
Index Translation Schemes for Adaptive Computationson Distributed Memory Multicomputers �Bongki Moon Mustafa Uysal Joel SaltzInstitute for Advanced Computer Studies andDepartment of Computer ScienceUniversity of MarylandCollege Park, MD 20742fbkmoon, uysal, saltzg@cs.umd.eduAbstractCurrent research in parallel programming is focused on closing the gap between globally indexedalgorithms and the separate address spaces of processors on distributed memory multicomputers. Aset of index translation schemes have been implemented as a part of CHAOS runtime support library,so that the library functions can be used for implementing a global index space across a collection ofseparate local index spaces. These schemes include two software-cached translation schemes aimed atadaptive irregular problems as well as a distributed translation table technique for statically irregularproblems. To evaluate and demonstrate the e�ciency of the software-cached translation schemes,experiments have been performed with an adaptively irregular loop kernel and a full-edged 3D DSMCcode from NASA Langley on the Intel Paragon and Cray T3D. This paper also discusses and analyzesthe operational conditions under which each scheme can produce optimal performance.1 IntroductionDistributed memory multicomputers have been widely used to solve many structured and unstructuredproblems. Most of the performance gain from the distributed memory multicomputers can be obtainedby data distribution and load balancing. In such multicomputers, each processor owns a separate localmemory and is connected to an interconnection network. Processors communicate with each other bysending and receiving messages across the network. However, since most of the applications are writtenassuming a single global index space, the programming task on distributed memory multicomputersoften requires a substantial amount of e�ort. Thus, current research in parallel programming is focusedon closing the gap between globally indexed algorithms independent of the underlying distribution ofdata and the separate address spaces of processors.Compilers for various languages such as Fortran [8] and C++ [4] have been developed to give theillusion of a shared address space on distributed memory multicomputers. For structured problems,such compilers as Fortran D [8] use distribution directives to partition computation across processors.Using the directives, the compilers can statically determine the processor that owns a data item and theprocessor that requires the value of the data item. The compilers can then generate message passingcalls to directly pass this value from the owner processor to the processor that needs it. Another�This work was supported by NASA under contract No. NAG-11560, by ONR under contract No. SC 292-1-22913 andby ARPA under contract No. NAG-11485. The authors assume all responsibility for the contents of the paper.1

L1: do n = 1, n stepsL2: do i = 1, n edgesy(ia(i)) = 0.85 * x(ia(i)) + 0.42 * x(ib(i))y(ib(i)) = 0.88 * x(ia(i)) + 0.44 * x(ib(i))enddoL3: do i = 1, n gridsx(i) = y(i)enddoenddoFigure 1: An example code segment of an irregular loopapproach called Distributed Shared Memory (DSM) enables an application's user-level code to supportshared memory and message passing e�ciently [12]. Distributed shared memory is typically supportedby the processor's address translation hardware.This paper describes and evaluates a set of index translation schemes for implementing a global indexspace across a collection of distributed memories. These schemes can be incorporated into a runtimesupport library so that calls to the library functions can be invoked by manually parallelized programsor can be generated by compilers [14]. These schemes can also be incorporated into distributed sharedmemory systems such as the one used in the Wisconsin Wind Tunnel project to support user-levelshared memory [12].To illustrate the need of runtime support for address translation, consider the Jacobi iterative methodfor solving a partial di�erential equation on an irregular numerical grid, which arises in moleculardynamics codes and sparse linear solvers. A typical example loop of such an irregular computation ispresented in Figure 1. The update of each grid point depends only on the values at neighboring gridpoints from the previous iteration. Since the grid structure of such irregular problems is determinedonly at runtime, compilers cannot fully analyze and translate globally indexed memory accesses. Forinstance, in Figure 1, the data access patterns to the arrays x() and y() are determined at runtimevia the indirection arrays ia() and ib(). Thus communication patterns between processors should bedetermined at runtime and accordingly the globally indexed data accesses should also be translated atruntime.The rest of the paper is organized as follows. Section 2 describes a distributed translation schemewhich allows us to map a globally indexed distributed array and how this scheme can be used in parallelcomputation. Section 3 introduces new adaptive translation schemes which o�er reduced overhead ofindex translation by using software caching techniques. Experimental results performed with an irregularloop kernel and a direct particle simulation application are presented in Section 4. We compare theperformance of the software-cached translation schemes and discuss the operational condition underwhich each scheme can produce optimal performance in Section 5.2 Distributed Translation TableThis section describes a distributed translation table which allows us to map a globally indexed dis-tributed array onto processors in an arbitrary fashion. Briey outlined is how the distributed translationtable can be used in the preprocessing stage of the inspector/executor model of parallelization [15, 7].On distributed memory machines, large data arrays may not �t in a single-processor's memory, hencethey are divided among processors. Also computational work is divided among individual processors to2

Processor
Number

Local
Offset

0 0 0 01 1 12 2 2 2 3

0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11

02 1 01 2 3 0

(a) Replicated Translation Table

Processor
Number

Local
Offset

0 0 0 1 0 2 2 1 1 2 2 3

0 1 2 2 3 1 2 0 1 3 0 0

0 1 2 3 4 5 6 7 8 9 10 11

Data Distribution : P0 = {0,1,2,4}, P1 = {7,8,3}, P2 = {10,5,6,9}, P3 = {11}

Number of data items = 12

Number of processors = 4

P0 P1 P2 P3

(b) Distributed Translation TableFigure 2: Examples of Translation Tablesachieve parallelism. Once distributed arrays have been partitioned, each processor ends up with a set ofglobally indexed distributed array elements. Each element in a distributed array A of size N is assignedto a particular home processor. In order for any processor to be able to access a given element, A(i), ofthe distributed array, the home processor and local address of A(i) must be determined.Generally, unstructured problems solved with irregular data distributions perform more e�cientlythan with regular data distributions such as BLOCK. In the case of irregular data distribution, atranslation table is built that, for each array element, lists the home processor and the local o�set. Ifthe data is distributed in a BLOCK or CYCLIC manner, the translation table can be simulated withan analytic function. Otherwise, a full-edged translation table needs to be built. This translationtable is used for dereferencing, the process of �nding the processor home of a global element and thelocal o�set within the processor. Figure 2(a) illustrates a replicated translation table for a given datadistribution of 12 globally indexed data items over 4 processors. For instance, a data item with a globalindex 3 is stored in the third memory location within the processor P1. Thus, its home processor (1)and local o�set (2) are stored in the fourth entry of the translation table.Memory considerations make it clear that it is not always feasible to replicate a copy of the trans-lation table on each processor, so the translation table must be distributed across processors. This isaccomplished by distributing the translation table by blocks, i.e., putting the �rst N/P elements on the�rst processor, the second N/P elements on the second processor, and so on, where P is the numberof processors and N is the number of globally indexed data items. Figure 2(b) illustrates a distributedtranslation table obtained by partitioning the replicated translation table given in Figure 2(a).When an element A(i) of a distributed array A is accessed, the home processor and local o�setare found in the portion of the distributed translation table stored in processor b i�PN c. A dereferencingoperation using the distributed translation table requires communication between processors to exchangethe information stored in each processor's portion of the distributed translation table.Figure 3 presents an example of the Jacobi iterative loop parallelized with the CHAOS runtimelibrary [13]. Each processor passes the procedure build translation table a list of global indices of3

I1: ttable = build translation table(index,n local grids)I2: call dereference(ttable,ia,o�seta,proca,n local edges)call dereference(ttable,ib,o�setb,procb,n local edges)I3: call CHAOS functions to generate communication scheduleL1: do n = 1, n stepsE1:call CHAOS functions to gather o�-processor data elementsL2: do i = 1, n local edgesy(ia local(i)) = 0.85 * x(ia local(i)) + 0.42 * x(ib local(i))y(ib local(i)) = 0.88 * x(ia local(i)) + 0.44 * x(ib local(i))enddoE2:call CHAOS functions to scatter o�-processor data elementsL3: do i = 1, n local gridsx(i) = y(i)enddoenddoFigure 3: An irregular loop parallelized by CHAOS runtime libraryL1: do n = 1, n stepsL2: do i = 1, n edgesy(ia(i)) = 0.85 * x(ia(i)) + 0.42 * x(ib(i))y(ib(i)) = 0.88 * x(ia(i)) + 0.44 * x(ib(i))enddoL3: do i = 1, n gridsx(i) = y(i)enddoS: if (mesh rede�ned) then regenerate ia() and ib()enddoFigure 4: An example code segment of an adaptive irregular looparray elements for which it will be responsible. To create a translation table, for example, in the �rstinspector step I1 of Figure 3, each processor passes an array index(1:n local grids) to the runtimefunction. The array index(1:n local grids) stores a set of global indices owned by the processorwhich is determined by the current distribution of data. If a given processor needs to access a data itemthat corresponds to a particular global index i for a speci�c distributed array, the processor can consultthe distributed translation table to �nd the owner processor and location of that item within the localmemory of the owner processor. The next inspector step I2 carries out the dereferencing operation.Though this step inherently incurs communication overhead, the cost of dereferencing will be amortizedover loop iterations as long as the indirection arrays ia() and ib() are not changed.3 Software-Cached Adaptive Translation SchemesIn static irregular problems such as sparse linear systems and unstructured mesh codes, data accesspatterns are determined via a level of indirection and the access patterns remain static. Thus, thedereferenced data accesses of globally indexed data items may be reused over loop iterations by storingthe index translation information in local memory (for example, the arrays offseta() and proca()returned from the dereference() function in Figure 3). In adaptive irregular applications which can befound in direct particle simulation and molecular dynamics simulation, however, the data access patterns4

Data Distribution : P0 = {0,1,2,4}, P1 = {7,8,3}, P2 = {10,5,6,9}, P3 = {11}

Number of data items = 12

Number of processors = 4

Page Size = 2, Replication Factor = 0.5

ptrrefcnt

Page PoolPage Table

0

0

0

0

0

0

OffsetProc

2 0

3 0

Page PoolPage Table

1

0

0

0

0

2

Proc Offset

OffsetProc

2 0

03

0 3

2 1

(a) Paged Translation Table snapshot (b) Paged Translation Table snapshot taken after

ptrrefcnt

taken after initial creation at P3 dereferencing requests {11,4,10} processed at P3Figure 5: Paged Translation Tablesmay change during the processing of loop iterations. Figure 4 shows the computational structure of suchadaptive irregular applications. The data access pattern in loop L2 changes whenever the indirectionarrays ia() and ib() are regenerated in the conditional statement S. Then, since the index translationinformation stored in local memory can not be reused, the globally indexed data items should bedereferenced whenever the access patterns change.In adaptive applications such as DSMC [3] and CHARMM [5], data access patterns change fre-quently and irregular data distribution is preferred for better performance over regular data distribu-tion. Thus, minimization of the dereferencing cost is crucial for e�cient processing of such applicationson distributed memory multicomputers. In such cases, the distributed translation table described inSection 2 tends to be too costly to use. There are three main reasons. First, the dereferencing operationinherently requires communication between processors to exchange the translation information. Second,the distribution of the translation table across processors is �xed and bears no particular relationshipto the distribution of dereferencing requests. Third, even though a nonlocal global index is dereferencedin several loop instances, the translation information obtained in the previous loop instance can not bereused in the subsequent loop instances unless it is stored explicitly in local memory.In many cases there is enough memory to partially replicate the translation table. The distributedtranslation table is not able to replicate portions of the translation table in order to trade memory forimproved performance. This section introduces two variations of the distributed translation table whicho�er reduced overhead by using extra memory: paged translation table and hashed translation table.These translation schemes use software caching techniques so that the extra memory can be exploitedadaptively for changeable data access patterns and communication latency can be avoided.3.1 Paged Translation TableThe paged translation table is composed of a page table and a set of page frames. Followed here is theconvention found in the virtual memory literature where the memory location associated with each5

page is called a page frame. The process of generating the paged translation table is governed by twoadjustable parameters, a page size S and a replication factor R. The replication factor R is de�ned asthe fraction of the maximum number of pages for which extra frames are allocated by each processor.In this scheme, the translation table is decomposed into �xed-sized pages. Each page lists the homeprocessors and o�sets associated with a set of S contiguously numbered global indices. Suppose N isthe size of a distributed array. Then, each processor maintains a page table which has N=S entries, andstores up to N�RS pages. Each page table entry contains a reference counter and a page pointer whichpoints to a page for S consecutive global indices if the page pointer is not null.Translation table information for each index must be stored somewhere. In this current pagedtranslation table implementation, a distributed translation table is built up as a back-end data structureto make it simpler to dereference global indices which are not currently available in local memory.When a paged translation table is initially created, each processor stores only the pages which includedereferencing information of global indices assigned to the processor. Speci�cally, if a processor ownsa global index i, the b iS c-th entry of the processor's page table points to a page containing the homeprocessors and o�sets for global indices b iS c � S; b iS c � S + 1; : : : ; b iS c � S + S � 1.Figure 5(a) depicts an initial paged translation table for a given data distribution which is identicalto the one shown in Figure 2. Since S = 2 and R = 0:5, each processor allocates a page table withNS = 6 entries, and a page pool with N�RS = 3 available page frames. On processor P3, for example,there is only one global index 11 owned by it. Thus, the processor P3 fetches a page frame from thepage pool, �lls the page frame with home processors and o�sets, and attaches it to the sixth (b iS c = 5)entry of its page table.When a processor receives a dereferencing request fjg, it looks at its b jS c-th page table entry. If thepointer �eld of the page table entry points to a valid page frame, then the home processor and o�setof the global index j can be fetched from the (j mod S)-th record in the page frame. The referencecounter of the page table entry is incremented. If the pointer �eld of the b jS c-th page table entry isnull, then a page fault occurs. When a page fault occurs, the distributed translation table is referencedto translate the global index which caused the page fault. Then, a page frame is fetched from the pagepool and the home processor and o�set of the global index is stored in it. Figure 5(b) shows a pagedtranslation table snapshot taken after a set of dereferencing requests f11,4,10g is processed.In many cases where a replication factor is chosen to be less than one, page faults may occur whileno unused page frames are available in the page pool. There are basically two options in handlingthe situation: the information of home processors and o�sets obtained by referencing the distributedtranslation table may be returned without being stored in the paged translation table, or a page maybe evicted to make room for an incoming one. The latter was chosen, since it adapts to the variation ofdata access patterns. A replacement policy governs the choice of the victim when eviction of pages is inorder. Since implementation of the well-known page replacement algorithm LRU (Least-Recently-Used)imposes too much overhead to be handled by software alone, implemented here is the NRU (Not-Recently-Used) page replacement algorithm, one of the approximations of LRU, using the referencecounters in the page table [9].3.2 Hashed Translation TableThe structure of a hashed translation table di�ers from that of a paged translation table in that a hashedtranslation table consists of a hash table and a set of hash nodes instead of a page table and a set ofpage frames. There is only one operational parameter, replication factor R; it is de�ned as the fractionof the maximum number of indices for which hash nodes are allocated by each processor. Each hashnode includes a global index, its home processor and o�set as well as a pointer �eld. Suppose N is thenumber of globally indexed data items. Then, each processor stores up to N �R hash nodes. In this6

P OG

0

1

2

40

0

0

00

1

2

3

P OG

Data Distribution : P0 = {0,1,2,4}, P1 = {7,8,3}, P2 = {10,5,6,9}, P3 = {11}

Number of data items = 12

Number of processors = 4

Node Pool

num ptrrefcnt

0

0 0

Hash Table

2

1

Node Pool

num ptrrefcnt

0

0

0

0 0

Hash Table

2

1

1 2

(a) Hashed Translation Table snapshot

taken after initial creation at P0

(b) Hashed Translation Table snapshot taken after

dereferencing requests {2,4,6} processed at P0

0

1

2

40

0

0

00

1

2

3

6 2 22

1

Replication Factor = 0.5, Hash Function h(x) = x mod 4

Figure 6: Hashed Translation Tablescurrent implementation of hashed translation table, the size of hash table H is determined in such away that H = 2k where k is the smallest number such that 2k � dN=Pe. Each entry of the hash tableincludes a reference counter, a node counter and a node pointer. The reference counter �eld is used bythe NRU replacement algorithm, and the node counter and node pointer �elds are used to maintaina list of nodes hashed into the same entry. Since the hash table is of size 2k, a hash function h(x) iscurrently used which simply masks the lower k bits of the global index x. Since a linked list is used tostore colliding indices, the simple choice of hash function has the potential to incur the high overhead oftraversing a long list in discovering the correct index. This issue shall be further addressed in Section 5.As with the paged translation table, a distributed translation table is built up as a back-end datastructure. When a hashed translation table is initially created, each processor stores only the translationinformation for globally indexed data items which the processor owns. Speci�cally, if a processor ownsa global index i, the processor adds a hash node to the h(i)-th entry of its hash table.Figure 6(a) depicts an initial hashed translation table for the same data distribution given in Figure 2and Figure 5. Since the number of processors P is 4 and replication factor R is 0.5, each processorcreates a hash table of size 4 and a node pool with 6 unused hash nodes. Then, a list of (global index,processor, o�set) triplets for locally owned data items is stored in the hashed translation table. Forinstance, the processor P0 fetches four hash nodes from the node pool, �lls each hash node with a globalindex, its home processor and o�set, and attaches it to the proper hash table entry. This step does notrequire extra communication between processors because the information about the home processorsand o�sets of locally owned data items can be obtained on the y.Dereferencing a global index with a hashed translation table is to essentially search through a hashtable. When a dereferencing request fjg arrives, the h(j)-th hash table entry is looked up and thelinked list attached to the hash table entry is traversed to �nd a hash node having a matching key value(i.e., a global index). If a matching hash node is found, then the home processor and o�set of the nodeis returned, and the reference counter of the hash table entry is incremented by one. Otherwise, thedistributed translation table must be referenced to translate the global index. This requires information7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20

T
ra

n
sl

a
tio

n
 t

im
e
s

in
 S

e
co

n
d
s

Number of time steps

Index translation overheads on Paragon (P=32)

Distributed
Paged

Hashed

Figure 7: Index translation times with R=0.3, S=8 on the 32-node Intel Paragonexchange between processors. Since the index translation information obtained by referencing thedistributed translation table is not in the hashed translation table, an unused hash node is fetchedfrom the node pool and is used to store the translation information. If there are no unused hash nodesavailable in the node pool, the NRU replacement algorithm is applied using the reference counters inthe hash table.4 Comparison of Experimental ResultsThis section describes the experiments performed and discusses the results. A number of di�erentexperiments were carried out using (1) an irregular loop kernel which has a similar structure to anirregular Jacobi iteration, and (2) a real world application, 3-dimensional Direct Simulation Monte Carlo(DSMC) code. The remainder of this section presents and compares results from distributed translationtable, paged translation table and hashed translation table with various operational parameters.4.1 Experiments with an irregular loop kernelThe sample adaptive loop described in Figure 4 was run with an irregular mesh with 100,000 gridpoints. To emphasize the e�ect of index translation operation, the assumption that the structure of themesh is rede�ned every time step by the statement S in Figure 4 was used. Thus, the CHAOS functiondereference() must be invoked every time step to run the code on distributed memory multicomputers.The same experiments have been performed on the Caltech CCSF Paragon with 512 processing nodesand the Jet Propulsion Laboratory (JPL) Cray T3D with 256 processing nodes.Figure 7 and Figure 8 compare the costs of three index translation schemes (i.e., the processingcosts of dereference() function invocations) at each of 20 time steps on the 32-node Paragon and onthe 32-node T3D, respectively. The same replication factor (R=0.3) has been used for both the pagedand hashed translation schemes, and the same page size (S=8) for the paged translation scheme.8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 5 10 15 20

T
ra

n
sl

a
tio

n
 t

im
e
s

in
 S

e
co

n
d
s

Number of time steps

Index translation overheads on Cray T3D (P=32)

Distributed
Paged

Hashed

Figure 8: Index translation times with R=0.3, S=8 on the 32-node Cray T3DThough the actual costs of the three index translation schemes di�er by an order of magnitude ondi�erent machines, the index translation schemes show common characteristics. While the performanceof the distributed translation scheme is almost invariant during all the time steps, the costs of the otherschemes are much higher in the initial time steps and lower in the remaining time steps than that ofthe distributed translation scheme. This is due to the fact that a number of nonlocal global indices aretranslated and cached into the paged or hashed translation table in the initial time steps, and most ofthe global indices are translated locally in the subsequent time steps. It is also observed that the costof the paged translation scheme is much higher than that of the hashed translation scheme in the initialtime steps. This is due to the coarse-grained memory management of the paged translation scheme.In other words, the paged translation scheme needs to translate and cache all the indices in the pageframes that should be brought in local memory. This property increases the number of dereferencingrequests beyond the required number of indices.The e�ect of page size on the performance of the paged translation scheme is shown in Figure 9and Figure 10. The replication factor was 0.05 in the experiments performed on the 512-node Paragon,and it was 0.10 in the experiments performed on the 128-node T3D. The results shown in both of the�gures indicate that the performance of the paged translation scheme is very sensitive to the choiceof page size. The paged translation scheme with relatively small page sizes signi�cantly outperformedthe distributed translation scheme. However, when larger page sizes were chosen, the performance ofthe paged translation scheme became even worse than that of the distributed translation scheme. Suchperformance degradation is mainly due to page thrashing. It is more likely the page thrashing happenswith page frames of larger size because the larger the page size the higher the ratio of page faults.4.2 Experiments with a direct particle simulationThis section presents experiments which were carried out with a 3D Corner Flow Direct SimulationMonte Carlo (DSMC) code from NASA Langley. DSMC is a well-established technique for modellingrare�ed gas dynamics via direct particle simulation on a grid [3]. It has been widely used in aerospace9

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

T
ra

n
sl

a
tio

n
 t

im
e
s

in
 S

e
co

n
d
s

Number of time steps

Index translation overheads on Paragon (P=512)

Distributed
Paged(p=8)

Paged(p=32)
Paged(p=64)

Paged(p=128)

Figure 9: Index translation times with varying page sizes on the 512-node Intel Paragon (R=0.05)Table 1: E�ects of replication factor in DSMC computation(the numbers in the parentheses are the percentage of the translation overhead)Times in Translation Schemesseconds Distributed Paged Hashed Hashed/T3DRep. Factor pagesz=16 pagesz=2560.025 11.3 (33) 17.5 (40) 22.9 (47) 17.0 (40) 37.1 (58)0.050 9.5 (27) 19.5 (43) 9.8 (27) 10.1 (28)0.075 8.9 (25) 13.1 (34) 8.3 (25) 6.3 (19)0.100 8.2 (24) 10.7 (29) 7.1 (21) 3.4 (11)0.125 7.5 (22) 10.0 (28) 6.4 (20) 2.7 (09)0.150 6.7 (20) 9.3 (26) 6.0 (19) 2.4 (08)0.175 6.5 (20) 8.5 (25) 5.9 (18) 2.4 (08)0.200 6.6 (20) 7.8 (23) 6.1 (18) 2.4 (07)applications such as upper-atmosphere ows for hypersonic cruise vehicles and rocket plumes, and invacuum-related technologies for the semiconductor industry modelling plasma etching or chemical vapordeposition [2].The DSMC method includes movement and collision handling of simulated particles on a spatialow �eld domain overlaid by a Cartesian mesh. The spatial location of each particle is associated witha Cartesian mesh cell. The key concept of the DSMC method is that particle movement is decoupledfrom particle collisions. That is, the computation of a time step can be split into the calculationof physical quantities of collided particles and the relocation of moved particles. Furthermore, sincethe computations associated with performing probabilistic chemistry and collisions can be distributedacross processors cell by cell, the DSMC method in principle is a good match for parallel processing ondistributed memory multicomputers [16, 10].Changes in position coordinates may cause the particles to move across cell boundaries. In the10

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 5 10 15 20

T
ra

n
sl

a
tio

n
 t

im
e
s

in
 S

e
co

n
d
s

Number of time steps

Index translation overheads on Cray T3D (P=128)

Distributed
Paged(p=4)
Paged(p=8)

Paged(p=16)
Paged(p=32)

Figure 10: Index translation times with varying page sizes on the 128-node Cray T3D (R=0.10)particular corner ow DSMC code presented here, about 30 percent of the particles change their celllocations every time step. However, particle movements are local enough that particles only movebetween neighboring cells. The relocation of particles must be done every time step to move them totheir new cells. Thus, the index translation must also be done every time step to �nd the particles' newowner processors. The corner ow DSMC code simulates a 3-dimensional ow �eld with 77,760 cellsand about 600,000 particles.Figure 11 shows index translation costs of three translation schemes measured at each time step onthe 53-node Paragon. The experiments discussed here focused on the �rst 80 time steps of transientphase. During the transient time steps, the number of particles keeps increasing because the numberof entering particles is greater than that of leaving particles. This explains the fact that the cost of thedistributed translation scheme increases as the computation proceeds.Another key point of the experiments is that the problem domain (that is, cells) of the DSMC codeis repartitioned across processors periodically to balance the work load. In these particular experiments,the domain was repartitioned every 20 time steps. If the problem domain is repartitioned, a translationtable must be regenerated and the cached information of nonlocal global indices must be invalidated.Thus, the costs of paged translation and hashed translation schemes are far higher in the time stepsafter domain repartitioning because a number of nonlocal global indices are translated and cached intothe paged or hashed translation table.Table 1 shows the performance of the translation schemes with varying replication factors. Thenumbers in the parentheses represent the ratio of the translation time to the total elapsed time. Theexperiments shown in this table were carried out with the same corner ow DSMC code simulating9,720 cells and about 50,000 particles. The performance numbers were measured in seconds for the�rst 200 time steps on the 32-node Paragon except the last column which was obtained using thehashed translation scheme on the 32-node T3D. The replication factor has a signi�cant e�ect on theperformance of the paged and hashed translation schemes. However, when the replication factor becomeslarge enough to avoid frequent page or node replacements, the performance is almost invariant with11

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50 60 70 80

T
ra

n
sl

a
tio

n
 t

im
e
s

in
 S

e
co

n
d
s

Number of time steps

Index translation times on Paragon (P=53)

Distributed
Paged

Hashed

Figure 11: Index translation times of the 3D DSMC code (R = 0.2 and S = 16)respect to varying replication factors. It is also observed that large page frames use up replicatedmemory fast and may cause severe performance degradation due to page thrashing.5 DiscussionThrough the experimental results presented in this paper, it has been demonstrated that both the pagedand hashed translation schemes signi�cantly outperform the distributed translation scheme. When com-paring the results from the paged and hashed translation schemes, the hashed translation scheme slightlyoutperformed the paged translation scheme in most of the cases. This is due mainly to the di�erence inthe granularity of the replicated memory management. That is, the �ner-grained memory managementof the hashed translation table adapts better to the highly random access patterns encountered in bothexperiments with the irregular loop kernel and with the NASA Langley DSMC code.However, it is anticipated that the paged translation scheme will outperform the hashed translationscheme in other applications where the access patterns change slowly and bear high locality. In deref-erencing a global index, if the global index has already been cached into the local memory, the pagedtranslation scheme guarantees a constant translation cost. On the other hand, the hashed translationtable may su�er from skew built in the hash table. That is, if a particular choice of a hash functiongenerates long lists of collided hash nodes, then the overhead of traversing a long list of hash nodesin discovering the key index may be high. Consequently, to stabilize the performance of the hashedtranslation scheme, it is necessary to choose a good hash function which does not entail such a hashskew.When the hash skew hurts the performance of the hashed translation scheme, one of a collectionof randomly generated hash functions can be selected to ensure a good performance. This is doneby simulating the use of the individual functions with the globally indexed data items owned by eachprocessor. For this purpose, the current implementation of the hashed translation scheme allows theoption of choosing a hash function from a universal2 class of hash functions H1 de�ned in [6]. It is12

experimentally shown that for a given set of keys, by choosing functions at random from the class H1,the theoretically predicted performance of the hash functions can be achieved in practice, independentof the key distribution [11].These translation schemes have been implemented as a part of the CHAOS runtime support libraryon various distributed memory multicomputers such as Intel Paragon, IBM SP-1/2, Thinking MachineCM-5 and Cray T3D. The current implementation has used vendor-supplied message passing libraries.It should be noted, though, that the translation schemes have been further optimized using the lowlatency shared memory functions on the Cray T3D [1]. The shared memory functions copy blocksof data directly from one processor's memory to another. These shared memory functions remove asubstantial amount of overhead for synchronization. The last two columns in Table 1 demonstrate theoptimized performance obtained from Cray T3D over that from Intel Paragon.Another issue of the translation schemes is memory requirement. Suppose thatN is the total numberof global indices, P is the number of processors, S is a page size, and R is a replication factor. Then,the memory complexity of the paged translation scheme is given by O(N � (1S +R)). In order to keepthe amount of replicated memory scalable with large numbers of processors and large problems, it isdesirable to make the page size S proportional to the number of processors P . However, the need fora large page size may result in severe performance degradation due to page thrashing. Thus, it maybe a complicated process to choose an optimal page size under various situations. On the other hand,the hashed translation scheme requires O(N � (1P +R)) memory, which makes the hashed translationscheme ideally scalable. Accordingly, the hashed translation table may be more desirable in a situationwhere the memory constraint is tight.6 ConclusionsThis paper has presented a set of index translation schemes for implementing a user-level global indexspace across a collection of local index spaces on distributed memory multicomputers. These schemeshave been incorporated into the CHAOS runtime support library so that calls to the library functionscan be generated by compilers.For unstructured problems with irregular data distributions, a distributed translation table can bebuilt to list the home processor and o�set for each globally indexed data item. Cached translationschemes use software caching techniques to reduce the dereferencing costs for adaptive irregular appli-cations which require frequent index translations. Experiments have been performed with an adaptivelyirregular loop kernel and a 3-dimensional NASA Langley DSMC code. It has been observed that thesoftware-cached translation schemes signi�cantly outperform the distributed translation table for suchproblems with changeable data access patterns. For example, the hashed translation scheme achievedabout 46 percent improvement with the DSMC code on the 32-node Paragon.The performance of the software-cached translation schemes is sensitive to the choice of parameterswhich these schemes are governed by. Future work may include the extension of these schemes so thatautomatic selection of the parameters can be done using runtime information such as the amount ofavailable memory and the fraction of locally accessed global indices.AcknowledgmentsThe authors would like to thank Richard Wilmoth at NASA Langley for the use of DSMC productioncodes. Access to the Caltech CCSF Paragon and the Jet Propulsion Laboratory Cray T3D was providedby the Center for Research on Parallel Computation.13

References[1] Ray Barriuso and Allan Knies. Shmem user's guide. Report, Cray Research, Inc., April 1994.[2] T. J. Bartel and S. J. Plimpton. DSMC simulation of rare�ed gas dynamics on a large hypercube super-computer, AIAA-92-2860. In Proceedings of the 27th AIAA Thermophysics Conference, Nashville, TN, June1992.[3] Graeme A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford,1994.[4] F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony, and B. Mohr. Implementing a parallelC++ runtime system for scalable parallel system. In Proceedings Supercomputing '93, pages 588{597. IEEEComputer Society Press, November 1993.[5] B. R. Brooks and M. Hodoscek. Parallelization of CHARMM for MIMD machines. Chemical Design Au-tomation News, 7, 1992.[6] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of Computer andSystem Sciences, 18:143{154, 1979.[7] R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The design and implementation of a parallelunstructured Euler solver using software primitives, AIAA-92-0562. In Proceedings of the 30th AerospaceSciences Meeting, January 1992.[8] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. Fortran D languagespeci�cation. Department of Computer Science Technical Report TR90-141, Rice University, December 1990.[9] Milan Milenkovic. Operating Systems Concepts and Design. McGraw-Hill, Inc., 1987.[10] Bongki Moon and Joel Saltz. Adaptive runtime support for direct simulation Monte Carlo methods ondistributed memory architectures. In Proceedings of the Scalable High Performance Computing Conference(SHPCC-94), pages 176{183, Knoxville, TN, May 1994. IEEE Computer Society Press.[11] M. V. Ramakrishna. Hashing in practice, analysis of hashing and universal hashing. In Proceedings of the1988 ACM SIGMOD, pages 191{199, June 1988.[12] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon: User-level sharedmemory. In Proceedings of the 21th Annual International Symposium on Computer Architecture, pages325{336. IEEE Computer Society Press, April 1994.[13] J. Saltz et al. A manual for the CHAOS runtime library. Technical report, University of Maryland, Depart-ment of Computer Science and UMIACS, 1993.[14] Joel Saltz, Harry Berryman, and Janet Wu. Multiprocessors and runtime compilation. Technical Report90-59, ICASE, NASA Langley Research Center, September 1990.[15] Joel Saltz, Kathleen Crowley, Ravi Mirchandaney, and Harry Berryman. Run-time scheduling and executionof loops on message passing machines. Journal of Parallel and Distributed Computing, 8(4):303{312, April1990.[16] Richard G. Wilmoth. Direct simulation Monte Carlo analysis of rare�ed ows on parallel processors. AIAAJournal of Thermophysics and Heat Transfer, 5(3):292{300, July-Sept. 1991.
14

