exhibitlonger per-letter reading times in the disambiguating region when these types of sentencesare resolved in the non-preferred way.13 The competitive attachment model provides aunifying account of these disparate observations. Consider the following sentence, containinga non-preferred resolution of the ambiguity:(7.3) Sara believes women to be successful.At the point of processing the disambiguating word, to, the network has the structure thatwas shown in Figure 7.3. The same set of a-nodes that de�ne the initial attachment possi-bilities for the current IP phrase, a2 and a3, simultaneously de�ne the revised attachmentnecessary for the NP women. The NP-to-V attachment, a-node a1, competes both with a2for the activation from the V node, and with a3 for the activation from the NP node. Thesetwo competitions draw activation away from a1. The network reaches an acceptable statein 24 iterations; when it does so, a2 and a3 are highly active and a1 has become inactive,resulting in the network of Figure 7.4. In a single atomic operation, the network has revisedits earlier attachment hypothesis for the NP and incorporated the new IP phrase into theparse tree. Changing the attachment of the NP in this way is possible only because thatrevision involves one of the sets of logical attachment possibilities allowed by the competitiveattachment process.14Because the necessary revision occurs within the normal attachment operation of theparser, the model accounts for the fact that people are not consciously aware that they are13A related experiment in Rayner & Frazier (1987) provides evidence that the increased reading times arenot just a complexity e�ect that arises due to the processing of a subordinate clause structure.14See Figure 4.32 on page 57, and the accompanying discussion in Section 4.3.122



e

NP

N

N'

women

IP

I'

I

to

VP

V

V'

believe

IP

I'

I

present

NP

N

N'

Sara

STACK
TOS

CURR : nil

a2

a3

Figure 7.4: The network after re-attaching the NP to the I0, and attaching the IP to theverb.revising an earlier structure. However, the operation of the model contrasts with traditionalparallel approaches, in which a less preferred alternative analysis may be immediately se-lected from multiple structures that are already computed. Here the revision does requirea reanalysis process, consisting of a competition for activation between the old and newattachment nodes. Because of the increased competitive activity, the network takes 24 itera-tions to settle after to, as compared to 17 iterations after women. The model thus accountsfor the longer reading times exhibited at the disambiguation point in the Frazier & Raynerexperiments. The increase in reading time in their data consisted of more �xation durationsin the disambiguating region (here, the word to, which indicates an IP complement) andregressive eye movements to the post-verbal NP. These are the key phrases involved in thecompetitive activation process of the model. It seems plausible that eye movements focusing123



on the relevant input could correspond to the competitive activation of nodes in the parsetree.15 Parallel models that maintain multiple structures cannot account naturally for theobserved pattern of eye movements, given the immediate adoption of an available alterna-tive in those approaches. A serial model, on the other hand, must rely on explicit strategieswithin the parser for directing its attention appropriately, while the competitive attachmentmodel captures this focusing of attention automatically.SummaryThe restricted parallelism of the competitive attachment model has been shown to lead toboth serial and parallel processing behaviors in parsing syntactic ambiguities. The lack oftop-down precomputation and the necessity of focusing on a single structural analysis leadto strong initial preferences; the competitive spread of activation entails that changes tothose preferred structures requires time. These serial aspects of the model's performanceare complemented by its parallel behaviors, arising from its active expectations and parallelattachment operation. Together, these properties of the model provide a concise and unifyingaccount of the observed serial and parallel aspects of human parsing.7.2.2 Structural PreferencesPeople exhibit a number of structural preferences when processing subcategorization ambi-guities. Although individual preference heuristics may be able to determine the preferredattachment in a range of con�gurations, such strategies constitute neither a concise nor ex-planatory approach to ambiguity resolution. Furthermore, formulating structural preferencesas explicit strategies leads to complications when the strategies conict, as they inevitably do(for further discussion of this point, see McRoy & Hirst (1990)). This section demonstratesthat the competitive attachment mechanism is a plausible model of the underlying causes ofseveral observed attachment preferences: Minimal Attachment and Late Closure, as well asrecency and lexical strength e�ects. In each case, it will be shown that the exhibited pref-erences are a result of the interaction of fundamental, independently motivated propertiesof the model. The competitive attachment model will also be shown to provide a naturalintegration of preference factors.Minimal Attachment and Late ClosureThe account of the Minimal Attachment preference was given in Section 7.2.1, which focusedon the processing of verbs with NP/sentential complement subcategorization ambiguities. It15Given this explanation of the eye-movement data, one might wonder why the data do not show signi�cantregressive eye movements to the verb, since the V node is also actively engaged in the reanalysis competition.I would propose that the focus of attention in reading corresponds to the re-activation of XP nodes (in thiscase, the NP and the IP), since those nodes are determining the attachment of their X phrases into the parsetree. 124



was shown that the competitive attachment model arrives at a \Minimal Attachment" anal-ysis of the initial input string of example (7.1) due to the competitive attachment mechanismand the lack of top-down precomputation. These very same properties apply in so-calledLate Closure sentences, exempli�ed by the following:(7.4) When Kiva eats food: : :: : : it disappears. fPreferred resolution.g: : :disappears. fNon-preferred resolution.gIn these sentences, the subordinate verb is optionally transitive|that is, it can occur withan NP complement or without a complement. People show a strong preference for the LateClosure reading in which the post-verbal NP attaches as the complement of the subordinateverb (the transitive reading of eat) rather than as the subject of the main clause (in whichcase eat is intransitive).16Figure 7.5 shows the con�guration of the network at the point of processing the NP food ;compare the network to Figure 7.1 on page 118. Again, because of the lack of top-down pre-computation, the NP has only the options of attaching to the verb or to the stack. Since thephrasal structure for the main clause has not yet been allocated, the possibility of attachingas the subject of the main clause (as would be required by the non-preferred continuationof the sentence) does not exist. As in example (7.1), the post-verbal NP makes the bestattachment available to it, as the complement of the verb. Since the initial attachment inthese cases of Late Closure is determined in exactly the same manner as in the MinimalAttachment cases illustrated by sentence (7.1), these two classic preferences receive a uni-form account in the proposed model. In Section 7.2.3 we will return to the behavior of theparser given the non-preferred continuation of example (7.4), which is quite di�erent fromthe behavior given the non-preferred continuation of example (7.1).RecencyThe human parser shows a strong tendency to attach the current input phrase to more re-cent syntactic structure. In a number of parsing models, this preference has been stated asan explicit processing strategy (for example, Kimball's \Right Association" (1973), Frazier's\Late Closure" (1978), and Gibson's \Recency Preference" (1991)). By contrast, in the com-petitive attachment model, the active memory management techniques required to maintainthe pool of network processing nodes indirectly give rise to recency e�ects. Since the numberof processing nodes in the parser must be �nite, a scheme has to allow for their reuse. Earlierchapters have explained that, in order to accomplish this, the activation of p-nodes decays16It has been proposed that a sentence such as When Kiva eats food disappears is ungrammatical becauseof the lack of appropriate punctuation|that is, a comma after eats. See Gibson (1991) for argumentsthat these types of examples cannot be consistently ruled out in the grammar, given the grammaticality ofsentences such as When Kiva eats food it disappears, which also lacks a comma following the subordinateclause. 125
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Figure 7.6 shows the state of the network at this point in the parse. The IP headed by tocan activate a-node a3, replacing the NP headed by report as the complement of believe, or itcan activate a-node a4, replacing the NP headed by Laika as the complement of suspect . Thelower verb has more activation to output than the higher verb, because it was allocated morerecently and its activation has decayed less. This means that a-node a4, the IP attachmentto the lower verb, gains more activation from its verb than a-node a3 does from the higherverb. A-node a4 therefore competes more e�ectively for activation from the IP, and theIP makes the attachment as the complement of the lower verb suspect . Although the IPmakes the lower attachment, the existence of the higher attachment is not irrelevant. Inthis con�guration, the increased competition of choosing between two attachments causesthe network to require 31 iterations to reach an acceptable state, compared to 24 iterationswhen there is only a single valid attachment for the IP (as in example (7.3)).The issue of recency e�ects will be addressed again in Section 7.2.3, since the recency ofnodes involved in a necessary revision of attachments also a�ects how easily the reanalysisproceeds.Lexical PreferencesA number of sentence processing theories have incorporated a model of the e�ect of lexicalexpectations on the ease of analyzing certain inputs (for example, Ford, Bresnan, & Kaplan(1982); MacDonald (1994); Tanenhaus, Stowe, & Carlson (1985)). Connectionist processingtechniques are able to naturally integrate this type of preference information through the useof weighted connections. In the competitive attachment model, lexical strength is representedby the weights on the links between a p-node and its potential attachments, and these weightsreect the frequency of a p-node licensing a certain category of XP attachment.17Consider again the sentence of example (7.3), repeated here:(7.6) Sara believes women to be successful.To test the e�ects of lexical expectations in the parsing network, a comparison was madeof the ease of reanalysis required at the word to given di�erent strengths for the NP/IPcomplement expectations of the verb believe.18 In the baseline test, the verb's expectationvalues for an NP and an IP are the same high value; this is the \normal" condition, which wasused for all reported tests of the parser except for those explicitly involving comparisons oflexical strength. Under these conditions, the NP requires 17 iterations to make its attachmentto the verb, and the IP requires 24 iterations to make its attachment, which simultaneously17Since the model does not currently include a theory of learning, these weights are hard-coded into thelexical entries. Adapting a connectionist learning algorithm to adjust these weights based on the experienceof the parsing network would be straightforward. The important point is that the computational frameworkof the model can naturally encode this information and apply it in determining attachments.18Recall that although the results reported here focus on the NP/IP choices, the �gures obtained are thesame for a CP as for an IP, and are also the same whether the subcategorization choice is between an NPand IP, an NP and CP, or an NP, IP and CP. 127
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Figure 7.6: The network at the point of processing to.128



Strength of Expectation Number of Iterationsfor Each Complement to Make AttachmentNP IP NP IP1.0 1.0 17 241.0 .9 17 251.0 .8 17 261.0 .7 17 271.0 .6 17 281.0 .5 17 30Table 7.1: The e�ect of varying strength of expectation on the number of iterations requiredto make the post-verbal NP and IP attachments in the sentence Sara believes women to besuccessful. The strength of expectation is varied from high to low for an IP complementof the verb, which has an NP/IP subcategorization. The number of iterations required toinitially attach the post-verbal NP is una�ected, but the number of iterations required toattach the IP increases with decreasing strength.involves reattaching the NP as the speci�er of the I0.19 The following tests examine the e�ectof varying lexical preferences on these baseline �gures.The �rst test was to hold constant the strength of expectation of an NP complement atthe highest possible value, and to vary the strength of the IP expectation from high to low;the results are summarized in Table 7.1. Under these conditions, the NP always took 17iterations to make the initial attachment to the verb. The speed of the NP attachment isuna�ected by the degree of expectation for the IP, since the IP attachment is not yet beingconsidered when the NP is �rst attached. By contrast, the number of iterations for theIP to make its attachment increased steadily from 24 to 30. As the lexical expectation forthe IP decreased, the parser had greater and greater di�culty in settling on the necessaryattachments for the reanalysis. Hence, the decrease in lexical strength had an inhibitorye�ect on the IP attachment, by decreasing its ability to compete strongly with an attachmentalternative.The second test was to hold constant the strength of expectation of an IP complement atthe highest possible value, and vary the strength of the NP expectation from high to low. Thenumber of iterations to make the initial NP-to-V attachment increased from 17 to 20, whilethe number of iterations to make the IP attachment decreased from 24 to 22; see Table 7.2.Again, a decrease in lexical strength, this time of the NP expectation, had an inhibitorye�ect on making the corresponding attachment, even though the NP-to-V attachment iscompeting only with the default attachment of the NP to the stack. Additionally, althoughthe expectation for the IP was held constant, its attachment was made easier as the NPexpectation was decreased. Thus, a decrease in strength of expectation for a phrase not onlyinhibits its own attachment, but can facilitate attachments that compete with it by making19These are the same values as were presented in earlier discussion of this example.129



Strength of Expectation Number of Iterationsfor Each Complement to Make AttachmentNP IP NP IP1.0 1.0 17 24.9 1.0 18 23.8 1.0 18 23.7 1.0 18 22.6 1.0 19 22.5 1.0 20 22Table 7.2: The e�ect of varying strength of expectation on the number of iterations requiredto make the post-verbal NP and IP attachments in the sentence Sara believes women to besuccessful. The strength of expectation is varied from high to low for an NP complementof the verb, which has an NP/IP subcategorization. The number of iterations required toinitially attach the NP increases, and the number of iterations required to attach the IPdecreases, with decreasing strength of the NP expectation.it a weaker competitor. The competitive model therefore not only accounts for direct lexicalpreference e�ects, but predicts indirect e�ects on the competing attachments.Interaction of PreferencesIt is interesting to note that in the competitive attachment model, the Minimal Attachmentand Late Closure preferences are quite di�erent in quality from the recency and lexicalstrength e�ects. Parsing models use a variety of strategies to account for the fact that thehuman parser prefers structures that are compatible with what we have been describing asMinimal Attachment and Late Closure; what many of these approaches have in commonis that the parser is faced with a choice of structures that it somehow ranks (for example,Frazier, 1978; Gibson, 1991; Gorrell, 1987; McRoy & Hirst, 1990). In these models, forexample, at the point of processing the post-verbal NP in sentences (7.1) and (7.4), the parserchooses between attaching the NP as the object of the verb phrase, or as the subject of asentential phrase. By contrast, in the competitive attachment model, these \preferences" arein fact not preferences at all from the point of view of the parser, because there is no relevantchoice. What we externally observe as a preference between two possibilities is caused byan absolute condition in which only one of the possibilities exists at the processing point inquestion.In contrast, the properties of recency and lexical strength lead to true relative preferences,and thus we can investigate how their interaction is resolved in the model. This will bedemonstrated by examining how the tendency for the most recent attachment to win isa�ected by varying the lexical strengths on more and less recent attachment possibilities.Consider again the recency example repeated here and in Figure 7.7:(7.7) Sara believes the report that women suspect Laika to: : :130
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Strength of Expectation for Each Complement Number of Iterationsof believe of suspect to Make IP AttachmentNP IP NP IP to believe to suspect1.0 1.0 1.0 1.0 311.0 1.0 1.0 .8 321.0 1.0 1.0 .6 341.0 1.0 1.0 .4 371.0 1.0 1.0 .2 351.0 1.0 1.0 1.0 31.9 1.0 1.0 .9 31.8 1.0 1.0 .8 33.7 1.0 1.0 .7 34.6 1.0 1.0 .6 37Table 7.3: The e�ect of varying strength of expectation on the number of iterations requiredto make the IP attachment at the word to in the sentence beginning Sara believes the reportthat women suspect Laika to. The strength of expectation is varied from high to low for NPand IP complements of verbs with an NP/IP subcategorization. The number of iterationsrequired to attach the IP to the more recent verb suspect increases as its expectation for anIP decreases. When the expectation is very low, the attachment to the higher verb is made.When the expectation of the higher verb believe for an NP complement is simultaneouslydecreased, the number of iterations required to attach the IP to the more recent verb increasesmore rapidly, and the shift to the higher attachment is made sooner.Table 7.3 summarizes the results of varying the strengths of expectations of the two verbsin a number of tests. Given that believe and suspect have equal strengths of expectationfor NP and IP complements, the IP will attach to the most recent verb, as demonstratedearlier. If suspect 's strength of expectation for an IP is decreased, however, the numberof iterations required for this attachment to be made is steadily increased, from 31 to 37iterations. This again demonstrates the inhibitory e�ect of decreased lexical strength, whichmakes the preferred attachment a less strong competitor. Moreover, if the lexical strengthis decreased substantially, then the IP will attach instead to believe, in 35 iterations. Thus,the inhibitory e�ect of a decreased expectation not only increases the time it takes for thenetwork to settle on the \preferred" (more recent) attachment, it can in fact change thepreference to the less recent attachment.The less recent attachment to believe also wins (in 37 iterations) if suspect 's strength ofexpectation for an IP is decreased only moderately, but at the same time believe's strengthof expectation for an NP is equivalently decreased. Decreasing the strength of the NPattachment to believe makes that option a weaker competitor, thus increasing the abilityof the IP attachment to believe to compete e�ectively. In the earlier test, when suspect 'sstrength of expectation for an IP was only .6 and believe's strength of expectation for an132



NP was 1.0, the IP still attached to the more recent verb, suspect . Here, when suspect 'sstrength of expectation for an IP was .6 and believe's strength of expectation for an NP hadbeen decreased to .6 as well, the IP attaches instead to the less recent verb, believe. Again,we see the indirect e�ects of lexical strength on the competitive attachment process.It is worth noting that in all cases in which the less recent attachment wins, the activationof that a-node is much lower than the activation of a winning attachment to the more recentphrase. Thus, although a less recent attachment may become strong enough to win over amore recent one, there is still an element of di�culty in making the attachment, in termsof both the increased time to reach an acceptable state and the decreased strength of theresulting attachment hypothesis.In conclusion, the competitive attachment process of the parsing model serves to smoothlyintegrate diverse sources of preference information. Whereas other models that rely onexplicit preference heuristics must employ some means of resolving disagreements betweenthem, the model here captures the e�ects in a way that obviates the need for explicit conictresolution strategies.7.2.3 ReanalysisThe �nal goal that was set for the parsing model was to account for the range of di�cultythat the human parser exhibits in reanalyzing erroneous attachments. In this area, too, theexplanations fall out from basic properties of the model. Other sentence processing modelsaccount only for the discrete division of sentences into two classes: those allowing for nec-essary revisions within the normal operation of the parser, and those for which a necessaryrevision would require a special recovery mechanism (that is, garden path examples) (forexample, Gibson, 1991; Gorrell, in press; Fodor & Inoue, 1994; Pritchett, 1992; Weinberg,1991). Fundamental properties of the competitive attachment mechanism determine the gen-eral structure of its attachment and revision operation, providing a principled explanation ofthese possible and impossible reanalyses. Furthermore, the competitive activation approachyields �ner-grained predictions of relative di�culty within the class of possible reanalyses.In fact, recency and lexical strength, which a�ect relative preferences, are instrumental indetermining the relative ease of reanalysis. Thus, the model provides a unifying account ofthe mechanisms involved in relative preferences and relative ability to reanalyze.20Possible ReanalysesThe possible reanalyses are precisely de�ned in the competitive attachment model as thosewhich involve competing attachments along the right edge of the partial parse tree on the20Edward Gibson has correctly pointed out to me that it is not a necessary property of the human sentenceprocessor that the same factors that are involved in determining the ease or di�culty of an initial preferenceare also involved in determining the ease or di�culty of reanalysis. Although not a necessary property, Iwill assume that it is a desirable one for a sentence processing model, since it entails a more uniform andparsimonious account of the data. Thus, I consider this an advantage of the competitive attachment modelover other sentence processing theories. 133



top of the stack. Only revisions of this nature can be processed within the normal attach-ment operation of the parser, without recourse to special recovery strategies. This type ofreanalysis has been exempli�ed in sentences (7.3) and (7.5). For completeness and ease ofreference, Figure 7.8 shows the network state for the similar reanalysis at the word to in thefollowing sentence:(7.8) Sara believes the fact to: : :As mentioned above, the network is able to revise the NP-to-V attachment represented bya-node a1 because the competitions of a-node a2 and a3 draw su�cient activation away fromit. In e�ect, the new attachments between the IP and the V, and the I0 and the NP, conspireto break the old attachment between the V and the NP. The number of iterations requiredfor this network con�guration to settle is 24, which is longer than the 17 iterations requiredfor the simpler initial NP attachment to the verb, but not indicative of great processingdi�culty.21 Also, the activation of the IP complement a-node is .637 and the activation ofthe NP subject a-node is .534, which are both high levels for newly activated attachments.Thus, a reanalysis of this type, which involves attachments to a recent portion of the rightedge of the parse tree, are not only possible but are fairly easy for the parser.Recall that the restriction of making attachments only to the right edge of the tree onthe top of the stack is independently motivated by properties of the competitive activationmechanism of the parser.22 Thus, the ability to make the necessary revisions in this type ofstructure follows from fundamental properties of the competitive attachment architecture.Interestingly, the structural con�gurations in which the competitive relations allow reanaly-sis are very similar to those captured by explicit restructuring strategies in other approaches.For example, the revisions within the model conform to the restrictions imposed by Pritch-ett's (1992) \On-Line Locality Constraint," Fodor & Inoue's (1994) \Steal" operation, andAbney's (1989) right-edge continuation heuristic. However, in the competitive attachmentmodel, these restrictions are an emergent property of the general attachment mechanism ofthe parser, enabling the model to avoid explicit heuristics de�ning allowable reanalyses. Thenext section discusses how the model in turn prohibits reanalysis of garden path examples,again as the result of inherent restrictions of the competitive activation mechanism.Garden Path SentencesThere are two types of impossible reanalyses in the competitive attachment model. The�rst occurs when the attachments that would be required for the necessary revision arenot available within the current set of competing attachment nodes, because they involvenodes that are not along the right edge of the top of the stack. Under these conditions, theparser is completely unable to proceed, since there are no available alternative hypotheses21Recall from Chapter 5 that the number of iterations for the network to settle ranged from 10 to 70 inthe numeric simulations.22See the discussion in Section 4.1.3. 134
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Figure 7.8: The network after reanalyzing the initial attachment for the post-verbal NP inresponse to the word to in the sentence beginning Sara believes the fact to.for it to consider. Because the restriction on the allowable attachments is independentlymotivated, the unavailability of the correct analysis in these types of garden paths followsfrom fundamental properties of the competitive attachment architecture. This situationarises in the following classic garden path sentence:(7.9) The horse raced past the barn fell.Figure 7.9 shows the state of the parser after projecting the input phrases correspondingto raced ; note that the tense features of the verb project a CP/IP pair of phrases. Theparser has a choice between attaching the NP headed by horse as the subject of the IP, orattaching the CP to the NP as a reduced relative clause.23 The attachment of the NP to23A real solution to this example relies on an implementation of lexical ambiguity, since raced projectstwo possible phrases, as a main verb and as a passive participle. Chapter 8 discusses how the model canbe extended to handle competing lexical alternatives. Given those extensions, the main verb alternativewins the competition, and the reduced relative reading becomes inactive and therefore inaccessible for laterrevision. The analysis given here can be considered a simpli�cation of the more complete approach.135
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Figure 7.10: The network after projecting fell in the sentence The horse raced past the barnfell .In the second type of impossible reanalyses, the necessary revision does involve a-nodesthat are along the right edge of the top of the stack, but the competitive behavior of theparser prevents the a-nodes representing the correct analysis from becoming activated. Thissituation occurs in the non-preferred continuation of sentence (7.4):26(7.10) When Kiva eats food disappears.26See footnote 16 on page 125 for discussion regarding the grammaticality of example (7.10).137



We saw above that the initial Late Closure preference for the post-verbal NP to attachdirectly to the verb occurred for the same reasons as in the Minimal Attachment exampleof (7.1). However, while this initial preference is revisable in the Minimal Attachment case,it is not in sentence (7.10). The initial attachment of the post-verbal NP to the verb isshown in Figure 7.5 on page 126; at disappears, the NP needs to break its attachment tothe verb and reattach as the speci�er of the current IP. The network could do this by de-activating a-node a1 and activating a-node a3 of Figure 7.11. However, a3 is not able towin the competition with a1 for the output activation from the NP. The di�erence from thecase in Figure 7.8 (page 135) where reanalysis is possible is that there, the a-node betweenthe verb and the NP (a-node a1) was competing with two new attachments (a-nodes a2 anda3), which were together able to draw activation from the NP-to-V attachment. Here thereis no corresponding a-node a2 for the V node to redirect its output to, and so it continuesto activate the NP attachment. The attachment of the NP to the I0 is not strong enoughby itself to win the competition with the attachment of the NP to the V. The current I0thus activates the default empty node attachment, leading to a clause with an empty (andunbound) subject. Since the network settles on an irrecoverably ungrammatical analysis,the model correctly predicts a garden path.27However, this garden path situation di�ers in an important respect from the one above.In example (7.9), the necessary attachments are simply unavailable to the parser, leadingdirectly to its inability to make the revision. Because there are no alternative hypotheses toreturn to, adding a simple recovery mechanism to the parser to give it a \second chance"to �nd a better set of attachments would not help it to recover from its failure|the parserhas no recourse but to re-parse the sentence. In example (7.10), though, the necessaryattachments are in the current competing group of attachments; they just are not strongenough to win the competition. Thus we would expect that the parser could recover moreeasily from its misanalysis; and in fact, there is consensus in the psycholinguistic communitythat this is an easier sentence than the quite di�cult example (7.9).Reanalyses of Intermediate Di�cultyWithin the class of possible reanalyses, there is also a range of di�culty. Experiments havesupported the hypothesis that if the length of an ambiguous region is increased, reanalysisbecomes more di�cult. For example, increasing the length of the post-verbal NP in a sentencelike example (7.8) leads to longer per-letter reading times in the disambiguating regionthan in the version of the sentence with a short post-verbal NP (Frazier & Rayner, 1982).The straightforward interpretation is that longer reading times correspond to more di�cultreanalysis. Other models of human parsing have not provided a principled explanation of27Frazier & Rayner (1982) provide experimental evidence for increased reading times at the disambiguatingpoint in these types of sentences. In the competitive attachment model, the increased reading time wouldresult from the detection of the ungrammaticality and the triggering of processing routines to recover fromthe garden path situation. However, the necessary recovery mechanism has not been built into the currentparser. 138
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Figure 7.11: The network after projecting the main clause CP and IP in the sentence WhenKiva eats food disappears.this phenomenon of the duration of an ambiguity a�ecting the di�culty of revision (Gibson,1991; Gorrell, in press; Fodor & Inoue, 1994; Pritchett, 1992; Weinberg, 1991).Here again we can observe the recency e�ects that fall out from the competitive attach-ment model. Consider the following sentence, which is the same as example (7.8) but witha longer post-verbal NP:(7.11) Sara believes the fact that women raced to: : :Since the embedded verb raced is unable to license a sentential complement, the IP projectedfrom to must attach to the main verb believe. Thus, the parser is faced with exactly thesame attachment choices as in example (7.8). The length of the NP [the fact that women139



raced ] means that to must attach higher in the tree than after a short NP like [the fact ];compare Figure 7.12 to Figure 7.8 on page 135. The attachment of the IP here takes 31iterations, compared to 24 iterations in the \short NP" case of example (7.8). Furthermore,the attachments get less activation than the attachments to the more recent phrases|herethe complement attachment has an activation level of .568 and the speci�er attachmenthas an activation level of .509, compared to the corresponding values .637 and .534 forexample (7.8).Thus, the memory management techniques of the model that lead to a general recencypreference also provide an explanation for these reanalysis cases of intermediate di�culty.The e�ects of lexical strength can also contribute to making a possible reanalysis more orless di�cult; these e�ects were demonstrated on example (7.6) of Section 7.2.2 above. Inconclusion then, the competitive behavior of the model provides an account of the range ofdi�culty of reanalysis, incorporating precisely the same factors as a�ect preferences (thatis, recency and lexical strength).7.3 Summary of ResultsThe competitive attachment model has been shown to provide an explanatory account of arange of psycholinguistic observations relevant to the human processing of syntactic ambigu-ities. The model explains the interesting mix of data that supports conicting conceptualiza-tions of the human parser as a serial or parallel processor. The constraints on the networkstructure lead to the single-reading preferences cited as evidence for a serial model. Thecompetitive spread of activation through the restricted set of attachment possibilities con-forms to the observed eye-movement patterns that have also been used to bolster the serialhypothesis. The active expectations in the form of simultaneously competing a-nodes under-lie the syntactic priming phenomenon that strengthens the claim of parallelism. Thus, thedistributed parallel approach which relies on the competitive focusing of activation providesa more complete and parsimonious account of the set of on-line processing data concerningserialism and parallelism in parsing.Choosing a single attachment structure to maintain relies only on the underlying proper-ties of the competitive attachment model. Fundamental properties of the competition mech-anism and the lack of top-down precomputation yield a preferred reading for an ambiguousinput that conforms to Minimal Attachment and Late Closure, without the use of explicitpreference heuristics. Moreover, the very same properties are responsible for both of theseobserved preferences, giving them a unifying account for the �rst time. The memory man-agement techniques of the model have the side e�ect of producing another preference, thatof attachment to more recent structures, again obviating the need for an explicit structur-ing strategy. The use of competition-based spreading activation with weighted connectionsaccounts for lexical preference e�ects in a natural way. The use of lexical strengths withinthe competitive attachment model leads to indirect e�ects of lexical expectations, an issuethat has been previously unaddressed. The spreading activation approach also provides fora natural integration of relative preference e�ects such as recency and lexical strength, with140
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the results demonstrating that variations in lexical strength can a�ect the preference forrecent attachments.These same relative preference factors a�ect how easily the model can revise its originalattachments, and contribute to an account of reanalysis that explains �ne-grained accept-ability. The model de�nes easy reanalyses to be those that fall within the normal competitiveattachment operation of the parser, which can revise pre-existing attachments under strictlyset conditions. These reanalyses become harder as they involve less recent phrases or weakerlexical expectations, leading to an account of reanalyses that are of intermediate di�culty.The model also explains both severe and \milder" garden path sentences as ones that wouldrequire recourse to special recovery procedures in the parser. In the milder garden paths,the alternative analysis is available but is unable to win its competition. In the severe gar-den paths, the alternative is unavailable, due to independently motivated restrictions on thenetwork structure, and the parser must reprocess the sentence.This set of results taken together provides a comprehensive picture of the computationalprocesses that underlie the processing of syntactic ambiguity in the human parser. Thechapter began with a statement of the following open questions that must be answered inorder to adequately characterize these computational processes:1. Serialism vs. Parallelism: When presented with an ambiguity, does the parser buildand maintain a single structure or multiple structures?2. Structural Preferences: How does the parser determine the preference for one pos-sible structure over another?3. Reanalysis: If the continuation of the input is incompatible with the preferred struc-ture, how easily is the parser able to revise its initial hypothesis?In answer to these questions, the results of the competitive attachment model support thefollowing hypotheses concerning the human process of syntactic ambiguity resolution. Whenfaced with a syntactic ambiguity, the parser considers a set of multiple alternative analysesin parallel, but immediately chooses a single preferred analysis to maintain. The choice ismade by a restricted competition mechanism that indirectly constrains the set of attach-ments that are considered by the parser, as well as determining the preferences among thoseattachments. The process of choosing the preferred attachments involves the competitivedistribution of activation through a restricted network structure. The parser can change anattachment only if the revision comprises one of the subsets of attachments allowed by thecompetition mechanism. Reanalysis involves re-directing activation away from previouslypreferred attachments and activating new attachments. Because reanalysis is performedwithin the normal competitive attachment process of the parser, the di�culty of allowablerevisions is determined by the same factors as a�ect the di�culty of initial attachments, suchas recency and lexical strength. 142



Chapter 8ConclusionsThis dissertation has described a natural language parsing architecture whose emergent be-havior mimics that of the human parser in the processing of syntactic ambiguities. Themodel is a new type of hybrid connectionist architecture that relies on an integration of anovel approach to marker-passing with extended techniques for controlling the distributionof numeric activation. The marker-passing method enables the establishment of syntac-tic relations based solely on local communication in a network, without the use of phrasestructure rules. This technique supports distributed parsing using simultaneous declarativeconstraints, as speci�ed by recent linguistic theories. The model also relies on extended tech-niques for achieving e�ective competitive activation in a complex domain. These two hybridconnectionist techniques together yield a distributed natural language parsing mechanismthat uses only simple and uniform processing nodes.The competitive attachment model incorporates a general and parsimonious account ofa wide range of human behavior in syntactic ambiguity resolution. The behavior of interestemerges from the interaction of fundamental properties of the model, avoiding the need forconstruction-speci�c processing strategies. The competition mechanism applies uniformlyat all processing nodes to explain a number of human structural preferences in parsing. Inaddition, the model's unique parallel attachment operation applies across general structuralcon�gurations to account for the ease or di�culty of revisability in parsing. The results ofthe model underscore the importance of determining computational mechanisms that canexplain an extensive range of human behavior, rather than simply specifying heuristics thatcapture individual surface observations.The approach to parsing developed here has interest within the �eld of Arti�cial Intelli-gence for two interdependent reasons: as a theoretical model exploring plausible mechanismsof human syntactic processing, and as a step toward mimicking human performance in NLUsystems. More broadly, the research makes a number of contributions to the developmentof computational techniques for achieving intelligent behavior in a massively parallel net-work architecture. Furthermore, the model provides a solid framework for the investigationof additional open problems, both in the control of competitive dynamics within complexnetwork applications, and in the automatic processing of syntactic structure and linguisticambiguities. 143



8.1 ContributionsRecall the three fundamental computational assumptions of the model: (1) The basic ar-chitecture is that of a hybrid connectionist network integrating symbolic and numeric com-putation. (2) Numeric decision-making is focused through competition-based spreading ac-tivation (CBSA), and no inhibitory links are used. (3) The network is established throughdynamic instantiation of generic template nodes, and top-down hypothesizing of structure isprohibited. Each of the three fundamental assumptions of the model relies on computationaladvances in connectionist modeling, which interact to yield interesting linguistic behavior.8.1.1 Hybrid ArchitectureIn contrast to previous parsers implemented within a connectionist framework, the grammat-ical knowledge of the competitive attachment model is a subset of a well-founded linguistictheory. Since linguistic theories describe the knowledge underlying human language abilities,it is important to develop computational structures and mechanisms that are su�cient toencode and process these descriptions. A recent advance in linguistics is the description ofhuman knowledge of language in terms of a small number of simple, interacting constraintson syntactic structure, replacing the use of large numbers of phrase structure rules. Whileother connectionist parsers have captured rule-based grammatical knowledge by a prioristructuring of the parsing network, with a constraint-based syntactic theory such an ap-proach is not an option. In order to achieve a faithful implementation of a constraint-basedtheory, it was necessary to develop a hybrid approach to network processing. The goal wasto support a sophisticated level of syntactic processing, while retaining the computationaladvantages of a massively parallel architecture.The symbolic capabilities of the competitive attachment approach were limited to thecreation and comparison of simple symbolic features with atomic values. Because decision-making in the network is distributed among a set of highly restricted processing units,syntactic attachments must be determined solely through the local communication amongthe nodes of these simple features. Thus, to establish valid syntactic relations among thesyntactic processing nodes, a novel form of feature-passing was devised that enforces thestructural restrictions imposed by the linguistic theory. Communication of symbolic featuresis restricted by the grammatical properties of the syntactic nodes. The structural constraintsof the grammar were analyzed into computational primitives that could be veri�ed entirelybetween neighbors along a feature-passing path in the parsing network. A node's decision tooutput a feature packet that it has received depends solely on the values of features that arelocal to that node. Using this communication method, the parsing network is able to enforceeven long-distance grammatical constraints entirely through local, distributed interactionsamong the syntactic nodes. 144



8.1.2 Competitive Network DynamicsOne of the potential advantages of competition-based spreading activation (CBSA) is itssuitability for use within computational models of higher-level cognitive abilities (Reggia,Marsland, & Berndt, 1988). However, to date the use of CBSA within these types of appli-cations has been limited. Because its restrictiveness suited the goals of the parsing modeldeveloped here, CBSA was chosen to serve as the sole mechanism for focusing activationwithin the parsing network onto a consistent syntactic structure. The restrictiveness of theapproach, in contrast to the use of inhibitory links for the same purpose, entails that CBSAplays a vital role in constraining the computational architecture in critical ways.Competition is crucial in the model for choosing between structural alternatives. Inorder to use CBSA alone to make decisions in the parser, the connections among the pro-cessing nodes must be limited to enable the competitive relations to propagate e�ectivelythrough the resulting network structure. The model employs a stack to structure the syn-tactic input and limit the connectivity of the network. The stack can be represented bya single processing node that has uniform capabilities with the other syntactic processors.With this simple addition to the parsing network, the use of CBSA alone is su�cient todetermine the attachment decisions. The competitive attachment behavior of the networkwas highly successful in the nearly 1400 tests that were run: the network converged in over98% of the simulations, achieving correct and consistent attachment behavior in all cases.Furthermore, the restrictions on the parser that are motivated by CBSA have additionalcomputational advantages for the parsing model, by reducing the parser's processing load,as well as preventing a combinatorial explosion of attachment possibilities.8.1.3 Dynamic Network CreationBecause the network structure cannot be determined a priori on the basis of a set of syntacticphrase structure rules, the network must be built in response to each speci�c sentence thatis input to the parser. The parsing network is constructed as words are input sequentially,by dynamically instantiating �xed phrasal templates in direct response to features of eachinput word. The phrasal templates are not phrase structure rules in the traditional sense;they encode only the connections between the phrasal nodes corresponding to a single inputword (such as a V, V0, and VP node), and not the connections between di�erent phrases(such as the connection from a verb phrase to its NP object). The dynamic instantiation ofthese �xed phrasal templates is enabled by the limited symbolic capabilities of the parser,and consists simply of determining the atomic feature values for the attributes of each nodebased on knowledge in the lexicon. The dynamic creation of the network solves a numberof problems arising from the �xed network approach adopted in other connectionist parsers.With its dynamic allocation and reuse of phrasal nodes, the model here can parse sentences ofinde�nite length, while previous connectionist approaches impose an unrealistic �xed upperbound. Furthermore, the method here is more space-e�cient; it can instantiate phrasesfrom a small pool of generic templates, instead of having to resort to massive duplication ofa number of dedicated node types. 145



Because the network is built dynamically, there must be some principled limitation onthe precomputation of syntactic structure. The model takes the most restrictive approachby disallowing top-down hypothesizing of phrase structure. Phrasal templates can be in-stantiated only by direct evidence in the input; a reasonable expectation for a phrase is notenough. Constraining parallelism to nodes with overt evidence leads to better scale-up po-tential in the model. The number of syntactic nodes is kept to a minimum, and therefore thenumber of attachments which must be considered at any particular point in the parse is alsoreduced. Thus, both the use of generic phrasal templates and the prohibition on top-downprecomputation contribute to the computational feasibility of the model.8.1.4 Competitive Attachment BehaviorHuman-like behavior in the processing of syntactic ambiguities emerges from the interactionof the computational developments discussed above. The results of the competitive attach-ment parser in modeling human performance fall into three major areas. First, the modelincorporates a principled mix of serial and parallel processing behaviors. These enable it tomatch human expectations in its determination of syntactic preferences, as well as in theaccessibility of alternative structural analyses to pursue. Second, the attachment preferencesthat it exhibits arise from the underlying properties of the competitive attachment process,which successfully integrates interacting preferences in a uniform manner. The attachmentdecisions in the model conform to Minimal Attachment, Late Closure, recency, and lexicalpreferences, without those preferences being explicitly built in. Third, the performance ofthe model mimics that of people in revising erroneous attachments, while avoiding the useof explicit revision strategies as well. The degree of di�culty of reanalysis in the model infact results from the same properties that determine structural preferences. The competitiveattachment approach thus provides a unifying and parsimonious model of human behaviorsacross the entire process of syntactic ambiguity resolution.8.2 Future WorkMany issues must be explored in future research in order to extend the competitive attach-ment framework to a more complete approach to natural language understanding. Thissection will discuss a number of promising directions for extensions to the model. First, theapproach must be evaluated with respect to additional types of syntactic ambiguity, includ-ing lexical ambiguity and argument/adjunct ambiguity. In addition, the e�ect of semanticson syntactic decision-making should be addressed. Second, the basic competitive parsingtechniques must be generalized to provide a uniform syntactic processing mechanism thatcan subsume a broad range of parsing functions. Third, the model must be subjected to across-linguistic investigation of both the linguistic adequacy and the processing behavior ofthe model. 146



8.2.1 Other Types of AmbiguityLexical AmbiguityThe research here focused on subcategorization ambiguities; that is, ambiguities arising froma verb's ability to take di�erent kinds of objects. Another common type of syntactic ambi-guity is lexical ambiguity, in which a word has more than one potential syntactic category.For example, the word have may be an auxiliary verb or a main verb, as in Have the childrentaken the exam? and Have the children take the exam. Resolving lexical ambiguity requiresextending the competitive attachment process from only operating on competing attach-ments to encompass competing phrases. In the current model, an input word activates asingle phrase by sending it a �xed activation. In the extended model, an ambiguous inputword would need to activate all the possible structural choices that arise from it, dividing itsoutput in a competitive way that forces a structural decision. Thus, an input word wouldactivate multiple syntactic phrases competitively, in exactly the same way that a phrasalnode currently activates attachments competitively. In the example above, the word havewould create phrasal structures corresponding to its auxiliary and main verb readings, andthese structures would compete for its activation.Because of its inherent competitive dynamics, the model has the potential to explainhuman behavior in processing a lexical ambiguity over the course of time|behavior thatother sentence processing models cannot currently account for. Lexical ambiguity presentsthe parser with a choice of structures; in order to minimize the amount of structure thatthey must maintain, all parsing models, serial or parallel, must use some method for pruningout the least likely choices. In other models, the decision to maintain or discard particularstructures is made too early|right at the ambiguous word (for example, Gibson, 1991;Weinberg, 1991). This approach often models human behavior incorrectly, in one of two ways:by maintaining multiple structures when people appear not to, or by prematurely discardingthe correct choice when people in fact maintain it. The competitive attachment process isqualitatively quite di�erent, because it inherently incorporates an aspect of processing overtime that is missing in other models; it thereby avoids the problem of committing too earlyto a decision to maintain or discard structures. The model thus has the potential to matcha fuller range of human behavior in the processing of lexical ambiguities.However, extending the model in this way poses a clear computational challenge, due tothe necessary incorporation of additional competitive e�ects in the parsing network. Themodel will have to involve simultaneous and interacting competitive processes: the competi-tion among the phrasal choices for an ambiguous word and the competition among attach-ments to those structural alternatives. Controlling these types of interacting competitiveprocesses with competitive activation has not been attempted before. Thus, work in thisarea will provide a stringent test of whether competitive activation can live up to its promiseof being a cognitively plausible technique for focusing activation within a network.147



Argument/Adjunct PreferencesIn the sentence beginning Ann put the candy on the table, the attachment of the prepositionalphrase on the table is ambiguous: it can attach to the verb phrase as the location argumentof the verb put , or to the noun phrase as an adjunct modi�er of the noun candy. In choosingbetween an argument and adjunct attachment of this type, the human parser shows a strongpreference for making the argument attachment. This preference is so strong, in fact, thatif, in this example, the prepositional phrase turns out to be a modi�er of the noun instead,as in Ann put the candy on the table into her mouth, people experience di�culty processingthe remainder of the sentence. Accounting for the argument attachment preference shownby the human parser has been one of the goals of every sentence processing model proposed,and yet to date, an adequate explanation of this phenomenon has not been achieved.The competitive attachment model currently is able to parse only argument attachments;in all cases, a phrasal node must activate a �xed number of attachment nodes. Currentlythis \�xed number" is always one; extending the technique to accommodate other values isstraightforward, as long as the number is �xed for each node. However, in extending themodel to parse adjuncts, their attachment sites cannot be allocated in the same fashion.Adjuncts are always optional, and there may be a highly variable number of them modify-ing any given word or phrase. Thus, adjunct attachments in the competitive attachmentparser would rely on an attachment site having competitive properties that allow zero ormore attachments. The challenge for the approach is to �nd a set of well-de�ned and sta-ble adjustments to the competitive activation functions that allow the desired behavior ofactivating zero or more attachments. An advantage of the competitive activation functionis that it has well-de�ned parameters for experimentally varying the degree of competitioninduced. Experiments with the model will provide an interesting application for determiningthe exibility and adequacy of the competitive activation process.Semantic E�ectsMany of the example ambiguities that previous NLU research has focused on have been casesof ambiguous prepositional phrase attachments that are resolved by the semantic context.The current restriction of the competitive attachment model to syntactic knowledge pre-vents it from making testable predictions concerning the e�ect of context on the resolutionof attachment ambiguities. However, previous work in semantic e�ects on disambiguation in-dicates that the massively parallel network style of the parser lends itself well to extension inthis area (see, for example, Cottrell, 1989; Hirst, 1987). In fact, the competitive attachmentapproach has the potential to allow lexical, semantic, and discourse preferences to come intoplay without additional provisions or changes to the basic mechanism. The ability of thecompetitive activation mechanism to integrate diverse sources of preference information wasalready demonstrated. The model would serve as a testbed for an \interactive" approach,in which semantic information is able to a�ect syntactic attachment decisions.148



8.2.2 Representational AdequacyThe linguistic theory of Government-Binding (GB) marks a radical departure from priortheories of human syntactic knowledge in its move from rule-based to constraint-based lin-guistic descriptions. However, most GB parsers have assumed fairly traditional parsingmechanisms, replacing the process of rule reduction with that of licensing attachments ac-cording to GB constraints (Abney, 1989; Fong, 1991; Gibson, 1991). One of the goals of thisdissertation was to build a computational model of parsing that mirrored the move withinGB from rule-based to constraint-based linguistic descriptions of syntactic knowledge witha corresponding shift from rule-based to connectionist computational processing techniques.This was accomplished with the use of a restricted message-passing procedure and the use ofcompetitive attachment nodes. In the current implementation of the model, these methodsare used solely to establish attachment relations in the parser. If the techniques can be ex-tended to handle all syntactic relations, the model would have clear conceptual advantagesover previous GB parsers, in which a system of numerous rules has been replaced by a systemof numerous licensing mechanisms. The competitive attachment model has the potential too�er a uniform processing mechanism for all of these parsing responsibilities, truly exploitingthe statement of GB as a simple system of constraints.The competitive attachment mechanism must be extended to the other major syntacticrelations of GB theory, including the process of coindexation, and the assignment of thetaroles and Case.1 This means not only passing the features appropriately through the network,but establishing competitive \binding" nodes corresponding to all syntactic relations. Theresulting model would be quite elegant, using only two distinct node types|one type forsyntactic phrases and one type for binding those phrases in some syntactic relation. Thesetwo types of nodes are required in pure connectionist parsers as well. One of the potentialproblems in maintaining this uniform competitive binding approach is an increase in networkcomplexity. Since every syntactic relation would involve a competitive binding node, thenetwork would consist of a number of competitive relations which interact and a�ect eachother. One conceptually attractive solution is to layer the network, so that each type ofrelation has its own layer, and the layers are mediated by links to the layer that encodesthe attachment structure (the parse tree). There could be limited, controlled interactionbetween the layers. Such a multi-layered approach would tie in well with the addition of alayer of interacting semantic information.8.2.3 Cross-Linguistic Representation and BehaviorA longer-term goal is to extend the competitive attachment model to apply to languagesother than English. Cross-linguistic investigation of the model will provide a harsh test ofthe computational theory of parsing in terms of both the adequacy of its syntactic knowledgerepresentation and its ability to achieve human-like behavior. Recently, debates on the1Stevenson (1993a) discusses extensions to the model that incorporate the competitive establishment ofcoindexation relations. 149



best approaches to parsing|bottom-up, top-down, head-driven, left corner|have recognizedthe need to consider the structural properties of vastly di�erent languages. The hybridarchitecture developed here is most compatible with an approach that is evidence-driven; thatis, the parser, within its domain, will be smart and e�cient, making use of the informationit has at any given point in the parse, to build as much structure as it can.This type of model appears quite promising for head-�nal languages like Dutch andJapanese, where the word that determines the propositional content of a phrase occurs afterits arguments. Similar approaches have been put forward by others (Crocker, 1992; Inoue& Fodor, in press), but the restricted parallelism of the model developed here has greatadvantages, by avoiding both the problem of overgeneration within a parallel approach andthe limitations of strict serialism. Other models either must devise pruning mechanisms forcontrolling the number of alternatives maintained in parallel, or must add on explicit revisionstrategies to an essentially serial parser. Tuning these extra parsing mechanisms to di�erentlanguages can be problematic.In addition to basic structural di�erences between languages, it appears that some parsingpreferences may remain constant across languages, while others vary (Gibson et al., 1993).It is an open question whether the observed di�erences are due to frequency e�ects in thelanguages, or result from some more fundamental structural properties. An advantage of thecompetitive attachment model is that its hybrid symbolic/numeric nature lends itself well toan investigation of both qualitative statements of processing di�erences between languages,as well as statistical or frequency-based e�ects.
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