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Abstract

Linguistic ambiguity is the greatest obstacle to achieving practical computational sys-
tems for natural language understanding. By contrast, people experience surprisingly little
difficulty in interpreting ambiguous linguistic input. This dissertation explores distributed
computational techniques for mimicking the human ability to resolve syntactic ambiguities
efficiently and effectively. The competitive attachment theory of parsing formulates the
processing of an ambiguity as a competition for activation within a hybrid connectionist net-
work. Determining the grammaticality of an input relies on a new approach to distributed
communication that integrates numeric and symbolic constraints on passing features through
the parsing network. The method establishes syntactic relations both incrementally and ef-
ficiently, and underlies the ability of the model to establish long-distance syntactic relations
using only local communication within a network. The competitive distribution of numeric
evidence focuses the activation of the network onto a particular structural interpretation of
the input, resolving ambiguities. In contrast to previous approaches to ambiguity resolution,
the model makes no use of explicit preference heuristics or revision strategies. Crucially, the
structural decisions of the model conform with human preferences, without those preferences
having been incorporated explicitly into the parser. Furthermore, the competitive dynamics
of the parsing network account for additional on-line processing data that other models of
syntactic preferences have left unaddressed.
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Chapter 1

Introduction

The pervasiveness of ambiguity in language poses a major obstacle to achieving human-like
performance in natural language understanding (NLU) systems. By contrast, people have
surprisingly little difficulty in processing and resolving linguistic ambiguities. In particu-
lar, the human parser appears to immediately integrate each successive word of a sentence
into a coherent syntactic structure, and people are generally not even aware that there are
syntactic ambiguities in the sentences that they hear. These observations lead to the two
motivating assumptions of this research. First, a deeper understanding of the computational
processes that underlie human linguistic ability is a prerequisite for achieving comparable
abilities in an NLU system. Second, increasing our understanding relies on the investigation
of computational models whose behavior accounts for psycholinguistic observations. This
dissertation presents a computational theory of syntactic processing in which linguistically-
and computationally-justified processing mechanisms yield behavior that matches human
performance in resolving syntactic ambiguities.

1.1 Motivation

Consider the situation of a natural language parser building the syntactic structure of a
sentence beginning Sara knows women. If the sentence ends at this point, then the parser
must attach women to the parse tree as the object of the verb know, as in Figure 1.1(a).! On
the other hand, if the sentence continues with the word succeed, then the object of know is
the subordinate clause women succeed. In this case, women must be attached as the subject
of the subordinate clause, as in Figure 1.1(b). When first processing the word women, the
parser cannot know whether it should attach women as the direct object of the verb or as
the subject of a subordinate clause. Thus, the parser is faced with a syntactic attachment
ambiguity.

Choice points such as these arise quite frequently in the processing of normal linguistic
input, posing a potential problem for an NLU system, which is expected to arrive quickly

1For simplicity, this figure uses a traditional phrase structure representation; however, the parser devel-
oped here uses X phrases.



(a) (b)

knows women

succeed

Figure 1.1: In the sentence beginning Sara knows women, the parser faces a syntactic ambi-
guity at the word women: the NP may attach as the object of the verb, as in (a), or as the
subject of a sentential object of the verb, as in (b).

at the best structural interpretation of the input. The situation is further complicated by
the fact that people generally have consistent strong preferences for a single reading of a
syntactically ambiguous input. A computational parser must not only process attachment
ambiguities as quickly as people do (essentially, as each word is heard or read), but should
also resolve any ambiguities in a manner that conforms with human expectations.

Syntactic ambiguity thus presents a challenge in the design of natural language parsers;
efficient methods for keeping track of multiple structural alternatives and for choosing be-
tween them have been an elusive goal. Building structure for all of the attachment alterna-
tives for every word in the sentence would use a prohibitive amount of computing resources.
Similarly, incorporating a large number of situation-specific heuristics to choose a preferred
structure 1s not only inelegant, but leads to a system that is difficult to maintain and to
extend. In order both to be efficient and to match the structural interpretation of the input
that people expect, a parser must have a principled and parsimonious method for carefully
selecting which attachment possibilities to maintain and which to discard.

In order to accomplish this, a number of design decisions must be made in developing a
computational system for parsing natural language:

1. When the parser is presented with a syntactic ambiguity, will it initially build multiple
structures corresponding to the attachment alternatives, or will it build only a single
structure for the preferred interpretation?

2. How will the parser determine what the preferred structural interpretation of the am-
biguous input is?

3. What will the parser do if the continuation of the input is incompatible with its cur-
rently preferred structural hypothesis? Will it be able to revise its initial hypothesis,



and if so, how will it proceed to do so?

Each of these interrelated design decisions raises unresolved issues in natural language pro-
cessing. Computational solutions that yield efficient, human-like ambiguity resolution be-
havior have not yet been achieved. However, what has been so difficult to attain in NLU
systems appears effortless for the human parser. The computational mechanisms that un-
derlie human syntactic processing enable people to efficiently and consistently parse natural
language. The human parser may not only be the best model for the output behavior that
an NLU system is trying to achieve, but may in fact be the best model of how to achieve that
behavior as well. This observation motivates the computational modeling of the mechanisms
used by people in resolving syntactic ambiguity.

While previous NLU systems have incorporated heuristics corresponding to descriptions
of human behavior, they have failed to capture the general principles underlying the compu-
tational process of ambiguity resolution. An NLU system that instead incorporates deeper
principles of the human parsing process has the potential to better match human expectations
in its behavior. Furthermore, a better understanding of the computational underpinnings of
human behavior will form the basis for an approach that is more likely to be extensible to
a wider range of linguistic phenomena. Thus, the goal of the research here is to develop a
model in which human-like behavior is an emergent property of its fundamental computa-
tional assumptions. The model must be evaluated by comparing its behavior to that of the
human parser within the three areas of the ambiguity resolution process described above.

1.2 Overview of the Competitive Attachment Model

This dissertation develops novel computational techniques for producing human-like behavior
in a natural language parser, and tests their performance within a number of computer
simulations on linguistic input. The techniques form the basis of a computational theory of
parsing that models the processing of an ambiguity as a competition for activation among
a set of structural alternatives within a hybrid connectionist network. The model provides
a parsimonious account of syntactic ambiguity resolution in which the parsing decisions
that conform to human expectations arise from a small set of independently motivated
computational assumptions.

The first fundamental assumption i1s that parsing is a process of distributed decision-
making within a hybrid symbolic/numeric connectionist architecture. The hybrid approach
supports the direct encoding of constraint-based linguistic competence using simple symbolic
features,? and captures the weighting of performance effects using spreading activation. Like
other connectionist parsers, the model has no global controller; control of a parse is dis-
tributed among the independent processing nodes of the parsing network. However, in

2By a direct encoding, I mean that explicit constraint-based knowledge is used to determine the grammat-
icality of parse tree attachments, rather than that knowledge being “compiled out” to yield phrase structure
rules that guide the parse. See Dorr (1993), Fong (1991), Kashket (1991), and Merlo (1992), for other work

exploring the use of constraint-based linguistic knowledge within natural language processing systems.



contrast to other connectionist approaches, the network is not structured a priori accord-
ing to context-free rule templates. The parser in fact makes no use of traditional phrase
structure rules. Thus, syntactic phrasal nodes must actively determine their structure by
trying to attach themselves together to form a valid parse tree. Valid syntactic relations
among the phrasal nodes are established incrementally and efficiently through a novel form
of feature-passing. The communication method relies on an integration of symbolic and
numeric constraints on passing features through the parsing network. The feature-passing
algorithm enables the model to establish even long-distance syntactic relations using only
local communication within the network.

The communication of symbolic features through the network determines all of the valid
attachment structures; numeric competition in the network is necessary to focus activation
onto a winning subset of the attachments that form a legitimate parse state. The second
basic assumption of the model is that competition in the parsing network is effected solely
through the use of competition-based spreading activation (CBSA) (Reggia, 1987); the use
of inhibitory links is not allowed. The sole use of CBSA in a network configuration of this
complexity has not previously been attempted, and requires that there be additional limita-
tions placed on the structure of the parsing network. The use of CBSA and its associated
constraints yield a principled determination of which alternatives to consider when there is
an attachment ambiguity. The competitive spread of numeric evidence through the restricted
network structure then focuses the numeric activation onto a particular interpretation of the
linguistic input, resolving ambiguities.

The competition mechanism applies uniformly at all nodes to determine the syntactic
attachment choices, eliminating the need for construction-specific preference heuristics in
the parser. Explicit revision strategies are also unnecessary—the competition mechanism
constrains both the initial structural choices that the parser makes, as well as its potential
for revising erroneous decisions. The parsing decisions that emerge from this competitive
attachment process conform with human judgments of preference and acceptability. The
competitive dynamics of the model also mimic finer-grained on-line processing effects in
human ambiguity resolution.

The final underlying assumption of the model contributes to the computational feasi-
bility of the parsing approach; it specifies that the network is dynamically constructed by
allocating generic phrasal nodes in response to the input. The phrasal nodes are instantiated
with simple symbolic features based on the features of the input words. Using dynamically
instantiated phrasal nodes avoids several computational problems found in other connection-
st parsers: the prior allocation of a large, fixed number of nodes; the duplication of nodes
within multiple copies of rule templates; and the restriction to a fixed maximum sentence
length. Since the phrasal nodes can be activated only by the input, the parallelism of the
parser is constrained to nodes with overt evidence. This gives the model better scale-up
potential by reducing the number of syntactic nodes and thereby decreasing the number of
attachments that must be considered at any particular point in the parse. The constrained
parallelism has further advantages for the model, since it leads to a better match with the
degree of parallelism observed in the human processing of ambiguities.



The three fundamental assumptions of the model interact to define its competitive at-
tachment process. A computational parser was implemented that embodies these properties
and serves as a testbed for the proposed model of parsing. A large number of simulations,
discussed in Chapter 5, establish the effectiveness of the competitive attachment parsing
mechanism by demonstrating its consistent and correct attachment behavior across a range
of structural configurations. Further tests of the parser in Chapter 7 focus on examples from
the psycholinguistic literature. These simulations attest to the ability of the model to mimic
human behavior along the three dimensions of ambiguity resolution discussed in Section 1.1:
the degree of parallelism it displays, the syntactic preferences it exhibits, and the manner in
which it revises structural decisions. Since the observed behavior of the model emerges from
its underlying properties, the competitive attachment approach is proposed as a principled
model of the ambiguity resolution process in the human parser.

1.3 Organization of the Thesis

This chapter has briefly discussed the problem of syntactic ambiguity for NLU systems, and
the motivations for the approach to parsing taken here. Chapter 2 describes previous ap-
proaches to resolving syntactic ambiguities in natural language parsing; both computational
and psycholinguistic models will be reviewed. Since the network architecture of the com-
petitive attachment model is its key feature, other massively parallel approaches to NLU
will be discussed as well. Chapter 3 gives the detailed computational and linguistic justifi-
cations for each of the three fundamental design assumptions discussed above. Chapter 4
then follows with a high-level overview of the competitive attachment model. The chapter
presents an example parse and describes the critical attachment behaviors that result from
the underlying properties of the model.

The next three chapters describe the computational parser that was built based on the
proposed model, and present the results of its evaluation. Chapter 5 describes the numeric
processing components of the parser, including the competitive activation functions respon-
sible for the attachment decisions of the parser. The results of a large number of simulations
are presented, demonstrating the effectiveness of the competitive attachment approach in
parsing. Chapter 6 next presents the symbolic processing components of the parser, describ-
ing the symbolic features and message-passing facilities derived from the linguistic theory.
The chapter demonstrates how the message-passing functions of the parser incorporate the
grammatical restrictions on establishing syntactic relations among the nodes of the parsing
network. In Chapter 7, the results of the parser on a number of psycholinguistically relevant
examples are presented. The chapter describes in detail the correspondence between the
behavior of the model in processing syntactic ambiguities, and human behavior revealed in
experimental work.

Chapter 8 concludes the dissertation with a summary of its contributions and a discussion
of some future directions for the research.



Chapter 2

Related Work

This chapter provides an overview of research related to the competitive attachment ap-
proach. Section 2.1 describes previous work in computational linguistics and psycholinguis-
tics whose aim is to model human behavior in processing syntactic ambiguities. Because
distributed network processing is a crucial property of the competitive attachment model,
Section 2.2 turns to a discussion of related work in massively parallel parsing.

2.1 Parsing Syntactic Ambiguities

In order to parse syntactic ambiguities in a way that is compatible with human behavior, a
natural language parsing model must be constrained such that the decisions it makes matches
those of the human parser. Research in computational linguistics and psycholinguistics has
taken a number of broad approaches in pursuing this goal. The most common has been
to augment a traditional serial parser with heuristics to guide its syntactic decisions when
faced with an ambiguity. Another approach has been to determine a set of well-motivated
computational restrictions on a serial mechanism that will give rise to the observed human
choices. A variation on this type of approach is to derive these computational constraints
directly from properties of a linguistic theory. Recently, approaches using non-traditional
parallel mechanisms have arisen, which emphasize the centrality of soft constraints in contrast
to discrete rules or strategies. Finally, some research has focused on semantic processing
accounts of the human resolution of syntactic ambiguity. This section will give a brief
overview of key research in each of these areas.

2.1.1 Serial Models with Heuristics

Beginning over twenty years ago, researchers have tried to determined what processing strate-
gies, in conjunction with purely grammatical knowledge, could account for human preferences
in parsing ambiguous or temporarily ambiguous linguistic input. Early work took the form
of positing explicit heuristics that would apply to specific syntactic constructions to guide
the parser to the preferred structural analysis (Fodor, Bever, & Garrett, 1974; Kimball,
1973). Kimball’s influential work inspired the best known and longest-lived model of this



type, which has been developed and refined by Frazier and her colleagues (Frazier, 1978;
Frazier, 1987; Frazier, Clifton, & Randall, 1983; Frazier & Fodor, 1978; Frazier & Rayner,
1982). In Frazier’s serial model, parsing decisions are guided by a small number of gener-
ally applicable structural heuristics—most notably, Minimal Attachment and Late Closure.
These heuristics might resolve a temporary ambiguity within a sentence in a way that is in-
compatible with the continuation of the sentence; in those situations, the structural analysis
of the input must be corrected by explicit revision strategies. The primary shortcomings
of the theory arise from the lack of generality of its preference and recovery mechanisms:
multiple, unrelated preference heuristics are required, and the proposed revision strategies
crucially rely on construction-specific properties.

McRoy & Hirst (1990) propose a “race-based” parser based on Frazier’s model that
improves the account of human behavior by providing a unified computational framework
for capturing a range of structural preferences.! The research addresses the fact that the
set of previously proposed structural heuristics were unrelated and had weak computational
motivation. McRoy & Hirst demonstrate that a number of preference strategies (including
Frazier’s and others) can all be interpreted in terms of their effect on the time it takes for
the parser to create various structures in response to an ambiguity. A single parsing strategy
results, which is to prefer the structure that is built most quickly. While McRoy & Hirst’s
model provides a more parsimonious account of initial human preferences, the parser, like
Frazier’s, continues to rely on construction-specific revision strategies.

In a related approach, Gorrell (1987) proposes a “ranked parallel” model in which the
rankings of syntactic alternatives are similarly based on the outcome of a parsing race—that
18, the analyses are pursued in parallel, but ranked according to how quickly they are initially
constructed. The ranking of parallel alternatives is claimed to underlie the observed serial
behavior of the human parser, since higher ranked structures are assumed to be more salient
or more readily accessible to higher-level processing. The model accounts both for some
important preference data, as well as for evidence of the maintenance of multiple structures
in the human parser. Although limited in computational detail and in scope (addressing
only “Minimal Attachment” structures), the crucial idea of weighted parallel alternatives in
syntactic processing survives in various current models (for example, compare Gibson, 1991;
MacDonald, Pearlmutter, and Seidenberg, 1993).

Both Shieber (1983) and Abney (1989) propose serial models in which parsing heuristics
are formulated as built-in conflict resolution strategies that guide the parser when it has
more than one action it can perform in response to a new input token. Shieber proposes
a rule-based shift-reduce parser in which shifting is preferred over reducing, and long rule
reductions are preferred over short ones. These simple conflict resolution strategies provide
an elegant account of certain cases of Minimal Attachment and Late Closure preferences.
However, the model is limited in its account of on-line processing behavior; for example, the
research does not address the issue of how easy or difficult it is to revise the initially preferred

! Although Frazier had described her model as involving a structure-building race, this was not the central
focus of the work, and McRoy & Hirst were the first to describe the computational processing of such a race-
based parser in detail.



structures. Abney adopts similar conflict resolution strategies within a more linguistically
plausible licensing parser. The model also incorporates an explicit backtracking procedure to
reanalyze erroneous initial structures; a “right-edge continuation” heuristic determines the
choice point to backtrack to. Abney’s model accounts for the distinction between revisable
and non-revisable errors, but does not account for the range of difficulty observed in making
allowable revisions.

Ford, Bresnan, & Kaplan (1982) also propose a serial backtracking parser, which is best
known for the integration of lexical preferences into its parsing decisions. While previous
models relied on purely structural properties to guide syntactic analysis, Ford, Bresnan,
& Kaplan recognized the key role of specific lexical information in guiding a parse. The
approach has a number of empirical shortcomings, arising from the formulation of the parser
as a rule-based, serial, backtracking mechanism. However, the model had great influence
in demonstrating the importance of incorporating lexical information into the ambiguity
resolution process.

Fodor and Inoue (Fodor & Inoue, 1994; Inoue & Fodor, in press) have more recently
proposed new models within the general approach of serial parsing guided by heuristics,
with the goal of providing a universal parsing mechanism that matches human behavior in
processing both English and Japanese. In the “information-paced” parser (Inoue & Fodor, in
press), a serial mechanism determines the best structure that is compatible with the available
evidence derived from the input, and a record of choice points is maintained to ease any
necessary revisions. Given the power of the parser to arbitrarily go back and revise earlier
decisions, Inoue & Fodor develop a constraint on restructuring that restricts the revision of
thematic role interpretations. This thematic restructuring constraint captures limitations on
reanalysis in English and Japanese examples. In Fodor & Inoue (1994), a “diagnosis” model
is proposed in which the process of revision is made more central to their account of cross-
linguistic data. The behavior of the model is determined primarily by its ability to diagnose
structuring errors and recover from them, utilizing principles such as “Attach Anyway” and
“Steal.” Although the emphasis is shifted from preference behavior to reanalysis, these
models still crucially rely on the enumeration of specific processing heuristics.

2.1.2 Serial Models with Computational Restrictions

The models described in the previous section all attempt to match human structural pref-
erences by incorporating processing strategies that mimic human behavior. Another impor-
tant line of research has instead focused on independently-justified computational restric-
tions that could lead to the observed behavior, without having to build in that behavior
directly. One of the founding pieces of work along these lines is the deterministic parser of
Marcus (1980), in which a small set of well-motivated computational assumptions underlie
the parser’s human-like behavior in processing a number of types of ambiguities. Milne
(1982, 1986) extends Marcus’s parser, in an attempt to give a more extensive account of
human behavior in resolving lexical ambiguities and of human inability to parse well-known
grammatical constructions. However, the model relies on very specific processing rules and



assumptions around the amount of allowable lookahead. Kwasny & Faisal (1992) develop a
hybrid connectionist model within the deterministic parsing framework that addresses some
of the problems with Milne’s approach. In their model, a Marcus parser is augmented with
a network component that decides which of multiple actions to pursue at each point in the
parse. The generalization ability of the network avoids the need for a large number of very
specific rules. However, the model is limited in its grammatical scope, as well as in its ability
to match human performance in processing syntactic ambiguities.

More recent work inspired by the “determinism hypothesis” has combined constraints
imposed by a serial, deterministic mechanism with assumptions about the necessity of fast,
incremental interpretation. Weinberg’s (1991) Minimal Commitment model draws on a
method of minimally specified representation (“D-theory” of Marcus, Hindle, & Fleck (1983))
to provide a principled form of limited parallelism in maintaining multiple structural analy-
ses. In conjunction with an explicit strategy that favors immediate thematic interpretation,
her model accounts for a wide range of human preference phenomena in both English and
Japanese. Gorrell (in press) uses similar D-theoretic motivations, relying on restrictions on
the reanalysis of precedence relations to extend the account of human behavior. In both of
these models, the reanalysis process is de-emphasized, and an account of the observed range
of recoverability from parsing errors is lacking.

Crocker (1992) proposes another model in which computational restrictions arising from
the interpretation process constrain the parser’s operations in response to an ambiguity. His
principle-based syntactic parser is guided by the global requirement to maximize the interpre-
tation of an input. Crocker claims that this fundamental assumption accounts for a number
of structural preferences in English, German, and Dutch, obviating the need for explicit
preference heuristics. Crocker’s model matches some critical initial preference data, and un-
derlines the importance of cross-linguistic verification of more general attachment principles.
The requirement to maximize interpretation, however, is realized through the incorporation
of generalized preference heuristics (“Argument Attachment” and “Deep-Structure Attach-
ment”) that are not necessary computational properties of the parsing mechanism.

2.1.3 Grammatically-Based Computational Restrictions

Pritchett (1992) has developed a serial parsing model in which a constraint-based approach to
grammar plays a central role in defining the computational restrictions on syntactic process-
ing operations.? In this framework, the grammatical constraints from the linguistic theory
are directly interpreted as processing constraints on the parser. The approach promises a
more principled determination of processing constraints, by deriving them from indepen-
dently motivated linguistic factors. However, in practice the grammatical knowledge is not
sufficiently constraining to explain human processing limitations. In order to complete his
account, Pritchett must postulate an additional mechanism, the “On-Line Locality Con-
straint,” which restricts the types of revisions that his serial parser can perform.

2An implementation of Pritchett’s theory is described in Paolucci (1993).



The parallel model developed by Gibson (Gibson, 1991; Gibson et al., 1993) begins
with a similar basis in linguistic theory.®> The parser pursues all possible analyses of an
input in parallel, and calculates the costs of maintaining each structural alternative. A
principled method for determining the relative cost of each alternative derives from how
well the structure satisfies its grammatical constraints. The costs are then used as the basis
for pruning the space of possible structural analyses. Gibson develops a “beam search”
algorithm in which structures that are close enough in cost are maintained in parallel, while
those that have significantly greater costs are discarded.* The resulting parsing model attains
an impressive coverage of human preference and recovery data. The primary shortcoming
of the work is the lack of a theory to constrain the processing costs that can be postulated.
To the extent that the costs can be derived from the linguistic theory, the assumptions
underlying the model’s behavior receive independent motivation. However, as in Pritchett’s
model, the linguistic theory is unable to yield sufficient processing constraints to provide an
adequate match with human behavior. In order to account for a wider range of empirical
data, Gibson must postulate additional cost mechanisms, such as “Recency Preference” and
“Predicate Proximity,” whose independent justification is less clear.

2.1.4 Parallel Models with Soft Constraints

Gibson’s model is an example of the move toward a more continuous ranking of alterna-
tive structural analyses within approaches to mimicking human parsing. Many recent psy-
cholinguistic studies present evidence that human behavior is guided by the application of a
number of soft constraints (for example, MacDonald, 1994; Spivey-Knowlton, Trueswell, &
Tanenhaus, 1993; Taraban & McClelland, 1990). The results emphasize the importance and
timing of information that derives from individual lexical entries. To account for this data,
MacDonald, Pearlmutter, & Seidenberg (1993) outline an approach to a constraint-based
lexicalist parser. The model depends crucially on numeric competition among activated
partial structures to resolve ambiguities. The activation levels that determine parsing pref-
erences derive entirely from differential frequencies of lexical associations. MacDonald and
her colleagues do not propose an underlying grammatical or computational explanation of
the relevant frequency distributions, assuming instead that they merely reflect the statistical
patterns of the language.®

Although there are no implemented parsing systems within this paradigm, the proposal of

3See Gibson (1987) and Clark (1988) for earlier proposals within this framework.

It is interesting to note that the beam search restriction that Gibson imposes on his parser can be
interpreted as a high level view of the type of competitive processing that naturally falls out of the compet-
itive attachment architecture developed here: In a competition for activation, alternatives that are close in
activation will compete over a lengthy period of time, while a great difference in activation will allow one
alternative to quickly dominate another.

®The research here complements that of MacDonald and her colleagues in searching for underlying dif-
ferences in computational complexity that could account for the observed frequencies of possible structural
configurations.
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Schubert (1984, 1986) anticipates the importance of developing computational mechanisms
to support the integration of multiple preference sources. Schubert sketches a framework in
which numeric combination of syntactic and semantic influences plays a key role in accounting
for human structural preferences. Factors such as recency of attachment and strength of
expectations interact to determine the best interpretation of an input. Schubert assumes a
“full-paths” parser, which pursues all analyses in parallel and relies solely on the numeric
weights to determine the most preferred structure. The proposal leaves unaddressed the
issue of revising erroneous initial preferences.

Other computational approaches that rely on the satisfaction of soft constraints will be
discussed in the section below on massively parallel parsing.

2.1.5 Semantically-Based Models

A number of approaches to modeling human behavior in processing syntactic ambiguities
have proposed that structural preferences arise from semantic rather than syntactic sources
of constraining information. Within the sentence processing literature, Altmann, Crain,
and Steedman have proposed that discourse context and presuppositional constraints are
instrumental in disambiguating syntactic ambiguities, and that syntactic structure itself does
not play a role (for example, Altmann, 1988; Altmann & Steedman, 1988; Crain & Steedman,
1985). However, because of their fundamental assumptions, they are unable to account for
the purely syntactic influences on initial parsing preferences that have been identified (for
example, see the discussion in Gibson, 1991). Furthermore, the context-based proposals
fail to explain how semantic and pragmatic information alone can guide the reanalysis of
erroneous syntactic structure.

In Artificial Intelligence, it is not uncommon for researchers to propose parsing models
based on “semantic grammars,” in which syntactic knowledge is assumed to play a peripheral
role. Cardie & Lehnert (1991) claim that their parser mimics a number of so-called syntac-
tic preferences with a semantic account. However, some effects in their model in fact arise
from syntactic processing (for example, reactivation of antecedents), while others arise from
semantic processing (for example, the filled-gap effect). Furthermore, there are effects such
as structural constraints on extraction that their syntactically-impoverished model cannot
explain. Although they demonstrate that certain so-called syntactic processing effects have
an alternative semantic explanation, they are unable to give a unified account of syntactic
processing phenomena purely in terms of semantics. In related work, Jurafsky (1991) pro-
poses a unified semantic grammar approach to parsing. His model is also unable to explain
some key syntactic distinctions in a well-motivated way; for example, as in the Cardie &
Lehnert model, constraints on extraction pose difficulties for his semantic gap account. Thus
it appears that while semantics and constraints on interpretation contribute to the resolution
of ambiguity, some purely syntactic properties must be taken into account as well.
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2.1.6 Summary

In conclusion, parsing models have made tremendous progress in their ability to mimic hu-
man structural preferences. The move from discrete heuristics to continuous measures of
acceptability shows great promise. However, most approaches still rely to some extent on
stipulating constraints rather than deriving the processing restrictions from more funda-
mental properties of linguistics or computation. Furthermore, the emphasis has been on
accounting for initial preferences and processing breakdown. Revision processes have only
recently received critical attention, and models of the recovery process thus far have been
strategy-based, leaving a need for more integrated accounts of revision.

2.2 Massively Parallel Parsing

There has been a great deal of interest in exploring the fruitfulness of non-traditional parallel
architectures for natural language processing. This section will describe work on connection-
st parsing models using both local and distributed representations, and work aimed at
addressing some of the problems that arise in connectionist approaches. The section will
also discuss a number of parallel architectures that are not purely connectionist, but that
exploit massively parallel or distributed processing technology to address open problems in
parsing natural language.

2.2.1 Connectionist Parsing Models

Connectionist parsers have commonly used localist representations of rule-based syntactic
knowledge,® in which the network is structured a priori to represent context-free rule tem-
plates (for example, Cottrell, 1989; Fanty, 1985, Selman & Hirst, 1985). This type of model
1s limited to representing sentences of a maximum fixed length from a context-free language.
In spite of the shortcomings for natural language parsing, the work of Cottrell (1989) was
important not only for its modeling of word-sense disambiguation (a research problem that
will not be addressed here), but for its account of “Minimal Attachment” behavior in human
parsing. In Cottrell’s system, simpler (“minimal”) structures accrue activation more quickly
than complex structures, elegantly explaining the observed Minimal Attachment preferences.
Howells (1988) proposes a more dynamic localist model of parsing, but it too is limited to
knowledge of tree structure which is representable as context-free rules. Furthermore, the
parser cannot be interpreted as an on-line model of human parsing since it depends on
simultaneous activation of the input tokens.

The localist context-free parsing techniques appear to be overly simplistic for the problem
of understanding human language. However, the use of distributed representations, while
promising more flexibility, has acheived limited success. Hanson & Kegl (1987) use dis-
tributed representations to exploit the learning ability of connectionist networks, but their

6In a localist representation, processing nodes and symbolic concepts stand in a one-to-one relationship.
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model is limited to part-of-speech tagging and prediction of the next syntactic category
in a linear pattern. Chalmers (1992) proposes a model which can generalize a simplified
active/passive transformation over distributed representations of sentential input, but the
syntactic capability of the model is again quite restricted. McClelland & Kawamoto (1986)
also exploit the generalization properties of distributed representations, but their model is
limited to matching phrases to the roles they play in a sentence. Sopena (1992) develops a
model in which roles are determined within embedded syntactic structures, but the syntactic
capabilities of the network are again quite impoverished.

To explore the possibilities of connectionism for capturing more realistic human linguistic
knowledge, Rager & Berg (1992) use existing connectionist techniques to encode a subset
of Government-Binding theory. However, the restrictions imposed by the connectionist en-
coding scheme necessitate a large and unwieldy representation of the syntactic knowledge.
Other researchers have focused on extending the connectionist techniques themselves to en-
able more direct and elegant representational mechanisms for parsing. Henderson (to appear)
presents a model of parsing founded on connectionist techniques that allow the simultaneous
binding of multiple variables. This framework not only allows him to represent a linguisti-
cally plausible grammatical formalism, but also leads to some psycholinguistically relevant
processing behavior regarding long-distance dependencies and center-embedding.

The major focus in extending connectionist methods for natural language parsing has
been to develop techniques to enable more dynamic behavior. In order to support their
model of semantic disambiguation, Waltz & Pollack (1985) had to use a traditional chart
parser as a front end to their network creation process. This inspired Pollack (1985) to explore
true connectionist techniques in the form of multiplicative connections and context-adjusting
processing nodes for achieving the network dynamism necessary for parsing. However, the
contribution is in the exploration of low-level connectionist techniques, and not in the pro-
posal of a natural language parsing model. Charniak & Santos (1987) develop a technique
of shifting information sequentially across the nodes of a parsing network to avoid the prob-
lems of a static network structure, but it is unlikely that the technique would scale up to
realistic sized parsing problems. More recently, Reilly (1992) combines the techniques of re-
cursive auto-associative memory (RAAM) and simple recurrent networks (SRNs) to exploit
the possibilities of incrementally building embedded structure, as is required by the on-line
parsing problem. However, as Reilly notes, the RAAM technique does not provide adequate
generalization ability, limiting the practicality of the approach.

2.2.2 Other Massively Parallel Approaches

Other distributed processing approaches have in general fared better than pure connection-
i1st methods at enabling the development of more comprehensive natural language parsing
systems. Small (1981) proposes a model in which input words instantiate independent pro-
cessing nodes according to the individual lexical entries of the words. The model is able to
successfully resolve a number of lexical and semantic ambiguities using only distributed pro-
cessing among the “word experts.” Each word expert has to be completely hand-coded—the
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individual processors are not constrained to perform the same algorithms as in most massively
parallel frameworks. Small’s model is therefore on the other end of the continuum from the
simple, uniform processing nodes of a connectionist approach. Abney & Cole (1985) develop
an actor-based implementation of Government-Binding theory, which also lacks uniformity
of processing. Some nodes represent individual parsing entities, while others encode entire
sub-modules of the linguistic theory. Because of the centralization of much of the knowledge
within these complex processors, the model has difficulties with resolving conflicts among
the knowledge sources.

The Active Production Network (APN) approach of Jones (1987) moves away from these
less constrained distributed models towards a more connectionist-like approach. The APN
framework captures syntactic knowledge in rule-based network templates, and uses spread-
ing activation to encode feature co-occurrence among the processing nodes. The use of
rules in the network is essential to providing a local environment for the binding of features.
The parser developed by Lin (1993) relies instead on a message-passing implementation of
Government-Binding theory, providing increased flexibility for capturing grammatical rela-
tions in the network. However, Lin’s approach does not use simple processing nodes that
perform the same algorithms across the network; the phrasal nodes of his parser execute
different message-passing computations depending on the category of the phrase. In either
Jones’ or Lin’s models, ambiguity resolution procedures are not an integral part of the pars-
ing mechanism, and would have to be added onto the existing parser. In neither case does
observed human behavior in the processing of ambiguity follow directly from the proposed
computational mechanisms.

Kempen and Vosse (Kempen & Vosse, 1989; Vosse & Kempen, 1991) propose a computa-
tional model of human parsing that is similar in spirit to the approach developed here. Their
model exploits the use of hybrid symbolic/numeric techniques within a network of simple,
uniform processors. The resulting Unification Space parser is a massively parallel, rule-based
approach that models parsing as a simulated annealing process. In contrast to most other
massively parallel parsers, the model matches a wide range of human structural preferences,
in Dutch as well as in English. As in the proposal of Schubert (1984), the preference be-
havior of the Unification Space model is determined primarily by specific numerical strength
and decay values. Attempts at reanalysis of erroneous structures appear to be limited only
through the mechanism of decay.

2.2.3 Summary

At this point in the development of connectionist techniques, the ability to support high-
level modeling of human parsing has not been demonstrated.” The issues of dynamically
encoding structure and representing the non-local relationships necessary in syntax remain
open problems. On the other hand, massively parallel models that incorporate symbolic ca-
pabilities show promise in their ability to model human linguistic performance. This success

"However, recent work on Optimality Theory (Prince & Smolensky, 1993) has potential to relate high-level
symbolic representations of linguistic knowledge to well-established connectionist processing techniques.
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encourages the exploration of hybrid connectionist techniques that can support syntactic am-
biguity resolution, while at the same time reaping the benefits of distributed parsing within
a network of simple, uniform processing nodes.
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Chapter 3

Architectural Assumptions

This chapter describes the fundamental architectural assumptions that underlie the princi-
pled model of human parsing developed here. The competitive attachment model is able
to predict a number of critical attachment behaviors of the human sentence processor. The
model is highly restricted in that its computational architecture is constrained by indepen-
dent computational and linguistic factors. The behavior of the model is not explicitly built
into its architecture, but rather emerges from the interaction of these independently moti-
vated assumptions. Although it may be possible to achieve human-like performance with a
less constrained parser—for example, by building in human behaviors as explicit heuristics—
a model that does so yields little insight into the computational properties underlying the
human ability to process attachment ambiguities. By developing a model whose attachment
behaviors fall out from its restricted computational design, we can gain a deeper understand-
ing of the problem of natural language parsing and how to capture this complex behavior in
a computational system.

The design of the competitive attachment model 1s based on three primary architectural
assumptions that determine the essential characteristics of the parser. The first assump-
tion is that the model is a hybrid connectionist network in which processors that represent
syntactic phrases locally communicate simple symbolic features and numeric activation to
determine their parse tree structure. This framework entails that there is no global controller
in the parser; rather, all parsing decisions are made in a distributed fashion by the syntactic
phrasal processors. The chief restrictions on the model follow from two additional assump-
tions: There are no inhibitory connections between nodes in the network, and the network
structure is determined dynamically in response to the input. This chapter describes these
three fundamental computational assumptions that constrain the architecture of the parser.
Each of these design decisions is discussed with regard to its computational and linguistic
motivations.

3.1 A Hybrid Connectionist Parsing Network

Recent research in Artificial Intelligence (AI) has focused on determining the relative merits
of two competing paradigms of human information processing. Traditionally, intelligent
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behavior has been modeled within a serial, symbolic processing paradigm. In this approach,
a powerful global processor manipulates symbols that represent information in the problem
domain. The symbolic information typically takes the form of rules that encode the general
structure of a solution to a given class of problems. These rules are applied to an input to
build a structure that corresponds to a solution to a particular problem.

Newer approaches in Al have described intelligent processes as the global behavior that
emerges within a massively parallel network of computationally simple processing units (for
example, Anderson, 1983; Fahlman, 1981; Feldman & Ballard, 1982; McClelland et al., 1986;
Reggia & Sutton, 1988; Rumelhart et al., 1986; Smolensky, 1988). Each processor can only
perform simple computations on numeric values, and communicate the results in parallel
to all of its neighboring nodes in the network. The solution to a problem consists of a
pattern of numeric activation distributed across the processors. There is no process that
centrally controls or interprets this distributed information, hence the global behavior of the
system arises solely from local numeric computations in the network. This connectionist
paradigm has strengths and weaknesses that are complementary to the traditional models of
intelligence;! this fact has led to investigations of combining the two approaches in so-called
hybrid models of intelligence (for example, Hendler, 1987; Kimura, Suzuoka, & Amano, 1992;
Slack, 1991; Vosse & Kempen, 1991; Waltz & Pollack, 1985; Wermter & Lehnert, 1989).

A close examination of the problem of structural disambiguation in natural language
parsing has motivated the design of a hybrid model in the research presented here. The
process of resolving an ambiguity has two components: identifying the grammatical attach-
ments for a syntactic phrase, and choosing the preferred attachment from among those.
Thus, one aspect of structural disambiguation involves the competence of the parser, since
linguistic knowledge determines which attachment alternatives are grammatical. The other
aspect of the task brings in performance factors; computational restrictions prune the space
of attachment possibilities, and determine which of the valid attachments to adopt.?

This bipartite division of the factors involved in structural disambiguation mirrors the
opposing approaches to modeling intelligence in AI. Traditional symbolic processing mod-
els have proven successful at encoding and manipulating discrete competence knowledge.
This paradigm allows a natural language parser to directly represent the symbolic linguistic
knowledge needed to describe tree structures and the grammatical relationships within them.
Connectionist models, on the other hand, have demonstrated their usefulness for integrating
the multitude of factors affecting performance. Connectionist approaches to NLU can natu-
rally simulate the extralinguistic conditions, such as priming effects, that play an important
role in determining the preferred interpretation of a sentence (for example, Cottrell, 1989;
Waltz & Pollack, 1985). The motivation for a hybrid approach to structural disambiguation
arises from the necessity of capturing within a single model the abilities of each of these two

'For an in-depth discussion of the potential weaknesses of connectionist approaches within the domain of
language processing, see Pinker & Prince (1988).

2By separating the structural disambiguation task into these two components, I am not claiming that
they are independent subtasks. The division is simply a characterization of the types of information brought
to bear on the problem.
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information processing paradigms.

The question, of course, is how to combine these divergent approaches in a principled
way. In fact, linguistic and computational factors independently motivate the basis for the
competitive attachment model as a massively parallel network integrating the two tech-
niques of symbolic constraint satisfaction and numeric spreading activation. First of all, a
network architecture allows for a direct mapping of the necessary linguistic knowledge into
the computational framework. A recent advance in linguistic theory has been to adopt a
so-called “principles and parameters” approach to capturing human linguistic knowledge
(Chomsky, 1981, 1986a). This type of approach is a reaction to serious drawbacks of rule-
based systems, in which the construction-specific nature of rules can lead to extremely large
grammars, with rules that do not generalize well to new constructions or to other languages.
Government-Binding theory (GB), which embodies the principles and parameters approach,
replaces traditional rules with a set of simple features and general (non-construction-specific)
constraints. In GB, the validity of syntactic structures is achieved by locally satistying the
grammatical constraints among neighboring syntactic phrases. The distributed network
model developed here is able to directly encode this formulation of linguistic knowledge as
a set of simultaneous local constraints. Syntactic phrases are independent processors that
actively try to satisfy the constraints on potential attachments through the strictly local
communication of relevant grammatical features.

In addition to its ability to directly capture a well-motivated linguistic theory, the nature
of the proposed model also allows it to avoid the computational problems associated with
traditional rule-based systems. Even with a parallel architecture, memory limitations are
quickly exceeded if reasonable coverage of a language 1s attempted through construction-
specific rules. Furthermore, it 1s difficult to extend a set of rules to increase its coverage of a
language, and a set of rules developed for one language can rarely serve as the basis for the
grammar of another language. Representing grammatical knowledge as a set of simultaneous
declarative constraints makes the parser’s knowledge base more compact and more amenable
to future extensions (Berwick, 1982).

Further computational considerations of the parsing process motivate the proposal of a
hybrid architecture that integrates spreading activation into the symbolic network model.
First, a local, discrete decision-making process among parallel alternatives can get “stuck”
in an inconsistent solution without the benefit of a global overseer. By gradually amassing
activation within a mutually supporting set of attachments, spreading activation methods
can avoid the complex communication protocols required by purely symbolic approaches to
local, distributed decision-making. Second, spreading activation is able to capture diverse
performance factors within a single mechanism. For example, recency, frequency, and salience
can all be translated directly into activation through the use of decay, weights, and priming,
as shown in Figure 3.1. Level of activation then provides a meaningful way of comparing
the relative influence of these various performance effects, as well as a means of encoding
the result of their interaction.

In conclusion, this first computational assumption establishes the basic framework of the
model as a massively parallel, distributed network that integrates aspects of symbolic and
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Figure 3.1: Sample network in which spreading activation can integrate diverse performance
factors. The ¢ (input) nodes are activated serially; their activation decays over time, cap-
turing recency effects. The weights from the ¢ nodes to the a (answer) nodes can encode
frequency information. The p nodes represent salient information; they prime certain @ nodes
by outputting activation to them. The input to the a nodes is a function of the weighted ac-
tivation from the ¢ and p nodes, and thus the level of activation of each answer is determined
by a combination of these recency, frequency, and salience effects.

numeric processing. The parser has the ability to manipulate symbolic linguistic information
and to build structure, but processing is limited to local communication of simple features
and numeric activation. Spreading activation captures the performance factors involved in
syntactic processing, such as weighing evidence for alternative attachment possibilities. Since
there is no global overseer, control of the parsing process is distributed among the processors
that represent syntactic phrases. Each syntactic processor must immediately and actively try
to group itself with previously structured phrases in the developing parse tree. This active,
distributed parsing process is constrained in a principled way by the other fundamental
properties of the model, described below.
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Figure 3.2: Competition through direct inhibition. Nodes A and B suppress each other’s
activation by sending negative output to each other. For example, the output from A to B
18 —.3 times the activation of A.

3.2 Competitive Behavior in the Model

Typically in a connectionist network, a processing unit represents some symbolic feature or
hypothesis relevant to the problem domain, and the numeric activation of the unit encodes
the strength of belief in that hypothesis. A “solution” in the network then consists of the
highly active units. The independent processing units converge on a solution by locally
communicating numeric activation among themselves. A unit receives activation from each
of i1ts neighbors in the network, combines this input with other information to determine its
new activation level, then in turn outputs activation to its neighbors based on its current
level of activity. This iterative process is stopped when the network reaches a pre-defined
acceptable state—for example, when the activation level of each node is above some threshold
6 or below some threshold ¢. The goal is that the set of nodes that are active in the acceptable
state represent a well-defined solution to the given problem.

Since a consistent solution cannot allow units representing incompatible alternatives to
be active simultaneously, competition among them plays an important role in the successful
convergence of a network. In most connectionist models, processing units representing in-
compatible hypotheses compete by directly suppressing each other’s activation levels. The
relationship between two competing nodes is represented by an inhibitory connection between
them—a connection that has a negative weight associated with it, as shown in Figure 3.2.
Each unit sends a negative activation value to its incompatible neighbor by multiplying its
output activation by the negative weight associated with the inhibitory connection. The
negative input then acts as a direct influence to lower the activation of the receiving node.
The intent is that as each node attempts to suppress the other, one will steadily decrease in
activation, while the other’s activation increases. Eventually the latter node will be the only
active one of the pair. Thus, the use of inhibitory links can force a winner-take-all competi-
tive behavior that ensures that only one of a set of incompatible nodes may be active when
the network reaches an acceptable state.

An alternative approach to producing useful competitive behavior is through a technique
called competition-based spreading activation (CBSA) (Peng & Reggia, 1989; Reggia, 1987,
Reggia, Peng, & Bourret, 1991; Sutton, 1992). In this approach, competing processing
units vie for a portion of the fixed amount of activation being output from a common
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Figure 3.3: Competition through competition-based spreading activation. Nodes A and B
have no direct connection to each other; instead, they indirectly compete for the output
allocated to them proportionally from node C, as in equation 3.1.

source (another processing unit); see Figure 3.3. The source node uses a CBSA method to
determine how to apportion its available output activation, sending more of its output to the
competing node with the higher activation. For example, a simple CBSA output method is
the following:

ajwji

k

(3.1)

Oji

where:

0j; 18 the output from node n; to node n;;

a; is the activation of node n;;

wy;  1s the (positive) weight on the connection from node n; to node n;; and
k ranges over all nodes connected to node n;.

The distinguishing feature of this output function is the reference to the activation levels of
n;’s destination nodes.®> This function says that the source node n; will send to the destination
node n; a percentage of n;’s activation based on the ratio of n;’s activation to the sum of the
activations of all of n;’s destination nodes. Thus, the more active destination nodes receive
a higher proportion of n;’s output. Although within this approach two competing nodes do
not directly suppress each other’s activation, apportioning the output to them based on their
current level of activation can also achieve a winner-take-all behavior (Reggia, 1987). In this
case, 1t is the gradual decrease of positive input, rather than the increase of negative input,
that eventually “turns off” all but one of a set of competing nodes.

In summary, there are two potential methods for achieving competitive dynamics within a
connectionist network. The use of direct inhibition is an approach in which the actual struc-
ture of the network encodes the necessary competitive relationships. Competition is brought
about by means of explicit inhibitory links between any two incompatible alternatives. By

3This is in contrast to a traditional output method, in which the output that a source node sends to
each destination node is affected only by the activation level of the source and the weight on the outgoing
connection.
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contrast, with the use of CBSA the competitive relationships are implicitly determined by
the output function of a node, with no structural effect on the network. Competition is
instead realized through a method of allocating activation from a source to its neighbors.
Determining which of these approaches is most appropriate to the model here requires first
considering the role of competition within the parser—that is, what do the processing nodes
represent, and what competitive relationships are necessary in order to achieve a consistent
network solution?

As stated in the previous section, the competitive attachment parsing network is com-
posed of processors representing syntactic phrases. Furthermore, additional processing units
represent the potential attachments between those syntactic phrases.* Figure 3.4 shows part
of an example network.® The syntactic nodes in the network are activated in response to
the input words of a sentence, and remain active throughout the parse (although their level
of activation does decay over time). An attachment node, on the other hand, is created
between a pair of syntactic nodes that are potential sisters in the developing parse tree; it
becomes active to the degree to which there is grammatical and extragrammatical evidence
for its inclusion in the tree. When the network is in an acceptable state, the set of active
attachment units will represent the attachments comprising the syntactic structure that the
parser is building. Clearly not all potential attachments can be included in the parse tree;
some attachments are incompatible with each other within a well-defined tree structure.
Thus, since the network must focus activation onto a subset of the attachment nodes, it
is those nodes that are relevant to an examination of the competitive relationships in the
network.

For example, the subnetwork depicted in Figure 3.4 has more attachment nodes than
are allowed to be activated in a valid parse tree. Here the verb know, represented by the
V node, may have the NP node or the IP node as its sister in the parse tree; the possible
attachments are represented by attachment nodes a; and a respectively. (In the parser, the
object of know is attached as a sister to the V node.) Only one of these attachment nodes
may be active when the network settles, since know can only have a single object; a; and
as are therefore competing nodes in the network. This fact may be represented either by
creating a direct inhibitory link between them, as in Figure 3.5, or by having the V node
employ a CBSA output function to bring about their indirect competition, as in Figure 3.6.

CBSA was selected as the mechanism by which to choose between sister attachments
because the approach directly captures the relevant characteristics of this type of competitive
relationship. It is natural for a node to have information about the type of sisters it prefers,

“Explicit representation of an attachment as a processor is a necessity in this type of model. A connection
in the network between two syntactic units cannot represent an attachment in the parse tree, since there
would be no way of distinguishing which connections between phrases are the actual syntactic attachments
and which are simply network communication links.

°In the parser, attachment nodes represent a sister relation between phrasal nodes in the parse tree. In
this and all other figures, attachment nodes are depicted as small squares, which are white when inactive
and black when fully activated. Phrasal nodes are shown as large circles with the category of the phrase
displayed inside.
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_ attachment nodes
- | (a-nodes)
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phrasal nodes
- (p-nodes)
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know Sara past

Figure 3.4: Part of the network of syntactic phrases and attachments that is generated given
the input sentence: [ know Sara ran.

) inhibitory links

know Sara past
Figure 3.5: Competition between a; and a, manifested by an explicit bidirectional inhibitory

link between them. The V node outputs the same activation to each of a; and a,, which
then try to suppress each other with negative output.
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know Sara past

Figure 3.6: Competition between a; and a, 1s brought about by the V node’s CBSA output
function. The output from V to a; and a, is proportional to each one’s activation; a; and
a5 have no direct connection to or affect on each other.

and for it to apportion its output activation among potential sisters accordingly. For example,
the lexical entry for a verb specifies what kinds of complements it takes, and what the
relative preference for those complement possibilities are. A V node in the network uses this
information, which it inherits from its lexical entry, to directly affect the symbolic features
and numeric activation passed to the V’s attachment nodes. It is a straightforward extension
for the V node to bring about the indirect competition between its attachment nodes by using
a CBSA function to determine its output to them.

By contrast, it is much less justifiable for the competing attachment nodes to have a
direct influence on each other, as would be required by an approach to competition based on
using inhibitory links. The semantics of an attachment within the parse tree is determined
solely by the properties of the two phrases that are attached, and not by the relation of
the attachment to other potential attachments.® Using inhibitory links to create a direct
relation between any two competing attachment nodes would therefore not conform to the
direct mapping established thus far in the model between the parse tree semantics and the
network structure.

CBSA therefore seems the most natural and effective means for accomplishing this pri-
mary competitive behavior in the model. The goal of restrictiveness motivates taking a
uniform approach to competition by prohibiting the use of inhibitory links as an alternative
means of achieving competitive behavior. Thus CBSA was adopted as the sole competitive
mechanism within the parser. It will become clear in the following sections that this is a
highly restrictive assumption, with far-reaching consequences for the design and behavior

6The knowledge that the attachments are mutually exclusive is external to the attachment itself, and
1s in fact a property of the phrases being attached. The CBSA approach recognizes this by encoding the
property of mutual exclusiveness within the phrasal nodes, from which it originates.
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of the model. For that reason, it is especially important to note that, as with the first
fundamental design decision, this one too is well-motivated by computational and linguistic
considerations.

Several computational benefits directly follow from the sole use of CBSA to effect com-
petition, and the lack of inhibitory links in the model. First, some space efficiency is gained,
since the need for a large number of inhibitory links is eliminated. In a parsing network of
n phrases, there are O(n?) possible attachments;” thus, in an approach based on pairwise
inhibition between competing attachment nodes, there are O(n*) potential inhibitory links.®
Second, the use of CBSA is actually more flexible in its ability to easily allow for a multiple-
winners-take-all relationship among a set of competing nodes (Reggia, 1987). This ability is
crucial to the correct behavior of the stack data structure in the parser, which is discussed
in Section 4.1.3.

A third important computational benefit follows from the restrictiveness of these assump-
tions. If direct inhibition is used, any two processing units in a network may be made to
compete by establishing inhibitory links between them. Using inhibitory links, a parser could
create all possible attachments, and direct inhibition would in principle be able to prune the
set of attachments down to those that form a valid tree. The use of CBSA, on the other
hand, relies on the competing units being connected to a common unit that brings about
the competition between them. The network must be structured so that any incompatible
attachment nodes that are created are able to compete through CBSA. The parser is forced
to perform some of the pruning of incompatible attachment nodes by actually limiting which
attachments are created.® The effect is to reduce the number of attachments that are estab-
lished at each step of the parse. While the total number of possible attachments among n
phrases is n(n + 1), a maximum of 4n of these is allowed under the restrictions of the CBSA
approach.

The restrictiveness of the network structure that falls out from the CBSA assumption
1s also motivated by linguistic considerations. An important aspect of Government-Binding
theory is the notion of locality: constraints on grammatical relations among syntactic phrases
apply within very restricted local domains—for example, between sisters in the parse tree
(Chomsky, 1986b; Rizzi, 1990). By requiring a direct mapping from the parse tree semantics
to the network structure, the model ensures that a local relation between two nodes in the

"The exact number of possible attachments among n phrases in the network is: 2?21 2i=n(n+1).

8In one formulation of the network, which used CBSA where possible, and direct inhibition for all other
pairs of incompatible attachment nodes, the precise number of inhibitory links required was (n*—4n3+8n? —
5n)/6. Thus the sentence Women know Sara ran, whose representation uses 8 syntactic phrases, required
420 inhibitory links. Note that this large number is in fact a reduction over a pure direct inhibition approach,
since CBSA was employed wherever possible.

9Note that this means that the use of CBSA, like the use of inhibitory links, does in fact entail that the
structure of the network be altered in response to the requirements of the competitive relations. However,
with CBSA the necessary change in structure is a decrease in the size and complexity of the network, while
the use of inhibitory links involves a dramatic increase in size and complexity. Precisely how the restrictions
imposed by CBSA determine which attachments can be created will be made clearer in Section 4.1.3.
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network is a local relation within the parse tree represented. That is, two nodes are directly
connected in the network only if they are neighbors in the parse tree. Thus, locality in the
network 1s equivalent to locality in the parse tree. By comparison, allowing inhibitory links
between arbitrary attachment nodes could clearly violate the locality restrictions derived
from the parse tree semantics. It would be possible for two nodes that are distant in the
parse tree to directly communicate with and affect each other in the network. In that
situation, adhering to local communication in the network would not guarantee that the
locality conditions of GB were respected. By prohibiting inhibitory links, the model imposes
limitations on the network structure that help to maintain the locality constraints of GB.

3.3 Dynamic Instantiation of Syntactic Phrases

In the design of a hybrid symbolic/connectionist processing model, one of the issues that must
be decided is how structure is manipulated in order to solve a problem. Traditional symbolic
models typically build new structure as the solution to a problem, while connectionist models
solve problems by activating a subset of the pre-existing structures that have been built into
the network. The traditional approach imposes fewer constraints on the possible solution
structures, since it is not necessary for the solution to exactly match a pre-determined, fixed
structure. Rather, symbolic rules provide a means for creating and combining structures in
a general way, allowing a more flexible response to conditions in the input. This flexibility
has a price, however, in that any needed structure must be computed on-line during the
problem-solving process.

The connectionist approach avoids this complex, on-line computation by replacing the
creation of solutions with the recognition of solutions. One effect of this technique is to
more highly constrain the solution space by restricting the possible solutions to a set of
pre-computed, fixed patterns. But while the restrictiveness of this approach avoids the
potentially expensive on-line computation, it entails a different kind of inefficiency. Because
all possible solutions must be anticipated in the structure of the network, there can be a
great deal of redundancy in the network that can use an inordinate amount of space.

This is in fact a potential problem in many connectionist models of natural language
parsing. Grammatical knowledge in these systems has typically been encoded in context-
free “rule templates,” such as those shown in Figure 3.7 (Cottrell, 1989; Fanty, 1985; Selman
& Hirst, 1985). The problem is that the number of each type of rule template in the network
must be the maximum necessary to parse some arbitrary sentence in the language. But
this number might be much larger than that needed to parse the vast majority of sentences
that the model would be exposed to.!° Although not a real disadvantage in demonstration

100f course, because of the unbounded recursive structure of natural language, there is no maximum
number of templates for a particular rule type that would allow all the sentences of a language to be parsed.
Thus, this type of connectionist approach is in fact limited to parsing fixed length sentences. To avoid this
limitation in practice requires imposing a relatively high maximum on the number of templates. The point
is that any maximum adopted—for example, one based on when human performance breaks down—would
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the woman saw the child

Figure 3.7: (a) A typical representation of tree structure knowledge in a connectionist parser.
Multiple copies of a rule template exist for representing multiple instances of the application
of the rule within a single sentence. The small squares represent “binding nodes” that link
together the applicable rule templates to form the parse tree structure. (b) The shaded
nodes are those that are active given the input The woman saw the child.

systems, the issue of how such an approach will scale up to more realistic-sized parsing
applications cannot be ignored.

The intention here is to find a middle ground between these two contrasting problem-
solving methodologies. Since the goal of this research is a restrictive model of on-line pars-
ing, the standard traditional approach may be too unconstrained in the structures it allows,
and too inefficient in the time needed to compute the necessary parse trees. However, the
constraints of strict connectionist methods may be too restrictive to allow reasonable re-
sponsiveness to variability in the input, without encountering unnecessary space inefficiency.
The competitive attachment model avoids these potential problems by striking a compromise
between the ability to create an arbitrary network structure on the fly and the commitment
to a totally fixed network structure.

The strategy adopted here is to allow dynamic creation of the parsing network, but to

still be much larger than that which is needed to parse most sentences.
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(a) (b)

has_Case: has_Case: *none*
has_category: has_category: V

selects_category: selects_category: *none*

assigns_Case: assigns_Case: Acc

assigns_theta: assigns_theta: theme

selects_category: selects_category: (N | C)
know

Figure 3.8: (a) Generic template for a syntactic phrase in the network. (b) Template with
features instantiated based on the word know.

greatly restrict the structure building abilities of the parser. To create syntactic structure,
the parser activates one of the syntactic phrases in a pool of generic phrasal templates,
instantiates the symbolic features of the phrase according to the specific features of the
current input word, and connects the instantiated phrase to the developing parse tree. There
is only one kind of phrasal template, which can be used to represent any type of syntactic
phrase; Figure 3.8 shows the template and a sample instantiation.'’ Thus, the size of the
template pool only needs to be as large as the maximum number of phrases expected for any
sentence, which i1s approximately equal to the number of words. This avoids the prohibitive
space requirements of pure connectionist approaches.’?> On the other hand, on-line structure-
building cost 1s kept low by limiting the parser’s structural operations to the activation of
existing templates and the setting of simple features within them.

The model also achieves a balance in the restrictiveness of the structures it can represent.
Although the fixed templates highly constrain the form of syntactic structures, the instanti-
ation process allows for greater flexibility than that found in approaches based entirely on a
fixed network structure. In particular, the model allows important information in the input
to naturally guide the parse, since the critical features of a phrase are established based
on the current input. For example, the weight on the connection from a phrasal node to
an attachment node is determined by the lexical features of the phrase. This allows the
network to dynamically take into account the strength of expectation of a node for a sister
with particular features.

1 Other work in natural language processing based on Government-Binding theory has used similar generic
phrase structure rules that are instantiated with specific features; see, for example, Dorr (1993) and Merlo
(1992). The work here further explores the benefits of this type of representation within a distributed parsing
approach.

12In the previously mentioned connectionist approaches, because of the static, @ priori allocation of the
networks, each type of rule must have the maximum number of copies available in the network, which means
the network is far larger than needed for any given sentence.
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The decision to dynamically create the parsing network raises the issue then of precisely
when these generic phrasal templates are instantiated and connected to the developing parse
tree. Most natural language parsers perform some degree of top-down hypothesizing of
phrase structure. For example, when a parser for English encounters a determiner such as
the word the in the input, in all likelihood i1t will immediately build the structure for a noun
phrase, even though it has not yet seen the noun. While the presence of a determiner in
English is proof of a noun to follow, there are other cases that may not be so clear. For
example, although an adjective usually occurs within a noun phrase, it might not; consider
The children are happy campers and The children are happy. Especially in models that
consider multiple attachment possibilities in parallel, it is common for a parser to build
syntactic phrases that are based on inconclusive evidence, and that may end up not being
part of the final parse tree.

In a parser that consists of active syntactic processors, hypothesizing syntactic phrases
in this way can greatly complicate the local communication and decision-making methods,
since hypothesized phrasal nodes would have to behave differently from other phrasal nodes.
More crucially, in a network that considers a large number of alternatives in parallel, acti-
vating phrases based on incomplete evidence could quickly overload the system. Thus the
approach taken here of dynamically building the parsing network naturally leads to a restric-
tion on top-down precomputation of structure. The competitive attachment parser can (and
must) establish all potential attachments between existing phrases, but it can only activate
the syntactic phrases themselves in response to overt, incontrovertible evidence in the input.
The remainder of this section will discuss the motivations for these two design decisions—the
dynamic instantiation of fixed phrasal templates, and the prohibition on top-down precom-
putation that follows from this assumption.

The computational reasons for building the network by instantiating uniform templates
have already been presented above as the motivating factors for this approach. It was
argued that this decision allows the model to achieve a balance in the space/time trade-off
of structure building versus structure recognition. The approach also incorporates a lexically-
driven aspect into the model that enables the parser to respond to conditions in the input
in a straightforward yet flexible way.

The decision to limit the activation and instantiation of phrases to those with overt
evidence in the input also has several computational justifications. It reduces the number
of different types of nodes in the network and simplifies the specification of the processing
algorithms they use, since hypothesized nodes would have different properties from “normal”
phrases. This assumption also avoids the necessity of stipulating a cut-off point in how much
structure is hypothesized. It is clear that unbounded hypothesizing of structure could lead
to a network that is too large to be practical, so some bound must be determined. Activating
phrases only in response to overt evidence yields the advantage of not having to establish
some arbitrary bound. It also has efficiency benefits, because the number of active phrases is
kept to a minimum. Furthermore, since hypothesized phrases are not activated, attachments
to them cannot be represented in the network, and thus the number of attachment nodes
that are established is also reduced.
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Linguistic motivations for these two related design decisions were also of great importance.
The use of a generic phrasal template in the parser is inspired by the lack of phrase structure
rules in GB. X theory, a subsystem of GB, characterizes all phrases as having the same fixed
structural shape, with differences in grammatical behavior entailed by features inherited
from the lexical entry corresponding to the input. The lack of top-down precomputation in
the model is also mirrored in the grammatical theory on which it is based, and is another case
in which the linguistic principles map directly to the computational framework. A central
notion in GB is that a syntactic phrase is projected from essential features of its head—for
example, a noun is the head of a noun phrase, and its core features determine the existence
of the NP, as well as its specific properties. The restriction to activating phrases only given
bottom-up evidence in the input is the computational correlate of the condition of projecting
a phrase from the features of its head.

3.4 Summary

This chapter has described the background and motivations for the three primary architec-
tural assumptions of the competitive attachment model of parsing. Much of the justifica-
tion for the design decisions stem from a desire to build a restricted computational parsing
architecture—one whose computational power is limited by algorithmic simplicity and effi-
ciency, as well as linguistic plausibility. Restrictions on the operation of the parser that are
well-grounded in computational and linguistic considerations are much more likely to lead
to behavior that matches human expectations in a principled manner. The remainder of the
thesis will describe the properties of the model that result from these assumptions, and the
behavior that emerges from them.
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Chapter 4

Overview of the Model

This chapter provides a high-level description of the competitive attachment parsing model.
Section 4.1 presents an overview of the model, explaining in detail how the design constraints
from Chapter 3 are reflected in the features of the model and in the restrictions on its pro-
cessing abilities. In Section 4.2, an example parse demonstrates the resulting operation of the
parser. Section 4.3 concludes the chapter with an explication of the parser’s critical attach-
ment behaviors that underlie its ability to process ambiguities in a human-like manner. It
will be shown that each of the crucial aspects of the model’s behavior is a direct consequence
of the well-motivated assumptions that form the basis for the parser’s design. The intent of
this chapter is to provide an understanding of the overall design of the parsing model and
the key aspects of its attachment behavior. The description of the implementation of the
parser in Chapters 5 and 6 will fill in more complete details of the model, and Chapter 7
will fully explicate the results of the system on example syntactic ambiguities.

4.1 Description of the Model

This section gives an overview of how the parser operates, describing the details of the
parsing model that follow from the design constraints presented earlier. Section 4.1.1 focuses
on the properties of the processing nodes and how they are structured in the network.
Section 4.1.2 explains how symbolic knowledge and numeric activation are integrated within
the approach. Section 4.1.3 describes the additional constraints on the structure of the
network that follow from the decision to use competition-based spreading activation as the
sole focusing mechanism in the model.

4.1.1 The Network Structure

A syntactic phrase is represented by three nodes, an X, X', and XP, each of which is an
independent processor; the label “X” is a generic name for a parsing node that can be in-
stantiated as, for example, N (noun) or V (verb). Having one processor for each of the three
phrasal nodes, rather than one processor for the complete phrase, encourages a modular de-
sign in which processors are specialized by phrase level. All syntactic processors perform the
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(a) @ (b)

@ (x) ()— ()
/
specifier of X' ° @ °

complement of X

Figure 4.1: (a) Basic configuration of a phrase in X theory. (b) Representation of the X
attachment relations within the competitive attachment model.

same algorithms, but the types of features that they store and communicate vary according
to their level in the phrase. The resulting processors are simpler and less powerful than the
processor for an entire phrase would have to be. For example, the processor for each node
mediates exactly one attachment site—an attachment to its potential sister node.

The restriction of representing a phrase with a fixed number of nodes follows from the
decision to dynamically build the network by instantiating fixed phrasal templates. The
precise number of nodes is determined by considerations of X theory, which specifies the
properties of each level of structure within a syntactic phrase. A complement of a phrase,
such as the object of a verb or preposition, is attached as a sister to the right of the lowest
level node, the X. A specifier of a phrase, such as the determiner in an NP, is attached
as a sister to the left of the middle level node, the X’.! The highest level of the phrase,
the XP node, is what in turn attaches as a specifier or complement to some other phrase.
These X attachment relations are shown in Figure 4.1.2 Note that in the parser, a parse tree
connection between two separate X phrases is encoded as a sisterhood relation.®

Even though they are independent processors, multiple nodes of a single syntactic phrase
obviously have a close relationship to each other. The three nodes constitute a single phrasal
entity and are attached to each other in any parse tree containing the phrase. In the parsing
network, the three processors are thus connected to each other by direct communication
links, which are distinguished from other network links. These links implicitly represent
branches in the parse tree. The additional branches of the parse tree are represented explicitly
by processing units called attachment nodes. There are bidirectional links between each
attachment node and two phrasal nodes; these phrasal nodes are potential sisters in the

1The direction of attachment is language-dependent; the attachment directions given in the text are for

English.
’In this and remaining figures, fully activated attachment nodes are shaded black.

3In the current implementation of the parser, only specifier and complement attachments are made. The
extensions to handle adjuncts are discussed in Chapter 8.
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Figure 4.2: (a) An attachment node representing a specifier relation connects to an XP level
node and an X’ level node. (b) An attachment node representing a complement relation
connects to an XP level node and an X node.

parse tree. One of the phrasal nodes is an XP node and the other is either an X or X’ node.
Figure 4.2 shows the two types of attachment relations in the network.

There 1s one special kind of phrase in the model that consists of a single XP node, called
an empty node. An empty node corresponds to a trace in Government-Binding theory. A
trace 1s a place-holder for the logical position of a syntactic phrase that is displaced within
a sentence. For example, consider the sentence:

Who; did Mary kiss ¢;

The index ¢ on the trace e indicates that the trace is a place-holder for the word who, which
shares this index. The relationship between who and its trace allows the parser to determine
that who is the logical object of kiss, even though it does not occur in the position normally
held by that object. The trace ¢; does stand in this position, and transfers the relevant
features to who. Since a trace obviously does not overtly appear in the input, the occurrence
of an empty node in the network must be determined by other properties of a sentence. Thus
empty nodes cannot be allocated the way normal phrases are. Instead, two empty nodes are
activated along with the activation of each full syntactic phrase; these empty nodes act as
the potential empty complement and empty specifier of the phrase. The initial configuration
of a phrase with its empty nodes is shown in Figure 4.3; empty nodes are labeled with the
letter “e.”

4.1.2 Activation of Processing Nodes

The parser maintains a finite pool of phrasal nodes and attachment nodes from which the
parsing network is created. Allocating processing nodes from a fixed pool requires the
development of memory management techniques. A processing node that is activated and
connected to the parsing network is said to be allocated; one that is inactive and available
in the memory pool is said to be deallocated. Because a phrase is represented by three
independent processors, these three nodes must maintain the same numeric activation level
so that they can be allocated and deallocated as a complete phrase. Phrases are initially
activated by the input, and this activation decays slowly over time. When the activation
level of a phrase drops below a given threshold, the template becomes available for reuse.
However, a phrase that participates in a recent part of the parse tree should not be re-
allocated for use as another phrase. Thus, when a phrasal node activates a new attachment,
its own activation (and that of its entire phrase) is boosted accordingly.
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empty nodes

Figure 4.3: Two empty nodes are activated with each phrase, and attached in the specifier
and complement positions.

An attachment node determines its level of activation by processing both the grammatical
features and the numeric activation that it receives from each of its two phrasal nodes. This
process is an iterative one in which information is communicated among the nodes in the
network, and the activation level of each attachment node gradually becomes fixed. The
resulting activation level indicates the strength of preference for an attachment between the
two associated phrasal nodes to be included in the parse tree. The network is said to be in an
acceptable state when the activation level of each attachment node is either above a certain
threshold 6 (the attachment node is “on”), or below some threshold ¢ (the attachment node
is “off”).*

There are several factors that affect the activation level of an attachment node. Although
purely symbolic in nature, the grammatical features passed to an attachment node play an
important role in its activation function. These features specify relevant linguistic informa-
tion such as “the category of the XP is noun” and “the X node expects an XP sister of
category verb.” There are universal constraints embodied by each attachment node that
determine the effect of the combination of these symbolic features on the activation level of
the attachment node. Every attachment node applies the same constraint algorithm to its
feature values; this algorithm is a computational encoding of certain central grammatical
constraints in Government-Binding theory. For example, some of the relevant constraints
are the following:

e Selection: The category of an XP must match the category expected by an X or X'.

e Case Filter: An NP in certain syntactic configurations must be assigned Case, which

4This property makes the management of the pool of attachment nodes quite simple: Attachment nodes
that are on self-reinforce over time, since they explicitly represent the structure of the parse tree, while those
that are off directly return to the pool of available attachment nodes.
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is an abstract grammatical feature such as Nominative or Accusative.®

e Theta Criterion: An XP in certain syntactic configurations must be assigned a theta
role, which is an abstract grammatical feature indicating the role (for example, agent
or theme) of the phrase with respect to some predicate.®

It should be emphasized that these constraints are applied at an attachment node. That is,
the constraints do not apply directly to an XP node, but rather to an XP node in a certain
attachment relation to another node.

The effect of the constraint algorithm is to increase the potential activation level of an
attachment node in proportion to the degree to which the given constraints are satisfied.
Furthermore, a general computational restriction states that two different values specified
for the same feature must be compatible; if this restriction is violated, the attachment node
1s invalid and set its activation level to 0. For example, an attachment node might receive a
feature from its X node stating that it expects an XP sister of category verb, and a feature
from its XP node stating that its category is noun. Since these two features specify two
different values for the category of the XP node, the attachment node would immediately
become inactive.

In addition to the effect of symbolic constraint satisfaction, the activation level of an
attachment node depends directly on the numeric input from its associated phrasal nodes.
In order for an attachment node to become fully active, it must receive the entire output
from each of the two phrasal nodes. In fact, for the network to represent a consistent parse
tree, the two phrasal nodes connected to each attachment node must “agree” either to turn
the attachment node on, by both sending it all of their output, or to turn it off, by both
sending it none of their output. Each of the phrasal nodes determines its output to an
attachment node using a competition-based spreading activation function. A phrasal node
may be connected to a number of attachment nodes, and it divides its output activation
among them, proportional to their current activation level.” When the iterative processing
of information in the network brings about an acceptable state, each phrasal node will have
chosen a single attachment node to activate.®

>Case in Government-Binding theory is a technical term that refers to an abstract feature that is some-
times, but not always, visible in the phonetic form of a word. For example, the word he has Nominative
Case, while him has Accusative Case. However, Case in English is not generally reflected in the form of a
noun.

SThose readers familiar with GB will recognize that this is only “half” of the Theta Criterion. The other
part of the Theta Criterion states that a predicate assigns each of its theta roles to exactly one phrase. This
1s accomplished indirectly in the parser through constraints on the number of attachments to a node.

"The phrasal node’s output function also takes into account the weights on the links to the attachment
nodes, as in the CBSA function shown in equation 3.1 on page 21. The role of weights in the parser will be
discussed in more detail in Chapter 7; for now all weights will be assumed to be 1.0.

8Empty nodes are an exception. Each empty node connects to a single attachment node that may or may
not become activated. If the attachment node turns off, the empty node is deactivated as well, since it has
lost its connection to the rest of the parse tree.
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Figure 4.4: Example pairs of incompatible attachments that CBSA alone cannot prevent
from being active simultaneously.

4.1.3 The Stack

The proportional allocation of output discussed above brings about competitive behavior
between attachment nodes, focusing the activation in the network and helping it to converge
on a comnsistent parse tree solution. It turns out, however, that if attachment nodes are
created between all possible pairs of appropriate phrasal nodes (that is, all combinations of
XP and X nodes, and XP and X’ nodes), then the use of CBSA is not sufficient to prevent
the simultaneous activation of some incompatible attachment nodes. Figure 4.4 shows the
types of structures in which CBSA is an insufficient competitive mechanism; both structural
configurations involve violations of the proper nesting structure of a parse tree. The problems
arise from the fact that, for CBSA to bring about competition between two nodes, they must
be connected to a common node on which they both depend for input activation. In each of
the subnetworks of Figure 4.4, attachment nodes a; and as have no such phrasal node that
outputs activation to both of them, so there is no mechanism by which to bring about their
competition.

For this reason, additional steps must be taken in structuring the network to ensure that
the parse tree represented is a valid one. One possibility would be to retract the model’s
prohibition on the use of direct inhibition. Then inhibitory links could be created between
any two attachment nodes whose simultanecous activation would lead to an invalid parse tree.
The computational and conceptual problems of this direct inhibition approach were discussed
in Section 3.2. These problems, which were the motivation for prohibiting inhibitory links
in the model, arise from the unrestrictiveness of the approach. So the preferred technique
here is to find a way to restrict the model more, not less, in order to solve the problems
exemplified in Figure 4.4.°

°In an earlier version of the model, an attempt was made to investigate the feasibility of using inhibitory
links to ensure the validity of the trees created by the parser. The resulting network was large and quite
structurally complex, due to the unrestricted number of attachment nodes and the complicated inhibitory
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stack of phrases top of stack current phrase

Figure 4.5: The stack of partial parse trees, and the current input phrase. The current
phrase may establish attachments only to the right edge of the tree on top of the stack.

The solution adopted in the competitive attachment model is to impose structure on
the network that ensures that the use of CBSA is sufficient to rule out any incompatible
attachment nodes. An obvious structuring mechanism, used in more traditional parsing
frameworks, is to maintain a stack of partial parse trees during the parse. Introducing a
stack mechanism into the competitive attachment model greatly restricts the creation of
potential attachments. The parser allows new potential attachments to be established only
between the current input phrase and the right edge of the partial parse tree on the top of
the stack, as shown in Figure 4.5. (Details of the parser’s stack mechanism will be presented
shortly.) Even given this restriction, it is clear that there are incompatible attachment
nodes that do not compete through CBSA. For example, attachment nodes a; and as in
Figure 4.5 correspond to the incompatible attachment nodes a; and a5 in Figure 4.4(b), and
their simultaneous activation is still not directly ruled out by CBSA. Surprisingly, however,
the restrictions on connections in the network now guarantee that incompatible attachments
such as these cannot be simultancously active. Each non-empty phrasal node must activate
a single attachment, and a pair of phrasal nodes must agree to turn the attachment node
between them on or off. These local decisions have consequences that propagate through
the constrained connectivity of the network, and ensure a global solution in which the set of
active attachment nodes forms a valid parse tree.

In order to see how this propagation of the results of local competitions works, some

patterns that had to be established among them. This level of complexity within a connectionist network sig-
nificantly decreases the chances of developing simple spreading activation methods that allow it to converge.
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CURR

Figure 4.6: A syntactic phrase pushes itself onto the stack when its XP node activates the
CURR attachment node connected to the stack node.

important properties of the stack must first be understood. The stack data structure is
maintained through a single stack node in the network. It should be emphasized that this
stack node is not a global control mechanism, but a simple network processing node. Like
phrasal nodes, the stack node has connections to attachment nodes that it must decide to
turn on or off. When a syntactic phrase is initially activated by some input word, it may
either attach to the developing parse tree, or it may push itself onto the stack, in order to
structure itself with later input. In the current implementation of the parser, all syntactic
nodes—XP, X', or X—attempt to activate exactly one attachment node. The way a phrase
pushes itself onto the stack is for the XP node of the phrase to activate an attachment node
between it and the stack node. This relationship is shown in Figure 4.6.1° The attachment
node connecting the stack node to the current input phrase will be referred to as CURR.

The stack node may have connections to additional attachment nodes as well; these
attachments represent the result of previous push operations. There is thus a list of the
attachment nodes that connect to pushed phrases, with the attachment node representing the
most recent push operation referred to as TOS (top of stack), and the rest of the list referred
to as REST.'! Figure 4.7 shows the stack and its potential attachment node connections.
The stack clearly must be able to simultaneously activate more than one attachment node
in order to maintain the attachments to all of the pushed phrases. The activation of nodes
on the REST list 1s straightforward because the phrases that these attachment nodes are
connected to are not participating in current attachment decisions. The stack must maintain
their status on the REST list simply by sending them constant activation.

The stack’s potential activation of CURR and TOS is more complicated. The current

10Recall that fully activated attachment nodes are shaded black.

1The length of the REST list—and hence the depth of the stack—is not currently restricted; a plausible
model would have to impose some restriction on the size of the stack. However, in the range of English
examples tested, the REST list never had more than one element.
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Figure 4.7: The stack node and its attachment nodes, which are used to maintain the stack
structure.

Figure 4.8: Potential attachments between the current phrase (CURR) and the phrase on
the top of the stack (TOS).

input phrase may push itself onto the stack by activating CURR, or it may activate attach-
ments to the partial parse tree on the top of the stack, which also affects the status of the
CURR and TOS nodes. Consider the situation depicted in Figure 4.8, where a phrase of
category X is on the top of the stack and a phrase of category Y is the current input. There
are three possible attachment outcomes between these two phrases:

1. As shown in Figure 4.9, the YP may attach as the complement of the X node, while the
XP remains on the top of the stack. In this case, the TOS attachment node remains
active and the CURR node is inactive.

2. Alternatively, Figure 4.10 shows that the XP node may attach as the specifier of the
Y’, entailing that the X phrase has popped itself from the stack. In this case, the TOS
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Figure 4.10: The TOS phrase attaches as the specifier of the CURR phrase.

attachment node becomes inactive and the CURR node becomes active.

3. Finally, there may be no valid attachments between the X phrase and the Y phrase,
and the current phrase must take the default action of pushing itself onto the stack. In
this case, both TOS and CURR are simultaneously activated, as in Figure 4.11.

In order to accommodate each of these attachment possibilities, the stack uses a CBSA
function to allocate activation to TOS and CURR. But this output function, in contrast
to that of the phrasal nodes, allows for multiple winners. So while at least one of TOS
and CURR must receive output from the stack, both may receive output simultaneously, as
needed for case (3) (shown in Figure 4.11).

Now that the basic stack mechanism has been presented, let us return to the example
in Figure 4.5, repeated here as Figure 4.12, in which the stack attachment relationships are
explicitly shown. (Attachments as and ag correspond to the incompatible attachments a;
and a, in Figure 4.5.) It is now possible to show how the propagation of local attachment
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Figure 4.11: No valid attachments between the CURR and TOS phrases.

decisions ensures a globally consistent set of active attachment nodes. Although this example
will present the attachment decisions as a series of discrete choices, the actual computation
of these decisions in the parsing network is a process in which the nodes gradually adjust
their activation levels over time. Thus, this is not a trace of how the network arrives at these
decisions, but rather a determination of what the logical possibilities are for the simultaneous
activation of attachment nodes within the network. In particular, let us consider the case of
attachment nodes as and ag being active simultaneously.!? Assume that a, is active. This
means that the XP node must be sending all of its output to @, and thus a; cannot be on.
Since the stack must activate at least one of a; and ag, then ag must be on. We now have
the situation as demonstrated in Figure 4.13. Since the ZP node can activate only a single
attachment and ag is on, both a3 and ag must be off. Therefore as and ag cannot both be
active; the network now looks like Figure 4.14. To complete the example, it is easy to see
that attachments ay, a7, and a;o must be on, while a5 and ag must be off. The final network
1s shown in Figure 4.15.

One additional constraint is necessary to ensure that the network represents a valid parse
tree. Recall that when a syntactic phrase is activated, it may either attach to the tree on the
top of the stack, or it may push itself onto the stack. At this point, before another phrase
is processed, all “losing” attachment nodes (those which are off) must be deallocated. This
prevents the inactive attachment nodes from being re-activated later and, at that point,
invalidating the tree structure. Thus when each input phrase is activated, the network is
guaranteed to be in a state in which the addition of new attachments will maintain a valid
parse tree representation.

12This is just one example; the same process of propagating competitive relations ensures that any other
pair of incompatible attachment nodes also cannot be turned on simultaneously.
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Figure 4.12: The set of potential attachments between CURR and TOS includes attachments,
such as ay and ag, that are incompatible but do not compete through CBSA.

Figure 4.13: Propagation of local competitive decisions. If as is on, then a; must be off. If
ay 1s off, then ag must be on.
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off.

Figure 4.15: Propagation of local competitive decisions. Final results of assuming that a-
becomes active: as, a4, ar, ag, and ajo are on; ay, as, as, ag, and ag are off.
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4.2 A Parsing Example

The previous section provided an overview of the parser’s structuring operations, and the
symbolic and numeric processing that takes place in the resulting network. This section
provides a high-level description of how the model parses an example sentence, The woman
knows Sara ran. Details of the symbolic information underlying the attachment decisions of
the parser, and the numeric processing that carries out the decision making, will be deferred
to the following two chapters. The intent here is to give a higher-level view of how the parser
proceeds step by step through the input, gradually building up a tree structure representation
of the sentence by activating the appropriate attachment nodes. However, it should be noted
that, although the description is at a high level, the behavior described here 1s precisely that
of the implemented parser.!®

The input to the parser i1s a list of tokens corresponding to the words of the sentence.
For simplicity, a verb is specified by two tokens, one representing the tense features of the
verb (for example, present or past), and one the root of the verb (for example, know or
run).'* This step is taken because tense features such as present are the “overt evidence”
the parser requires to build a sentential clause; the prior analysis of the verb makes the
parser’s task easier by extracting these features ahead of time. The input token list for the
example sentence is thus “(the woman present know Sara past run).”

When an input token is processed, the preprocessor of the parser looks up the word in
the lexicon, then activates a phrasal template and instantiates it with the features from the
lexical entry.!® For example, the instantiation of a phrasal template in response to the word
know is shown in Figure 4.16. Along with the activation of each phrase, two empty nodes
are also activated; one of the empty nodes is connected with an attachment node to the X
node, and one is connected with an attachment node to the X’ node.'® (For this example,
the reader may assume that an attachment to an empty node acts as the default attachment
for an X or X’ node. If a non-empty XP node attaches to the site instead, then both the
empty node and its associated attachment node are deallocated.) An attachment node is
also set up between the XP node of the new phrase and the stack; this is the stack’s CURR
attachment node. Next, all the potential specifier and complement attachment nodes are
established between the current phrase and the right edge of the tree attached to the stack’s
TOS node, as was shown in Figure 4.5 on page 37.17 After the new input phrase is thus

13The parser is implemented in Allegro Common Lisp, using the CLOS object oriented package. The
parser in actuality runs serially, simulating the parallel processing of the network.

MNote that this is done solely to simplify the implementation, and is not intended to be an implicit claim
that such a preprocessing step is morphologically plausible.

15The parser is simplified by having a preprocessor perform certain tasks that are difficult to achieve in
a strict connectionist framework, and whose behavior is essentially irrelevant to the ambiguity processing
mechanisms of interest here.

16The initial configuration of a phrase with its empty nodes was shown in Figure 4.3 on page 34.

17Although at present this task is also performed by the preprocessor, it is easily accomplished in a
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Input Lexical Entry
"know" ——p KNOW: complement-list = (N | C)

CateGORY KNOWLEDGE

|

has_Case: *none*
has_category: V
selects_category: *none*

assigns_Case: Acc
assigns_theta: theme
selects_category: (N | C)

know

Templates Instantiated Phrase

Figure 4.16: The lexical entry corresponding to an input word, along with associated category
information, is used to instantiate a newly activated phrasal template.

connected to the stack and the developing parse tree, the iterative symbolic and numeric
processing of the resulting network is triggered. The processing loop halts when the network
settles on an acceptable state.’® At this point, the losing attachment nodes are deallocated,
and the stack’s pointers are appropriately revised. The parser is then ready to process the
next input token.

Let’s turn now to the actions of the parser given the input “(the woman present know
Sara past run).” The initial state of the parser is shown in Figure 4.17. The stack node has
no connections to attachment nodes, so its CURR and TOS pointers are nil.'® Figure 4.18
shows the network after the first token, the, is processed, and a determiner phrase DtP is

distributed fashion given the feature-passing capabilities of the parsing network.

1®8Recall that an acceptable state is one in which each attachment node is either fully activated or is
inactive. In some rare cases discussed in Chapter 5, the network does not achieve such a state, and the
processing loop is halted when the number of iterations surpasses some constant. In this case, the network is
in a state in which at least one phrasal node has not made a clear choice between its attachment possibilities.
This situation did not occur in any of the simulations on actual linguistic input; see Chapter 5 for further
discussion.

19Gince the stack’s REST list is not needed in this example, it will not be depicted in the figures. The
value of REST is nil throughout the parse.
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TOS : nil CURR : nil

Figure 4.17: The initial state of the parser has a single stack node with no phrasal or
attachment nodes activated yet.

TOS: nil

the

Figure 4.18: When the is processed, a determiner phrase is allocated and connected to the
stack. (The phrasal nodes of a determiner phrase are labeled DtP, Dt’, and Dt.)

allocated for it.2° Since there is no phrase already on the stack (its TOS pointer is nil), there
are no other potential attachments to be created. Note that this means that each of the
three attachment nodes shown in Figure 4.18 have no attachments with which they compete.
At this point, the parser initiates the symbolic and numeric processing within the network.
When the network settles, the three existing attachment nodes are active. The CURR node
being active means that the current input phrase has pushed itself onto the stack; it now
becomes the top of the stack, as shown in Figure 4.19.

The parser now activates a phrase for woman, and connects it to the stack through the
CURR attachment node. Because there is a phrase on the stack, all potential attachments
between it and the current phrase must be established. These are shown in Figure 4.20;
there is a potential specifier attachment between the DtP node and the N’, and a potential
complement attachment between the Dt node and the NP. Now there are sets of competing
attachments: a; and as; ay and a7; a4 and as; a4 and ag. Once again the network’s iterative

20A determiner does not actually trigger a full phrasal structure; the full structure is shown in this example
just to make the determiner phrase the same as other phrases. This does not affect the attachment decisions
made by the network.
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Figure 4.19: The DtP has pushed itself onto the stack.

Figure 4.20: The parser allocates an NP for woman, and connects it to the stack and the

TOS phrase.

processing is initiated; when it settles, the DtP has attached as the specifier of the NP.%
Figure 4.21 shows which attachment nodes are now active. The DtP has popped itself from
the stack, and the NP has pushed itself onto the stack. Once the losing attachment nodes
are deallocated and the stack’s pointers updated, the state of the parser is as shown in
Figure 4.22.

The parser now reads the next input token, present. The lexical entry for present triggers

Z1Determiners of a noun occupy the specifier position in the noun phrase. There is nothing in the parser
that prohibits the alternative DP analysis of the determiner/NP relationship, which is a common approach
in GB theories of phrase structure (Abney, 1986; Speas, 1990).
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the woman

Figure 4.21: The attachment of the DtP to the N’ is active after the network settles.

CURR : nil

Co— ()
() (V)

@ woman

Figure 4.22: State of the parser after the losing attachment nodes are deleted and the stack

the

pointers are updated.

the instantiation of a sentential phrase, which is known as an IP (inflection phrase) in X
theory.?? The IP is connected to the stack, and all logical attachment possibilities between it

22A full sentential phrase in X theory is actually a CP (complementizer phrase), of which the IP is a
subtree. The parser does build a full CP and IP pair of phrases for tensed clauses, but this example is
simplified to only display the IP. No attachment decisions are altered by this simplification. Chapter 7
presents examples with full sentential structure.
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@ woman present

Figure 4.23: Attachment nodes established between the NP on the stack and the new IP.

and the NP on the stack are established; see Figure 4.23. Note that no attachment nodes are
set up between the determiner phrase and the current input. Since the determiner phrase
1s not along the right edge of the tree on the top of the stack, it is unavailable for further
attachments. The parser again triggers the iterative processing of the network. In X theory,
the subject of a sentence is represented as the specifier of the inflection phrase. Thus when
the network settles, the NP has attached to the I', and the IP has pushed itself on the stack.
Figure 4.24 shows the network after the inactive attachment nodes are removed and the
stack’s pointers are updated.

The parser next activates a VP and connects this phrase as before to the stack. Once
again, potential specifier and complement attachment nodes are established between the
current phrase (the VP) and the phrase on top of the stack (the IP). The VP of a sentence
attaches as the complement of the inflection phrase; the active attachments after the network
settles are shown in Figure 4.25. This is the first time in the parse that the current phrase
has not pushed itself onto the stack. Since the stack must activate at least one of TOS and
CURR, the IP remains on the top of the stack.

The parser now processes the input token Sara, and connects its phrase to the existing
network. Figure 4.26 shows that the parser establishes attachment nodes between the current
phrase and the entire right edge of the tree on top of the stack. The NP has a valid attachment
possibility as the complement of the V, and so it makes this attachment; the outcome is shown
in Figure 4.27. However, this attachment cannot be part of the final parse of the sentence,
in which the clause Sara ran is the complement of the V. When the parser processes the
next token, past, it allocates the IP phrase that represents this clause. The new attachment
nodes are shown in Figure 4.28. The appropriate parse of the sentence can be achieved by
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CURR : nil

Figure 4.24: State of the parser after the losing attachment nodes are deleted and the stack
pointers are updated.

Figure 4.25: Active attachments after the network settles on the VP to I attachment.
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Figure 4.26: All potential attachments between the current NP and the phrase on top of the
stack.

turning off the attachment of the NP to the V, and turning on the attachments of the IP to
the V and the NP to the I'. The network settles on this solution, as shown in Figure 4.29.

The parser processes the final input token, run, and attaches the current VP to the most
recent I node. Figure 4.30 depicts the final state of the parsing network. A parse is successful
when, as in this case, both CURR and REST are nil, TOS is non-nil, and all phrasal nodes are
connected to exactly one active attachment node. The TOS attachment node then points to
the root of the parse tree for the input sentence. The parse tree represented by this network
1s shown in Figure 4.31.

4.3 Critical Attachment Behaviors

This section concludes the chapter with a discussion of the key aspects of the behavior of the
competitive attachment model, which are a direct result of the design decisions presented in
Chapter 3. Recall the three fundamental computational assumptions of the model: (1) The
basic architecture is that of a hybrid connectionist network integrating symbolic and numeric
computation. (2) Numeric decision-making is focused through competition-based spreading
activation (CBSA), and the parser uses no inhibitory links. (3) The network is established
through dynamic instantiation of generic template nodes, and top-down hypothesizing of
structure is prohibited. The critical attachment behaviors of the parser will be presented
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Figure 4.27: State of parser after the losing attachment nodes are deleted and the stack
pointers are updated.

here in terms of the design assumptions from which they arise, referring to the example in
Section 4.2 to illustrate the properties that are discussed.

The distributed network architecture gives rise to the parser’s basic style of competitive
attachment behavior, which follows from attachments being active, independent processing
units. All potential attachment nodes that have been established are active simultaneously,
and many of these attachments may compete with each other. Because there is no global
decision-making mechanism in the model, the syntactic phrases must connect up with each
other to form a network of communicating phrases—a phrase that is unconnected to the rest
of the network can have no effect on the parse. Thus, if an attachment node is valid—that is,
if its two phrasal nodes communicate compatible feature values to it—then the node actively
competes for activation and tries to turn itself on. It is imperative that attachment nodes
do so, since this establishes the connections in the parsing network. It is also crucial that
the stack’s ability to activate attachment nodes be somewhat weaker than that of phrasal
nodes. Since the attachment to the stack i1s always a valid option for a new phrase, if that
attachment node (CURR) were activated as strongly as parse tree attachments, processing
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Figure 4.28: All potential attachments between the current IP and the phrase on top of the
stack.

a sentence could comsist of pushing each of the input phrases onto the stack and never
attaching them to each other within a parse tree structure. The result of these competitive
attachment behaviors is that phrases try to quickly attach themselves into an unambiguous
syntactic structure; Chapter 7 will illustrate how this behavior leads to preferred resolutions
of ambiguities that match human preferences.

The hybrid nature of the network is also crucial to its attachment behavior. Attachment
decisions depend entirely on local, distributed decision-making among the stack, phrasal,
and attachment nodes. Grammaticality is determined by symbolic feature-passing through
the parsing network. Deciding between grammatical alternatives is made possible by the use
of spreading activation to gradually settle on a globally consistent and preferred solution.
For example, consider the point in the example of Section 4.2 at which the parser revises
its initial attachment of the NP; see Figure 4.28 on page 53. There is more than one set
of grammatically valid attachments that may logically be activated. The NP may maintain
its current attachment to the V., while the IP pushes itself on the stack; alternatively, the
NP may revise its attachment and become the specifier of the IP, which in turn replaces
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Figure 4.29: Active attachments after the network settles. The attachment of the NP Sara
has been revised.

the NP as the complement of the V. The use of spreading activation allows the network
to settle on the preferred solution in which the IP is incorporated into the current parse
tree as the complement of the verb, as in Figure 4.29. This simultaneous attachment of the
current phrase and revision of earlier attachments to accommodate it underlie the ability of
the parser to model the reanalysis of structure in the human parser.?®

The active attachment behavior of the parser is refined by the two additional computa-
tional assumptions that were adopted in the design of the model. The use of CBSA, and
the adoption of a stack mechanism to support this, strongly restrict the attachments that
can be considered by the parser. The only attachments that can compete simultaneously
are those in the set of attachments between the current phrase and the tree on the top of
the stack. In fact, the competitions among the allowed attachment nodes completely define
a circumscribed set of logical attachment possibilities for both initial and revised attach-
ments in the parser. These logical attachment possibilities are shown in Figure 4.32; they

23 Again, the examples of Chapter 7 will substantiate this claim.
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CURR : nil

Figure 4.30: Final state of the parsing network.

follow directly from the propagation of local competitions among the attachment nodes, as
discussed in Section 4.1.3. The direct and indirect effects of CBSA thus greatly constrain
the attachment decisions made by the parser. For example, revising the attachment of the
post-verbal NP in the example parse above is possible only because that revision involves
one of these sets of logical attachment possibilities. In contrast, Chapter 7 will demonstrate
cases where the parser makes initial decisions that cannot be revised as needed. In these
sentences, the necessary attachments do not constitute one of the valid attachment sets de-
fined by the competitive constraints; these are cases of “garden-path” sentences that people
have difficulty parsing as well.

Another effect of the use of CBSA and the stack is to strengthen the property that a
phrase must actively try to connect itself through attachment nodes to the developing parse
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Figure 4.31: Parse tree corresponding to the network in Figure 4.30.

tree. In particular, an attachment node between two phrasal nodes must strongly compete
for activation. This is because attachment nodes that lose their competition are deallocated;
an attachment node that doesn’t win now can never win at a later time in the parse, simply
because it won’t exist. For example, when the NP Sara in our example parse is first allocated,
1t must activate its initial attachment to the V node; problems will arise if it waits to see
if a more preferred attachment will come along later. Suppose the attachment is not made,
and the NP pushes itself onto the stack in a “wait-and-see” strategy, as in Figure 4.33. If
the sentence now ends (as in The woman knows Sara.), the parse will fail because the NP
is not connected to the parse tree for the rest of the sentence. There is no mechanism for
re-establishing the necessary attachment node between the NP and the V. This property as
well is key to the ability of the model to mimic human behavior; Chapter 7 will demonstrate
how it accounts for some well-documented structural preferences.

The decision to dynamically instantiate the network leads to active memory management
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Figure 4.32: Logical possibilities for simultaneous activation of sets of attachment nodes, for
an example TOS tree that is three phrases deep. (Ounly the right edge of the tree on top of
the stack is shown, since the left side is unaffected by new attachments.) Attachments a;
through a4 were previously activated. If all of these attachments remain active, then nq, ns,
and ns must become active; in this case, no attachments are made between CURR and TOS,
and CURR pushes itself onto the stack. To attach CURR and TOS, the following must occur:
exactly one of the prior attachments, a;, must become inactive, and the corresponding pair
of attachments, p;, must become active. This relationship holds for a TOS tree of arbitrary

depth.

a

techniques that further constrain the attachment behavior of the parser. For example, the
decay of the activation of phrasal nodes is responsible for the parser’s tendency to favor
attachments to more recent parts of the parse tree. In the example above, the attachment
(shown in Figure 4.30) of the final verb run to the most recent IP, rather than to the previous
IP in the sentence, is aided by this recency effect. The fact that this behavior is a side-effect
of an independently justified memory management mechanism allows the model to account
for the robust recency effects in human parsing in a principled way.

Dynamic instantiation of the network also motivated the prohibition on top-down com-
putation, which again restricts the parser’s active attachment behavior. Structures that are
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Figure 4.33: State of the parser if the NP Sara pushes itself onto the stack instead of
attaching to know, given the input “(the woman present know Sara...).”

possible but not incontrovertible cannot affect the competitions between attachment nodes.
Recall that the expectation for a phrase can be activated only by evidence in the input—that
1s, an attachment node can be created only between two existing phrases in the network, and
a phrase can be allocated only given overt evidence. Thus in our example, at the point of
processing the NP Sara in Figure 4.26, the verb’s expectation for an IP complement as well
as an NP complement cannot affect the competition of the NP node for that attachment site.
No attachment node exists to represent the hypothetical possibility of an IP complement.
Thus the NP attaches to the V, and when the evidence for an IP occurs later in the input,
1t necessitates a revision of this earlier attachment decision, as shown in Figure 4.29. Again,
this basic parsing behavior mimics a number of human behaviors that will be discussed in
detail in Chapter 7.

In conclusion, important aspects of the parser’s attachment behavior strictly follow from
a small set of well-motivated architectural assumptions underlying the model. These as-
sumptions themselves directly rely on a set of mutually supporting computational and lin-
guistic factors, so that in fact the attachment behaviors arise from these more fundamental
principles.?* Each of the behaviors discussed in this section is crucial to the results on struc-

24Thus, like the approaches of Gibson (1991) and Pritchett (1992), the competitive attachment model
attempts to derive ambiguity resolution behaviors from properties of the grammatical theory. A difference in
the approach taken here is that there is less emphasis on the precise effects of particular syntactic constraints

98



tural disambiguation to be presented in Chapter 7. Because each behavior can be traced back
to basic assumptions about the natural language parsing process, we can directly evaluate
how well these underlying principles are supported by the results of the model.

from the theory, and more emphasis on the architectural encoding of a constraint-based style of syntactic
representation.
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Chapter 5

Numeric Processing in the Parser

This chapter provides a detailed description of the numeric processing aspects of the com-
petitive attachment parsing model. Parsing natural language within a massively parallel
framework, without the use of rule-based knowledge to a prior: constrain the network struc-
ture, i1s an unprecedented challenge to the competitive activation approach. The numeric
activation techniques developed here represent a successful extension of competitive acti-
vation methods to the most complex and unstructured networks yet attempted. A large
number of systematic simulations demonstrate the effectiveness of the techniques for con-
trolling the spread of activation within a wide range of parsing configurations. The numeric
functions enable the processing nodes to converge on a correct and consistent set of parse
tree attachments in over 98% of the 1365 test configurations, establishing the competitive
attachment model as a robust approach to natural language parsing.

Section 5.1 begins with a brief introduction to numeric processing in the parsing net-
work. Section 5.2 describes the input, activation, and output functions that constitute the
competitive spreading activation process in the network. Section 5.3 presents the results of
the numeric functions within a large number of network configurations; these simulations
demonstrate the basic attachment behaviors that arise from the numeric processing of the
parser. Section 5.4 concludes with a discussion of some of the limitations of the numeric
functions and parameters used by the parser.

5.1 Overview of the Numeric Processing

Each time the parser processes a new input word, by allocating its X phrase and connecting
the phrase to the existing network, the numeric processing of the network is triggered. Each
node performs a numeric update/output processing loop, which re-computes the node’s
numeric functions. The nodes in the network are synchronized so that the update routines
are performed simultanecously within each node, followed by the simultaneous computation
of output. Updating a node consists of determining the amount of its numeric input, and
calculating its new activation level accordingly. The output portion of the loop computes
the amount of activation to be sent from a node to each of its neighbors. This spreading
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begin {Process Input Sentence}
while there are more input tokens do
{Each pass through this loop is a run of the network.}
Get next input token.
Allocate an X phrase for the current input token.
Initialize attachment nodes between the current phrase
and the top of the stack.
Reinitialize competing attachment nodes.
until the network is an acceptable state do
{Each pass through this loop is an iteration of the network.}
for each node in the network do
Update(node).
for each node in the network do
Output(node).
end {Process Input Sentence}

Figure 5.1: The iterative algorithm for processing the nodes of the network.

activation loop continues until the network reaches an acceptable state.! An acceptable
state of the network is defined as one in which each phrasal node sends all of its activation
to exactly one of its attachment nodes, and each attachment node is either turned on (fully
active) or off (inactive) by its phrasal nodes. In such a state, the active portion of the
network forms a valid parse of the input seen thus far.

In the following, a run of the network refers to one complete cycle of network processing,
beginning with the creation of a new X phrase and ending when the network achieves an
acceptable state that incorporates the phrase into the parse. There is a run of the network
for each token that is input to the parser. An iteration of the network is a single step through
the update/output loop for all of the nodes in the network. Since the network iterates until
it reaches an acceptable state, the number of iterations per run depends on properties of the
competing attachment nodes within that run. An overview of the network processing is given
in Figure 5.1. The remainder of this chapter will fill in the details of this numeric processing
algorithm, and demonstrate the algorithm’s effectiveness on a wide range of inputs.

'In some rare configurations, the network does not reach an acceptable state, and so the loop has a
bound on the number of iterations it can perform. The cases in which the network does not converge on an
acceptable set of attachments are discussed in detail in Section 5.3.4.
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H Function H Definition H

ext-in The input to a node from a source that is external to the
network.

mn The input to a node from other nodes within the network (re-
ferred to as the “within-network input”).

act The activation level of a node.

out The output of a node to other nodes in the network.

Table 5.1: The four numeric activation functions used in the parser.

5.2 Spreading Activation Functions

As noted above, spreading activation in the parser is implemented by a loop of update and
output functions called by each node in the network. The nodes of the network are defined
by an object-oriented hierarchy in which different types of objects are processing nodes that
have appropriate methods defined for computing the given functions.? There are four types
of nodes: phrasal nodes (p-nodes), empty phrasal nodes, attachment nodes (a-nodes), and
the stack node. Empty nodes are a subtype of p-node in the object hierarchy. Surprisingly,
the stack node is also a subtype of p-node; the stack, both symbolically and numerically,
behaves like a degenerate phrasal node. Attachment nodes are quite different from these
other three types of nodes, although a-nodes and p-nodes share a common parent called
“numeric node.”

All numeric nodes call the same functions within the update/output loop of the network,
but the particular computation performed for each function depends on the type of node.
That 1s, each spreading activation function is a generic function whose effect in a given
context depends on the type of node that calls it. There are four such numeric functions
defined; see Table 5.1.%> Since there are four types of node objects, each function name is
subscripted with a symbol to indicate the appropriate method of computing the function.
For example, in, refers to the within-network input calculation for a p-node; out,, refers to
the method of computing the output from a p-node to an a-node. Symbols may be further
subscripted to indicate the particular node performing the calculation: out,;,, refers to the
output of p-node p; to a-node a;.

The update portion of the spreading activation loop consists of a sequence of calls to the
ext-in, in, and act functions; the output portion of the loop comsists of calling the single

% As stated earlier, the parser is implemented using the CLOS object oriented package of Allegro Common
Lisp.

3This does not mean that there are 16 different functions (4 functions x 4 node types) defined in the
parser, since a subtype of a node often inherits a given function from its parent type. There are actually 9
different functions defined: the four basic functions for p-nodes, all of which are shared by the stack node
and three of which are shared by empty phrasal nodes; a separate activation function for empty phrasal
nodes; and the four basic functions for a-nodes. Three of the functions shared by the subtypes of p-nodes
use a single different constant value in the inherited function.
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function out. The loop is executed at each tick of the network’s discrete time clock; thus,
each function is recomputed at each time ¢. This time parameter is not explicitly shown in
the following formulas, unless the calculation of a function refers to two different times (the
current time ¢ and the preceding time ¢ — 1). In the default case, the time of each function
within a formula refers to the same time ¢.

The value of each function is in the range 0 to 1.0, unless explicitly stated otherwise in
the text.

5.2.1 Phrasal Nodes

Each phrasal node, or p-node, receives a fixed external input of 1.0; this external input
represents the activation of the p-node by an input token.* The p-node also receives input
from the a-nodes to which it is attached; this latter input is summed to yield the p-node’s
in function (whose result may be greater than 1.0):

iny,(t) = Z‘mtmaj (t—1) (5.1)

where:
iny,(t) is the within-network input to p-node p; at time .
outp,q,;(t) is the output from a-node a; to p; at time ¢.

The activation level of the p-node is set to the maximum of its external input and the
summed input from its a-nodes, minus a decay factor:

act,, = max|ext-in,, in,,] — oy, (5.2)
where:
acty, is the activation level for p-node p;.
ext-in, is the external input for p-nodes (currently set to 1.0).
1M, is the within-network input for p;.
Op; is the decay factor for p;.

Since the summed input from its a-nodes may be less than 1.0, the external input places a
minimum of 1.0 on the value of a p-node’s activation. This is important because it means that
the amount of activation that a p-node has for dividing among its competing attachments is
high even at the beginning of a run of the network. This strong input to the a-nodes allows
them to more quickly increase in activation.

While the external input places a minimum on the activation level of a p-node, the
summed input from the a-nodes has the effect that the p-node’s activation level may in fact
be greater, in proportion to the input from its a-nodes. This ensures that the p-node has

*Lexical ambiguity would lead to multiple projections for a single input word; the external input would
then be divided among these projections. See Section 8.2.1.
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TOS @ CURR

OmOmO

Figure 5.2: All previously processed X and XP nodes connect to exactly two a-nodes, but
the number of a-nodes that the current X’ and XP connect to depends on the depth of the
right edge of the partial parse tree on the top of the stack. In this example network, each of

WP, W, XP, X, YP, and Y connect to two a-nodes, while each of ZP and Z' connect to four
a-nodes.

more activation to output in the case where it has more potential attachments that it is
choosing between. In parsing, the p-nodes of the current phrase might have more than two
attachment possibilities, while the previously processed phrasal nodes on the top of the stack
will always have exactly two; this situation is demonstrated in Figure 5.2. Since two p-nodes
must agree to turn on an attachment node, it is important that the output activation of
the current p-nodes is not “diluted” by the fact that they may have more choices to decide
between. If the current p-nodes had an equivalent activation level to spread among more
a-nodes, their vote in turning on an a-node would be unfairly disadvantaged.

In addition to the external and within-network inputs, there is a final component of a
p-node’s activation function, the decay factor ¢,,. In the simple case, this decay factor is a
function of the difference between the current time and the time at which the p-node was
created. This is to ensure that a syntactic phrase will eventually become inactive, so that its
nodes can be re-used if needed; the least recent portion of the parse tree will become inactive
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first. When a p-node participates in a new attachment, however, the amount of its decay
needs to reflect that more recent participation in the parse tree. Thus the decay factor must
be a function of the difference between the current time, ¢, and the time of the most recent
attachment for a phrase, ¢,,. In the current implementation, the following linear function is
used: .05(t — t,,).

The output function of a p-node is a little more complex than its input and activation
functions. As described in Chapter 4, a p-node must proportionally allocate its activation
among its a-nodes using a competition-based spreading activation (CBSA) mechanism. The
precise function used by p-nodes is the following:

(acta;” + q)wgtj;

outy.,. = 5.3
T Y (acts,” + g)wgh >3
k
where:
outy;p; 1is the output from p-node p; to a-node a;.
acty; is the activation of a-node a;.
acty, is the activation of p-node p;.
wgt j; is the (positive) weight on the connection between p-node p; and
a-node a; (weights are symmetric).
k ranges over all a-nodes connected to p-node p;.
v is the competitive exponent (explained in the text).
q is the competitive additive factor (explained in the text).

This function is a variant of the CBSA function given in equation 3.1 on page 21; it states
that a p-node divides up its output activation to its a-nodes in proportion to their weighted
activation. The weighted activation:

(acts;” + q)wgtj; (5.4)

includes the constants v and ¢, which determine the degree of competition induced by the
out,, function.® Increasing the value of the exponent v makes the competition more pro-
nounced, since any difference in the activation of the competing a-nodes is magnified by,
for example, squaring or cubing the activation values. Increasing the value of the additive
factor ¢, on the other hand, makes the competition less pronounced, by “swamping out” the
differences between a-node activations with this additive factor.

In the parser, v is gradually increased from 1 to 3 (in steps of 1) during each run of the
network, so that competition is increased over time. This scheme provides an initial time
period in which all of the a-nodes have a chance to amass some activation under conditions
that are not extremely competitive. This less competitive period is crucial because it allows
the network the opportunity to find a globally satisfying set of attachments, rather than

*With v having the default value of 1 and ¢ having the default value of 0, equation 5.3 reduces to
equation 3.1.
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just immediately focusing on the initially preferred set of a-nodes (which might not form
a consistent set of attachments). The competitiveness of the a-nodes must be gradually
increased, however, in order to force the p-nodes to eventually choose a single a-node to
activate, and thus ensure that the network reaches an acceptable state.

The value of ¢ in the parser is effectively 0; it is set to a very small number (1071%)
solely for the purpose of avoiding errors of division by 0 in the case where all of the a-nodes
connected to a p-node are inactive.

Not shown in equation 5.3 is the fact that the output is thresholded; if output to some
a-node is less than the threshold (currently set to .15).° then the p-node sends an output
activation of (0. This thresholding contributes to cleaner competitive behavior, since the
result is that a weakly competing a-node will be turned off more quickly. Output from
p-nodes is also capped; it cannot be greater than 1.0.

5.2.2 Empty Nodes

Empty nodes are a special kind of phrasal node; in the parser’s object hierarchy of nodes
they are a subtype of p-node. The differences in the numeric processing of these two types of
nodes arise from the following fundamental properties. Ordinary phrasal nodes are allocated
in response to evidence in the list of lexical items that are input to the parser, and must
participate in the final parse tree for that sentence. By contrast, empty nodes are automat-
ically allocated with each phrase, but in fact may not be used in the final parse. Evidence
for the existence of an empty node in the parse tree must be gathered from other parts of
the tree. This basic difference in the licensing of the syntactic objects represented by these
two types of nodes is reflected in their spreading activation functions.

It was noted above that the external input of 1.0 to a p-node represents its activation by
a token in the input. Since an empty node has no direct evidence in the input, its external
input is set to a minimal value, and its input from within the network thus takes on greater
significance. The function for computing the within-network input to an empty node is
exactly the same as that for a non-empty p-node, which was shown in equation 5.1. An
empty node has only one potential attachment—a single a-node to which it is connected—
giving the sum a single term.

The activation function for an empty node reflects the primary difference between it and
an ordinary p-node—the fact that while a p-node is strongly activated and gradually decays
over time, an empty node is weakly activated and must gradually amass activation over time
in order to not become inactive (and thus be deallocated). The activation function for an
empty node is similar to that of a p-node in that it involves taking the maximum of its
external input and a function of its within-network input, and incorporates an element of
decay. But the precise formulation is different from that of the p-node activation function
in equation 5.2, and this difference allows the activation level of an empty node to reflect its

SThe value of this threshold, and all other constants mentioned in this chapter, were determined
empirically.
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strength of evidence within the tree. In order to keep the activation level from oscillating,
the activation function is one in which the new activation level is computed as a small change
from the old activation level:

act,(t) = max|ext-in,, (5.5)
(1 — e, )act,(t — 1) + be;ine, (t)]

where:

acte;(t)  1is the activation level for empty node e; at time ¢.

ext-in.  is the external input for empty nodes (currently set to .33).
O is the decay rate for empty nodes (currently set to .1).

ine, (t) is the within-network input for e; at time t (in. = in,).

The current activation level of an empty node is thus the decayed value of its old activation
plus a small portion of the input from its a-node, with a minimum result of ext-in.. The
percentage of decay of the activation level and the percentage of input that is added are the
same, d..

Finally, the output function for empty nodes is the same as the output function for p-
nodes. As with the input function, this function greatly simplifies due to the fact that empty
nodes have a single potential attachment—an empty node outputs all of its activation to the
single a-node.

In summary, the input and output functions for empty nodes are inherited from p-
nodes, although their effect is simpler due to the fact that empty nodes connect to a single
attachment node. The external input to an empty node is a fraction of the amount of
external input to an ordinary p-node, because an empty node needs additional evidence to
justify its participation in the parse tree. Although sharing some of the same elements, the
activation function for an empty node must be different from that of a p-node, because the
activation of an empty node reflects the gradual amassing of evidence for its existence in the
tree.

5.2.3 The Stack Node

The stack node in essence behaves like a degenerate p-node; it is defined as a subtype of p-
node, and its numeric processing is quite similar to that of a non-empty p-node. The external
input to the stack is the same as for p-nodes—it 1s a fixed input of 1.0. Its within-network
input is computed with the same function as that used by p-nodes (equation 5.1)—that is,
in, is the summed input to the stack from its a-nodes. The stack’s activation function is also
inherited from p-nodes (equation 5.2). However, a difference between the stack and other
p-nodes that affects its activation level is that the stack’s decay factor §, is set to 0. Because
the stack node must remain active throughout the parse, there is no decay of the stack’s
activation; besides, there is no need, as there is with p-nodes, to make its node available for
re-use.

The output function used by the stack is also the same as the output function for p-nodes
(equation 5.3). The only difference is that the stack’s output threshold is 0, so that output
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from the stack is not thresholded. An additional difference in behavior arises from the fact
that during a run of the network, the competitive exponent v for the stack node increases
from 1 to 2 only, instead of from 1 to 3 as for syntactic p-nodes. Both of these factors—the
lack of thresholding and the limit on increasing the level of competition—serve to decrease
the level of competition between the TOS and CURR a-nodes connected to the stack. These
two differences in the stack’s output computation are motivated by the need for the stack
to be able to activate both TOS and CURR simultaneously. Unlike p-nodes, the stack node
does not have to choose exactly one a-node to activate, it simply must activate at least one,
and sometimes the necessary behavior is to activate both. The surprising result is that with
only these minor differences between the numeric functions of the stack and p-nodes, there
1s a major difference in the resulting behavior. The stack may appropriately activate either
or both of TOS and CURR, while a p-node always chooses a single a-node to activate.

5.2.4 Attachment Nodes

Phrasal nodes, empty phrasal nodes, and even the stack node, all have very similar numeric
activation functions. This similarity arises from the fact that, although they have important
differences between them, all of these node types have the same basic role within the context
of numeric processing in the network: their primary purpose is to decide whether or not to
activate some attachment node. This section will describe the numeric functions of these
attachment nodes. These functions are quite dissimilar from the ones presented above,
because a-nodes have the very different role within the network of weighing alternative
evidence and boosting or lessening their activation level accordingly.

An a-node has no external input, because its activation depends entirely on the evidence
for its existence that it receives from the phrasal nodes to which it is connected. An a-node
a; has three numeric values that are used in determining its within-network input function:
inputep;, inputey,, and state,,. The values input,,,; and input,,, are the numeric inputs
that it receives from its two p-nodes p; and py; input,,, is equivalent to out,,,, described
above—that is, the output of p-node p,, to a-node a;. For those a-nodes that are connected
to an empty node or the stack, input,,, refers to input from those nodes as well, since they
are subtypes of p-node. The value state,; is computed based on the symbolic features that
are passed to a-node a;. The more grammatical constraints that the a-node’s features satisty,
the higher the state value; invalid features cause the state value to drop to 0. These three
numeric values, input,,,;, inputy,y,, and state,,, are combined in numerical versions of AND
and OR operations to produce the input function for an a-node. The tnanp, tnor, and in,
functions described below were inspired by the corresponding functions in Reggia, Marsland,
& Berndt (1988).

The AND function is as follows:

INAND; = INPULgp; » INPULyyp, - Stateg, (5.6)

Taking the product of the three values indicates that the input to an a-node should be high to
the extent that all three of these values are high. That i1s, an a-node must receive activation
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from both its p-nodes, as well as reasonably satisfying the grammatical constraints on it,
in order to get strong numeric input. This function alone is not a sufficient input function,
however; the a-node must be given a chance to get some activation even if only one of these
components is high. For example, very strong input from one of the p-nodes may convince
the other p-node to increase its output to that a-node.

In order to allow for these numeric components of the a-node to affect the input more
individually, there is an OR function taken into account as well:

inor, =1 — (1 — inputaipj)(l — inputy,,, )(1 — state,, - state-weight) (5.7)

This function is a non-linear accumulative function of the a-node’s three numeric values, and
allows the individual components to have a greater impact on the combined value than does
the AND function. The AND function says that in order for the input to be high, all three
of the components must be high; by contrast, the OR function says that in order for the
input to be high, at least one of the components must be high. Ounly a portion of state,, 1s
used in the OR function (currently state-weight = .25) to ensure that the state value won'’t
dominate the result; it is more important for the p-node inputs to have an individual effect.

The within-network input function for an a-node is a weighted sum of the AND and OR
functions:

Mg; = INAND, * aCly, (5.8)
+ inor, (1 — acty,)

— inoR, actyk

where:

Mg, is the within-network input for a;.

acty; is the activation level for a-node a;. (This function is described below.)
k is a constant between 0 and 1.0 (currently set to .5).

Counsider the first two lines of equation 5.8. These two lines have the effect of weighting the
OR component of the function more when the activation of the a-node is low, and weighting
the AND component of the function more when the activation of the a-node is high. This
essentially means that, initially, an a-node receives activation as long as at least one of
its numeric components (the inputs from its p-nodes or the state) is active. However, as
the a-node increases in activation, it is necessary that all of its numeric components are
highly active for it to continue to receive activation. Thus as the evidence for an attachment
increases, it becomes crucial for this evidence to agree. The higher weighting of the AND
function when the activation of the a-node increases captures the critical semantics of an
active attachment—that it must reasonably satisfy its symbolic constraints (its state value
is high), and it must receive all of the output from each of its two p-nodes (both of its input
values are high).

The last line of the function further emphasizes the centrality of the AND component
in capturing the semantics of an a-node: it subtracts off a fraction of the OR function, in
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order to ensure that the OR component of the input combining function is not weighted
too strongly. The amount subtracted is in proportion to the level of activation; again, this
allows for incomplete evidence for an attachment to initially have some effect, but forces the
evidence to be complete as it becomes stronger.

Finally, the input function has one further component not shown in equation 5.8: if either
of the two input values or the state 1s 0, then in,, is set to 0. If the state value 1s 0, that
means that the attachment violates some grammatical constraint and is therefore invalid;
it must be turned off. If either of the two inputs is 0, that means that the p-node that is
sending no output to the a-node has made a choice not to activate this attachment; again,
the a-node should be turned off.

The initial version of the activation function that employed this input was the following:

acty;(t) = ing(t) (5.9)
+ (1 — ing,; (t))[2acty,2(t — 1) — acty,(t — 1))

where:
actq;(t)  is the activation level for a-node a; at time t.
ing,(t) is the within-network input for a; at time t.

This is the same function as that used for computing activation levels in the print-to-sound
network of Reggia, Marsland, & Berndt (1988).” The effect of the function is that the current
activation level of an a-node a; is set to the current input in,,, plus or minus a fraction of
(1—1in,,;) that is equal to twice the previous activation squared minus the previous activation
(the term 2act,*(t — 1) — acty,(t — 1)). The fraction of (1 — in,,;) that is added to in,, is
positive when the previous activation is greater than .5, and negative when the previous
activation is less than .5. Thus when the activation level of an a-node is greater than .5, the
new activation will be set to the proportionately increased input value; when the activation
level is less than .5, the new activation will be set to the proportionately decreased input
value. As long as the input level is less than or equal to 1.0, the activation level will also
have a maximum of 1.0, since it equals the input plus or minus a fraction of 1 minus the
input.®

In the parser, an additional term was added to equation 5.9 to yield the following final
activation function for a-nodes:

acty;(t) = ing(t) (5.10)
+ (1 — ing, (#))[2act,*(t — 1) — acty,(t — 1)]
+ paiaCtai(t - 1)

"The activation function in that work is stated as the change in activation of a node, and therefore appears
different in form.

8While it is possible for this function to take on values less than 0, this does not happen in practice; it
requires the input to be quite small, and the thresholding of output to the a-nodes prevents this.
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where:

actq;(t)  is the activation level for a-node a; at time t.

ing,(t) is the within-network input for a; at time t.

Pa; is the reinforcement factor for a; (explained in the text).

This function reflects the fact that an a-node 1s self-reinforcing over time; that is, in addition
to 1ts input function, an a-node receives additional activation from itself in proportion to its
age. The amount of additional activation added is the old activation level times p,;, which
is the rate of reinforcement for that a-node. The reinforcing term is necessary to counteract
the gradual decay of the p-nodes to which an a-node is attached; it is desirable for an active
a-node to have a fairly stable activation level, and without this self-reinforcement it will
decay too quickly. In the current implementation, p,, = .025(¢t — t,,), where t,, is the time
that a; was allocated.®

There are some final details of the activation function that are not shown in equation 5.10.
First, the reinforcement term that has been added means that the activation level may exceed
1.0; to avoid this, the function has an explicit ceiling of 1.0. Second, the activation level is
set to 0 if the input 1s 0, regardless of the result of the above function. This ensures cleaner
competitive behavior among the a-nodes.

The output function for an a-node is very straightforward; an a-node simply sends its
weighted activation to its p-nodes:

outy.q; = wytjiact,, (5.11)

where:

outy.q; 1is the output from a-node a; to p-node p;.

wgt j; is the (positive) weight on the connection between a-node a; and
p-node p; (weights are symmetric).

act,, 1s the activation of a-node a;.

A-nodes that are connected to the stack use this same output function to send activation to
it. The TOS and CURR a-nodes have a weight of 1.0 on their links, so they send their entire
activation to the stack. The a-nodes on the REST list have a weight of 0 on their links, so
that they send no activation to the stack.

Given the numeric functions described above, a-nodes are very unlikely to gain in activa-
tion once their activation level falls below .05, and are very unlikely to decrease in activation
once their activation level rises above .4. Thus, these values are used as the thresholds in de-
termining when the network is in an acceptable state—defined as one in which the activation
level of each a-node is either below .05 or above .4.

%In fact, p can be stated in terms of the decay factor for p-nodes, directly reflecting the fact that the
self-reinforcement of a-nodes counteracts the decay of p-nodes: p,; = .56,,, where p; is the more recent of
the two p-nodes that a; connects to.
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H Property H Definition H

Convergence The network must reach an acceptable state within a
reasonable number of iterations.

Correctness The solution set of active a-nodes must form a valid set
of parse tree attachments.

Reasonableness || If there is more than one correct solution, the parser must
make a choice that is appropriate and predictable.

Consistency The network must exhibit similar behavior in the solution

on which 1t converges across a range of inputs.

Table 5.2: The four criteria according to which the attachment behavior of the parser is
evaluated.

5.3 Numeric Processing Experiments

This section presents an evaluation of the parsing behavior induced by the spreading activa-
tion functions presented above. The goal of the parsing network is to incorporate each input
phrase into a valid parse. To consider the parser to have achieved this goal, its behavior in
response to an input must be shown to have the properties listed in Table 5.2. This section
begins with a presentation of the motivations for testing the parser at this stage, and a dis-
cussion of the development of the appropriate test cases. The results of running the parsing
network on these test cases are then presented. The results demonstrate that the numeric
functions presented in Section 5.2 produce network behavior that meets the four criteria of
convergence, correctness, reasonableness, and consistency.

5.3.1 Motivations

Two properties of the network make 1t possible to test the numeric processing of the parser,
before introducing the further complexity of its symbolic capabilities. First, the attachment
behavior relies purely on numeric processing; the numeric state value of the a-nodes captures
all of the symbolic information that is relevant to attachment decisions. Because the state
value provides the sole bridge between symbolic and numeric processing, it is straightforward
to test the numeric processing behavior that determines attachments by manually setting
the state value to reflect the desired test cases.

The second fact that simplifies testing is the following. Before each run of the network,
all existing attachment nodes are reinitialized—that is, their activation level 1s set to 0.
(See Figure 5.1 on page 61.) This step is taken in order to simplify numeric processing
by having all competing attachment nodes, both new and old, begin with the same level
of activation. The reinitialization has the side effect that, for each run, the only relevant
information from prior runs is the set of discrete attachment decisions that were made, not
the precise activation levels of the a-nodes. If activation persisted from one run to the next,
the results to evaluate would be the series of attachment decisions that the parser makes
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on a given input sequence. But since the only relevant information is the result of prior
attachment decisions, which are encoded in the structure of the network, each test case can
consist of a single network configuration. In this case, a result is much simpler to evaluate,
since 1t consists of the attachment decision made by the parser in a single run.

It 1s not only possible to test the attachment behavior of the parser at this point, it
1s highly desirable as well. The introduction of actual linguistic knowledge into the parser
makes the state of the network very complex. It is extremely difficult to devise a set of
thorough, methodical tests based on real lexical items. Even if it were possible, the test
cases risk being too dependent on the particular lexical items that are chosen. The approach
taken here 1s to provide a more systematic set of tests by abstracting away from the precise
symbolic input. The network behavior will be demonstrated on a highly structured set of
sample inputs. The goal is to demonstrate that the network’s properties of convergence,
correctness, reasonableness, and consistency hold across a broad range of input conditions;
they do not arise only in a hand-picked set of example sentences.

This is not to deny the importance of evaluating the behavior of the complete parser on
actual linguistic input. Chapter 7 is devoted to such results, which demonstrate how the
parser processes syntactic ambiguities within a range of example sentences. The numeric
experiments reveal the basic attachment behavior of the parser, while Chapter 7 relates
this behavior to relevant examples from the psycholinguistic literature. By showing that
the attachment decisions that mimic human behavior are not merely an artifact of the
particular examples, these numeric simulations provide a foundation for the later discussion.
Chapter 7 i1s not only supported by, but in turn reinforces, the conclusions of this section:
Since 1t is impossible for the numeric simulations to test every configuration of the parser,
the simulations of Chapter 7 will provide evidence that the attachment behaviors observed
here do in fact hold under conditions arising from actual linguistic input.

5.3.2 Test Cases

In order to reasonably test the numeric behavior of the parser, it must be determined what
the relevant inputs are to a run of the network, so that these can be varied in a meaningful
way. Each run of the network results in a set of attachment decisions that encode how the
newest input phrase is incorporated into the existing parsing network. The nodes of interest
are those a-nodes that represent attachments that are competing for activation in this run.
The set of competing a-nodes consists of all the new a-nodes established for the current input
phrase, plus any existing a-nodes that these new ones compete with. An example network
with the competing a-nodes highlighted is shown in Figure 5.3.

One relevant input to the network is the state value of each of these competing a-nodes.
The state value encodes important symbolic information, and is a strong contributor to the
activation level of an a-node. The other relevant factor in a run of the network is the actual
structure of the parsing network, which is determined by the result of any prior attachment
decisions. Since the current input phrase is only connected to the right edge of the partial
parse tree on the top of the stack, the only pertinent aspect of the existing network is the
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Figure 5.3: Example network with the set of competing a-nodes highlighted.

structure of this right edge. Furthermore, the only structural aspect of this right edge that
can vary is its depth. The depth of the right edge of the partial parse tree on the stack is
important because it determines the number of competing a-nodes.

The test cases for the set of numeric simulations will thus be enumerated by varying both
the state values of the competing a-nodes and the depth of the tree on the stack. Depth of
a tree in the following will mean the number of phrases (not the number of nodes) along the
right edge of the tree. Let n, denote the number of different state values that the a-nodes
will be allowed to take on, d denote the depth of the tree on top of the stack, and f(d)
denote the number of competing a-nodes. Then the number of possible initial configurations
of the network for a tree of a particular depth on the top of the stack is n,¥¥. The value of
f(d) is determined by the structure of the network: f(d) = new(d)+ old(d), where new(d) is
the number of new a-nodes allocated for the current input phrase, and old(d) is the number
of pre-existing a-nodes that the new ones compete with. The current XP has a new a-node
for each of the d X nodes on the stack, plus a new a-node connecting to the stack (CURR);
the current X’ node has a new a-node for each of the d XP nodes on the stack, plus a new
a-node connecting to an empty node. Thus, new(d) = 2(d + 1). Each of the d X nodes on
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the stack connects to an existing a-node, plus the root XP node connects to the existing
TOS a-node, yielding old(d) = d+1 when d > 0. If d = 0, then there are no existing phrases
or attachments, and old(d) = 0. Thus, f(d) =3(d+1)if d > 0, and f(d) =2(d+1) = 2
if d = 0. We must therefore determine values of n, and a maximum depth D for which
Y2 1,5 @ is a reasonable number of test cases.

In the current implementation of the parser, the state of an a-node can take on the values
0, .5, .6, .7, .8, or .9; the algorithm for computing these particular values will be discussed
in Chapter 6. If all of these values are to be tested, then n, = 6; the number of possible
initial configurations of the network for a tree of depth d > 0 on the top of stack would
be 621 For example, for a tree 5 phrases deep, the number of test cases would be 62,
This is clearly not a reasonable number of simulations to run for even a single depth value.
Given the exponential nature of the function for the number of test cases, it is necessary to
decrease the number of state values that are to be tested, as well as the number of a-nodes
whose state value is varied.

The precise values given above for the state of an a-node are not so important; what is
important is that the state can take on the value 0 to represent an invalid attachment, plus
a range of non-zero values to represent the degree of grammatical constraint satisfaction
of a valid attachment. In light of this, it was decided to limit the numeric simulations
here to vary the state between two values only: 0 for an invalid attachment, and a fixed,
non-zero value for a valid attachment. The non-zero value chosen was based on applying
the state computation algorithm of Chapter 6 to a typical symbolic configuration. Since
an attachment that is valid normally satisfies its grammatical constraints to a fairly high
degree, the simulated symbolic features were chosen to reflect this type of situation. Under
these conditions, the algorithm yields the value .9 for a complement attachment and .8 for
a specifier attachment; these values are .7 and .6 respectively if one of the p-nodes is an
empty node.l® The properties of the stack are such that the value for a stack attachment
1s always .6. Figure 5.4 illustrates these possible state values in an example network. Since
each a-node can now take on either the value 0 or the appropriate non-zero value, the value
of n, has been reduced from 6 to 2.

The decision to limit the variation of state values to a binary choice permits the number
of test cases to be further reduced by decreasing the number of a-nodes whose state value
may be varied. The only allowable state variation is between two values that represent the
choice of a valid or invalid attachment. Under these conditions, it only makes sense to vary
the state values of the a-nodes that connect the current input phrase to the tree on the
stack; these are the new a-nodes that connect to non-empty, non-stack p-nodes. Pre-existing
a-nodes, as well as those that connect to empty nodes, must be valid; the stack a-nodes not
only are always valid, but always have the same value. Thus, any pre-existing a-nodes, as
well as those that connect to the stack or to empty nodes, are given the fixed, non-zero state

10After these simulations were conducted, the state computation algorithm was refined in an effort to
make it simpler and more consistent. The current algorithm used by the parser would return .5 instead of
.6 for a specifier attachment involving an empty node; this change is not large enough to significantly affect
the results presented here.
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Figure 5.4: Example network with the initial settings of non-zero state values for a-nodes.

values described above. Figure 5.5 shows which a-nodes are given fixed and varied state
values in an example network. Since the number of new a-nodes that connect the current
phrase to the tree on the top of the stack is 2d, the number of initial conditions is then n,2?

rather than n,%(4t1) . So for a partial parse tree of depth 5, the number of test cases has been

reduced from 6'® to 20,

In conclusion, the parser will be tested on networks in which the partial parse tree on
the top of the stack has depth varying from 0 to 5 phrases. A depth of 0 means that there
s no partial parse tree on the top of the stack; that is, the current input is the first phrase
allocated by the parser. The maximum depth of 5 was chosen because it is large enough
to cover a wide range of parsing configurations, and a maximum depth larger than 5 would
entail too great a number of simulations to be run. The state values of the a-nodes between
the current phrase and the tree on top of the stack will be systematically varied between a
state value of 0, and a non-zero state value as outlined in detail above. The results of the
o0 2% = 1365 numeric simulations will be summarized below.

5.3.3 Procedures and Assumptions

Before discussing the actual results, some procedures and assumptions should be explicitly
stated. As presented in Figure 5.1, a run of the network consists of allocating an X phrase
for the current input token, connecting the new phrase to the existing parsing network with
the appropriate attachment nodes, (re)initializing all of the a-nodes that will be competing
during the run, and then performing the update/output spreading activation loop until the
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Figure 5.5: Example network with final choice for possible state values for a-nodes.

network reaches an acceptable state representing its current attachment decision. Each
numeric simulation of this section imitates a single run of the parser, on a network of a
given size, and with symbolic input simulated by a given assignment of state values to the
attachment nodes.

For each numeric simulation, a current phrase will be created, as well as a tree on the
top of the stack; this tree will have its number of phrases determined by the depth d being
tested. All a-nodes needed to represent the branches of the tree on the stack, as well as
the “new” a-nodes for the current phrase, will be created and initialized. The state value
of each a-node in the simulation will be determined by the systematic variation described
above. The network then runs by calling the update and output routines synchronously on
all nodes; the simulation terminates when an acceptable state is achieved, or a maximum
number of allowable iterations is surpassed. The spreading activation functions, parameters,
and thresholds for these numeric simulations are exactly the same as those that were used
in the simulations of the complete parser described in Chapter 7.

5.3.4 Results

The results of the numeric simulations will now be discussed in terms of each of the four
properties presented above: convergence, correctness, reasonableness, and consistency. Be-
cause the numeric processing of the network does in fact exhibit these properties to a high
degree, it 1s possible to concisely summarize the results of the 1365 simulations.
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Convergence

The network converges on an acceptable state for over 98% of the initial configurations tested.
In the case of the simplest attachment decision that the network faces, in which no new a-
nodes have a non-zero state value and the current phrase must push itself onto the stack,
the number of iterations to reach an acceptable state 1s 1015, for all sizes of the network.
The number of iterations for all other cases is consistently in the 30 to 70 range.'’ The
number of iterations tends to increase as the number of a-nodes with non-zero state values
increases, especially if those a-nodes form multiple compatible sets of attachments. This
behavior makes sense: the more correct possibilities that the network is choosing between,
the longer it takes to settle on one, particularly in these “canned” simulations where all of
the attachment alternatives are equally strong. The exception to this behavior occurs when
the “casiest” attachment possible is a valid one. The easiest attachment, for reasons to be
discussed below, is the attachment of the XP node of the current phrase to the X node of
the lowest phrase in the existing tree; this configuration is shown in Figure 5.6 for a network
of depth 3. In these cases, the number of iterations actually decreases as the number of valid
a-nodes increases; the overwhelming tendency for the easy attachment to dominate is just
heightened by the spreading out of available activation to the other nodes.

Another property that affects the number of iterations to convergence is the distance
between the valid attachments that the network i1s choosing between. Phrases that are higher
up in the tree on the stack were allocated less recently, and so their activation has decayed
more than that of phrases lower in the tree. Attachments to the higher phrases will therefore
get less input. One effect of this is that the current phrase prefers lower attachments to the
existing tree; this behavior is discussed below under the property of “Reasonableness.” The
decay of p-nodes not only affects which attachment decision the network makes, but the
number of iterations it takes for it to converge on this choice as well. If the lowest possible
attachment is competing with an attachment that is only slightly higher in the tree, 1t will
take longer to converge than if the competing attachment is much higher in the tree—the
closer attachment gets more input from its p-nodes and therefore competes more strongly.
Figures 5.7 and 5.8 illustrate an example of this situation.

The network does not converge on an acceptable state for 17 of the 1365 initial config-
urations. In each instance, there is at least one p-node that is partially activating multiple
a-nodes; that is, the p-node does not exhibit a clear choice of a single attachment to activate.
Sixteen of those cases occur in the set of simulations in which the tree on the stack has a
depth of 5, which was the maximum depth that was systematically tested. For this size net-
work, there are 2d = 10 new a-nodes whose state value will be varied across the simulations.
In each of the cases of non-convergence, at least 6 of these 10 new a-nodes had a non-zero
state value; most of these cases (11 out of 16) had 8-10 new a-nodes with non-zero state
values. The high percentage of new a-nodes with non-zero state values means that there
are a large number of a-nodes competing for the output from a single p-node. When the

117t is perhaps worth noting that this is within the limit of “less than a hundred time steps” discussed by
Feldman & Ballard (1982).
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Figure 5.6: If the lowest complement attachment is valid, it is the easiest attachment in the

network.

amount of output from a p-node is spread too thinly, the network behavior becomes less
predictable. Correcting this behavior would require developing a new activation function for
p-nodes that would more effectively avoid this diffusion of output. This approach was not
pursued because in real linguistic input these particular configurations are quite improba-
ble. Since it is linguistically implausible that such a large number of attachments between
the current phrase and the existing tree will be grammatically valid attachments, any such
non-convergent behavior in an actual parse is highly unlikely.

The final case in which the network does not converge is at first more unexpected because
it seems like such a simple initial condition. In this configuration, shown in Figure 5.9, the
tree on the stack consists of a single phrase, and both new a-nodes between it and the current
phrase have non-zero attachments. The fact that the network cannot decide between these
two valid attachments is actually not so surprising when considered in light of the effect of
decay discussed above. In this case, the two competing attachments are “too close”—because
the two a-nodes connect to the same two phrases on the stack, they receive very similar
inputs from their p-nodes, and their resulting activation levels are too similar in value for
the competitive mechanism to force a choice between them. Adjusting the schedule by which
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Figure 5.7: Difference in level of competition between higher and lower attachments. (Only
a-nodes with non-zero state values are shown.) The network in this figure will settle in 55
iterations, while the similar network in Figure 5.8 takes only 51 iterations.

the competitive constant v is increased corrects this problem. However, since the current
schedule works better in a larger number of cases, the change was not adopted in the final
parser. In fact, the situation of Figure 5.9 is so linguistically implausible that correcting the
problem was not a priority. This configuration can only arise under the following conditions:
there are a pair of linguistic categories, X and Y, such that XP can be a specifier of Y’ and
YP can be a complement of X, the current phrase is of category Y, and there is a single
phrase of category X on the stack.
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Figure 5.8: Difference in level of competition between higher and lower attachments. (Only
a-nodes with non-zero state values are shown.) The network in this figure will settle in 51
iterations, while the similar network in Figure 5.7 takes 55 iterations.

Correctness

Given that the network converges in almost all situations, the next question is whether the
acceptable state at which it arrives represents a valid parse state. Section 4.3 presented
the logical attachment possibilities for a correct attachment of the current input phrase to
the existing network. Figure 4.32, repeated here as Figure 5.10, visually summarizes these
attachment possibilities. For the state of the network to be a correct solution, it must
represent one of the sets of active a-nodes described in Figure 5.10. In fact, the final state
of every one of the 1348 simulations in which the network converges conform to these rules
that specify which a-nodes may be simultaneously active in a valid parse state. The network
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Figure 5.9: Tree of depth one with both a-nodes valid.

never settles in a state in which multiple incompatible attachments are active simultaneously,
nor one in which no attachment decision is made. Thus, the network not only converges on
over 98% of the cases tested, but when it converges, it settles on a globally consistent set of
attachments.

Reasonableness

The next question is whether the consistent solution that the network chooses is in fact a
reasonable action for the parser to take. For example, pushing the current input phrase
onto the stack is always one of the correct acceptable states at the end of a run of the
network. However, it would be completely unreasonable for the parser to parse an input
by pushing every phrase onto the stack. Of course if it did this, each individual action
would be “correct,” but the parser could not arrive at a correct final state. Another factor
that must be taken into account is the amount of evidence for one alternative solution over
another. Although the network may have several valid solutions to choose from, the choice
should not be an arbitrary one; the acceptable state should reflect a reasonable assessment
of the relative strengths of the competing attachment possibilities. Some expectations of the
network along these lines must be spelled out in order to evaluate the reasonableness of its
behavior.

First, if there i1s a valid attachment of the current input phrase to the existing tree on
the stack, that attachment must be made, rather than pushing the current phrase onto the
stack. Pushing a phrase onto the stack must be an action of last resort, only occurring when
no other attachment possibility is available. This guideline is actually a necessity for correct
parsing, since the parser cannot “change its mind” about an attachment not made—once an
a-node loses and is de-allocated, it is never created again. The network behaves reasonably
in this regard in every simulation—the only time the current phrase is pushed onto the stack
1s when there is no way to attach it to the existing parse tree.
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Figure 5.10: Logical possibilities for simultaneous activation of sets of attachment nodes, for
an example TOS tree that is three phrases deep. (Ounly the right edge of the tree on top of
the stack is shown; the left side is unaffected by new attachments.) Attachments a; through
a4 were previously activated. If all of these attachments remain active, then ny, n,, and ns
must become active; in this case, no attachments are made between CURR and TOS, and
CURR pushes itself onto the stack. To attach CURR and TOS, the following must occur:
exactly one of the prior attachments, a;, must become inactive, and the corresponding pair
of attachments, p;, must become active. This relationship holds for a TOS tree of arbitrary

depth.

a

This behavior is a direct consequence of two properties of the stack that are independently
motivated. One relevant property is the uniform treatment of parse tree attachments and
attachments to the stack. Because the stack cannot satisfy grammatical constraints on
its a-nodes, their state value is always very low. This low state value has the desirable
effect of making these a-nodes less competitive than a-nodes that represent actual parse tree
branches. The second relevant property is that the stack’s output function must support the
simultaneous activation of more than one a-node. Setting the stack’s CBSA parameters to
be less competitive not only makes the TOS and CURR a-nodes less competitive with each
other (so that they can be active simultaneously), but has the additional effect of making
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them less competitive with other a-nodes that represent real attachments. It is interesting
to note that the behavior of the stacking mechanism as a last resort action is not directly
built into the parser, but rather “falls out” from these independently motivated properties
of the stack.

The second guideline necessary to ensure that the individual attachment decisions of
the parser are reasonable is that the network must take into account varying degrees of
evidence or preference for the different alternatives it is faced with. How well the network
weighs evidence i1s a complex phenomenon to evaluate. One of the motivations for using
spreading activation in the first place was that it provides a uniform mechanism for comparing
different sources of evidence; however, numerically combining evidence in this way can hide
the underlying sources of the effects. In spite of this, the simulation results show clearly that
the network combines and compares evidence in a reasonable way. It has already been shown
that the a-nodes connected to the stack are less favored than other a-nodes, and that their
lower state value is in part responsible for this.'? While in the 1365 simulations all non-stack
attachments of the same type were given the same state value, additional simulations were
performed that demonstrated that differing state values (on a-nodes other than TOS and
CURR) have a noticeable effect on the attachment decision that is made. The set of 1365
simulations are also highly uniform in that the weights on all of the connections are set to
1.0; this property was varied in further testing as well. The effects of different state values
and weights will be exhibited on concrete examples in Chapter 7.

One extremely important source of evidence for an attachment that does show variation
in this set of simulations is the amount of input from the phrasal nodes. The simulation
results show that the network reasonably and consistently combines and compares this source
of evidence. Because p-nodes that are lower in the tree have decayed less, they have more
activation to output to their a-nodes. This varying degree of support for an attachment
causes the network to consistently choose the lowest of the possible attachments to the
parse tree. In every one of the 1342 converging simulations in which there i1s at least one
valid attachment between the current phrase and the tree on the stack, the attachment
decision that the network settles on is the lowest set of a-nodes that represent a logical
attachment possibility. The strong, consistent recency effect displayed by these results is
a direct consequence of the decay mechanism that is necessary for managing the pool of
phrasal nodes. Because of evidence in the psycholinguistic literature for the role of recency,
Chapter 7 will return to this issue.

Consistency

The detailed aspects of the behavior of the network that were discussed above hold across
all of the simulations in which an acceptable state was reached. The number of iterations
to convergence is always within the range of 10-70, and the exact number within this range

12Gimulations were performed to directly support this claim. For example, as the state value of the CURR
a-node is increased, the current phrase becomes more likely to attach to the stack even when there are valid
attachments to the existing parse tree.
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varies consistently with the size and state settings of the network. The attachment decisions
that the network settles on are not only correct in all cases, but further conform to the
properties of reasonable behavior outlined above. The consistency of these results is quite
important; in spite of the fact that 1365 seems like a large number of simulations, the size of
the networks tested is still limited. The fact that these simulations display such consistency
gives support to the hypothesis that the same attachment behaviors will hold in larger
networks (that is, those with deeper trees on the stack). The parser was in fact tested on
various networks with deeper trees on the stack—up to a depth of 8—and these simulations
always converged on a solution that was both correct and reasonable.!® Furthermore, the
examples in Chapter 7 that involve trees of depth greater than 5 also behave in a manner
consistent with the results presented here.

5.4 Limitations of the Numeric Processing

The biggest limitation of the approach is that the numeric functions and parameters lack solid
theoretical motivation. In each case, there is justification for the approach that is taken, but
the precise settings are largely empirically motivated. However, considering the complexity of
the problem, the spreading activation functions that were developed are surprisingly simple
and uniform. The phrasal nodes and the stack node use almost exactly the same functions,
even though they play a very different role in the processing of the network. Although the
attachment nodes use a distinct set of functions that are more complex, they are quite similar
to the functions used by Reggia, Marsland, & Berndt (1988). The fact that these functions
could be easily adapted across diverse applications supports the view that they capture a
generally useful mechanism for weighing evidence from different sources.

Another limitation of the numeric processing is that the network is very sensitive to
certain changes in the functions and parameters. Most of the functions and parameters are
interrelated, so that it is difficult to isolate the effects of one, or to try out new values for
one without adjusting several others. On the other hand, the gross behavior of the network
1s fairly robust. Under conditions that allow the network to make attachments, the behavior
under different parameter settings is quite consistent.

Other 1ssues are not actually problems in principle, but are just limitations arising from
practical constraints on the implementation. The parser was not tested on all combinations of
state values for the attachments because the number of simulations required is prohibitive.
However, Section 5.3.2 motivated the subset of test configurations that was chosen, and
the robust behavior of the parser over this large number of simulations is encouraging.
One problem that this set of tests does not reveal is that the nodes of the network cannot
handle a situation in which there are ties among all of the competing alternatives. If the
evidence for the a-nodes that a p-node attaches to is very close to being equal, the p-node
will “get stuck” splitting its output evenly among them. A non-deterministic component

13These results were not presented here since they were not tests of systematically varying state values
and depths, but rather were “spot checks” of plausible linguistic configurations.
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needs to be integrated into the output function of p-nodes to enable them to recover from
this situation. However, since a tie between competing a-nodes never arose in the set of
simulations presented here, or any simulations on actual linguistic input, the development
of a tie-breaking scheme was not a high priority.

In conclusion, the results of the numeric processing simulations support the claim that,
in spite of the concerns discussed here, the competitive attachment parsing approach has
promise. Although the precise numeric formulations were derived experimentally, the func-
tions and parameters are easily explained, and their effects are simple and understandable.
Furthermore, they lead to overall behavior that is quite elegant and robust, indicating that
their empirical nature, and their sensitivity to change, are not significant drawbacks for the
approach.
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Chapter 6

Symbolic Processing in the Parser

This chapter provides details about the symbolic features and message-passing methods used
by the parser.! The proposed techniques underlie a novel approach to natural language pars-
ing using constraint-based grammatical knowledge within a massively parallel network. Pre-
vious approaches in connectionist parsing have built rule-based knowledge into the structure
of the network to determine the space of possible syntactic analyses. With a constraint-based
linguistic theory, this straightforward approach of recognizing built-in structure is not avail-
able. The techniques described here achieve a direct encoding of a constraint-based syntactic
theory using only local operations on very simple symbolic features. A key component of
the approach i1s the development of a message-passing algorithm that utilizes appropriate
grammatical restrictions to limit the path of a feature through the network. Using only local
distributed communication among the network nodes, the message-passing method success-
fully ensures that even long-distance syntactic relations are correctly established within the
parse tree represented by the network. Thus, the numeric and symbolic techniques of the
competitive attachment parser together yield a robust distributed parsing mechanism using
only simple and uniform processing nodes.

Section 6.1 gives an overview of symbolic processing in the parsing network. Section 6.2
first briefly introduces the linguistic constraints that the parser encodes, then describes the
symbolic features of the different types of nodes in the network. The section explains how
the local processing of these features enables the parser to capture the declarative constraints
imposed by the linguistic theory. Section 6.3 explains the symbolic output routine in which
grammatical knowledge constrains the path of features through the parsing network. It is
this novel feature-passing method that ensures that only valid syntactic configurations are
established. Section 6.4 concludes the chapter with a discussion of the limitations of the
symbolic processing component of the parser.

!The communication of symbolic features through the parsing network will be referred to as feature-
passing or message-passing. However, it is important to note up front that the parser does not have the
symbolic capabilities to support the creation and propagation of general messages or feature structures. In
fact, although the symbolic network communication is currently implemented as a feature-passing method,
the simplicity of the features that are used here would allow a strict marker-passing implementation, using
a small set of fixed markers.
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6.1 Overview of the Symbolic Processing

Symbolic processing determines to what degree each of the potential attachments in the
network satisfies its syntactic constraints. While numeric processing consists of an up-
date/output spreading activation loop, symbolic processing consists of an update/output
message-passing loop. As with the numeric functions, the symbolic update and output rou-
tines are synchronized so that the update routines are performed simultaneously by all nodes
in the network, followed by the simultancous computation of output. The symbolic updat-
ing of a node consists of processing its symbolic input—that is, the features that were just
passed to it. The symbolic output routine determines which of its own features, as well as
those just input to it, a node should pass on to each of its neighbors.

A feature is passed in a packet, which gives the feature and its value, the node that created
the packet (the original source node in the message-passing path), and the last node that
passed the feature packet (the most recent source node). Whether or not a feature packet is
passed from a node to each of its neighbors is determined by the grammatical properties of
the feature itself, as well as those of the potential source and destination nodes. There are
two major types of features, local and long-distance; this categorization is a direct encoding
of the grammatical distinction between local and long-distance relationships in Government-
Binding theory. In the parser, local features can be communicated only between the phrasal
nodes (p-nodes) of a single X phrase, or between a phrasal node and its attachment nodes
(a-nodes), which represent potential sisterhood relations in the parse tree. Long-distance
features can be communicated between more distant nodes in the tree along an appropriate
path through the parsing network. Different types of long-distance features have different
restrictions on their communication from one node to another; this restricted marker-passing
process will be discussed in detail in Section 6.3.

In the parsing network, symbolic and numeric computation proceed concurrently, with
numeric activation “gating” the communication of symbolic features. A feature packet can
be passed to its neighbor only by a node that has sufficient activation—that is, an activation
level above a certain threshold §. This gating mechanism has the desirable effect of focusing
symbolic processing within the active portion of the parsing network. In the current imple-
mentation, the level of the gating threshold # permits any p-node to pass symbolic features,
but an a-node must be fully active in order to propagate the features that it receives. Thus,
a p-node can initially pass any feature packets among the p-nodes of its own phrase, as
well as to its a-nodes. However, an a-node cannot propagate these features further until the
numeric activation of the network is focused onto a set of attachment nodes that represent
the attachment decisions of the parser. The effect is that only local features can reach their
destination before the numeric processing yields an acceptable network state. The local fea-
tures determine the initial state values of the competing a-nodes, which are crucial in the
numeric activation functions. Once the network settles, and the gating threshold for a-nodes
is reached, then full symbolic processing (including long-distance features) can occur. Fig-
ure 6.1 shows the network processing algorithm of Figure 5.1 with the symbolic components

added in.
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begin {Process Input Sentence}
while there are more input tokens do
{Each pass through this loop is a run of the network.}
Get next input token.
Look up lexical entry for the current input token.
Allocate an X phrase for the current input token, with
symbolic features initialized based on the lexical entry.
Initialize attachment nodes between the current phrase
and the top of the stack.
Reinitialize competing attachment nodes.
until the network is an acceptable state do
{Each pass through this loop is an iteration of the network.}
for each node in the network do
UpdateSym(node).
UpdateNum(node).
for each node in the network do
OutputSym(node).
OutputNum(node).
for 1..n do
{Continue symbolic processing for a fixed number of iterations.}
for each node in the network do
UpdateSym(node).
for each node in the network do
OutputSym(node).
end {Process Input Sentence}

Figure 6.1: The complete iterative algorithm for processing the nodes of the network.

6.2 Symbolic Knowledge

The symbolic features used by the parser are a direct encoding of a subset of the grammatical
features of Government-Binding theory (GB).?2 GB is divided into a number of “modules”
that deal with distinct aspects of the grammar. The constraints imposed by each of these
grammatical subsystems interact to determine the validity of a syntactic structure. For
example, one module deals with predicate/argument relations, while another determines
whether two phrases can be coreferential. While it is infeasible to implement all of GB,
the division of knowledge into modules makes it relatively straightforward to implement a

2This section presents information about GB that is necessary for understanding the implementation of
the competitive attachment parsing model. For a brief introduction to the motivation and development of
GB as a linguistic theory, non-linguists may find Sells (1985) helpful.
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coherent subset of the theory. The modules that were chosen to be included in the parser
are those that determine the basic attachment structure of the input: X theory, 8 theory,
Case theory, and (a subset of) the binding theory. A brief overview of the relevant syntactic
constraints imposed by each of these modules will be presented in Section 6.2.1, followed in
Section 6.2.2 by a description of how this knowledge is represented within the parser.

6.2.1 Constraints from the Linguistic Theory

The X module determines the structure of the parse tree, by specifying the content of
syntactic phrases and the basic relations that hold between the phrases within a tree.® X
theory states that every phrase has a head (the X node), a mazimal projection (the XP node),
and some number of intermediate projections (the X' node(s)). Some properties of these
phrases are very general and may hold for all types of phrases in a language. For example, in
English, specifiers always precede the head of a phrase, while complements follow the head.
Other properties of a phrase are determined by more specific syntactic information, such as
the category of the phrase. For example, categorial information establishes which types of
XPs may be in a specifier relation to a given phrase. There are additional properties that
are determined by even more specific information given in individual entries in the lexicon.
For example, while the types of complements allowed for a phrase in some cases may be
determined by the category of the head, many are determined by an explicit subcategorization
list given in the lexical entry for the head. In addition to the general conditions on phrase
structure, X theory imposes the selectional requirement that two potential sister phrases
must be of the appropriate categories to be attached to each other.

Theta theory is the module of GB that is concerned with the relations among the phrases
that participate in predicates of the sentence. Each predicate has a theta grid, which lists the
roles, such as Agent, Theme, or Instrument, that phrases may play in an interpretation of
that predicate; these roles are called theta roles. For example, the verb know has a theta grid
that includes the theta roles Agent (the one who knows) and Theme (that which is known).
The assignment of theta roles is constrained by the Theta Criterion, which is the central
principle of Theta Theory. The Theta Criterion states that each phrase in an argument
position in the parse tree must be assigned exactly one theta role, and that each theta role
of a theta grid must be assigned to exactly one argument phrase. The category of a phrase
determines which of its specifier and complement positions are argument positions. The
roles of a theta grid may be assigned to phrases only under certain syntactic configurations.
There may be one special theta role, specified as the external theta role, that is assigned
under the condition of specifier/head agreement; this structural relation will be described in
Section 6.3. The typical case of external theta role assignment occurs when the verb phrase

3GB theorists have attempted to describe many properties of the basic tree structure as side effects of
other modules (Abney, 1986; Stowell, 1981). For example, the categories of allowable complements for a
phrase may be derivable from the lexical semantic properties of its head. For simplicity of presentation, all
basic tree structure and categorial relations will be described here as part of the description of X theory.
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assigns the Agent theta role to the subject position of the sentence.* All other internal theta
roles in the theta grid must be assigned from an X node to a sister node in the parse tree.

Case theory imposes an additional constraint on any argument positions that are filled
with noun phrases. The Case Filter states that all NP arguments must receive Case. Case
in GB 1s an abstract grammatical feature that is a generalization of the overt case markings,
such as Nominative or Accusative, that are used in many languages to explicitly mark noun
phrases in particular configurations. GB assumes that these are the overt manifestation of
the abstract feature Case that is assigned to noun phrase arguments in all languages. An
X node of category verb, inflection, or complementizer assigns structural Case to an NP in
a head government relation (to be described below), but the other X nodes assign inherent
Case to a sister NP.

The binding theory specifies the required structural relationships that must hold between
phrases that are coreferential. Such phrases are coindered—assigned the same referential
index—under certain structural configurations. The parser implements only the portion of
the binding theory that concerns the licensing of traces.” Recall that a trace represents a
phrase that has been displaced from its underlying position in the sentence. For example,
in Who did Mary kiss ¢?, the trace e in the object position of kiss is a place-holder for
the displaced object, who. The binding theory states that a trace must be bound by being
coindexed with an appropriate binder (the displaced phrase). This coindexation relation
must meet the structural restrictions of antecedent government, which will be described in
Section 6.3.°

The grammatical information described above comprises the symbolic knowledge that
must be represented by the limited symbolic processing capabilities of the parser. Part of
the knowledge is the structure of individual X phrases and the direction of attachments
between them; these aspects are captured in the parser’s mechanism for allocating phrases
and attachment nodes. In addition, the four modules of GB contribute to the knowledge of
the parser the four explicit constraints shown in Table 6.1.7 As stated earlier in Section 4.1.2,
these constraints in the parsing network are verified at the attachment nodes. Thus, although
they are stated as constraints on the properties of XP nodes, the constraints actually do not
apply directly to an XP node, but rather to an XP node in a certain attachment relation
to another node. The next section describes the symbolic features that are needed within

“In the parser, the external theta role is passed from the VP to its sister I node, which then assigns
the theta role to its subject by specifier/head agreement. This formulation is not standard in GB, and is
adopted partly for convenience and partly to demonstrate use of the specifier/head agreement relation. See
the discussion in Section 6.3.1.

®The parser incorporates the passing of the necessary binding features between an overt phrase and its
underlying trace. However, the competitive coindexation nodes that are needed to explicitly represent a
binding relation are not included in this version of the parser. See Stevenson (1993a) for a discussion of
competitive relations among multiple potential coindexation nodes.

6The portion of the binding theory encoded here is an adaptation of the version of the Empty Category
Principle (ECP) developed by Rizzi (1990).

"The first three of these constraints were presented in Chapter 4.
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H Constraint H Definition H

Selection Constraint || The category of an XP must match the category ex-
pected by its sister X or X'.

Theta Criterion An XP in an argument position must be assigned ex-
actly one theta role.”

Case Filter An NP in an argument position must be assigned
Case.

Binding Constraint || Every XP must be bound.’ ¢

“The other part of the Theta Criterion, which states that a predicate assigns each of its theta roles to
exactly one phrase, is accomplished indirectly in the parser through constraints on the number of attachments
to a node.

YA non-empty XP is “bound” by itself.

°The binding theory also prohibits vacuous quantification; for example, a fronted WH-word, as in a
question, must bind some trace. This is accomplished in the parser by requiring quantifiers, such as WH-
words, to participate in a binding relation.

Table 6.1: The four syntactic constraints used in the parser.

each node type to support the verification of these constraints. Section 6.3 then presents the
message-passing algorithm that ensures that the structural configurations under which the
features must be assigned are respected.

6.2.2 Symbolic Features and Their Values

The parser relies on a small number of syntactic features to represent the grammatical
knowledge described above. The features are implemented as slots that take on a limited
range of values specified by the grammatical theory. For example, the feature Case can take
on the value Nominative, Accusative, Oblique, or Genitive; a category feature can take on
the value of Noun, Adjective, Preposition, Verb, Inflection, Complementizer, or Determiner.
The value of a feature can also be a disjunction of a subset of its allowable atomic features,
which is indicated by a list; for example, Case = (Accusative Oblique) means that the Case
of the node can be Accusative or Oblique.

Section 6.2.1 presented two types of constraints that apply to symbolic features: restric-
tions on the values of the features, and restrictions on the configurations under which the
features can be assigned from one node to another. This section explains how the parser cap-
tures the first type of constraint by requiring that certain features of attachment nodes take
on particular values. The symbolic features of each node type will be described, including
how their values are initialized and updated during the parse. Most feature slots of a node
are filled with atomic values or lists of these atomic values; these slots will be referred to as
the simple features of a node. In addition to its simple features, one of the most important
symbolic feature slots of a node holds a list of feature packets (feature slot/value pairs) that
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the node potentially passes to its neighbors. Part of the update procedure for an attachment
node is to determine how well its grammatical constraints are satisfied, based on the features
that are input to it from its phrasal nodes. The final step of the update process for a node
of any type 1s to transfer to its output list the symbolic features that it received during the
previous iteration of the network, so that they can be further propagated during the current
iteration.

Phrasal Nodes

Symbolic features in the parsing network originate in the lexicon. Lexical entries are defined
within an object-oriented network of categorial features, in which each object determines the
values of some subset of symbolic features. The set of categorial features and their effects
on the settings of other symbolic feature values are shown in Table 6.2. The leaf objects in
the object-oriented network are the syntactic categories Noun, Adjective, Preposition, Verb,
Inflection, Complementizer, and Determiner. The settings of the categorial features for each
of the syntactic categories is shown in Table 6.3.3 A lexical entry is defined as an instance of
a category leaf object within the feature network, and inherits most of its symbolic feature
settings from its ancestors. The only information that must be explicitly given in the lexical
entry i1s that which is idiosyncratic to the particular word or morpheme being defined. In
fact, for now, the only features determined by the individual lexical entries are the number
of a noun (singular or plural), the subcategorization of a verb (a list of possible categories
of its complement), and the tense of an inflection (past or present). All other features are
inherited from the categorial network.

The symbolic features of the p-nodes constituting an X phrase are determined by the
lexical entry of the head of the phrase. A p-node has only three simple features, plus the slot
for its list of potential output feature packets. Each of the three simple features is initialized
when the p-node is created, and remains unchanged throughout the parse. One simple
feature, with value TRUE or FALSE, tells whether or not the phrase is a lezical category. The
lexical categories are, loosely, those with more semantic content (noun, adjective, preposition,
and verb), while the non-lexical (or functional) categories are those that play a more purely
syntactic role (inflection, complementizer, and determiner). The second simple feature, which
also takes on the value TRUE or FALSE, indicates whether or not the sister of an X' node
i1s an argument position. The argument positions are the complements of lexical X nodes,
and the specifiers of N, I’ and C’. Both of these features are used in determining whether
certain feature packets that land at a node can be propagated beyond it. The third feature
1s a list of the frequency information for the allowable categories of the sister of the p-node
in the parse tree. The frequency list is used to set the weights on the links between an X or
X’ node and the a-nodes that it connects to.”

8The breakdown of the syntactic categories into these features and the meanings of the features are
adapted from proposals within GB theory, but the particular formulation was developed in the research
here.

9Chapter 7 will demonstrate how setting weights based on the frequency information leads the parser to
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H Feature H Setting H Meaning H

Nominal + The sister of an X’ node is an argument.
— The sister of an X’ node is not an argument.
Verbal + An X node assigns structural Case.

The sister of an X node is selected.

— An X node assigns inherent Case.
The sister of an X node is not selected.

Lexical + The sister of an X node is an argument.

An X node assigns a theta role to its complement.
— The sister of an X node is not an argument.

Case + An X node can directly assign Case.

Assigner — An X node cannot directly assign Case.®
Degenerate + Only an XP node is projected from the input.

— A full X phrase i1s projected from the input.

“This feature refers to the necessity of a noun or adjective in English to be accompanied by the Case-
assigning morpheme of in order to discharge Case to its complement, as in queen of England or proud of
Sara.

Table 6.2: Categorial features and their effects on the settings of other symbolic feature
values.

Categorial Feature

Syntactic Case

Category Nominal | Verbal | Lexical | Assigner | Degenerate
Noun + — + — —
Adjective — — + — —
Preposition — — + + —
Verb — + + + —
Inflection + + — — —
Complementizer + + — + —
Determiner — — — — +

Table 6.3: The syntactic categories with their settings for each of the categorial features
defined in Table 6.2.
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The features included on the output feature packet list of a p-node are those that are
required to support the constraint-checking carried out by attachment nodes. To enable
the checking of the selection constraint, each p-node outputs the category of itself and/or a
list of the possible categories of its sister in the parse tree. The list of possible categories
may include the special value NONE, which indicates that the p-node is allowed to have no
sister. Since a p-node must always activate exactly one attachment, this is accomplished by
activating an attachment to an empty node and assigning it the category NONE. To support
the verification of the Theta Criterion, each X node outputs whether or not it assigns a theta
role to its sister XP.1° The Case Filter depends on knowing from X nodes which Case they
assign, if any, and from XP nodes which Case they expect.!’ The binding theory directly
relies on two features, one from an XP node that specifies whether or not that phrase is
bound, and one from an X or X’ node that specifies whether or not its sister in the parse tree
1s an argument position. The latter feature is used in determining an appropriate binder for
an empty node. A final feature from an X or X’ node indicates whether or not its sister is
selected; the property of being a selected position is, like the property of being an argument
position, determined by details of GB that are irrelevant here. The only selected positions
are the complements of V, I, and C nodes (Cinque, 1990; Rizzi, 1990). This is again a feature
that is used solely to determine how features can be propagated through the network.

Table 6.4 summarizes the features initially on the output list of each type of p-node (XP,
X', and X), and sample values for nodes of different categories. Like all network processing
nodes, a p-node updates this output feature list at each iteration, by adding to it the symbolic
feature packets that it just received on its input list.

Empty Nodes

Chapter 5 noted that empty nodes are a subtype of p-node. In fact, they are further specified
as a subtype of XP node, and inherit the symbolic features of an XP. The only simple feature
that is applicable to an empty node is the one that states whether or not a node is lexical (in
the technical sense described above); this feature is FALSE for all empty nodes. Like all other
nodes, an empty node has an output list of feature packets, and the features included on this
list are also inherited from the XP node object. When the empty node is first created, the
value of the output feature is-bound is FALSE. Because the empty node is not yet bound,
much of its remaining symbolic information is undetermined. The XP-category, X'-category,
and has-Case output features are assigned the special value UNSPECIFIED to indicate that a
more precise statement of the value is unknown. This value allows constraints that refer to
category and Case values to assume that an empty node may take on values that are relevant

take lexical preferences into account in disambiguation.

1An XP node might also assign the external theta role of the predicate of the head of the phrase; for
example, the VP assigns the external theta role of the verb to the subject of the clause.

11y English, the latter is usually not relevant, since only pronouns restrict which Case they can be assigned;
for example, the pronoun we must receive Nominative Case, and us Accusative or Oblique.
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H XP Output Features H Noun ‘ Verb ‘ Infl ‘ Comp H
XP-category N \% I C
X'-category (NIC) (NONE) | (NONE) (NONE)*
assigns-external-theta FALSE TRUE FALSE FALSE
has-Case ANY? NONE NONE NONE
1s-bound TRUE TRUE TRUE TRUE

H X" Output Features H Noun ‘ Verb ‘ Infl ‘ Comp H
XP-category (D A ~NoNE) | (NONE) | (NI C) | (WH C NONE)
X'-category N \% I C
sister-is-argument TRUE FALSE TRUE FALSE
sister-is-selected FALSE FALSE FALSE FALSE

H X Output Features H Noun ‘ Verb ‘ Infl ‘ Comp H
XP-category (N)® (N C)° (V) (I)
assigns-theta TRUE® TRUE® FALSE FALSE
assigns-Case GEN Acc NONE NoMm
sister-is-argument TRUE TRUE FALSE FALSE
sister-is-selected FALSE TRUE TRUE TRUE

“Example value only; the precise value will depend on the lexical entry.

Table 6.4: Initial output features of p-nodes, with sample values for XP, X', and X nodes of
various categories: Noun, Verb, Infl (inflection), and Comp (complementizer).

to the constraint. These output features might change during the parse, since the features
of the empty node will be determined by the corresponding features of its binder. When a
valid binding relation is established for the empty node, its is-bound output feature is set
to TRUE, and its XP-category, X'-category, and has-Case output features will be updated to
be equal to those of the binder.’? The output feature assigns-external-theta is always FALSE
for empty nodes, because there is no head of the phrase from which to assign a theta role.
Table 6.5 summarizes the initial values of the output features of an empty node.

The Stack Node

Just as an empty node is further specified symbolically as an XP node, the stack node is a
subtype of p-node that is further specified as an X node. Analogous to an X node activating

12In the results described in this dissertation, every empty node will remain unbound throughout the
parsing process. See Stevenson (1993a) for a presentation of how the competitive attachment model supports
the binding of empty nodes in a manner that accounts for the psycholinguistic data on filler/gap processing

from Carlson & Tanenhaus (1988), Frazier (1987), and Stowe (1986).
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Empty Node Initial
Output Features Values
XP-category UNSPECIFIED
X'-category UNSPECIFIED

assigns-external-theta FALSE
has-Case UNSPECIFIED
is-bound FALSE

Table 6.5: Initial output features of empty nodes.

Stack Node Initial
Output Features Values
XP-category UNSPECIFIED
assigns-theta FALSE
assigns-Case NONE
sister-is-argument TRUE
sister-is-selected N/A

Table 6.6: Initial output features of the stack node.

a complement attachment to an XP, the stack node activates attachments to XPs that push
themselves onto the stack. However, the stack is purely a computational mechanism, and
has no meaningful identity within the linguistic theory; thus, it is a degenerate X node
with regard to its symbolic features. Its features are given initial values reflecting this, and
remain unchanged during the parse. The simple symbolic features of the stack state that it
1s not lexical, and that it assigns equal frequency to the categories of nodes that can attach
to it. The features on its output list are set as follows. The XP-category feature has the
value UNSPECIFIED (any phrase can push itself onto the stack), assigns-theta is FALSE, and
assigns-Case i1s NONE. However, since the final parse tree on the stack is presumably input
to semantic and discourse processing mechanisms, the sister-is-argument output feature of
the stack node 1s set to TRUE. This extends the notion of argument position from GB to
encompass arguments in the discourse. The value of the final output feature of X nodes,
sister-is-selected, is irrelevant for the stack because it is used only in determining how to pass
features through the tree.!> Table 6.6 summarizes the initial values of the output features
of the stack node.

13Since the stack is at the top of the tree, features from within the tree cannot be passed up beyond it;
since the stack has only sister features to communicate, features from it need not be passed down into the
tree beyond its a-nodes.
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Attachment Nodes

The important symbolic work of a p-node is to communicate features to the a-nodes that
represent its potential attachments. Thus, the list of its potential output feature packets is
the seat of the real information of a p-node. It is the a-nodes that process these features
to determine the syntactic validity of any given attachment. Not surprisingly, the a-nodes
are symbolically complementary to the p-nodes: they create no output feature packets of
their own, but they have a large number of feature slots for recording the values of all of
the symbolic features relevant to an attachment. The features that are created and output
by the p-nodes are combined by the a-nodes to determine to what degree its grammatical
constraints are satisfied. The set of symbolic features of a-nodes thus must be the union of
the features communicated by the p-nodes:

o XP-category

o X'-category

o receives-thetal?
e has-Case

o receives-Case!®

e is-bound

o sister-is-argument

e sister-is-selected

When an a-node is created, all of its features are initialized to the default value ANY, and its
output feature packet list is empty. To update its symbolic information, an a-node processes
any features that were input to it during the previous network iteration, recomputes its
numeric state value based on its updated symbolic information, and, like all nodes, transters
its list of input features to its output feature list. The remainder of this section will describe
the processing of input features and the recomputation of the state value.

When an a-node receives an input feature, it unifies its current value for that feature with
the new value. Unifying the new value with the initial value ANY gives the new value as the
result. Since GB requires that the theta and Case assigners for a node be unique, assigns-
theta and assigns-Case features can be assigned only once. This is ensured by having those
features able to unify successfully only with the value ANY; thus, once one value has been
assigned, additional attempts to assign a new value will not unify with the current value. For
all other features, the current and new values unify successfully if they are the same atomic
value, or if one is an atomic value and the other is a list of atomic values that contains the first
(the result being the atomic value). The only exception is unification involving the special
value UNSPECIFIED. If one of the terms being unified is the value UNSPECIFIED or a list
containing the value UNSPECIFIED, the result of unification is the value UNSPECIFIED. If the

14The receives-theta feature at an a-node corresponds to the theta assignment features of p-nodes.

15The receives-Case feature at an a-node corresponds to the Case assignment features of p-nodes.
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current and new values for a feature do not unify, then the feature is given the value INVALID
and the a-node becomes inactive. Table 6.7 shows an example of an a-node representing a
complement attachment, and the result of unifying the input features from its X and XP
nodes with its default values. Table 6.8 similarly shows an example of a specifier a-node,
and the result of unifying the input features from its X’ and XP nodes.

After an a-node updates its feature settings by unifying its input features with its current
feature values, the a-node then updates its numeric state value by applying the constraint
algorithm shown in Figure 6.2. The algorithm encodes the four constraints on XP feature
values that were presented in Table 6.1 on page 92. In order to arrive at the new state value
for an a-node, the constraint-checking algorithm takes the simple approach of assuming
a high initial state value and then deducting a constant value for each constraint that is
unsatisfied. For example, given the constants currently used in the algorithm, the a-node
of Table 6.7 computes its state value to be 0.9, because none of its constraints are violated.
The a-node of Table 6.8, on the other hand, currently violates both the Theta Criterion and
the Case Filter, and thus determines its state value to be 0.7.

Note that the computation of a constraint violation is conservative when given indeter-
minate values. This is shown explicitly for the Selection Constraint: if the category of the
XP is UNSPECIFIED (that is, unknown), then the algorithm assumes that the attachment
might not satisfy the constraint. The Case Filter is also conservative, since a value of UN-
SPECIFIED can “match” the value N. Since only the stack node and empty nodes can give
an XP-category feature the value UNSPECIFIED, the effect of this conservative approach is
to decrease the state value of an attachment to the stack or to an empty node (in the latter
case, until the empty node is bound).

Summary

Recall that in Chapter 5, phrasal nodes and attachment nodes were shown to play comple-
mentary roles in the numeric processing of the parsing network. A phrasal node distributes
the numeric evidence that indicates how strongly it prefers each of its potential attachments.
An attachment node combines its numeric input to arrive at its activation level, which in-
dicates how strongly that attachment is preferred to be part of the parse. Here the two
node types have been shown to play the corresponding complementary roles in the symbolic
processing of the parser as well. A phrasal node creates and outputs features that are used
to determine the grammaticality of potential attachments. An attachment node unifies the
features 1t receives and applies a constraint-checking algorithm to compute its state value,
which indicates the degree to which its grammatical constraints are satisfied.

The constraint-checking process at the attachment nodes implements one type of con-
straint imposed on symbolic features by the grammatical theory, achieving part of the goal of
distributed, constraint-based parsing. The next section describes how the message-passing
algorithm of the parser enforces the other type of grammatical constraint, which restricts
the structural configurations under which features can be assigned.
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A-Node Input Values Input Values New

Features from V Node from NP Node Values
XP-category (NIC) N N
X'-category (I) N/A
receives-theta TRUE TRUE
has-Case Acc (NoMm Acc OBL) | Acc
receives-Case TRUE TRUE
is-bound TRUE TRUE
sister-is-argument TRUE TRUE
sister-is-selected TRUE TRUE

Table 6.7: The sample a-node represents a complement attachment between the verb know
and the NP Sara. The initial value of each of its features is ANY. Since it is a complement
a-node, the X’-category feature is not applicable.

A-Node Input Values Input Values New

Features from I’ Node from NP Node Values
XP-category (NIC) N N
X'-category I (I) I
receives-theta ANY
has-Case (NoMm Acc OBL) || (NoMm Acc OBL)
receives-Case ANY
is-bound TRUE TRUE
sister-is-argument TRUE TRUE
sister-is-selected FALSE FALSE

Table 6.8: The sample a-node represents a specifier attachment between the I’ of a phrase
headed by the tense morpheme to and the NP Sara. The initial value of each of its features
1s ANY. Note that since an untensed inflection phrase cannot assign Case, the receives-Case
feature retains the value ANY, indicating that the NP does not yet receive Case in this
attachment relation. Also, the NP does not yet receive a theta role, since that must be
passed to it from the VP.
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begin {Constraint-Checking and State Computation}

if the a-node has any invalid features then
Set the state value of the a-node to 0.
exit

endif
Set the state value of the a-node to 0.9.

if XP-category = UNSPECIFIED then  {Selection Constraint}
Decrement state value by 0.1.

endif

if sister-is-argument = TRUE {Theta Criterion}
and receives-theta # TRUE then
Decrement state value by 0.1.

endif

if sister-is-argument = TRUE {Case Filter}
and XP-category = N
and receives-Case # TRUE then
Decrement state value by 0.1.

endif

if is-bound = FALSE then {Binding Constraint}
Decrement state value by 0.1.

endif

end {Constraint-Checking and State Computation}

Figure 6.2: The grammatical constraint-checking algorithm that determines the state value
for an a-node. Since the category value UNSPECIFIED can match any category, “XP-category
= N7 is true when the feature has the value N or UNSPECIFIED.
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6.3 Restricted Feature-Passing

Section 6.2.2 showed how certain constraints from GB are encoded as simple equality tests on
the values of the attributes of an attachment node. However, to ensure grammaticality, it is
clearly not sufficient to pass features indiscriminately through the network and then run the
constraint-checking algorithm at the a-nodes. The constraint-checking algorithm can ensure
that each XP in a given attachment relation has certain required features, but it cannot
ensure that the attachment node received those features in an appropriate manner. Nor
1s it sufficient to control the passing of features purely by distance or degree of activation,
as in many previous marker-passing approaches (for example, Charniak, 1986; Hendler,
1987), since it is the structure of the path between two nodes that must constrained, rather
than its length. Approaches that constrain paths through a network according to a regular
expression specification are also inappropriate (Norvig, 1989; Yu & Simmons, 1990); here,
dynamic properties of both nodes and links must be taken into account in determining a
valid path through the network.'®

The challenge then is to verify the structural configurations from GB that must hold
between two nodes in a given syntactic relation—for example, that structural Case is assigned
within a head government relation. Features assigned under sisterhood can be easily made
to obey this constraint by prohibiting those features from being further propagated after
leaving their source node. However, the other syntactic relations involve longer-distance
structural configurations that are not directly described as relations between neighboring
nodes in the parse tree. Since a connectionist network has no global perspective on its own
structure, even non-local parsing decisions such as these must be made solely on the basis
of local communication.'”

A solution for achieving local verification of structural constraints in the parser exploits
two facts: (1) A syntactic relation between two nodes involves features that must be assigned
or shared between them; and (2) Features passed between nodes must travel through the
network, which is a direct representation of the parse tree structure. Thus, the parser can
enforce structural constraints on a syntactic relation by ensuring that the feature-passing
path along which the relevant features are passed conforms to those structural restrictions.
Because the network is limited to local interactions among the nodes, this must be achieved
by constraining each segment of the feature-passing path to adhere to the grammatical
restrictions that apply to the particular feature being communicated. The success of the
approach relies on the insight that the structural constraints on any relation between two
nodes in a parse tree can be broken down into local components. The set of local restrictions
can then be verified entirely between pairs of directly neighboring nodes along the path in
the tree between the two dependent nodes.

Section 6.3.1 presents the structural configurations from GB that must be verified in

16The solution adopted here could be viewed as a generalization of the regular expression approach, using
a distributed definition of the allowable path components.

17The limited symbolic capabilities of the parser prevent it from building in global information; nodes are
unable to create feature structures that could encode the history of a feature-passing path.
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H Module H Feature H Structural Constraint H

Theta Theory internal theta role || sisterhood
external theta role || specifier /head agreement®

Case Theory inherent Case sisterhood
structural Case head government

Binding Theory || binding of a trace || antecedent government.®

@The use of specifier/head agreement for external theta role assignment is explained in the text.

®The antecedent government relation is further specified depending on the type of movement that gave
rise to the trace; this is explained in the text.

Table 6.9: Structural constraints on feature assignment.

order to support the grammatical constraints implemented by the parser. It is worth noting
that while the parser encodes only a portion of the linguistic theory, this subset of structural
restrictions covers the major syntactic relations of GB. Section 6.3.2 follows with a de-
scription of the message-passing algorithm of the parser, which ensures that these structural
constraints are upheld.

6.3.1 Structural Constraints from GB

Section 6.2.1 noted that different grammatical features must be assigned from one node
to another under different structural configurations, as summarized in Table 6.9. Detailed
explanations of each of the structural relations relies on an exposition of GB theory that
1s beyond the scope of this discussion. Furthermore, GB is an evolving theory in which
the precise set of definitions underlying these relations is continually being refined. It is
not the intention of the research here to propose the definitive version of the theory that
should be implemented. Rather, the goal is to demonstrate the ability of the computational
techniques to implement a constraint-based theory of this style. Hence, a brief definition of
each structural relation will be given, along with an illustration of the typical configuration(s)
within which it applies. Note that the definitions of the government relations are derived
from the proposal of Rizzi (1990), because it provides the most uniform account of these
long-distance relations, and therefore supports a straightforward implementation. However,
the success of the parser’s approach does not rely on Rizzi’s precise linguistic arguments.

The government relation plays a key role in the linguistic theory, reflected in the name
of the theory itself, “Government-Binding.” Since government underlies both the head gov-
ernment and antecedent government relations, its definition will be given first.!®

18Here T have extracted the common pieces of Rizzi’s head government and antecedent government defi-
nitions and labeled them government, although Rizzi (1990) does not separate them out in this way.
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Tree: Network:

Figure 6.3: & c-commands y and every node below it; c-commanded nodes are highlighted.

Government: z governs y iff
i. ¢ c-commands y,'°

ii. no barrier intervenes, and

1. Relativized Minimality is respected.
The three conditions on government are defined as follows; the definitions of barrierhood
and minimality are taken directly from Rizzi (1990).

C-command: z c-commands y iff every node that dominates z dominates y.?° (See Fig-
ure 6.3 for an illustration of the c-command relation.)

Barrier: z is a barrier iff it is not selected as a complement of a verbal head.?!

Relativized Minimality: Relativized Minimality is respected in the relation = a-governs
y only if there is no z such that
1. z 1s a typical potential a-governor for y, and

il. z c-commands y and does not c-command x.

The term “a-government” ranges over head government and three types of antecedent gov-
ernment. Informally, the Relativized Minimality condition states that a node z can only

19Rizzi (1990) uses m-command for head government and c-command for antecedent government. For
simplicity, c-command is used for both types of government here. The extra condition of not being able to
head govern through a lexical projection must then be added to rule out certain problematic cases that arise
from using c-command instead of m-command for head government. This restriction on head government is
an adaptation of proposals from Chomsky (1986b) and Rizzi (1990).

2ONote that this definition, although a common version of c-command, differs slightly from that of Rizzi

(1990).
21The verbal heads are V, I, and C.
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have a certain government relation to another node y if there is no closer node z that can
have that relation to y. For example, the binder of a trace must be the node at a minimal
distance from the trace that satisfies the other syntactic constraints on the binding relation.

Given the above statement of the government relation, the head government and an-
tecedent government definitions are quite simple.??

Head Government: = head governs y iff
i. z is a head,?® and

1. x governs ¥.

Antecedent Government: z antecedent governs y iff
i. x and y are coindexed, and

1. x governs ¥.

There are three subtypes of antecedent government: A-antecedent government for traces
of NP-movement (as in passive and raising); A-antecedent government for traces of WH-
movement (as in WH-questions); and X-antecedent government for traces of head movement
(that is, movement of the head of a phrase).

Figures 6.4, 6.5, and 6.6 illustrate the typical government configurations yielded by the
above definitions. (Since X-antecedent government isn’t currently used in the parser, it is
not shown.)

The final relation of specifier/head agreement is much simpler than the government re-
lations. Specifier/head agreement simply states that the head of a phrase (the X node) and
the specifier position of the phrase must share certain features. For example, this relation
is usually used to account for subject/verb agreement in English: the person and number
features of the specifier of the inflection phrase and the corresponding features of the I node
must agree.?* Here specifier/head agreement is used to assign the external theta role from
the I node (which it receives from its sister VP) to the phrase in subject position. This
is a non-standard explanation of the transmission of the external theta role. As noted in
Section 6.2.1, this is not intended to make a claim about the linguistic theory, but rather
is meant to demonstrate the ability of the parser to implement specifier/head agreement
within the framework developed for the other long-distance relations it uses. The other
possibility for implementing external theta role transmission is to use a version of head
government based on m-command. This would also be easily specified within the parser’s
message-passing algorithm.

22 Again, the definitions are from Rizzi (1990), with the modifications to refer to government.

Z3Technically, one of the following heads: A, N, P, V, Agr, or T. For the purposes here, the fact that it
1s a head—that is, an X node—is enough. In the parser, only X nodes of the appropriate types have head
government features to assign.

24There are a number of formulations of how these features are communicated between the verb and the
I node; these issues are not addressed here.
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(a)

Tree: Network:

(b)

Network:

Figure 6.4: x head governs y in (a), and # head governs both y and z in (b). Head-governed
nodes are highlighted.

6.3.2 Message-Passing Restrictions

The feature-passing restrictions of the parser were derived directly from the linguistic the-
ory, by analyzing the structural constraints described above into locally applicable primitives.
The analysis of the structural configurations into more primitive elements yields a grammat-
ical hierarchy of syntactic relations, shown in Figure 6.7. The most basic structural relations
are projection—the relation between nodes in the same X phrase, and sisterhood—the re-
lation between an X node and its complement, or an X’ node and its specifier. All other
structural relations are defined in terms of these primitives. For example, the c-command
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Tree: Network:
& (P) \
() (1) O 20
Mary ° @ Mary °

present

Figure 6.5:  A-antecedent governs y.

relation can hold across any sister links, but only across downward projection links. The
government relation is then defined as a further refinement of the c-command relation, which
states that in addition the relation cannot hold across a “barrier.” In this way, each relation
in the hierarchy places some restriction on the relations from which it is constructed.

The grammatical hierarchy developed here provides more finely grained definitions of
the structural restrictions than those given within the linguistic theory. In the parser, this
hierarchy of syntactic relations has been formulated as an object-oriented network. Each
object (node) in the grammatical hierarchy can have attached to it some constraint on how
nodes in a parse tree are related if that structural configuration applies. For example, the
grammatical node labeled “government” is where the restriction of not crossing barriers
1s attached, and the a-relation nodes are where the Relativized Minimality restrictions are
attached. Deeper nodes in the hierarchy inherit all the structural restrictions of their ancestor
nodes. Thus, for example, the node for A-antecedent government inherits the restrictions
relevant to an A-specifier relation, government, and c-command.?® Because the more complex

25 As can be seen in Figure 6.7, the definition of the grammatical hierarchy ensures that any government
relation inherits the c-command restriction. In order to use c-command for the antecedent government
relations and m-command for head government, it would be sufficient to make the c-command node a parent
of the antecedent relation node instead of the government node, and to add an m-command node as a parent
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Network:

Figure 6.6: = A-antecedent governs y.

syntactic relations are built up from the primitive relations of projection and sisterhood,
all of the restrictions are stated solely in terms of how they constrain a relation across
individual projection and sisterhood links. This allows each of the structural restrictions to
be implemented in the parser as a feature-passing constraint that is verifiable between any
two neighboring nodes in the parsing network.

In order to ensure that the correct feature-passing restrictions apply to a particular
symbolic feature, the features are defined as instances of the appropriate syntactic relation
object within the grammatical hierarchy. In this way, the features inherit the appropriate
local communication constraints for controlling how they are passed through the parsing
network. A feature defined as an instance of a relation at the top of the hierarchy—that is,
sisterhood or projection—is a local feature of the parser. A sisterhood feature can be passed
only along a sisterhood link in the network (that is, from a p-node to a directly neighboring
a-node); a projection feature can be passed only along a sequence of projection links. A
feature defined as an instance of a relation that is deeper in the grammatical hierarchy—

of the head relation node.
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( sisterhood ) projection )

( c-command )

antecedent

( agreement )

A-specifier X
relation relation
A-specifier
relation

Minimality restrictions:

head/specifier
agreeement

Lexical
A-antecedent X-antecedent projection
Barrier restrictions:

restrictions:
|

_ (head relation)
( government A-antecedent

A-antecedent A-antecedent X-antecedent head
government government government government

Figure 6.7: The object-oriented grammatical hierarchy of structural relations. Highlighted
nodes impose relevant feature-passing restrictions.
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such as A-antecedent government—is a long-distance feature of the parser. Such a feature
can be passed along any number of sisterhood or projection links in the network, subject
to each of the communication constraints imposed by the restrictions on the grammatical
relations that it inherits.

Since the definition of a feature includes the restrictions on how it may be communicated,
the feature packets that are passed through the network implicitly include this information.
All of the nodes in the parsing network use the same feature-passing algorithm for all features.
The difference in how a feature is passed through the network arises solely from the particular
communication restrictions that it inherits. At each node where the feature lands, the
restrictions determine whether the node can pass on the feature to each of its neighbors. This
uniform feature-passing mechanism ensures both local and non-local structural constraints
on syntactic relations, using only local information at each node along a feature-passing path.
The resulting method has been successfully applied to correctly pass features according to
each of the structural restrictions described above in Section 6.3.1.

To examine the feature-passing mechanism in more detail, consider Figure 6.8 in which a
WH-phrase must bind a trace that it antecedent governs. The binding feature from the WH-
phrase Who is defined as an instance of an A-antecedent government feature, and therefore
inherits the feature-passing restrictions from the A-antecedent government object in the
grammatical hierarchy. The c-command restriction entails that a feature can be passed only
on a downward link within an X phrase, and also prevents the original source node from
passing the feature within its own phrase. These two conditions ensure that a node only
c-commands the nodes in the subtree of its sister. The government restriction entails that
a feature cannot be passed across an a-node whose sister-is-selected feature is FALSE. The
c-command and government restrictions thus result in the binding feature from Who being
passed only to nodes that are c-commanded by Who, with no barriers intervening. The A-
specifier relation imposes the appropriate Relativized Minimality constraint by disallowing
a feature from being passed below an A specifier position. The binding feature from the
WH-phrase cannot pass the location of a potential A binder, since that position is a closer
potential binder for the trace.

These results demonstrate how feature-passing in the parser is constrained according
to the grammatical hierarchy, by verifying local restrictions at each decision point along a
feature-passing path. The analysis of each non-local structural configuration®® into a set of
local feature-passing primitives is an important component of the computational theory of
parsing developed here, since it allows the parser to implement the structural constraints of
the theory without the use of phrase structure rules or a global control mechanism. The con-
strained feature-passing method, in conjunction with the feature unification and constraint-
checking mechanisms described in Section 6.2.2, forms the basis of a unique distributed
parsing approach for constraint-based linguistic theories. These symbolic mechanisms de-
termine the grammaticality of node configurations in the parsing network, and the numeric
processing functions choose the preferred attachments from among those. Chapter 7 will

Z6That is, not a sister or projection relation.
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Figure 6.8: A binding feature passed from Who to its potential trace must conform to

the feature-passing restrictions inherited from the A-antecedent government relation in the

grammatical hierarchy.
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demonstrate how the techniques apply to actual linguistic input in the processing of syntac-
tic ambiguities.

6.4 Limitations of the Symbolic Processing

The obvious limitation of the symbolic processing of the parser is that only a fairly small
subset of Government-Binding theory is implemented. However, the intent of the research
was not to exhibit broad coverage of English syntax, but to demonstrate the feasibility of
the proposed hybrid connectionist techniques for providing a direct implementation of a
constraint-based grammatical theory. The important question then is whether the addition
of more syntactic features, constraints, or grammatical relations will slow down the parser
to the point of diminishing the usefulness of the approach.

There are several reasons to believe that the techniques will scale up to handle more
comprehensive syntactic knowledge. One relevant factor is that the parser does not currently
exploit a high degree of parallelism. Adding a large number of features to the model as it
stands would slow things down considerably, because each node in the network would have
to sequentially process many symbolic features. However, a straightforward extension of the
model would replace each processing node with a set of nodes, one for each type of feature.
All types of features could then be processed in parallel. The extra space would not be a
problem, given that the parser now only uses a maximum of 8n + 3 processing nodes during
a parse of an input of length n.%7

Similarly, additional syntactic constraints could be efficiently added to such a model:
since most constraints would apply to only a small subset of features, verification of all of
the constraints would proceed largely in parallel. Enhancing the ability of the message-
passing algorithm to verify additional structural relations would also not have a great effect
on the parser’s efficiency, since very few of the primitive restrictions apply at any particular
node. Furthermore, as discussed in Section 6.3, the parser already has the ability to capture
most of the important structural relations referred to by GB. Although increasing the degree
of parallelism exploited by the model is left for future research, it is clear that the current
restriction of the parser to a small subset of the linguistic theory is not a limitation that is
inherent to the approach.

274n a-nodes, 3n p-nodes, n + 2 empty nodes, and 1 stack node, for a total of 8n + 3.
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Chapter 7

Results of Parsing Syntactic Ambiguities

Since an adequate characterization of how people process and resolve syntactic ambiguities
has not yet been achieved, designing a computational parser that processes these ambigu-
ities in a way that matches human behavior has proven difficult. Recall the motivations
for developing a principled model of parsing, in which human-like behavior results from in-
dependently motivated computational assumptions: to gain a better understanding of the
computational basis of human behavior, and to achieve a better match with human perfor-
mance. This chapter describes how the competitive attachment model realizes both of these
goals. The model has been tested on a number of key syntactic ambiguities that have re-
ceived considerable attention in the psycholinguistic and computational linguistic literature.
The competitive attachment process will be shown to account for a number of well-known
human structural preferences, without the use of construction-specific preference heuristics.
Revisability of preferred analyses and associated acceptability judgments in the model also
match human performance, without the use of explicit revision strategies. Furthermore, the
competitive dynamics of the model mimic finer-grained on-line processing effects, explaining
observations of both serial and parallel processing in human parsing. Thus, the underlying
assumptions of the model and the resulting competitive attachment process will be shown
to provide a principled account of human structural disambiguation that conforms with a
broad range of psycholinguistic data.

Section 7.1 reviews the goals that were set for the model, and relates them to specific
classes of psycholinguistic data that the competitive attachment process of the parser will be
shown to account for. Section 7.2 demonstrates the ability of the model to achieve these goals,
by comparing the detailed results of running the parser to the experimental observations.
Section 7.3 concludes the chapter by summarizing the key results of the model.

7.1 Overview of the Results

Chapter 1 argued that a principled model of parsing must explain three aspects of the
processing of an ambiguity in the human parser: (1) the structure or structures that are
maintained, (2) the preference for one structure over another, and (3) the ability or inability
to revise attachment decisions. In order to evaluate the parsing model with regard to these
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three issues, we can ask the following corresponding questions, comparing its behavior to
that of the human parser:

1. Serialism vs. Parallelism: When presented with an ambiguity, does the parser build
and maintain a single structure or multiple structures?

2. Structural Preferences: How does the parser determine the preference for one pos-
sible structure over another?

3. Reanalysis: If the continuation of the input is incompatible with the preferred struc-
ture, how easily, if at all, is the parser able to revise its initial hypothesis?

The performance of the model must be evaluated within the context of psycholinguistic
data relevant to these three aspects of human parsing. Specifically, the model must account
for the following empirical observations:

1. The “contradictory” experimental evidence for serialism and parallelism.
2. The wealth of preference data across a range of linguistic constructions.
3. The exhibited range of difficulty in reanalyzing erroneous attachments.

Furthermore, to stand as a general and well-motivated account, the behavior of the model
must not be built-in in an ad hoc manner, but must be shown to emerge from its indepen-
dently justified computational assumptions.

In fact, the behavior of the parser that is relevant to these issues arises directly from
its basic competitive attachment operation. A syntactic ambiguity by definition has the
potential to give rise to multiple grammatical attachment choices. When more than one at-
tachment for a phrasal node (p-node) is valid, the multiple attachment nodes (a-nodes) must
compete for the output activation from the p-node. In the model, the resolution of syntactic
ambiguity is formulated as the competitive distribution of activation through the network of
attachment possibilities that the ambiguity gives rise to. The parallel competitive process
of ambiguity resolution underlies the human-like behavior of the model in the three areas
noted above. First, the restricted network structure of the model constrains the competitive
attachment process in a way that yields insight into the question of whether human parsing
proceeds serially or in parallel. Second, the competitive attachment decisions made by the
parser result in a unifying characterization of human structural preferences. Third, because
the competition mechanism attaches the current input phrase and revises earlier attachments
simultaneously, within a restricted parallel atomic operation, the model provides a precise
formulation of the conditions under which reanalysis is possible. In each case, the desired
behavior has not been built into the model, but rather follows from its principled design.

The next section describes in detail how the model’s competitive attachment process
underlies a principled account of the resolution of syntactic ambiguities. The discussion will
focus on the processing of subcategorization ambiguities—that is, structural ambiguities that
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arise from the ability of a verb to take more than one kind of complement.! For example,
the verb know has a subcategorization ambiguity because it can occur with either a noun
phrase or sentential complement; the verb race can occur with a noun phrase complement or
with no complement (that is, it can be used intransitively). Because of the key role played
by verbal information in the syntactic structuring of a sentence,? a principled account of the
processing of subcategorization ambiguities is an important step in an adequate characteri-
zation of human parsing behavior. Chapter 8 will discuss how resolving ambiguity through
the competitive distribution of activation can extend to other types of ambiguity as well,
such as lexical ambiguity and argument/adjunct ambiguity.

7.2 Evaluation of the Model

The following three subsections present results of the model that are relevant to each of
the three areas of inquiry discussed above—that is, serialism vs. parallelism, structural pref-
erences, and reanalysis. The parser will be run on a number of example sentences that
demonstrate how it mimics the human behavior in question. The examples are drawn form
a large body of empirical data on human processing of syntactic ambiguities. Furthermore,
these sentences exemplify key structural configurations that have been a focus of psycholin-
guistic research. Note that it is the structural properties of the examples that are important,
not the particular words being used.® Thus, each sentence actually represents a class of sen-
tence types, for which the particular input items chosen are one instantiation; the relevant
syntactic characteristics of each example will be pointed out.

Recall from previous chapters that, in parsing a sentence, a preprocessing routine sequen-
tially processes the sequence of input tokens. The preprocessor looks up each input token in
the lexicon, and appropriately initializes a new syntactic phrase.* The new phrase is then
connected to the existing parsing network. The spreading activation/message-passing loop
of the network nodes is then triggered, with the distributed network processing continuing
until an acceptable state of the network is reached.® Each example sentence will have one

1Since, in the current implementation of the parser, a phrasal node can only activate a single attachment
node, only verbs with single complements will be considered.

ZFor extended discussion of the importance of the so-called combinatory information associated with
verbs, see Boland (1991) and references therein.

3The effects on the results of using different lexical items will be ignored, except where issues surrounding
lexical preferences are directly addressed. Different lexical items can have varying lexical preferences, which
lead to different weights on connections to attachments in the model. However, in all simulations except the
lexical preference examples, weights are assumed to be 1.0, so that there is no effect of differing lexical items.

“The parser currently operates with a small lexicon of about 25 entries sufficient to support the range
of syntactic constructions relevant to the ambiguities of interest. Scaling up to a reasonable sized lexicon
would entail developing an efficient parallel indexing algorithm, but this issue was not addressed here.

®Recall that in an acceptable state of the network, each p-node sends all of its activation to exactly one
of its a-nodes, and each a-node is either turned on (fully active) or off (inactive) by its p-nodes.
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or more input words whose attachment within the network is particularly revealing of the
parser’s performance as it relates to human behavior. At each of these critical points in
the parse, the state of the network will be examined in some detail. The properties of the
parsing network that are important to evaluating its behavior are the following:

o the attachments that are possible, given the partial parse tree and the current input
word;

e the set of a-nodes that are active when the network of possible attachments reaches an
acceptable state;

e the number of iterations that it takes for the network to reach that state;
e the amount of activation that each active a-node has in that state.

The last two factors—the number of iterations required for the network to settle and the
amount of activation of each a-node at that point—will be used as a measure of relative
difficulty of the attachment of an input word. The number of iterations that it takes for an
input word to be incorporated into the parse state is the amount of time that the network
required to decide on a valid set of attachments that included that word. This measure of
time is assumed to correspond to word-by-word reading times in human parsing; as in inter-
preting human reading times, longer network times indicate increased processing difficulty.
The amount of activation of an a-node also indicates the level of difficulty in making an
attachment, since attachment nodes with less activation are weaker hypotheses about the
parse tree structure. These and the other properties listed above will be presented where
relevant in the description of the network at each of the critical processing points in the
example sentences.

7.2.1 Serialism vs. Parallelism

Consider the following sentence, in which the verb has a noun phrase/sentential complement
ambiguity; the post-verbal NP may be attached directly to the verb phrase, or as the subject
of the sentential complement of the verb:®

(7.1) Sara believes women. ..

. [end of sentence] {Preferred resolution.}
... to be successtul. {Non-preferred resolution.}

6The verb believe subcategorizes for an NP, IP, or CP complement; for simplicity of presentation, the
discussion here will focus on the choice between an NP and an IP. Although all of the reported results are
comparing NP and IP attachments, CP attachments behave exactly the same as the IP attachments. That
18, the fact that both an IP and a CP are projected for a CP complement has no effect on the number
of iterations required to make the relevant attachments; the numbers obtained in simulations using a CP
complement were exactly the same as for an IP complement.
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People strongly prefer to attach the NP directly to the verb phrase as the complement
of the verb; this preference for the “simpler” alternative is commonly known as Minimal
Attachment (Frazier, 1978).

Various sources of psycholinguistic evidence concerning the processing of these types of
ambiguities appear to support contradictory sentence processing models. People exhibit
consistent strong preferences for one continuation of the sentence over the other—a con-
tinuation compatible with the noun phrase complement analysis—supporting the view that
the human parser creates and maintains a single structure for the ambiguous initial string
(Frazier, 1978; Frazier & Rayner, 1982). The serial model hypothesis gains additional sup-
port from experimental evidence indicating that people require time to revise the preferred
hypothesis when the sentence continues in the non-preferred way (Frazier & Rayner, 1982).
However, proponents of a parallel parsing model point to the fact that people have no con-
scious difficulty in parsing a non-preferred continuation—that is, a sentential complement.
Furthermore, syntactic priming experiments contribute evidence that the human parser has
access to the non-preferred structural alternative prior to having seen explicit evidence for
that alternative in the input (Gorrell, 1987). The priming data have been interpreted as
support for the parallel construction and maintenance of the alternative complement possi-
bilities. This section will demonstrate how the competitive attachment model accounts in
a natural way for each of these results, providing a unifying account of serial and parallel
effects in processing syntactic ambiguities.

Preference for a Single Reading

In the proposed model, given a sentence with a noun phrase/sentential complement ambigu-
ity as in example (7.1), the so-called Minimal Attachment preference is a direct result of the
properties of the competitive attachment process and the lack of top-down precomputation.
The parsing network at the point of processing the NP women is shown in Figure 7.1.7 The
NP has valid attachments to the stack (a-node ag) and to the V (a-node a1). The lack of top-
down precomputation prevents the network from creating an inflection phrase corresponding
to the sentential complement possibility. Thus, at this point in the parse, the network has
no representation of a potential attachment of the NP as the subject of an embedded clause.
Since the default stack attachment is of necessity less competitive than an attachment to the
developing parse tree,® a-node a; (the NP-to-V attachment) becomes highly activated, with
the network settling in only 17 iterations. The parsing network after the losing a-nodes are
deallocated 1s shown in Figure 7.2. The basic assumptions of the model force it to settle on a
single analysis of the input, as in a serial model, thus accounting for the observed preference.

"Note that although a tensed verb such as believes projects a full sentential structure (that is, CP/IP/VP),
the figures here are simplified by omitting display of the CP of root clauses. The figures are further simplified
by omitting grammatically invalid a-nodes and irrelevant empty nodes.

8See the discussion on “Reasonableness,” beginning on page 82 in Section 5.3.4, for a discussion of the
competitive properties of the stack node in comparison to other phrasal nodes.
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present women
Sara

believe

Figure 7.1: The network after projecting the NP women, in the sentence beginning Sara
believes women.

In fact, a closer examination of the data regarding this preference reveals that the com-
petitive attachment model is more compatible with human processing than are most other
serial or parallel models. Race-based serial models (for example, Frazier, 1987; Frazier &
Rayner, 1982; McRoy & Hirst, 1990), as well as parallel models that build multiple structures
in response to an ambiguity (for example, Gibson, 1991; Gorrell, 1987), predict an increased
processing load at the point of processing a verb with a subcategorization ambiguity.® Psy-
cholinguistic experiments have found no evidence of such a processing load (see the discussion
in Frazier, 1987). For example, in an on-line judgment experiment by Gorrell (1987), reac-
tion times to sentences with unambiguous NP complement verbs were the same as reaction
times to sentences with ambiguous NP /sentential complement verbs that were used with
an NP complement. Both of these reaction times were significantly faster than those to
sentences with ambiguous NP /sentential complement verbs where the verb was used with
a sentential complement. Parsing models that build multiple structures in response to a
subcategorization ambiguity are most compatible with an increase in response time for the
ambiguous verb in either of its usages. In the competitive attachment parser, the inherent
restrictions on the model constrain it to consider only a single analysis, and so there is no

9Serial models are normally believed to not lead to an increased processing load at an ambiguity. However,
serial models in which the choice of which structure to maintain is based on a race (or other ranking procedure,
as in Inoue & Fodor, in press) necessarily depend on the preliminary exploration of the multiple choices in
parallel.
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Figure 7.2: The network after attaching the NP women to the verb.

increase in processing load. The model thus conforms better with the experimental data.

Priming of the Non-Preferred Alternative

One of the pieces of evidence for a parallel model that builds and maintains multiple struc-
tures is the data from Gorrell (1987) that showed that the non-preferred alternative of these
subcategorization ambiguities could prime a lexical decision task that immediately follows
the post-verbal NP. Subjects were shown (word-by-word) sentences containing a verb with an
NP /sentential complement ambiguity, and at the end of the post-verbal NP were presented
with a target for a lexical decision task.'® In this experimental paradigm, subjects appear
to try to integrate the lexical decision target into the syntactic structure of the displayed
sentence. Targets were either pronouns or modal verbs. A pronoun target could not be a
grammatical continuation of the sentence, regardless of the resolution of the subcategoriza-
tion ambiguity of the prior verb. However, a modal verb target could be a grammatical

10The target word was displayed above the words of the sentence being presented; subjects were asked to
press one of two buttons indicating whether the target was a word or not.
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continuation if the ambiguous verb was interpreted as taking a sentential complement. Gor-
rell found that the lexical decision task for modal verbs was significantly faster than for
pronouns following an ambiguous verb and the post-verbal NP; that is, a target compatible
with a sentential continuation is primed relative to the pronoun target. Furthermore, there
was no difference in speed of decision between a modal verb following an ambiguous verb,
and a modal verb following an unambiguous sentential complement verb. Thus, process-
ing a sentential continuation appears to be equally easy for an ambiguous NP /sentential
complement verb and an unambiguous sentential complement verb. Gorrell argued that the
timing of the lexical decision task entailed that any model that performed reanalysis given
the non-preferred continuation would be unable to account for this data, since reanalysis in
the ambiguous verb case would entail a slow-down in processing the target modal verb. This
is a potential problem for the competitive attachment model. Because only the so-called
Minimal Attachment structure is initially created, the parser must revise its analysis when
presented with the evidence for a sentential complement. However, the parallel competi-
tive attachment operation of the parser in fact leads to a natural account of priming of the
non-preferred alternative.

Mimicking the format of the syntactic priming task, assume the parser is given the lexical
decision target to after processing the initial sentence fragment of example (7.1), and tries
to integrate that word into the current parse tree:'!

(7.2) Sara believes women [to]

At the word to, the parser projects an IP; its initial connections to the network are shown
in Figure 7.3.'2 Note that the multiple complement possibilities of the verb are active
simultaneously—that is, the two complement attachments to the verb, a; and a,, are com-
peting for activation from the V node. The subcategorization of believe for an IP raises the
state value of a-node a; between the V node and the IP node. Thus, the attachment of to
to believe is activated (“primed”) by the expectation of believe for an IP complement, ac-
counting for the priming effect found by Gorrell. It is important to note that it is the active
expectation for the IP, not the pre-computation of sentential structure, that is responsible for
the priming effect. Also, since the parallel attachment operation of the parser immediately
integrates the IP into the parse tree, the model can account for the timing of the lexical de-
cision task and the priming effect, unlike a serial model with reanalysis. The result depends
on the automatic postulation of all possible attachments between the IP and the existing
parse tree. It should therefore be emphasized that the a-nodes as explicit representations of
possible attachments are an integral and necessary part of the parser. That is, the active
expectations embodied in the a-nodes are not an ad hoc mechanism added onto the parser
merely to achieve this kind of priming effect.

1Here I am using the infinitive marker to as the “lexical target” to be consistent with the other examples
in this chapter; using a modal verb as in Gorrell’s experiment would lead to equivalent behavior in the model.

12Gince the parser currently does not handle lexical ambiguity, the word to is projected only as an inflection
phrase.
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Figure 7.3: The network at the point of processing the word to after processing Sara believes
women.

Since priming is a process of relative facilitation of processing, the complete picture of the
priming effect requires an examination of how the network behaves given a target that would
constitute an ungrammatical continuation of the sentence. The assumption is that, while
the expectation for a target that would indicate an IP continuation eases the lexical decision
task, the increased difficulty of processing a target that would indicate an ungrammatical
continuation interferes with the lexical decision task; see Gorrell (1987). When processing
a target compatible with the IP continuation, as in Figure 7.3, the network reaches an
acceptable state in 24 iterations. By contrast, given an ungrammatical continuation (using
a pronoun as the target word, as in the Gorrell experiment), the network takes 33 iterations
to settle. Thus there is a clear facilitation of the processing of a target compatible with
a sentential complement continuation in comparison to one constituting an ungrammatical
continuation.

The network accounts for the priming of the non-preferred alternative as the consequence
of active expectations in the form of multiple potential attachment nodes that simultaneously
compete for activation. The approach is quite different from parallel models that maintain
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and rank multiple alternatives, such as in Gibson (1991) or Gorrell (1987). A ranked-parallel
model must incorporate additional assumptions to explain the following two facts: first,
that NP complement structures are judged grammatical faster than sentential complement
structures, and second, that equivalent priming of a sentential complement is obtained for
ambiguous NP /sentential complement verbs and unambiguous sentential complement verbs.
To account for the judgment data, a ranked-parallel model must specify that the judgment
task is sensitive to the ranking of the structures. On the other hand, to account for the
priming data, it must be further specified that the lexical decision task is not sensitive to
ranking. The competitive attachment model avoids such stipulations in the sensitivity of
particular tasks, because the preference shown by the parser does not rely on a ranking
of two existing structures. Its explanation of the preference data and the priming data is
therefore more parsimonious than these previous approaches.

Evidence for Reanalysis

In addition to the syntactic priming data, proponents of a parallel model point to the fact that
the non-preferred resolution of this type of ambiguity is easy for people to process. However,
detailed eye-movement studies (Frazier & Rayner, 1982) have shown that people exhibit
longer per-letter reading times in the disambiguating region when these types of sentences
are resolved in the non-preferred way.'® The competitive attachment model provides a
unifying account of these disparate observations. Consider the following sentence, containing
a non-preferred resolution of the ambiguity:

(7.3) Sara believes women to be successful.

At the point of processing the disambiguating word, to, the network has the structure that
was shown in Figure 7.3. The same set of a-nodes that define the initial attachment possi-
bilities for the current IP phrase, a; and as, simultanecously define the revised attachment
necessary for the NP women. The NP-to-V attachment, a-node a;, competes both with a,
for the activation from the V node, and with a3 for the activation from the NP node. These
two competitions draw activation away from a;. The network reaches an acceptable state
in 24 iterations; when it does so, as and as are highly active and a; has become inactive,
resulting in the network of Figure 7.4. In a single atomic operation, the network has revised
its earlier attachment hypothesis for the NP and incorporated the new IP phrase into the
parse tree. Changing the attachment of the NP in this way is possible only because that
revision involves one of the sets of logical attachment possibilities allowed by the competitive
attachment process.*

Because the necessary revision occurs within the normal attachment operation of the
parser, the model accounts for the fact that people are not consciously aware that they are

13A related experiment in Rayner & Frazier (1987) provides evidence that the increased reading times are
not just a complexity effect that arises due to the processing of a subordinate clause structure.

14See Figure 4.32 on page 57, and the accompanying discussion in Section 4.3.
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Figure 7.4: The network after re-attaching the NP to the I, and attaching the IP to the
verb.

revising an earlier structure. However, the operation of the model contrasts with traditional
parallel approaches, in which a less preferred alternative analysis may be immediately se-
lected from multiple structures that are already computed. Here the revision does require
a reanalysis process, consisting of a competition for activation between the old and new
attachment nodes. Because of the increased competitive activity, the network takes 24 itera-
tions to settle after to, as compared to 17 iterations after women. The model thus accounts
for the longer reading times exhibited at the disambiguation point in the Frazier & Rayner
experiments. The increase in reading time in their data consisted of more fixation durations
in the disambiguating region (here, the word to, which indicates an IP complement) and
regressive eye movements to the post-verbal NP. These are the key phrases involved in the
competitive activation process of the model. It seems plausible that eye movements focusing
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on the relevant input could correspond to the competitive activation of nodes in the parse
tree.!® Parallel models that maintain multiple structures cannot account naturally for the
observed pattern of eye movements, given the immediate adoption of an available alterna-
tive in those approaches. A serial model, on the other hand, must rely on explicit strategies
within the parser for directing its attention appropriately, while the competitive attachment
model captures this focusing of attention automatically.

Summary

The restricted parallelism of the competitive attachment model has been shown to lead to
both serial and parallel processing behaviors in parsing syntactic ambiguities. The lack of
top-down precomputation and the necessity of focusing on a single structural analysis lead
to strong initial preferences; the competitive spread of activation entails that changes to
those preferred structures requires time. These serial aspects of the model’s performance
are complemented by its parallel behaviors, arising from its active expectations and parallel
attachment operation. Together, these properties of the model provide a concise and unifying
account of the observed serial and parallel aspects of human parsing.

7.2.2 Structural Preferences

People exhibit a number of structural preferences when processing subcategorization ambi-
guities. Although individual preference heuristics may be able to determine the preferred
attachment in a range of configurations, such strategies constitute neither a concise nor ex-
planatory approach to ambiguity resolution. Furthermore, formulating structural preferences
as explicit strategies leads to complications when the strategies conflict, as they inevitably do
(for further discussion of this point, see McRoy & Hirst (1990)). This section demonstrates
that the competitive attachment mechanism is a plausible model of the underlying causes of
several observed attachment preferences: Minimal Attachment and Late Closure, as well as
recency and lexical strength effects. In each case, it will be shown that the exhibited pref-
erences are a result of the interaction of fundamental, independently motivated properties
of the model. The competitive attachment model will also be shown to provide a natural
integration of preference factors.

Minimal Attachment and Late Closure

The account of the Minimal Attachment preference was given in Section 7.2.1, which focused
on the processing of verbs with NP /sentential complement subcategorization ambiguities. It

15Given this explanation of the eye-movement data, one might wonder why the data do not show significant
regressive eye movements to the verb, since the V node is also actively engaged in the reanalysis competition.
I would propose that the focus of attention in reading corresponds to the re-activation of XP nodes (in this
case, the NP and the IP), since those nodes are determining the attachment of their X phrases into the parse
tree.
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was shown that the competitive attachment model arrives at a “Minimal Attachment” anal-
ysis of the initial input string of example (7.1) due to the competitive attachment mechanism
and the lack of top-down precomputation. These very same properties apply in so-called
Late Closure sentences, exemplified by the following:

(7.4) When Kiva eats food. ..

.. .1t disappears. {Preferred resolution.}
... disappears. {Non-preferred resolution.}

In these sentences, the subordinate verb is optionally transitive—that is, it can occur with
an NP complement or without a complement. People show a strong preference for the Late
Closure reading in which the post-verbal NP attaches as the complement of the subordinate
verb (the transitive reading of eat) rather than as the subject of the main clause (in which
case eat is intransitive).!®

Figure 7.5 shows the configuration of the network at the point of processing the NP food;
compare the network to Figure 7.1 on page 118. Again, because of the lack of top-down pre-
computation, the NP has only the options of attaching to the verb or to the stack. Since the
phrasal structure for the main clause has not yet been allocated, the possibility of attaching
as the subject of the main clause (as would be required by the non-preferred continuation
of the sentence) does not exist. As in example (7.1), the post-verbal NP makes the best
attachment available to it, as the complement of the verb. Since the initial attachment in
these cases of Late Closure is determined in exactly the same manner as in the Minimal
Attachment cases illustrated by sentence (7.1), these two classic preferences receive a uni-
form account in the proposed model. In Section 7.2.3 we will return to the behavior of the
parser given the non-preferred continuation of example (7.4), which is quite different from
the behavior given the non-preferred continuation of example (7.1).

Recency

The human parser shows a strong tendency to attach the current input phrase to more re-
cent syntactic structure. In a number of parsing models, this preference has been stated as
an explicit processing strategy (for example, Kimball’s “Right Association” (1973), Frazier’s
“Late Closure” (1978), and Gibson’s “Recency Preference” (1991)). By contrast, in the com-
petitive attachment model, the active memory management techniques required to maintain
the pool of network processing nodes indirectly give rise to recency effects. Since the number
of processing nodes in the parser must be finite, a scheme has to allow for their reuse. Earlier
chapters have explained that, in order to accomplish this, the activation of p-nodes decays

161t has been proposed that a sentence such as When Kiva eats food disappears is ungrammatical because
of the lack of appropriate punctuation—that is, a comma after eats. See Gibson (1991) for arguments
that these types of examples cannot be consistently ruled out in the grammar, given the grammaticality of
sentences such as When Kiva eats food it disappears, which also lacks a comma following the subordinate
clause.
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Figure 7.5: The network at the point of processing the NP food in the sentence beginning
When Kiva eats food.

over time. This memory management technique—the decay of phrasal activation—leads to
a principled account of recency effects.

Consider the following sentence, in which each verb—believe and suspect—can have either
an NP or IP complement:

(7.5) Sara believes the report that women suspect Laika to. ..

... have committed the crime. {Preferred resolution. }
... have been published. {Non-preferred resolution.}

In the preferred continuation, suspect has an IP complement, [Laika to have committed the
crime], and believe has a factive NP complement, [the report [that women suspect Laika to
have committed the crime]]. In the less preferred continuation, suspect has an NP comple-
ment, Laika, and believe has an IP complement, [the report [that women suspect Laika) to
have been published]. The ambiguity arises at the word to, which projects an IP that can
attach either to the embedded verb suspect or to the main verb believe.
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Figure 7.6 shows the state of the network at this point in the parse. The IP headed by to
can activate a-node as, replacing the NP headed by report as the complement of believe, or it
can activate a-node ay4, replacing the NP headed by Laika as the complement of suspect. The
lower verb has more activation to output than the higher verb, because it was allocated more
recently and its activation has decayed less. This means that a-node a4, the IP attachment
to the lower verb, gains more activation from its verb than a-node as does from the higher
verb. A-node a4 therefore competes more effectively for activation from the IP, and the
IP makes the attachment as the complement of the lower verb suspect. Although the IP
makes the lower attachment, the existence of the higher attachment is not irrelevant. In
this configuration, the increased competition of choosing between two attachments causes
the network to require 31 iterations to reach an acceptable state, compared to 24 iterations
when there is only a single valid attachment for the IP (as in example (7.3)).

The issue of recency effects will be addressed again in Section 7.2.3, since the recency of
nodes involved in a necessary revision of attachments also affects how easily the reanalysis
proceeds.

Lexical Preferences

A number of sentence processing theories have incorporated a model of the effect of lexical
expectations on the ease of analyzing certain inputs (for example, Ford, Bresnan, & Kaplan
(1982); MacDonald (1994); Tanenhaus, Stowe, & Carlson (1985)). Connectionist processing
techniques are able to naturally integrate this type of preference information through the use
of weighted connections. In the competitive attachment model, lexical strength is represented
by the weights on the links between a p-node and its potential attachments, and these weights
reflect the frequency of a p-node licensing a certain category of XP attachment.!”
Consider again the sentence of example (7.3), repeated here:

(7.6) Sara believes women to be successful.

To test the effects of lexical expectations in the parsing network, a comparison was made
of the ease of reanalysis required at the word to given different strengths for the NP /IP
complement expectations of the verb believe.!® In the baseline test, the verb’s expectation
values for an NP and an IP are the same high value; this is the “normal” condition, which was
used for all reported tests of the parser except for those explicitly involving comparisons of
lexical strength. Under these conditions, the NP requires 17 iterations to make its attachment
to the verb, and the IP requires 24 iterations to make its attachment, which simultaneously

17Since the model does not currently include a theory of learning, these weights are hard-coded into the
lexical entries. Adapting a connectionist learning algorithm to adjust these weights based on the experience
of the parsing network would be straightforward. The important point is that the computational framework
of the model can naturally encode this information and apply it in determining attachments.

18Recall that although the results reported here focus on the NP/IP choices, the figures obtained are the
same for a CP as for an IP, and are also the same whether the subcategorization choice is between an NP
and IP, an NP and CP, or an NP, IP and CP.
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Figure 7.6: The network at the point of processing to.
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Strength of Expectation | Number of Iterations
for Each Complement to Make Attachment
NP ‘ IP NP ‘ IP
1.0 1.0 17 24
1.0 9 17 25
1.0 .8 17 26
1.0 T 17 27
1.0 .6 17 28
1.0 ) 17 30

Table 7.1: The effect of varying strength of expectation on the number of iterations required
to make the post-verbal NP and IP attachments in the sentence Sara believes women to be
successful. The strength of expectation is varied from high to low for an IP complement
of the verb, which has an NP/IP subcategorization. The number of iterations required to
initially attach the post-verbal NP is unaffected, but the number of iterations required to
attach the IP increases with decreasing strength.

involves reattaching the NP as the specifier of the I'.*° The following tests examine the effect
of varying lexical preferences on these baseline figures.

The first test was to hold constant the strength of expectation of an NP complement at
the highest possible value, and to vary the strength of the IP expectation from high to low:
the results are summarized in Table 7.1. Under these conditions, the NP always took 17
iterations to make the initial attachment to the verb. The speed of the NP attachment is
unaffected by the degree of expectation for the IP, since the IP attachment is not yet being
considered when the NP is first attached. By contrast, the number of iterations for the
IP to make its attachment increased steadily from 24 to 30. As the lexical expectation for
the IP decreased, the parser had greater and greater difficulty in settling on the necessary
attachments for the reanalysis. Hence, the decrease in lexical strength had an inhibitory
effect on the IP attachment, by decreasing its ability to compete strongly with an attachment
alternative.

The second test was to hold constant the strength of expectation of an IP complement at
the highest possible value, and vary the strength of the NP expectation from high to low. The
number of iterations to make the initial NP-to-V attachment increased from 17 to 20, while
the number of iterations to make the IP attachment decreased from 24 to 22; see Table 7.2.
Again, a decrease in lexical strength, this time of the NP expectation, had an inhibitory
effect on making the corresponding attachment, even though the NP-to-V attachment is
competing only with the default attachment of the NP to the stack. Additionally, although
the expectation for the IP was held constant, its attachment was made easier as the NP
expectation was decreased. Thus, a decrease in strength of expectation for a phrase not only
inhibits its own attachment, but can facilitate attachments that compete with it by making

¥These are the same values as were presented in earlier discussion of this example.
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Strength of Expectation | Number of Iterations
for Each Complement to Make Attachment
NP ‘ IP NP ‘ IP
1.0 1.0 17 24
9 1.0 18 23
.8 1.0 18 23
T 1.0 18 22
.6 1.0 19 22
) 1.0 20 22

Table 7.2: The effect of varying strength of expectation on the number of iterations required
to make the post-verbal NP and IP attachments in the sentence Sara believes women to be
successful. The strength of expectation i1s varied from high to low for an NP complement
of the verb, which has an NP/IP subcategorization. The number of iterations required to
initially attach the NP increases, and the number of iterations required to attach the IP
decreases, with decreasing strength of the NP expectation.

it a weaker competitor. The competitive model therefore not only accounts for direct lexical
preference effects, but predicts indirect effects on the competing attachments.

Interaction of Preferences

It is interesting to note that in the competitive attachment model, the Minimal Attachment
and Late Closure preferences are quite different in quality from the recency and lexical
strength effects. Parsing models use a variety of strategies to account for the fact that the
human parser prefers structures that are compatible with what we have been describing as
Minimal Attachment and Late Closure; what many of these approaches have in common
is that the parser is faced with a choice of structures that it somehow ranks (for example,
Frazier, 1978; Gibson, 1991; Gorrell, 1987; McRoy & Hirst, 1990). In these models, for
example, at the point of processing the post-verbal NP in sentences (7.1) and (7.4), the parser
chooses between attaching the NP as the object of the verb phrase, or as the subject of a
sentential phrase. By contrast, in the competitive attachment model, these “preferences” are
in fact not preferences at all from the point of view of the parser, because there is no relevant
choice. What we externally observe as a preference between two possibilities is caused by
an absolute condition in which only one of the possibilities exists at the processing point in
question.

In contrast, the properties of recency and lexical strength lead to true relative preferences,
and thus we can investigate how their interaction is resolved in the model. This will be
demonstrated by examining how the tendency for the most recent attachment to win is
affected by varying the lexical strengths on more and less recent attachment possibilities.
Consider again the recency example repeated here and in Figure 7.7:

(7.7) Sara believes the report that women suspect Laika to. ..
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Figure 7.7: The network after projecting the post-verbal IP.
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Strength of Expectation for Each Complement Number of Iterations
of believe of suspect to Make IP Attachment
NP ‘ 1P NP ‘ 1P to believe ‘ to suspect
1.0 1.0 1.0 1.0 31
1.0 1.0 1.0 .8 32
1.0 1.0 1.0 .6 34
1.0 1.0 1.0 4 37
1.0 1.0 1.0 2 35
1.0 1.0 1.0 1.0 31
9 1.0 1.0 9 31
.8 1.0 1.0 .8 33
T 1.0 1.0 T 34
.6 1.0 1.0 .6 37

Table 7.3: The effect of varying strength of expectation on the number of iterations required
to make the IP attachment at the word to in the sentence beginning Sara believes the report
that women suspect Laika to. The strength of expectation is varied from high to low for NP
and IP complements of verbs with an NP /IP subcategorization. The number of iterations
required to attach the IP to the more recent verb suspect increases as its expectation for an
IP decreases. When the expectation is very low, the attachment to the higher verb is made.
When the expectation of the higher verb believe for an NP complement is simultaneously
decreased, the number of iterations required to attach the IP to the more recent verb increases
more rapidly, and the shift to the higher attachment is made sooner.

Table 7.3 summarizes the results of varying the strengths of expectations of the two verbs
in a number of tests. Given that believe and suspect have equal strengths of expectation
for NP and IP complements, the IP will attach to the most recent verb, as demonstrated
earlier. If suspect’s strength of expectation for an IP is decreased, however, the number
of iterations required for this attachment to be made is steadily increased, from 31 to 37
iterations. This again demonstrates the inhibitory effect of decreased lexical strength, which
makes the preferred attachment a less strong competitor. Moreover, if the lexical strength
1s decreased substantially, then the IP will attach instead to believe, in 35 iterations. Thus,
the inhibitory effect of a decreased expectation not only increases the time it takes for the
network to settle on the “preferred” (more recent) attachment, it can in fact change the
preference to the less recent attachment.

The less recent attachment to believe also wins (in 37 iterations) if suspect’s strength of
expectation for an IP is decreased only moderately, but at the same time believe’s strength
of expectation for an NP is equivalently decreased. Decreasing the strength of the NP
attachment to believe makes that option a weaker competitor, thus increasing the ability
of the IP attachment to belicve to compete effectively. In the earlier test, when suspect’s
strength of expectation for an IP was only .6 and believe’s strength of expectation for an
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NP was 1.0, the IP still attached to the more recent verb, suspect. Here, when suspect’s
strength of expectation for an IP was .6 and believe’s strength of expectation for an NP had
been decreased to .6 as well, the IP attaches instead to the less recent verb, believe. Again,
we see the indirect effects of lexical strength on the competitive attachment process.

It 1s worth noting that in all cases in which the less recent attachment wins, the activation
of that a-node 1s much lower than the activation of a winning attachment to the more recent
phrase. Thus, although a less recent attachment may become strong enough to win over a
more recent one, there is still an element of difficulty in making the attachment, in terms
of both the increased time to reach an acceptable state and the decreased strength of the
resulting attachment hypothesis.

In conclusion, the competitive attachment process of the parsing model serves to smoothly
integrate diverse sources of preference information. Whereas other models that rely on
explicit preference heuristics must employ some means of resolving disagreements between
them, the model here captures the effects in a way that obviates the need for explicit conflict
resolution strategies.

7.2.3 Reanalysis

The final goal that was set for the parsing model was to account for the range of difficulty
that the human parser exhibits in reanalyzing erroneous attachments. In this area, too, the
explanations fall out from basic properties of the model. Other sentence processing models
account only for the discrete division of sentences into two classes: those allowing for nec-
essary revisions within the normal operation of the parser, and those for which a necessary
revision would require a special recovery mechanism (that is, garden path examples) (for
example, Gibson, 1991; Gorrell, in press; Fodor & Inoue, 1994; Pritchett, 1992; Weinberg,
1991). Fundamental properties of the competitive attachment mechanism determine the gen-
eral structure of its attachment and revision operation, providing a principled explanation of
these possible and impossible reanalyses. Furthermore, the competitive activation approach
yields finer-grained predictions of relative difficulty within the class of possible reanalyses.
In fact, recency and lexical strength, which affect relative preferences, are instrumental in
determining the relative ease of reanalysis. Thus, the model provides a unifying account of
the mechanisms involved in relative preferences and relative ability to reanalyze.?°

Possible Reanalyses

The possible reanalyses are precisely defined in the competitive attachment model as those
which involve competing attachments along the right edge of the partial parse tree on the

20Edward Gibson has correctly pointed out to me that it is not a necessary property of the human sentence
processor that the same factors that are involved in determining the ease or difficulty of an initial preference
are also involved in determining the ease or difficulty of reanalysis. Although not a necessary property, 1
will assume that it is a desirable one for a sentence processing model, since it entails a more uniform and
parsimonious account of the data. Thus, I consider this an advantage of the competitive attachment model
over other sentence processing theories.
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top of the stack. Only revisions of this nature can be processed within the normal attach-
ment operation of the parser, without recourse to special recovery strategies. This type of
reanalysis has been exemplified in sentences (7.3) and (7.5). For completeness and ease of
reference, Figure 7.8 shows the network state for the similar reanalysis at the word to in the
following sentence:

(7.8) Sara believes the fact to. ..

As mentioned above, the network is able to revise the NP-to-V attachment represented by
a-node a; because the competitions of a-node a, and as draw sufficient activation away from
it. In effect, the new attachments between the IP and the V, and the I and the NP, conspire
to break the old attachment between the V and the NP. The number of iterations required
for this network configuration to settle is 24, which is longer than the 17 iterations required
for the simpler initial NP attachment to the verb, but not indicative of great processing
difficulty.?! Also, the activation of the IP complement a-node is .637 and the activation of
the NP subject a-node is .534, which are both high levels for newly activated attachments.
Thus, a reanalysis of this type, which involves attachments to a recent portion of the right
edge of the parse tree, are not only possible but are fairly easy for the parser.

Recall that the restriction of making attachments only to the right edge of the tree on
the top of the stack is independently motivated by properties of the competitive activation
mechanism of the parser.?? Thus, the ability to make the necessary revisions in this type of
structure follows from fundamental properties of the competitive attachment architecture.
Interestingly, the structural configurations in which the competitive relations allow reanaly-
sis are very similar to those captured by explicit restructuring strategies in other approaches.
For example, the revisions within the model conform to the restrictions imposed by Pritch-
ett’s (1992) “On-Line Locality Constraint,” Fodor & Inoue’s (1994) “Steal” operation, and
Abney’s (1989) right-edge continuation heuristic. However, in the competitive attachment
model, these restrictions are an emergent property of the general attachment mechanism of
the parser, enabling the model to avoid explicit heuristics defining allowable reanalyses. The
next section discusses how the model in turn prohibits reanalysis of garden path examples,
again as the result of inherent restrictions of the competitive activation mechanism.

Garden Path Sentences

There are two types of impossible reanalyses in the competitive attachment model. The
first occurs when the attachments that would be required for the necessary revision are
not available within the current set of competing attachment nodes, because they involve
nodes that are not along the right edge of the top of the stack. Under these conditions, the
parser is completely unable to proceed, since there are no available alternative hypotheses

21Recall from Chapter 5 that the number of iterations for the network to settle ranged from 10 to 70 in
the numeric simulations.

22G¢e the discussion in Section 4.1.3.
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Figure 7.8: The network after reanalyzing the initial attachment for the post-verbal NP in
response to the word to in the sentence beginning Sara believes the fact to.

for it to consider. Because the restriction on the allowable attachments is independently
motivated, the unavailability of the correct analysis in these types of garden paths follows
from fundamental properties of the competitive attachment architecture. This situation
arises in the following classic garden path sentence:

(7.9) The horse raced past the barn fell.

Figure 7.9 shows the state of the parser after projecting the input phrases corresponding
to raced; note that the tense features of the verb project a CP/IP pair of phrases. The
parser has a choice between attaching the NP headed by horse as the subject of the IP, or
attaching the CP to the NP as a reduced relative clause.?> The attachment of the NP to

Z3A real solution to this example relies on an implementation of lexical ambiguity, since raced projects
two possible phrases, as a main verb and as a passive participle. Chapter 8 discusses how the model can
be extended to handle competing lexical alternatives. Given those extensions, the main verb alternative
wins the competition, and the reduced relative reading becomes inactive and therefore inaccessible for later
revision. The analysis given here can be considered a simplification of the more complete approach.
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raced

Figure 7.9: The network after projecting raced in the sentence beginning The horse raced.

the I’ is strongly preferred over the attachment of an empty node to the I’ because an empty
node would currently be unbound in that position. The attachment of the CP to the N is
not strong enough to win its competition because it does not receive a theta role.?* Thus,
the attachments corresponding to the main verb reading—that is, the attachment of the NP
as the subject of the IP and the attachment of the CP to the stack—win the competition.
When the verb fell is input, the parsing network i1s as shown in Figure 7.10. To successfully
incorporate the input phrase would require having access to a-node a; between the previously
attached NP and I, so that the NP can be correctly reattached as the subject of the main
verb fell. However, the a-nodes representing the attachments that need to be revised are
not visible to the current input phrase. Because there is no grammatical analysis available
to it, the parser is severely garden-pathed at this point.?®

24The NP does not assign a theta role to a relative clause; the CP is instead licensed through the process
of predication.

Z5Stevenson (1993b) discusses additional severe garden-path examples that depend on extensions to the
parser to handle double-object verbs.
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Figure 7.10: The network after projecting fell in the sentence The horse raced past the barn
fell.

In the second type of impossible reanalyses, the necessary revision does involve a-nodes
that are along the right edge of the top of the stack, but the competitive behavior of the
parser prevents the a-nodes representing the correct analysis from becoming activated. This
situation occurs in the non-preferred continuation of sentence (7.4):2

(7.10) When Kiva eats food disappears.

26See footnote 16 on page 125 for discussion regarding the grammaticality of example (7.10).
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We saw above that the initial Late Closure preference for the post-verbal NP to attach
directly to the verb occurred for the same reasons as in the Minimal Attachment example
of (7.1). However, while this initial preference is revisable in the Minimal Attachment case,
it is not in sentence (7.10). The initial attachment of the post-verbal NP to the verb is
shown in Figure 7.5 on page 126; at disappears, the NP needs to break its attachment to
the verb and reattach as the specifier of the current IP. The network could do this by de-
activating a-node a; and activating a-node as of Figure 7.11. However, a3 is not able to
win the competition with a; for the output activation from the NP. The difference from the
case in Figure 7.8 (page 135) where reanalysis is possible is that there, the a-node between
the verb and the NP (a-node a;) was competing with two new attachments (a-nodes a» and
a3), which were together able to draw activation from the NP-to-V attachment. Here there
1s no corresponding a-node a, for the V node to redirect its output to, and so it continues
to activate the NP attachment. The attachment of the NP to the I’ is not strong enough
by itself to win the competition with the attachment of the NP to the V. The current I’
thus activates the default empty node attachment, leading to a clause with an empty (and
unbound) subject. Since the network settles on an irrecoverably ungrammatical analysis,
the model correctly predicts a garden path.2”

However, this garden path situation differs in an important respect from the one above.
In example (7.9), the necessary attachments are simply unavailable to the parser, leading
directly to its inability to make the revision. Because there are no alternative hypotheses to
return to, adding a simple recovery mechanism to the parser to give it a “second chance”
to find a better set of attachments would not help it to recover from its failure—the parser
has no recourse but to re-parse the sentence. In example (7.10), though, the necessary
attachments are in the current competing group of attachments; they just are not strong
enough to win the competition. Thus we would expect that the parser could recover more
easily from its misanalysis; and in fact, there is consensus in the psycholinguistic community
that this is an easier sentence than the quite difficult example (7.9).

Reanalyses of Intermediate Difficulty

Within the class of possible reanalyses, there is also a range of difficulty. Experiments have
supported the hypothesis that if the length of an ambiguous region is increased, reanalysis
becomes more difficult. For example, increasing the length of the post-verbal NP in a sentence
like example (7.8) leads to longer per-letter reading times in the disambiguating region
than in the version of the sentence with a short post-verbal NP (Frazier & Rayner, 1982).
The straightforward interpretation is that longer reading times correspond to more difficult
reanalysis. Other models of human parsing have not provided a principled explanation of

2TFrazier & Rayner (1982) provide experimental evidence for increased reading times at the disambiguating
point in these types of sentences. In the competitive attachment model, the increased reading time would
result from the detection of the ungrammaticality and the triggering of processing routines to recover from
the garden path situation. However, the necessary recovery mechanism has not been built into the current
parser.
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Figure 7.11: The network after projecting the main clause CP and IP in the sentence When
Kiva eats food disappears.

this phenomenon of the duration of an ambiguity affecting the difficulty of revision (Gibson,
1991; Gorrell, in press; Fodor & Inoue, 1994; Pritchett, 1992; Weinberg, 1991).

Here again we can observe the recency effects that fall out from the competitive attach-
ment model. Consider the following sentence, which is the same as example (7.8) but with
a longer post-verbal NP:

(7.11) Sara believes the fact that women raced to. ..

Since the embedded verb raced is unable to license a sentential complement, the IP projected
from to must attach to the main verb believe. Thus, the parser is faced with exactly the
same attachment choices as in example (7.8). The length of the NP [the fact that women
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raced] means that to must attach higher in the tree than after a short NP like [the fact];
compare Figure 7.12 to Figure 7.8 on page 135. The attachment of the IP here takes 31
iterations, compared to 24 iterations in the “short NP” case of example (7.8). Furthermore,
the attachments get less activation than the attachments to the more recent phrases—here
the complement attachment has an activation level of .568 and the specifier attachment
has an activation level of .509, compared to the corresponding values .637 and .534 for
example (7.8).

Thus, the memory management techniques of the model that lead to a general recency
preference also provide an explanation for these reanalysis cases of intermediate difficulty.
The effects of lexical strength can also contribute to making a possible reanalysis more or
less difficult; these effects were demonstrated on example (7.6) of Section 7.2.2 above. In
conclusion then, the competitive behavior of the model provides an account of the range of
difficulty of reanalysis, incorporating precisely the same factors as affect preferences (that
is, recency and lexical strength).

7.3 Summary of Results

The competitive attachment model has been shown to provide an explanatory account of a
range of psycholinguistic observations relevant to the human processing of syntactic ambigu-
ities. The model explains the interesting mix of data that supports conflicting conceptualiza-
tions of the human parser as a serial or parallel processor. The constraints on the network
structure lead to the single-reading preferences cited as evidence for a serial model. The
competitive spread of activation through the restricted set of attachment possibilities con-
forms to the observed eye-movement patterns that have also been used to bolster the serial
hypothesis. The active expectations in the form of simultaneously competing a-nodes under-
lie the syntactic priming phenomenon that strengthens the claim of parallelism. Thus, the
distributed parallel approach which relies on the competitive focusing of activation provides
a more complete and parsimonious account of the set of on-line processing data concerning
serialism and parallelism in parsing.

Choosing a single attachment structure to maintain relies only on the underlying proper-
ties of the competitive attachment model. Fundamental properties of the competition mech-
anism and the lack of top-down precomputation yield a preferred reading for an ambiguous
input that conforms to Minimal Attachment and Late Closure, without the use of explicit
preference heuristics. Moreover, the very same properties are responsible for both of these
observed preferences, giving them a unifying account for the first time. The memory man-
agement techniques of the model have the side effect of producing another preference, that
of attachment to more recent structures, again obviating the need for an explicit structur-
ing strategy. The use of competition-based spreading activation with weighted connections
accounts for lexical preference effects in a natural way. The use of lexical strengths within
the competitive attachment model leads to indirect effects of lexical expectations, an issue
that has been previously unaddressed. The spreading activation approach also provides for
a natural integration of relative preference effects such as recency and lexical strength, with
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Figure 7.12: Reanalyzing the initial attachment for the post-verbal NP takes longer when
the NP is longer, as in Sara believes the fact that women raced to. . ..
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the results demonstrating that variations in lexical strength can affect the preference for
recent attachments.

These same relative preference factors affect how easily the model can revise its original
attachments, and contribute to an account of reanalysis that explains fine-grained accept-
ability. The model defines easy reanalyses to be those that fall within the normal competitive
attachment operation of the parser, which can revise pre-existing attachments under strictly
set conditions. These reanalyses become harder as they involve less recent phrases or weaker
lexical expectations, leading to an account of reanalyses that are of intermediate difficulty.
The model also explains both severe and “milder” garden path sentences as ones that would
require recourse to special recovery procedures in the parser. In the milder garden paths,
the alternative analysis is available but is unable to win its competition. In the severe gar-
den paths, the alternative is unavailable, due to independently motivated restrictions on the
network structure, and the parser must reprocess the sentence.

This set of results taken together provides a comprehensive picture of the computational
processes that underlie the processing of syntactic ambiguity in the human parser. The
chapter began with a statement of the following open questions that must be answered in
order to adequately characterize these computational processes:

1. Serialism vs. Parallelism: When presented with an ambiguity, does the parser build
and maintain a single structure or multiple structures?

2. Structural Preferences: How does the parser determine the preference for one pos-
sible structure over another?

3. Reanalysis: If the continuation of the input is incompatible with the preferred struc-
ture, how easily is the parser able to revise its initial hypothesis?

In answer to these questions, the results of the competitive attachment model support the
following hypotheses concerning the human process of syntactic ambiguity resolution. When
faced with a syntactic ambiguity, the parser considers a set of multiple alternative analyses
in parallel, but immediately chooses a single preferred analysis to maintain. The choice 1s
made by a restricted competition mechanism that indirectly constrains the set of attach-
ments that are considered by the parser, as well as determining the preferences among those
attachments. The process of choosing the preferred attachments involves the competitive
distribution of activation through a restricted network structure. The parser can change an
attachment only if the revision comprises one of the subsets of attachments allowed by the
competition mechanism. Reanalysis involves re-directing activation away from previously
preferred attachments and activating new attachments. Because reanalysis i1s performed
within the normal competitive attachment process of the parser, the difficulty of allowable
revisions is determined by the same factors as affect the difficulty of initial attachments, such
as recency and lexical strength.
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Chapter 8

Conclusions

This dissertation has described a natural language parsing architecture whose emergent be-
havior mimics that of the human parser in the processing of syntactic ambiguities. The
model is a new type of hybrid connectionist architecture that relies on an integration of a
novel approach to marker-passing with extended techniques for controlling the distribution
of numeric activation. The marker-passing method enables the establishment of syntac-
tic relations based solely on local communication in a network, without the use of phrase
structure rules. This technique supports distributed parsing using simultaneous declarative
constraints, as specified by recent linguistic theories. The model also relies on extended tech-
niques for achieving effective competitive activation in a complex domain. These two hybrid
connectionist techniques together yield a distributed natural language parsing mechanism
that uses only simple and uniform processing nodes.

The competitive attachment model incorporates a general and parsimonious account of
a wide range of human behavior in syntactic ambiguity resolution. The behavior of interest
emerges from the interaction of fundamental properties of the model, avoiding the need for
construction-specific processing strategies. The competition mechanism applies uniformly
at all processing nodes to explain a number of human structural preferences in parsing. In
addition, the model’s unique parallel attachment operation applies across general structural
configurations to account for the ease or difficulty of revisability in parsing. The results of
the model underscore the importance of determining computational mechanisms that can
explain an extensive range of human behavior, rather than simply specifying heuristics that
capture individual surface observations.

The approach to parsing developed here has interest within the field of Artificial Intelli-
gence for two interdependent reasons: as a theoretical model exploring plausible mechanisms
of human syntactic processing, and as a step toward mimicking human performance in NLU
systems. More broadly, the research makes a number of contributions to the development
of computational techniques for achieving intelligent behavior in a massively parallel net-
work architecture. Furthermore, the model provides a solid framework for the investigation
of additional open problems, both in the control of competitive dynamics within complex
network applications, and in the automatic processing of syntactic structure and linguistic
ambiguities.
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8.1 Contributions

Recall the three fundamental computational assumptions of the model: (1) The basic ar-
chitecture is that of a hybrid connectionist network integrating symbolic and numeric com-
putation. (2) Numeric decision-making is focused through competition-based spreading ac-
tivation (CBSA), and no inhibitory links are used. (3) The network is established through
dynamic instantiation of generic template nodes, and top-down hypothesizing of structure is
prohibited. Each of the three fundamental assumptions of the model relies on computational
advances in connectionist modeling, which interact to yield interesting linguistic behavior.

8.1.1 Hybrid Architecture

In contrast to previous parsers implemented within a connectionist framework, the grammat-
ical knowledge of the competitive attachment model is a subset of a well-founded linguistic
theory. Since linguistic theories describe the knowledge underlying human language abilities,
it is important to develop computational structures and mechanisms that are sufficient to
encode and process these descriptions. A recent advance in linguistics is the description of
human knowledge of language in terms of a small number of simple, interacting constraints
on syntactic structure, replacing the use of large numbers of phrase structure rules. While
other connectionist parsers have captured rule-based grammatical knowledge by a prior:
structuring of the parsing network, with a constraint-based syntactic theory such an ap-
proach is not an option. In order to achieve a faithful implementation of a constraint-based
theory, it was necessary to develop a hybrid approach to network processing. The goal was
to support a sophisticated level of syntactic processing, while retaining the computational
advantages of a massively parallel architecture.

The symbolic capabilities of the competitive attachment approach were limited to the
creation and comparison of simple symbolic features with atomic values. Because decision-
making in the network is distributed among a set of highly restricted processing units,
syntactic attachments must be determined solely through the local communication among
the nodes of these simple features. Thus, to establish valid syntactic relations among the
syntactic processing nodes, a novel form of feature-passing was devised that enforces the
structural restrictions imposed by the linguistic theory. Communication of symbolic features
1s restricted by the grammatical properties of the syntactic nodes. The structural constraints
of the grammar were analyzed into computational primitives that could be verified entirely
between neighbors along a feature-passing path in the parsing network. A node’s decision to
output a feature packet that it has received depends solely on the values of features that are
local to that node. Using this communication method, the parsing network is able to enforce
even long-distance grammatical constraints entirely through local, distributed interactions
among the syntactic nodes.
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8.1.2 Competitive Network Dynamics

One of the potential advantages of competition-based spreading activation (CBSA) is its
suitability for use within computational models of higher-level cognitive abilities (Reggia,
Marsland, & Berndt, 1988). However, to date the use of CBSA within these types of appli-
cations has been limited. Because its restrictiveness suited the goals of the parsing model
developed here, CBSA was chosen to serve as the sole mechanism for focusing activation
within the parsing network onto a consistent syntactic structure. The restrictiveness of the
approach, in contrast to the use of inhibitory links for the same purpose, entails that CBSA
plays a vital role in constraining the computational architecture in critical ways.

Competition is crucial in the model for choosing between structural alternatives. In
order to use CBSA alone to make decisions in the parser, the connections among the pro-
cessing nodes must be limited to enable the competitive relations to propagate effectively
through the resulting network structure. The model employs a stack to structure the syn-
tactic input and limit the connectivity of the network. The stack can be represented by
a single processing node that has uniform capabilities with the other syntactic processors.
With this simple addition to the parsing network, the use of CBSA alone is sufficient to
determine the attachment decisions. The competitive attachment behavior of the network
was highly successful in the nearly 1400 tests that were run: the network converged in over
98% of the simulations, achieving correct and consistent attachment behavior in all cases.
Furthermore, the restrictions on the parser that are motivated by CBSA have additional
computational advantages for the parsing model, by reducing the parser’s processing load,
as well as preventing a combinatorial explosion of attachment possibilities.

8.1.3 Dynamic Network Creation

Because the network structure cannot be determined a priori on the basis of a set of syntactic
phrase structure rules, the network must be built in response to each specific sentence that
is input to the parser. The parsing network is constructed as words are input sequentially,
by dynamically instantiating fixed phrasal templates in direct response to features of each
input word. The phrasal templates are not phrase structure rules in the traditional sense;
they encode only the connections between the phrasal nodes corresponding to a single input
word (such as a V, V', and VP node), and not the connections between different phrases
(such as the connection from a verb phrase to its NP object). The dynamic instantiation of
these fixed phrasal templates is enabled by the limited symbolic capabilities of the parser,
and consists simply of determining the atomic feature values for the attributes of each node
based on knowledge in the lexicon. The dynamic creation of the network solves a number
of problems arising from the fixed network approach adopted in other connectionist parsers.
With its dynamic allocation and reuse of phrasal nodes, the model here can parse sentences of
indefinite length, while previous connectionist approaches impose an unrealistic fixed upper
bound. Furthermore, the method here is more space-efficient; it can instantiate phrases
from a small pool of generic templates, instead of having to resort to massive duplication of
a number of dedicated node types.
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Because the network is built dynamically, there must be some principled limitation on
the precomputation of syntactic structure. The model takes the most restrictive approach
by disallowing top-down hypothesizing of phrase structure. Phrasal templates can be in-
stantiated only by direct evidence in the input; a reasonable expectation for a phrase is not
enough. Constraining parallelism to nodes with overt evidence leads to better scale-up po-
tential in the model. The number of syntactic nodes is kept to a minimum, and therefore the
number of attachments which must be considered at any particular point in the parse is also
reduced. Thus, both the use of generic phrasal templates and the prohibition on top-down
precomputation contribute to the computational feasibility of the model.

8.1.4 Competitive Attachment Behavior

Human-like behavior in the processing of syntactic ambiguities emerges from the interaction
of the computational developments discussed above. The results of the competitive attach-
ment parser in modeling human performance fall into three major areas. First, the model
incorporates a principled mix of serial and parallel processing behaviors. These enable it to
match human expectations in its determination of syntactic preferences, as well as in the
accessibility of alternative structural analyses to pursue. Second, the attachment preferences
that it exhibits arise from the underlying properties of the competitive attachment process,
which successfully integrates interacting preferences in a uniform manner. The attachment
decisions in the model conform to Minimal Attachment, Late Closure, recency, and lexical
preferences, without those preferences being explicitly built in. Third, the performance of
the model mimics that of people in revising erroneous attachments, while avoiding the use
of explicit revision strategies as well. The degree of difficulty of reanalysis in the model in
fact results from the same properties that determine structural preferences. The competitive
attachment approach thus provides a unifying and parsimonious model of human behaviors
across the entire process of syntactic ambiguity resolution.

8.2 Future Work

Many issues must be explored in future research in order to extend the competitive attach-
ment framework to a more complete approach to natural language understanding. This
section will discuss a number of promising directions for extensions to the model. First, the
approach must be evaluated with respect to additional types of syntactic ambiguity, includ-
ing lexical ambiguity and argument/adjunct ambiguity. In addition, the effect of semantics
on syntactic decision-making should be addressed. Second, the basic competitive parsing
techniques must be generalized to provide a uniform syntactic processing mechanism that
can subsume a broad range of parsing functions. Third, the model must be subjected to a
cross-linguistic investigation of both the linguistic adequacy and the processing behavior of
the model.
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8.2.1 Other Types of Ambiguity
Lexical Ambiguity

The research here focused on subcategorization ambiguities; that is, ambiguities arising from
a verb’s ability to take different kinds of objects. Another common type of syntactic ambi-
guity is lexical ambiguity, in which a word has more than one potential syntactic category.
For example, the word have may be an auxiliary verb or a main verb, as in Have the children
taken the exam? and Have the children take the ezam. Resolving lexical ambiguity requires
extending the competitive attachment process from only operating on competing attach-
ments to encompass competing phrases. In the current model, an input word activates a
single phrase by sending it a fixed activation. In the extended model, an ambiguous input
word would need to activate all the possible structural choices that arise from it, dividing its
output in a competitive way that forces a structural decision. Thus, an input word would
activate multiple syntactic phrases competitively, in exactly the same way that a phrasal
node currently activates attachments competitively. In the example above, the word have
would create phrasal structures corresponding to its auxiliary and main verb readings, and
these structures would compete for its activation.

Because of its inherent competitive dynamics, the model has the potential to explain
human behavior in processing a lexical ambiguity over the course of time—behavior that
other sentence processing models cannot currently account for. Lexical ambiguity presents
the parser with a choice of structures; in order to minimize the amount of structure that
they must maintain, all parsing models, serial or parallel, must use some method for pruning
out the least likely choices. In other models, the decision to maintain or discard particular
structures is made too early—right at the ambiguous word (for example, Gibson, 1991;
Weinberg, 1991). This approach often models human behavior incorrectly, in one of two ways:
by maintaining multiple structures when people appear not to, or by prematurely discarding
the correct choice when people in fact maintain it. The competitive attachment process is
qualitatively quite different, because it inherently incorporates an aspect of processing over
time that is missing in other models; it thereby avoids the problem of committing too early
to a decision to maintain or discard structures. The model thus has the potential to match
a fuller range of human behavior in the processing of lexical ambiguities.

However, extending the model in this way poses a clear computational challenge, due to
the necessary incorporation of additional competitive effects in the parsing network. The
model will have to involve simultaneous and interacting competitive processes: the competi-
tion among the phrasal choices for an ambiguous word and the competition among attach-
ments to those structural alternatives. Controlling these types of interacting competitive
processes with competitive activation has not been attempted before. Thus, work in this
area will provide a stringent test of whether competitive activation can live up to its promise
of being a cognitively plausible technique for focusing activation within a network.
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Argument/Adjunct Preferences

In the sentence beginning Ann put the candy on the table, the attachment of the prepositional
phrase on the table 1s ambiguous: it can attach to the verb phrase as the location argument
of the verb put, or to the noun phrase as an adjunct modifier of the noun candy. In choosing
between an argument and adjunct attachment of this type, the human parser shows a strong
preference for making the argument attachment. This preference is so strong, in fact, that
if, in this example, the prepositional phrase turns out to be a modifier of the noun instead,
as in Ann put the candy on the table into her mouth, people experience difficulty processing
the remainder of the sentence. Accounting for the argument attachment preference shown
by the human parser has been one of the goals of every sentence processing model proposed,
and yet to date, an adequate explanation of this phenomenon has not been achieved.

The competitive attachment model currently is able to parse only argument attachments:
in all cases, a phrasal node must activate a fixed number of attachment nodes. Currently
this “fixed number” is always one; extending the technique to accommodate other values is
straightforward, as long as the number is fixed for each node. However, in extending the
model to parse adjuncts, their attachment sites cannot be allocated in the same fashion.
Adjuncts are always optional, and there may be a highly variable number of them modify-
ing any given word or phrase. Thus, adjunct attachments in the competitive attachment
parser would rely on an attachment site having competitive properties that allow zero or
more attachments. The challenge for the approach is to find a set of well-defined and sta-
ble adjustments to the competitive activation functions that allow the desired behavior of
activating zero or more attachments. An advantage of the competitive activation function
1s that 1t has well-defined parameters for experimentally varying the degree of competition
induced. Experiments with the model will provide an interesting application for determining
the flexibility and adequacy of the competitive activation process.

Semantic Effects

Many of the example ambiguities that previous NLU research has focused on have been cases
of ambiguous prepositional phrase attachments that are resolved by the semantic context.
The current restriction of the competitive attachment model to syntactic knowledge pre-
vents it from making testable predictions concerning the effect of context on the resolution
of attachment ambiguities. However, previous work in semantic effects on disambiguation in-
dicates that the massively parallel network style of the parser lends itself well to extension in
this area (see, for example, Cottrell, 1989; Hirst, 1987). In fact, the competitive attachment
approach has the potential to allow lexical, semantic, and discourse preferences to come into
play without additional provisions or changes to the basic mechanism. The ability of the
competitive activation mechanism to integrate diverse sources of preference information was
already demonstrated. The model would serve as a testbed for an “interactive” approach,
in which semantic information is able to affect syntactic attachment decisions.
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8.2.2 Representational Adequacy

The linguistic theory of Government-Binding (GB) marks a radical departure from prior
theories of human syntactic knowledge in its move from rule-based to constraint-based lin-
guistic descriptions. However, most GB parsers have assumed fairly traditional parsing
mechanisms, replacing the process of rule reduction with that of licensing attachments ac-
cording to GB constraints (Abney, 1989; Fong, 1991; Gibson, 1991). Oune of the goals of this
dissertation was to build a computational model of parsing that mirrored the move within
GB from rule-based to constraint-based linguistic descriptions of syntactic knowledge with
a corresponding shift from rule-based to connectionist computational processing techniques.
This was accomplished with the use of a restricted message-passing procedure and the use of
competitive attachment nodes. In the current implementation of the model, these methods
are used solely to establish attachment relations in the parser. If the techniques can be ex-
tended to handle all syntactic relations, the model would have clear conceptual advantages
over previous GB parsers, in which a system of numerous rules has been replaced by a system
of numerous licensing mechanisms. The competitive attachment model has the potential to
offer a uniform processing mechanism for all of these parsing responsibilities, truly exploiting
the statement of GB as a simple system of constraints.

The competitive attachment mechanism must be extended to the other major syntactic
relations of GB theory, including the process of coindexation, and the assignment of theta
roles and Case.! This means not only passing the features appropriately through the network,
but establishing competitive “binding” nodes corresponding to all syntactic relations. The
resulting model would be quite elegant, using only two distinct node types—one type for
syntactic phrases and one type for binding those phrases in some syntactic relation. These
two types of nodes are required in pure connectionist parsers as well. One of the potential
problems in maintaining this uniform competitive binding approach is an increase in network
complexity. Since every syntactic relation would involve a competitive binding node, the
network would consist of a number of competitive relations which interact and affect each
other. One conceptually attractive solution is to layer the network, so that each type of
relation has its own layer, and the layers are mediated by links to the layer that encodes
the attachment structure (the parse tree). There could be limited, controlled interaction
between the layers. Such a multi-layered approach would tie in well with the addition of a
layer of interacting semantic information.

8.2.3 Cross-Linguistic Representation and Behavior

A longer-term goal is to extend the competitive attachment model to apply to languages
other than English. Cross-linguistic investigation of the model will provide a harsh test of
the computational theory of parsing in terms of both the adequacy of its syntactic knowledge
representation and its ability to achieve human-like behavior. Recently, debates on the

1Stevenson (1993a) discusses extensions to the model that incorporate the competitive establishment of
coindexation relations.
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best approaches to parsing—bottom-up, top-down, head-driven, left corner—have recognized
the need to comsider the structural properties of vastly different languages. The hybrid
architecture developed here is most compatible with an approach that is evidence-driven; that
1s, the parser, within its domain, will be smart and efficient, making use of the information
it has at any given point in the parse, to build as much structure as it can.

This type of model appears quite promising for head-final languages like Dutch and
Japanese, where the word that determines the propositional content of a phrase occurs after
its arguments. Similar approaches have been put forward by others (Crocker, 1992; Inoue
& Fodor, in press), but the restricted parallelism of the model developed here has great
advantages, by avoiding both the problem of overgeneration within a parallel approach and
the limitations of strict serialism. Other models either must devise pruning mechanisms for
controlling the number of alternatives maintained in parallel, or must add on explicit revision
strategies to an essentially serial parser. Tuning these extra parsing mechanisms to different
languages can be problematic.

In addition to basic structural differences between languages, it appears that some parsing
preferences may remain constant across languages, while others vary (Gibson et al., 1993).
It is an open question whether the observed differences are due to frequency effects in the
languages, or result from some more fundamental structural properties. An advantage of the
competitive attachment model is that its hybrid symbolic/numeric nature lends itself well to
an investigation of both qualitative statements of processing differences between languages,
as well as statistical or frequency-based effects.
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