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is correct, we introduce a new characterization of the partial stable model se-mantics in terms of well-supported 3-valued models of edlps. The notion ofwell-supported 2-valued models was introduced by Fages ([Fag91]) for the classof de�nite normal programs. Here we extend that notion to edlps and to the3-valued case. As stated by Fages, well-supported models are supported modelswith loop-free �nite justi�cations. We show that the notions of partial stabilityand 3-valued well-supportedness are equivalent. This result generalizes Fageswork to the 3-valued disjunctive framework. To prove this characterization, weintroduce a �xpoint operator that computes the minimal (with respect to thetruth ordering) 3-valued models of an edlp free of negation-by-default.It is worth noticing that even for the propositional case, the problem ofconstructing the collection of partial stable models of an edlp is not tractable. 1This is a consequence of the fact that skeptical reasoning in this semantics (i.e.determining if a literal is true in every partial stable model of the program) is�P2 {complete (see [EG93]).Our construction of the collection of partial stable models of a given edlpP is as follows: �rst P is translated into a new constrained edlp, called P 3S,free of negation-by-default whose syntax captures the well-supported semanticsof P , in the sense that P 3S contains clauses stating explicitly when there issupport for an atom to be true, false or unknown. Furthermore, constraintsappearing in the clauses are used to guarantee that those supports are loop-free. Subsequently, the minimal 2-valued models of P 3S are computed. Thesemodels, when translated to the language of P , are precisely the well-supported(and hence the partial stable) models of P .This paper is organized as follows: Section 2 presents background on thepartial stable model semantics needed in the following sections. Section 3 pro-vides both a characterization of partial stable models as well-supported 3-valuedmodels and a �xpoint operator that computes the minimal (with respect to thetruth ordering) 3-valued models of edlps free of negation-by-default. Section 4is concerned with the computation of the 3-valued stable models of an edlp.We introduce a transformation, called the 3S{transformation, that, given anedlp P , computes a constrained edlp P 3S. We prove that there is a one-to-onecorrespondence between the minimal 2-valued models of P 3S and the 3-valuedwell-supported models (and consequently the 3-valued stable models) of theoriginal program. An algorithm to compute the minimal 2-valued models ofP 3S is given in section 4.2. In section 5 we draw some conclusions.2 BackgroundClassical logic assumes that the truth value of every sentence is either true orfalse. 3-valued semantics allow the additional possibility that the truth valueof a statement is unknown. In this section we make precise what an edlp is andde�ne the notions of 3-valued interpretation and 3-valued model of an edlp. Wedescribe alternative orderings on the three truth values and study the orderings1Assuming that P 6= NP. 2



among 3-valued interpretations that they induce. Finally, the set of 3-valuedstable models of an edlp is de�ned.De�nition 2.1 (Extended disjunctive logic programs).Let L denote a �rst order language.1. An extended disjunctive clause is a clause of the form:l0 _ : : :_ lk  lk+1; : : : ; lm; not lm+1; : : : ; not lnwhere 0 � k � m � n and the l's are literals (i.e. atoms and explic-itly negated atoms) in the language L and not is the negation-by-defaultoperator.2. An extended disjunctive logic program (edlp) is a set of extended disjunctiveclauses.In what follows we sometimes abbreviate an extended disjunctive clause ofthe form l0 _ : : : _ lk  lk+1; : : : ; lm; not lm+1; : : : ; not ln as H  B whereH = l0 _ : : :_ lk and B = lk+1; : : : ; lm; not lm+1; : : : ; not ln.Since an edlp is equivalent to the set of all its ground instances, we considerhere only propositional edlps, and so the language L is just a set of propositionalsymbols. We require that L contain special propositions t, f and u, that areintended to denote true, false and unknown, respectively.Minker and Ruiz ([MR93, MR94]) give techniques to obtain the semantics ofan edlp in term of the semantics of a corresponding edlp free of explicit negation.Therefore, without loss of generality we consider in the sequel only programsfree of explicit negation. With this in mind, we say that an edlp is positive whenit is free of negation-by-default.De�nition 2.2 (Ordering among truth values).Consider the following orderings among truth values:1. Truth Ordering (<t) on truth values:false <t unknown <t true.2. Knowledge Ordering (<k) on truth values:unknown <k false and unknown <k true.Graphically, .@@ ��unknownfalse true -.6<k <t3



Given a propositional language L, a 3-valued interpretation is a 3-valuedtruth assignment to the propositions in L. It is commonly represented as apartial function (hence the name of partial interpretation) I : L ! ftrue; falsegin which the truth value of a proposition that does not belong to the domainof I is taken to be unknown. A concise way of writing such a partial functionis as a pair hI+; I�i where I+ and I� consist of the propositions in L that aremapped to true and to false respectively. (All the remaining propositions aremapped to unknown.)De�nition 2.3 (3-valued interpretations).Let P be an edlp written in a propositional language L.1. A 3-valued interpretation I of P is a pair hI+ ; I�i where I+ and I� aredisjoint subsets of L and such that t 2 I+, f 2 I� and u 62 I+ [ I�.2. A proposition a 2 L is true in I if a 2 I+; a is false in I if a 2 I�; anda is unknown in I otherwise. The truth values of more complex sentenceswith respect to I are computed using the Kleene truth tables (in whichwe have abbreviated true, false and unknown as t; f and u respectively):^ t u ft t u fu u u ff f f f _ t u ft t t tu t u uf t u f a t u fnot a f u t3. The truth value of a sentence ' with respect to an interpretation I isdenoted by VI(').4. Iu denotes L� (I+ [ I�), i.e., the set of propositions that are unknownin I.Based on the orderings on truth values given before, the 3-valued interpre-tations can be ordered in the following ways.De�nition 2.4 (Orderings among 3-valued interpretations).Let P be an edlp. Given two 3-valued interpretations I = hI+; I�i and J =hJ+; J�i, the following are two possible ways of ordering I and J :1. Truth Ordering (�t) on 3-valued interpretations:I �t J i� VI(a) �t VJ (a) for all a 2 L.2. Knowledge Ordering (�k) on 3-valued interpretations:I �k J i� VI(a) �k VJ (a) for all a 2 L.4



Equivalent de�nitions of these orderings that appear frequently in the liter-ature (see e.g [Prz91]) are I �t J i� I+ � J+ and I� � J�; and I �k J i�I+ � J+ and I� � J�.As usual, a model of an edlp is an interpretation that satis�es all the clausesof the program.De�nition 2.5 (3-valued (minimal) models).Let P be an edlp.1. A 3-valued interpretation M is a 3-valued model of P if for every clauseH  B in P , VM (H) �t VM (B).2. M is said to be a �t-minimal (respectively �k-minimal) 3-valued modelof P if there is no 3-valued model N of P such that N 6= M and N �t M(respectively N �k M ).A semantics of an edlp is captured by a subcollection of its set of models. Inparticular, the 3-valued stable model semantics of an edlp is given by the set ofits 3-valued stable models as de�ned below.De�nition 2.6 (3-valued (or Partial) Stable Model [Prz91]).Let P be an edlp and let M be any 3-valued model of P .1. The Gelfond{Lifschitz transformation PM of P with respect to M is theedlp free of negation-by-default obtained by replacing in every clause ofP all negated-by-default premises l = not c which are true (respectivelyunknown; respectively false) in M by the proposition t (respectively u;respectively f).2. M is a 3-valued (or partial) stable model of P ifM is a �t-minimal modelof PM .Given an edlp P , Przymusinski proved the following relationships among thecollections of partial stable models 3-STABLE(P ), stable models 2-STABLE(P )and the well-founded model WFS(P ) of P .Proposition 2.1 ([Prz91]).Let P be an edlp and let M be a 3-valued model of P .1. If M 2 3-STABLE(P ) then M is a �t-minimal 3-valued model of P .2. If M 2 2-STABLE(P ) then M 2 3-STABLE(P ).3. If P is a normal logic program and M=WFS(P ) thenM 2 3-STABLE(P ).In addition, M is �k-minimal among the partial stable models of P , i.e.for all N 2 3-STABLE(P ), M �k N .Notice that the notion of partial stability is de�ned using the truth ordering�t, and henceforth we consider only this ordering.5



3 Characterization of Partial Stable Models ofedlpsIn this section we prove a new characterization of the partial stable modelsemantics in terms of well-supported 3-valued models of edlps. As stated inthe introduction, the notion of well-supported 2-valued models was introduceby Fages ([Fag91]) for the class of normal logic programs. In section 3.2 wesummarize the relevant de�nitions in [Fag91] and extend that notion to edlpsand to the 3-valued case. We show that the notions of partial stability and3-valued well-supportedness are equivalent. The proof of this characterizationis based in the existence of a �xpoint operator that computes the �t-minimal3-valued models of a positive edlp. We introduce such an operator in section 3.1.3.1 Computing Minimal Partial Models of Positive edlpsWe de�ne a �xpoint operator ~TP which computes the 3-valued�t-minimalmod-els of an edlp free of negation-by-default P . It is worth noticing that the Fittingimmediate consequence operator ([Fit85]) for the 3-valued case computes the�k-minimal models of P and so a di�erent operator is needed to compute withrespect to the truth ordering �t.De�nition 3.1 (hDom;�ti).1. A set of interpretations I is called canonical if all interpretations in I are�t-incomparable, i.e. if for all distinct I; J 2 I; I 6�t J and J 6�t I.2. Consider the partially ordered set hDom;�ti de�ned by:� Dom is the collection of all sets of canonical interpretations in thelanguage L.� the order �t on interpretations is extended to Dom as follows: Giventwo canonical sets of interpretations I;J 2 Dom,I �t J i� for all J 2 J there exists I 2 I such that I �t J .Given a set of interpretations I we de�ne min(I) as the subset of I con-taining just the �t-minimal 3-valued interpretations in I. Notice that min(I)is a canonical set of interpretations.It is straightforward to check that hDom;�ti is a lower semi-lattice whosebottom element is?= hftg;L�ft;ugi, whose top element is>= hL�ff ;ug; ffgiand where the greatest lower bound (glb) of a collection X of canonical sets ofinterpretations is given by: glb(X)= min([X).6



De�nition 3.2 (TP operator).Let P be an edlp free of negation-by-default and C = a1_ : : :_ ak  b1; : : : ; bmbe a clause in P . Let B denote the body of C, i.e. B = b1; : : : ; bm. Given aninterpretation I of P , we de�ne the operator TP on I and C as the following setof interpretations:TP (I; C) =8<:min[fhI+ [ faig; I� � faigi : 1 � i � kg]; if VI (B) = truemin[fhI+; I� � faigi : 1 � i � kg]; if VI (B) = unknownfIg; if VI (B) = falseLemma 3.1.Let C an arbitrary but �xed clause. Then, TP ( ; C) is monotonic on its �rstargument. In other words, given interpretations I and J , if I �t J thenTP (I; C) �t TP (J;C).Proof. Let C be of the form a1 _ : : :_ ak  B. Note �rst that for any interpre-tation I, fIg �t TP (I; C). Let I and J be interpretations such that I �t J . Weneed to show that TP (I; C) �t TP (J;C), that is, that for every J 0 2 TP (J;C)there is an I 0 2 TP (I; C) such that I 0 �t J 0.Case 1: VI(B) = true. This implies that VJ (B) = true and hence, if J 0 2TP (J;C), J 0 is of the form hJ+ [ faig; J� � faigi for some i 2 f1; : : : ; kg.Since I �t J then I 0 = hI+ [ faig; I� � faigi �t J 0.Case 2: VI(B) = unknown. This implies that VJ (B) is either true or unknown.Let J 0 2 TP (J;C). If VJ (B) is true then J 0 = hJ+ [ faig; J� � faigi andif VJ (B) is unknown then J 0 = hJ+; J� � faigi, for some i 2 f1; : : : ; kg.In both cases, I0 = hI+ ; I� � faigi �t J 0.Case 3: VI(B) = false. This implies that I 0 = I �t J �t J 0 for all J 0 2TP (J;C).In any of these three cases, either I 0 2 TP (I; C) or there is some I 00 2TP (I; C) such that I 00 �t I0 �t J 0.De�nition 3.3 ( ~TP operator).Let P be an edlp free of negation-by-default and let fC1; : : : ; Cng, for somen � 0, be the set of clauses in P . The operator ~TP on hDom;�ti is de�nedas follows: Given a canonical set of interpretations I0, consider the sequence ofcanonical sets of interpretations hI0; : : :Ini, de�ned inductively by:Ii+1 = min[[I2Ii TP (I; Ci+1)] ;then ~TP (I0) = In.Proposition 3.1.~TP is monotonic on hDom;�ti. 7



Proof. Given I;J 2 Dom, it is enough to show that I �t J implies thatmin[SI2I TP (I; C)] �t min[SJ2J TP (J;C)] for every clause C in P . AssumeI �t J and let J 0 2 min[SJ2J TP (J;C)]. Then J 0 2 TP (J;C) for some J 2J . By hypothesis, there is some I 2 I such that I �t J . By Lemma 3.1,TP (I; C) �t TP (J;C) and therefore there is some I 0 2 TP (I; C) such that I 0 �tJ 0. Since I 0 2 SI2I TP (I; C) then there is some I 00 2 min[SI2I TP (I; C)] forwhich I00 �t I0 �t J 0.Lemma 3.2.Let P be an edlp, M a 3-valued model of P and I a canonical set of interpreta-tions. For every clause C 2 P , if I �t fMg then min[SI2I TP (I; C)] �t fMg.Proof. Let C = a1 _ : : :_ ak  B. Assume that I �t fMg and let I 2 I suchthat I �t M .Case 1 If VI (B) = true then VM (B) = true and therefore there is some ai 2M+ since M models C. Hence, I0 = hI+ [ faig; I� � faigi �t M .Case 2 If VI (B) = unknown then VM (B) is either true or unknown. Hence,there is some ai in the head of C for which VM (ai) �t unknown and soI 0 = hI+; I� � faigi �t M .Case 3 If VI(B) = false then I 0 = I �t M .In any of these three cases I 0 2 SI2I TP (I; C). Therefore, there is someI00 2 min[SI2I TP (I; C)] such that I 00 �t I0 �t M .Since the operator ~TP is monotonic on the lower semi-lattice hDom;�ti,then it has a least �xed point on the semi-lattice. Furthermore this least �xedpoint is given by ~TP "1 (?). The following result shows that this least �xedpoint consists of the set of �t-minimal 3-valued models of P .Theorem 3.3.~TP"1(?) is the canonical set of �t-minimal 3-valued models of P .Proof. By construction, every I 2 ~TP "1(?) satis�es all the clauses in P andtherefore I is a 3-valued model of P . Now, let M be a 3-valued model ofP . Since ? �t M , a simple induction together with Lemma 3.2 shows that~TP"1(?) � M . Hence, there exists a 3-valued modelM0 2 ~TP"1(?) such thatM0 � M . This implies that if M is a �t-minimal 3-valued model of P thenM 2 ~TP"1(?). In other words, ~TP"1(?) contains all the �t-minimal 3-valuedmodels of P . Since ~TP "1 (?) is a canonical set of interpretations, ~TP "1 (?)cannot contain any other model of P . Hence ~TP "1(?) contains precisely the�t-minimal 3-valued models of P .Example 3.1. Consider the following positive edlp P .8



P = f C1 : a _ b  cC2 : d  C3 : c  d;u g~TP (?) :TP (?; C1) = fI1 = ?g = I1TP (I1; C2) = fI2 = hft; dg; ff ; a; b; cgig = I2TP (I2; C3) = fI3 = hft; dg; ff ; a; bgig = I3So, ~TP (?) = I3.~TP"2 (?) :TP (I3; C1) = fI4 = hft; dg; ff ; agi; I5 = hft; dg; ff ; bgig = I4TP (I4; C2) = fI4g TP (I5; C2) = fI5gTP (I4; C3) = fI4g TP (I5; C3) = fI5gSo, ~TP"2 (?) = I4.~TP"3 (?)= ~TP"2 (?) = I4.Hence P has two �t-minimal 3-valued models, namely I4 and I5.As shown in Theorem 3.3, ~TP"1(?) is the set of �t-minimal 3-valued modelsof P . Therefore the least �xed point of ~TP is independent of the ordering of theclauses in the program.Finally, we point out that for a positive edlp P in which the proposition udoes not appear, ~TP"1(?) consists of the set of minimal (2-valued) models ofP , and so, for this case the least �xed point of ~TP coincides with the least �xedpoint of the Minker/Rajasekar �xpoint operator ([MR90]).3.2 Well-Supported 3-valued ModelsWe start this section by briey surveying the de�nition of 2-valued well-sup-ported models given by Fages [Fag91] and his characterization of the 2-valuedstable model semantics. Then we introduce our extended de�nition and char-acterization for the disjunctive 3-valued case.De�nition 3.4 (Well-supported 2-valued interpretations [Fag91]).A Herbrand interpretation I is a well-supported 2-valued interpretation of anormal logic program P i� there exists a strict well-founded partial ordering <on I such that for any a 2 I there is a ground instance of a clauseC = a b1; : : : ; bm; not c1; : : : ; not cn| {z }Bin P satisfying the following conditions:9



1. a > bi for all i 2 f1; : : : ;mg and2. VI (B) = true.Theorem 3.4 (([Fag91])).Let P be a normal logic program and let M be a Herbrand interpretation of P .Then, M is a stable model of P i� M is a well-supported model of P .Condition 2 guarantees that C is a support for a to be true. Condition 1guarantees that this support is loop-free, that is, the justi�cations for the b's tobe true do not depend on the fact that a is true. We extend those conditionsto disjunctive clauses.De�nition 3.5 (Well-supported 3-valued interpretations).A Herbrand 3-valued interpretation I is a well-supported 3-valued interpretationof an edlp P i� there exists a strict well-founded partial ordering < on I+ [ Iusuch that for any a 2 I+ [ Iu there is a ground instance of a clauseC = a _ a1 _ : : :_ ak| {z }H  b1; : : : ; bm; not c1; : : : ; not cn| {z }Bin P satisfying the following conditions:1. a > bi for all i 2 f1; : : : ;mg and2. Case 1: If a 2 I+, then VI(B) = true and VI(H) <t true, orCase 2: If a 2 Iu, then VI(B) = unknown and VI(H) = false.(These two cases can be summarized as: VI(H) <t VI (B) = VI (a).)The 3-valued well-supported models of an edlp P are exactly the 3-valuedstable models of the program as the following theorem shows. The proof of thisresult is based on the fact that a 3-valued stable modelM of P is a �t-minimal3-valued model of PM and therefore it can be constructed using the �xpointoperator ~TPM de�ned in section 3.1 whose iterations provide a well-foundedorder on M+ [Mu.Theorem 3.5.Let P be an edlpand let M be a 3-valued interpretation of P . Then, M is a3-valued stable model of P i� M is a well-supported 3-valued model of P .Proof. \)" Let C0; : : : ; Cn�1 list all the clauses in P . IfM is a 3-valued stablemodel of P then M is a �t-minimal 3-valued model of PM . Then M canbe rebuilt using the �xpoint operator ~TPM . Let � be the smallest ordinalfor which ~TPM "� (?) is the least �xed point of ~TPM . Leth? = M0;M1; : : : ;Mn| {z }~TPM "1(?) ;Mn+1; : : : ;M2n| {z }~TPM "2(?) ; : : : ;M(��1)n+1; : : : ;M�n| {z }~TPM "�(?) =M i10



be a trace of the construction of M , i.e. a sequence of interpretationsthat converges to M and such that for all i, Mi �t M and Mi+1 2TP (Mi;Cimodn), where modn denotes the modulo n function. Such atrace exists due to Lemma 3.2. Given an element a 2 M+ [ Mu, wesay that the rank of a, denoted by rank(a), with respect to the trace isi if i is the smallest integer for which VMi (a) = VM (a) (notice that therank of every element in M+ [Mu is always greater than 0). Let < bethe strict well-founded partial ordering on M+ [Mu given bya < b i� 8<: a; b 2M+ and rank(a) < rank(b) ora; b 2Mu and rank(a) < rank(b) ora 2M+ and b 2Mu:This order is a well-supported order on M . To see this, let a 2M+ [Muand suppose that a is of rank i+1. By de�nition of ~TPM , there is a clauseC = a _ a1 _ : : :_ ak| {z }H  b1; : : : ; bm; not c1; : : : ; not cn| {z }Bin P and consequently there is a clauseCM = a _ a1 _ : : :_ ak| {z }H  b1; : : : ; bm;VM(not c1); : : : ;VM(not cn)| {z }BMin PM such that:Case 1: If a 2 M+i+1, then VMi (BM ) = true, and so VM (B) = true,which implies that a > bi for all i 2 f1; : : : ;mg. Furthermore Ccan be selected in such a way that VMi(H) <t true, since otherwisehM+ � fag;M�i would be a model of PM contradicting the �t-minimality of M .Case 2: If a 2 Mui+1, then VMi(BM ) = unknown which implies thata > bi for all i 2 f1; : : : ;mg. Furthermore C can be selected insuch a way that VMi (H) = false, because otherwise hM+;M� [ fagiwould be a model of PM contradicting the �t-minimality of M .Hence, M is a well-supported 3-valued model of P .\(" Let M be a well-supported model of P . Since M is a model of P thenM is a model of PM . We need to show that M is a �t-minimal modelof PM . Assume that M is not a �t-minimal model of PM . Let N be a�t-minimal model of PM such that N �t M . Let a be a smallest element(with respect to the well-founded order <) for which VN (a) �t VM (a).Since M is well-supported, there is a clauseC = a _ a1 _ : : :_ ak| {z }H  b1; : : : ; bm; not c1; : : : ; not cn| {z }B in P such that:11



1. a > bi for all i 2 f1; : : : ;mg and2. Case 1: If a 2M+, then VM (B) = true and VM (H) <t true. Sincea > bi for all i 2 f1; : : : ;mg, then the truth-values of the b's arethe same under M and under N so VN (BM ) = VM (B) = trueand since N �t M then VN (H) �t VM (H) <t true and so ifVN (a) <t VM (a), N would not be a model of PM contradictingthe choice of N .Case 2: If a 2 Mu, then VM (B) = unknown and VM (H) = false.Since a > bi for all i 2 f1; : : : ;mg, then VN (BM ) = VM (B) =unknown and since N �t M then VN (H) = false. Therefore,if VN (a) <t unknown then N is not a model of PM which is acontradiction.Hence, M is a �t-minimal model of PM .4 Computing Partial Stable Models of edlpsThis section is concerned with the computation of the 3-valued stable modelsof an edlp. We introduce a transformation, called the 3S{transformation, that,given an edlp P , computes a new edlp P 3S free of negation-by-default whose setof minimal 2-valued models corresponds to the 3-valued stable models of theoriginal program. An algorithm to compute the minimal 2-valued models of anedlp free of negation-by-default is given in section 4.2.4.1 The 3S{transformationGiven an edlp P , the 3S{transformation performs case analysis to constructall potential justi�cations or supports for a proposition to be true, false orunknown. Those justi�cations are written as constrained clauses and collectedto form a positive edlp called P 3S. The constraints ensure that the justi�cationsare loop-free.P 3S is written in a richer language L̂ which is obtained by adding to Lnew propositional symbols ua and na for each propositional symbol a 2 L.Intuitively, a will be understood as a is true, ua as a is unknown and na as a isfalse.De�nition 4.1 (Extended language L̂).Let L be a propositional language. L is extended to the propositional languageL̂ = fa; ua; naja 2 Lg.We introduce operators T ;F and U which, applied to a sentence in thelanguage L, produce sets of all possible justi�cations in the expanded languageL̂ under which the given sentence is true, false or unknown respectively. In12



other words, a sentence ' is true (resp. false, resp. unknown) if and only if atleast one of the supporting sentences in T (') (resp. F('), resp. U(')) holds.In what follows we inductively de�ne these operators.De�nition 4.2 (Operators T ;F and U on normal literals).Let a 2 L. The operators T ;F and U are de�ned on a and on not a as follows:T (a) = fag T (not a) = fnagU(a) = fuag U(not a) = fuagF(a) = fnag F(not a) = fagA disjunction of propositionsH = a1_: : :_ak, is true when at least one of thepropositions a1; : : : ; ak is true; false when all these propositions are false andunknown when at least one of these propositions is unknown and the remainingones are either unknown or false. We codify all possibilities under which H isunknown by using k-tuples of 0's and 1's that contain at least one 1. Such atuple h�1; : : : ; �ki can be seen as stating that ai is false if �i = 0 and unknownif �i = 1. If at least one �j is 1, then H is unknown. We express this formallyin the language L̂ in the following de�nition.De�nition 4.3 (Operators T ;F and U on disjunctions).Let H = a1 _ : : : _ ak, k � 0, be an arbitrary disjunction of propositions. Theoperators T ;F and U are de�ned on H as follows:T (H) = fa1 j : : : j akg 2F(H) = fna1 ^ : : :^ nakgU(H) = f(F=U)�1(a1) ^ : : :^ (F=U)�k(ak) : h�1; : : : ; �ki 2 Bkgwhere:� Bk = fh�1; : : : ; �ki : �1; : : : ; �k 2 f0; 1g and 9j 2 f1; : : : ; kg; �j = 1g.� (F=U)�(a) = � F(a); If � = 0U(a); If � = 1Notice that when H is an empty disjunction (i.e. when k = 0) the previousde�nition makes T (H) = U(H) = fg � ffg and F(H) = ftg.We follow a similar process to de�ne the truth value of a conjunction ofnormal literals B = b1; : : : ; bm; not c1; : : : ; not cn. B is true if all b's are trueand all c's are false. It is false if at least one of the b's is false or one of thec's is true. And it is unknown if the truth values of the b's and (not c)'s aregreater than or equal to unknown (i.e. unknown or true) and at least one ofthem is unknown. Again, we codify all possibilities under which B is unknownby using (m+ n)-tuples of 0's and 1's that contain at least one 1. Such a tupleh�1; : : : ; �m+ni can be seen as stating that the b's and the (not c)'s are true ifthe corresponding entries in the tuple equal 0 or are unknown if they are equal2We use the symbol \j" to separate elements in a set.13



to 1. Since at least one entry is 1, then B is unknown. The following de�nitionformalizes this in the language L̂.De�nition 4.4 (Operators T ;F and U on conjunctions).Let B = b1; : : : ; bm; not c1; : : : ; not cn, where m;n � 0. The operators T ;Fand U are de�ned on B as follows:T (B) = fb1 ^ : : :^ bm ^ nc1 ^ : : :^ ncngF(B) = fnb1 j : : : j nbm j c1 j : : : j cngU(B) = f (T =U)�1(b1) ^ : : :^ (T =U)�m(bm) ^(T =U)�m+1 (not c1) ^ : : :^ (T =U)�m+n (not cn) :h�1; : : : ; �m+ni 2 Bm+ngwhere: (T =U)�(') = � T ('); If � = 0U('); If � = 1When B is an empty conjunction (i.e. when m;n = 0), T (B) = ftg andF(B) = U(B) = fg � ffg, according to the previous de�nition.We concentrate now on determining when a clause is a support for a propo-sition with respect to a model M of the clause. Assume that there is a well-founded partial order < onM+[Mu. Let a be an arbitrary but �xed propositionand let C = a_H  B, where B = b1; : : : ; bm; not c1; : : : ; not cn. C is a supportfor a with respect to M if one of the following cases holds.1. If VM (a) is true then VM (H) <t VM (B) = true and a > bi for all i 2f1; : : : ;mg.2. If VM (a) is unknown then VM (H) <t VM (B) = unknown and a > bi forall i 2 f1; : : : ;mg.3. If VM (a) is false then VM (H) �t VM (B) (this happens when VM (H) istrue, when VM (B) is false or when both values are unknown).These three cases are explicitly coded in the operators ~Ta; ~Ua and ~Fa in thefollowing de�nition. A set of constraints fa > bi : 1 � i � mg with respectto a clause C = a _H  b1; : : : ; bm; not c1; : : : ; not cn can be understood asrequiring that if the clause C is used to support that a is either true or unknown,then the proofs that the b's are true or unknown should not rely on the prooffor a. Then we say that a set of constraints is satis�ed when < is a partial order(i.e. a > b and b > a are not required simultaneously). Since the de�nition ofwell-supportedness calls only for the existence of a partial order in the set oftrue and unknown propositions of a model, we do not have to add constraintsto clauses supporting a to be false.De�nition 4.5 (Operators ~Ta; ~Fa, and ~Ua).Let a 2 L and let C = a _H  b1; : : : ; bm; not c1; : : : ; not cn| {z }B be a clause in P .14



� Let Ca(B) be the following set of constraints:Ca(B) = fa > bi : 1 � i � mg:� The operators ~Ta; ~Fa, and ~Ua on the clause C are de�ned as follows:~Ta(H;B) = T (B); [F(H) j U(H)] under constraints Ca(B).~Fa(H;B) = F(B) j T (H) j (U(B);U(H)) under no constraints.~Ua(H;B) = (U(B);F(H)) under constraints Ca(B).The operators \," and \j" between sets stand for the usual operators \x"(Cartesian product) and \[" (union) respectively. (We use here \," and\j" to preserve the avor of logic programming syntax.)Example 4.1. Let C = a b; not c. Then, all possible supports for the threepossible truth values of a are listed below:~Ta((); (b; not c)) = fb ^ ncg under Ca(B) = fa > bg,~Fa((); (b; not c)) = fnb j cg under no constraints,~Ua((); (b; not c)) = f(ub ^ nc) j (b ^ uc) j (ub ^ uc)g under Ca(B),which state that the only justi�cation for a to be true is that b be true and c befalse simultaneously. There are two supports for a to be false, namely b is falseor c is true. All the remaining possibilities support a to be unknown.We apply now case analysis to construct all possible justi�cations of a propo-sition a with respect to a program P . Consider the set of all clauses de�ninga in P (i.e. the set of clauses containing a in their heads). With respect to awell-supported 3-valued model of P , a is true when at least one of these clausessupports a to be true, a is false if all clauses in its de�nition support a to befalse, and a is unknown when none of these clauses supports a to be true butat least one of them supports a to be unknown. Since one of these cases musthold, the clause a _ ua _ na must be satis�ed in the well-supported model.It is worth noticing that if a proposition a is not de�ned in P (it does notappear in the head of any clause in P ) then there is no support for it to be trueor unknown and therefore it is taken to be false.De�nition 4.6 (3S{transformation).Let P be an edlp.1. Let a 2 L. Let the de�nition of a in P consist of the following set ofclauses: a _H1  B1...a _Hr  Brwhere r � 0. The 3S{transformation of the de�nition of a, denoted bya3S , is given by the following set of clauses:15



If r = 0 :na If r > 0 :a f ~Ta(H1; B1) j : : : j ~Ta(Hr; Br)gua f( ~Fa= ~Ua)�1(H1; B1); : : : ; ( ~Fa= ~Ua)�r (Hr; Br) : h�1; : : : ; �ri 2 Brgna ~Fa(H1; B1); : : : ; ~Fa(Hr ; Br)a_ua_na (' f 1 j : : : j  ng is a shorthand for the set of clauses8><>: '   1...'   n 9>=>;)where: ( ~Fa= ~Ua)�(H;B) = � ~Fa(H;B); If � = 0~Ua(H;B); If � = 12. The 3S{transformation P 3S of P is obtained by applying the 3S{trans-formation to each proposition in the language of P .The number of clauses in P 3S is, in general, exponential on the number ofclauses in P since all possible supports for each truth value of a proposition inL are considered.As noted before, the 3S{transformation requires that each proposition aassumes a truth value. However, it may be the case that, say, a and ua are bothtrue in P 3S. Since this is clearly undesirable, we impose a set of denial rules onthe models of P 3S to eliminate such possibilities.De�nition 4.7 (Denial rules ICP ).Let P be a disjunctive logic program and let ICP denote the following set ofdenial rules:ICP = f( a; ua;( a; na;( ua; na : a 2 L� ft;u; fgg:An interpretation I of P 3S is any subset of L̂ satisfying the denial rulesICP . I+; I� and Iu denote respectively the positive, the negative and theuncertain parts of I, i.e., I+ = fa 2 L : a 2 Ig, I� = fa 2 L : na 2 Ig andIu = fa 2 L : ua 2 Ig. I3 denote the 3-valued interpretation hI+; I�i.Associated with each a 2 I+ [ Iu there is a collection CIa that contains allthe sets of constraints that appear in clauses supporting a (or ua) with respectto I (for an illustration see Example 4.3 below), i.e.CIa = fCa(B) :there is a clause a B (or ua B) under constraints Ca(B)in P 3S such that VI(B) = trueg.Let CI = fCIa : a 2 I+ [ Iug. We say that I satis�es the constraints inCI if and only if for every a 2 I+ [ Iu there is some Ca(Ba) 2 CIa such that16



[[(a2I+[Iu)Ca(Ba)] de�nes a partial order in I+ [ Iu.We make precise now the notion of (minimal) 2-valued models of P 3S.De�nition 4.8 (2-valued models of P 3S).1. A 2-valued model of P 3S is a subset M of L̂ satisfying all clauses in theprogram and the constraints in CM .2. Let M and N be 2-valued models of P 3S. We say that M � N i� M+ �N+ and N� �M�.A 3-valued interpretation J of P can be transformed into a 2-valued inter-pretation J2 of P 3S by de�ning J2 = J+ [ fua : a 2 Jug [ fna : a 2 J�g.The set of minimal 2-valued models of P 3S (denoted by MICPP3S ) is closelyrelated to the set of 3-valued stable models of P , as the following examplesshow.Example 4.2. Let P = fb _ c; a not b; a not cg.P 3S = f b  (uc j nc) Cb = ;nb  cc  (ub j nb) Cc = ;nc  ba  nb j nc Ca = ;na  b; cua  (ub; c) j (b; uc) j (ub; uc) Ca = ;a _ ua _ na  b _ ub_ nb  c _ uc _ nc  gICP = f( x; ux;( x; nx;( ux; nx : x 2 fa; b; cggThe minimal 2-valued models of P 3S areMICPP3S = fM1 = fa; b; ncg;M2 = fa; nb; cgg:Here, CM1 = fCM1a = f;g; CM1b = f;gg and CM2 = fCM2a = f;g; CM2c = f;gg.Clearly, M1 and M2 respectively satisfy the constraints in CM1 and CM2 sincean empty set of constraints de�nes a partial order on any set. M1 and M2correspond to the partial stable models of P : 3-STABLE(P ) = fhfa; bg; fcgi;hfa; cg; fbgig.Example 4.3. Let P = fa b; b a; c not ag.17



P 3S = f a  b Ca = fa > bgua  ub Ca = fa > bgna  nbb  a Cb = fb > agub  ua Cb = fb > agnb  nac  na Cc = ;uc  ua Cc = ;nc  aa _ ua _ na  b _ ub_ nb  c _ uc _ nc  gICP = f( x; ux;( x; nx;( ux; nx : x 2 fa; b; cggThere are three minimal models of P 3S:M1 = fa; b; ncg with CM1 = fCa = fa > bg; Cb = fb > agg,M2 = fua; ub; ucg with CM2 = fCa = fa > bg; Cb = fb > ag; Cc = f;ggM3 = fna; nb; cg with CM3 = fCc = f;gg.Notice, however that the sets of constraints on M1 and on M2 are unsatis�ablesince fa > b; b > ag is not a partial order. Therefore, MICPP3S = ffna; nb; cggwhich corresponds to the unique 3-valued stable (and hence well-founded) modelof P , namely fhfcg; fa; bgig.Indeed, there is a one-to-one correspondence between the minimalmodels ofthe constrained logic program P 3S and the 3-valued well-supported (and hencepartial stable) models P as the following theorem shows.Theorem 4.1.Let P be an edlp and let M be a 3-valued interpretation of P . Then M is a3-valued well-supported model of P i� M2 2MICPP3S .Proof. \(" Assume M2 2MICPP3S . Let a 2 L.Case 1: If a 2M2, then there is some clauseC = a _ a1 _ : : :_ ak| {z }H  b1; : : : ; bm; not c1; : : : ; not cn| {z }Bin P for which ~Ta(H;B) = true, i.e. VM (B) = true, VM (H) <t trueand M2 satis�es the constraints fa > bi : 1 � i � mg. If therewere no such a clause, then for every clause a _H  B 2 P either~Fa(H;B) or ~Ua(H;B) would be true. Hence, either ua or na wouldbelong to M2 contradicting the assumption that M2 satis�es ICP .Case 2: If ua 2 M2, then there exists some h�1; : : : ; �ri 2 Br , wherer is the number of clauses in the de�nition of a in P , for whichthe conjunction ( ~Fa= ~Ua)�1(H1; B1); : : : ; ( ~Fa= ~Ua)�r(Hr; Br) is true in18



M2 (otherwise either a or na would belong to M2). Hence, there issome �j = 1 and so there is a clauseC = a _ a1 _ : : :_ ak| {z }H  b1; : : : ; bm; not c1; : : : ; not cn| {z }Bin P for which ~Ua(H;B) is true in M2, which means that VM (B) =unknown, VM (H) = false and M2 satis�es the constraints fa > bi :1 � i � mg.Therefore M is a well-supported model of P .\)" Assume thatM is a well-supported model of P . First, we show thatM2 isa model of P 3S. Since M is a 3-valued model,M2 satis�es all the clausesof the form a _ ua_ na and also satis�es the denial rules ICP . Let a 2 Land let the de�nition of a in P consist of the following set of clauses:(C1) a _H1  B1...(Cr) a _Hr  Brwhere r � 0. The 3S{transformation of the de�nition of a is given by thefollowing set of clauses:If r = 0 : na If r > 0 :(ta1) a ~Ta(H1; B1)...(tar) a ~Ta(Hr; Br)(ua) ua f( ~Fa= ~Ua)�1(H1; B1); : : : ; ( ~Fa= ~Ua)�r (Hr; Br) :h�1; : : : ; �ri 2 Brg(fa) na ~Fa(H1; B1); : : : ; ~Fa(Hr; Br)(3va) a _ ua _ na Notice that if r = 0, there is no support for a to be true or unknown soa must be false in M and then M2 is a model of na  . To prove thestatement when r > 0, we consider three cases corresponding to the threepossible truth values of a with respect to M . It is clear that in each ofthese cases the clause (3va) is satis�ed by M .Case 1: a is true in M .Clearly, M2 models (ta1); : : : ; (tar). Since M is a well-supportedmodel of P there is some j, 1 � j � r for which the clauseCj = a _ a1 _ : : :_ ak| {z }Hj  b1; : : : ; bm; not c1; : : : ; not cn| {z }Bj19



in P satis�es the following conditions:1. a > bi for all i 2 f1; : : : ;mg.2. VM (Bj ) = true and VM (Hj) <t true.Therefore VM ( ~Ta(Hj ; Bj)) =true and consequently VM ( ~Fa(Hj; Bj))= VM ( ~Ua(Hj; Bj)) = false and so M2 models (fa) and (ua).Case 2: a is unknown in M .Clearly, M2 models (ua). Notice that there is no clause in the de�-nition of a in P for which VM (Bi) = true and VM (Hi) < true. Oth-erwise a would have to be true in M in order for M to be a modelof P . Hence, for every i 2 f1; : : : ; rg, either VM ( ~Ua(Hi; Bi)) = trueor VM ( ~Fa(Hi; Bi)) = true and so, M2 models (ta1); : : : ; (tar).Since a is unknown inM andM is a well-supported model of P thereis a clauseCj = a _ a1 _ : : :_ ak| {z }Hj  b1; : : : ; bm; not c1; : : : ; not cn| {z }Bjin P satisfying the following conditions:1. a > bi for all i 2 f1; : : : ;mg.2. VM (Bj ) = unknown and VM (Hj) = false.and therefore VM ( ~Ua(Hj; Bj)) = true which implies thatVM ( ~Fa(Hj; Bj)) = false and so M2 models (fa).Case 3: a is false in M .Clearly, M2 models (fa). Since a is false in M and M is a model ofP , VM (Bj) �t VM (Hj) for all j; 1 � j � r. This implies that M2models (ta1); : : : ; (tar) and also that VM ( ~Ua(Hj; Bj)) = false for allj and so M2 models (ua).Hence, M2 is a model of P 3S. It remains to be shown that M2 is aminimal model of P 3S. Suppose, by way of contradiction, that there issome N 2 MICPP3S such that N is smaller than M2. It is straightforwardto check that N3 is a 3-valued model of P and that N3 �t M . Thisyields a contradiction since M is a �t-minimal 3-valued model of P due toProposition 2.1 together with the assumption that M is a well-supported(and hence, partial stable) model of P .Corollary 4.2.Let P be an edlpand let M be a 3-valued interpretation of P . Then M is a3-valued stable model of P i� M2 2MICPP3S .Proof. This follows immediately from Theorems 3.5 and 4.120



1. M0 := f;g2. repeat3. M :=M04. M0 := ;5. for each I 2M do6. I := TP3SH "1 (I)7. if I satis�es ICP then8. if there is some C = a _ ua _ na 2 P 3SD s.t. I 6j= C then9. M0 :=M0 [ fI [ fag; I [ fuag; I [ fnagg10. else M0 :=M0 [ fIg11. untilM =M012. M := min(M)13. MICPP3S := fM 2M :M satis�es the constraints in CMgFigure 1: Algorithm to computeMICPP3S4.2 Computing Minimal 2-valued Models of P 3SIn this section we give an algorithm to construct the minimalmodels of P 3S andshow how to check which of those models satisfy the constraints in the program.We start by noticing that P 3S contains two types of clauses: Horn clausesand disjunctive facts. Let P 3SH and P 3SD denote the subsets of P 3S containingrespectively the Horn clauses and the disjunctive facts in P .An approach to compute the minimal 2-valuedmodels of P 3S is the following:we start with the empty interpretation and apply an immediate consequenceoperator to P 3SH until a �xpoint I is reached. If I satis�es all the clauses inP 3SD we are done. Otherwise, we select one clause a _ ua _ na 2 P 3SD that isnot satis�ed by I and split I into three interpretations: I [ fag, I [ fuag, andI[fnag. For each such interpretation we apply again the immediate consequenceoperator with respect to P 3SH to �nd a revised �xed point, which is tested todetermine if it models P 3SD . If it does, we are done and if not, we repeat theprocess until all interpretations obtained satisfy every disjunction in P 3SD . Ifat any point during this process an interpretation inconsistent with the set ofdenial rules ICP is reached, then that interpretation is thrown away. At theend of the process, we check which of the resulting interpretations satisfy theirown set of constraints.Figure 1 provides an algorithm to compute MICPP3S , where TP3SH is any im-mediate consequence operator de�ned for Horn programs.We detail now instruction 6 to show how the set of constraints CI associatedwith an interpretation I can be computed simultaneously to the iterations ofthe �xpoint operator. 21



6.1. repeat6.2. I0 := I6.3. I0 := ;6.4. for each clause x B under constraints Cx(B) in P 3SH. such that VI (B) = true do6.5. I0 := I0 [ fxg6.6. if x is of the form a or ua for some a 2 L then6.7. CIa := CIa [ fCx(B)g6.8. I := I06.9. until I = I0We point out that instruction 13 can be implemented in terms of a searchin a particular graph. It is easy to see that a set of constraints C of the forma > b de�nes a partial order on L̂ if and only if the directed graph G = hV =L̂; E = f(a; b) : a > b 2 Cgi is acyclic. Checking if this graph is acyclic can bedone in time O(jL̂j+ jCj) (see e.g. [AHU83]).We illustrate how the algorithm works for di�erent edlps.Example 4.4. Let P = fa not b; b not ag.P 3S = f a  nb Ca = ;ua  ub Ca = ;na  b P 3SHb  na Cb = ;ub  ua Cb = ;nb  aa _ ua _ na  b _ ub_ nb  P 3SD gICP = f( x; ux;( x; nx;( ux; nx : x 2 fa; bggWe start with the empty interpretation I = fg. Since the Horn part of P 3Shas no facts, the empty set is the �xed point obtained for I. We then selecta_ua_na from P 3SD , which is not satis�ed by I and form three interpretations,as shown by the �rst level of the tree of Figure 2. We �nd the �xpoint forI1 = fag with respect to P 3SH to obtain nb (on the second level of the tree). Theinterpretation I01 = fa; nbg now satis�es all the clauses in P 3S. The same isdone for I2 = fuag and for I3 = fnag to obtain ub and b respectively. I02 =fua; ubg and I 03 = fna; bg satisfy all clauses in P 3S. Notice that the threeinterpretations satisfy the denial rules ICP and they are �t-incomparable soeach of them is �t-minimal. Finally, each of them satis�es the associated set ofconstraints: CI01 = fCI01a = f;gg, CI02 = fCI02a = f;g; CI02b = f;gg and CI03 = fCI03a =f;gg. Therefore,MICPP3S = ffa; nbg; fua;ubg;fna; bgg.22



I 01anb nabI 03...XXXXXXXXXX.���������� uaubI 02Figure 2: Minimal 2-valued models of P 3S in Example 4.4.The corresponding 3-valued stable models of the program P are fhfag; fbgi;h;; ;i; hfbg; fagig. I02 corresponds to the well-founded model h;; ;i of P .Example 4.5. Let P = fa c; a b; b a; c g.P 3S = f a  c Ca = fa > cga  b Ca = fa > bgua  uc; nb Ca = fa > cgua  nc; ub Ca = fa > bgua  uc; ub Ca = fa > b; a > cgna  nc; nbb  a Cb = fb > agub  ua Cb = fb > agnb  nac  Cc = ;a _ ua _ na  b _ ub_ nb  c _ uc _ nc  gICP = f( x; ux;( x; nx;( ux; nx : x 2 fa; b; cggThe immediate consequence operator applied to P 3SH produces the only modelof P 3S, namely M = fa; b; cg. The set of constraints associated with M isCM = fCMa = ffa > cgjfa > bgg; CMb = ffb > agg; CMa = f;gg. M satis�esthis set of constraints since fa > c; b > ag is a partial order on fa; b; cg. Hence,MICPP3S = ffa; b; cgg and 3-STABLE(P ) = hfa; b; cg; ;i.The algorithm in Figure 1 constructs every minimalmodel of P 3S and hence,in the worst case, runs in exponential time on the size of P 3S.A global improvement to the process of computing the partial stable modelsof P is to partition P into several connected components using the notion ofsemi-strati�cation described in [FLMS93] and to apply the 3S{transformationand the algorithm in Figure 1 just to each component of the program.23



.����������� XXXXXXXXXXX������.XXXXXXw uw nwusns ss nst t ntnt tnw nw ww nwFigure 3: Computation of the minimal 2-valued models of P 3S in Example 4.6.A local speed{up in the algorithm can be achieved by selecting in instruction8, a clause fromP 3SD that maximizes the number of clauses in P 3SH that are usablein the next application of the �xpoint operator TP3SH .We end this section by showing how the algorithm works with a programthat does not have any partial stable models.Example 4.6. Let P = fw _ s _ t;w not t; s not w; t not sg.P 3S = f w  (usjns); (utjnt) Cw = ;w  nt Cw = ;uw  (sjt); ut Cw = ;nw  (sjt); ts  (uwjnw); (utjnt) Cs = ;s  nw Cs = ;us  (wjt); uw Cs = ;ns  (wjt); wt  (uwjnw); (usjns) Ct = ;t  ns Ct = ;ut  (wjs); us Ct = ;nt  (wjs); sw _ uw _ nw  s _ us _ ns  t _ ut _ nt  gICP = f( x; ux;( x; nx;( ux; nx : x 2 fw; s; tggFigure 3 shows that every interpretation obtained during the computation ofthe minimal 2-valued models of P 3S is inconsistent with respect to the denialrules ICP . Then MICPP3S = fg and consequently 3-STABLE(P ) = fg.24



5 ConclusionsWe have provided an e�ective procedure that computes the partial stable modelsof an edlp. We have shown that there is a one-to-one correspondence betweenthe partial stable models of an edlp and the minimal models of a constrainededlp free of negation-by-default (or equivalently, the well-supported models of anedlp free of negation-by-default). Strictly speaking, this implies that the use ofnegation-by-default under the interpretation of the partial stable model semanticdoes not increase the expressive power of constrained positive programs. Thesame observation is applicable to the (total) stable model and the well-foundedsemantics since these semantics are easily derived from the set of partial stablemodels of the program.Nevertheless, the presence of the negation-by-default operator is undoubtlyuseful in the sense that it allows us to write concise programs independent ofthe number of truth values being considered.The procedure presented here to compute the 3-valued stable models of anedlp is based on case analysis. An implementation of that procedure has beencompleted and we expect to experiment with it. We believe that the approachcan be adapted to compute the 2-valued as well as the 4-valued stable models[Fit93] of the program. We plan to investigate these topics.References[AHU83] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms.Addison-Wesley, 1983.[BNNS93] C. Bell, A. Nerode, R. Ng, and V.S. Subrahmanian. Implementing stablemodel semantics by linear programming. In Proceedings of the 1993 Inter-national Workshop on Logic Programming and Non-monotonic Reasoning,June 1993.[EG93] T. Eiter and G. Gottlob. Complexity aspects of various semantics fordisjunctive databases. In Proceedings of the Twelfth ACM SIGART{SIGMOD{SIGART Symposium on Principles of Database Systems (PODS-93), pages 158{167. ACM Press, May 1993.[Fag91] F. Fages. A new �xpoint semantics for general logic programs comparedwith the well-founded and the stable model semantics. New GenerationComputing, 9:425{443, 1991.[Fit85] M. Fitting. A Kripke-Kleene semantics of logic programs. Journal of LogicProgramming, 2(4):295{312, December 1985.[Fit93] M. Fitting. The family of stable models. Journal of Logic Programming,17(2, 3 & 4):197{226, 1993.[FLMS93] J.A. Fern�andez, J. Lobo, J. Minker, and V.S. Subrahmanian. Disjunctivelp + integrity constrains = stable model semantics. Annals of Mathematicsand Arti�cial Intelligence, 8(3-4):449{474, 1993.[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-ming. In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth Inter-25
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