
Support for Distributed Dynamic Data Structures in C++ �Chialin Chang Alan SussmanJoel SaltzInstitute for Advanced Computer Studies andDepartment of Computer ScienceUniversity of Maryland, College Park, MD 20742fchialin, als, saltzg@cs.umd.eduAbstractTraditionally, applications executed on distributed memory architectures in single-programmultiple-data (SPMD) mode use distributed (multi-dimensional) data arrays. Good perfor-mance has been achieved by applying runtime techniques to such applications executing in aloosely synchronous manner. However, many applications utilize language constructs such aspointers to synthesize dynamic complex data structures, such as linked lists, trees and graphs,with elements consisting of complex composite data types. Existing runtime systems that relyon global indices cannot be used for these applications, as no global names or indices are imposedupon the elements of these data structures.A portable object-oriented runtime library is presented to support applications that usedynamic distributed data structures, including both arrays and pointer-based data structures.In particular, CHAOS++ deals with complex data types and pointer-based data structures byproviding mobile objects and globally addressable objects. Preprocessing techniques are usedto analyze communication patterns, and data exchange primitives are provided to carry oute�cient data transfer. Performance results for applications taken from three distinct classes arealso included to demonstrate the wide applicability of the runtime library.1 IntroductionA large class of applications execute on distributed memory parallel computers in single-programmultiple-data (SPMD) mode in a loosely synchronous manner [6]. That is, collections of data objectsare partitioned among processors, and the program executes a sequence of concurrent computationalphases. Each computation phase corresponds to, for instance, a time step in a physical simulationor an iteration in the solution of a system of equations by relaxation, and synchronization is onlyrequired at the end of each computation phase. Therefore, once the data for a computation phase(which is typically produced by a preceding computation phase) becomes available, a collectivecommunication phase can be performed by all processors, after which each processor will contain alocal copy of the data needed to carry out the computation phase. The computation phase can thenbe executed completely locally on each processor.Traditionally, such applications utilize (multi-dimensional) data arrays, which are often parti-tioned dynamically during program execution. Optimizations that can be carried out by compilers�This research was supported by the National Science Foundation under Grant #ASC 9318183, and NASA underGrant #NAG 11485 (ARPA Project #8874). 1



are thus limited, and runtime analysis is required [20]. Good performance has been achieved by ap-plying such runtime techniques to various problems with unstructured data access patterns, such asmolecular dynamics for computational chemistry [8], particle-in-cell (PIC) codes for computationalaerodynamics [14], and computational uid dynamics [4].However, many applications, such as image processing, geographical information systems, anddata mining, utilize constructs such as pointers to synthesize complex composite data types, andbuild dynamic complex data structures such as linked lists, trees, and graphs. We refer to theseas pointer-based data structures. Such data structures are dynamic in the sense that data elementsin the data structures are often created and/or deleted during program execution, and accesses tothese data elements are done through pointer dereferences. As a consequence, access patterns tosuch data structures cannot be determined until runtime, so only runtime optimization techniquescan be performed. In addition, unlike array elements, elements in a pointer-based data structure donot have global names or indices, precluding the use of many existing runtime systems that rely onthe existence of global indices.CHAOS++ is a runtime library targeted at object-oriented applications with dynamic communi-cation patterns. It subsumes CHAOS [5], which is a runtime library developed to e�ciently handleadaptive and irregular problems that use arrays as their main data structures. CHAOS providesinterfaces for use by both C and Fortran programs. In addition to making use of features of theunderlying CHAOS library, CHAOS++ also provides support for pointer-based data structures, andallows exible and e�cient data exchange of complex data objects among processors.CHAOS++ is implemented as a C++ class library, and can be used directly by applicationprogrammers to port adaptive and/or irregular codes. The design of the library is architectureindependent and assumes no special support from C++ compilers. Currently, CHAOS++ usesmessage passing as its transport layer, and is implemented on distributed memory machines suchas the Intel iPSC/860 and Paragon, the Thinking Machines CM-5, and the IBM SP-1 and SP-2.However, the techniques used in the library can also be applied to other environments that providea standard C++ compiler and a mechanism for global data accesses, including various distributedshared memory architectures [12, 15, 22].2 Runtime Support for Distributed DynamicData StructuresIn this section, we give an overview of the CHAOS runtime library, and discuss the additional issuesthat must be addressed to e�ciently support distributed pointer-based data structures.2.1 Overview of the CHAOS Runtime LibraryThe CHAOS runtime library [5] has been developed to e�ciently handle adaptive and irregularproblems that use arrays as their main data structures. In these problems, arrays are frequentlypartitioned in an irregular manner for performance reasons, for example to reduce communicationcosts or to obtain better load balance. To enable remote accesses on distributed memory architec-2



tures, the CHAOS library constructs a translation table that contains the host processor numberand the local address for every array element. Since the translation table can be large (the samesize as the data array), it can be either replicated or distributed across the processors.For loosely synchronous applications, the data access pattern of a computation phase is usuallyknown before entering the computation phase and is repeated many times. CHAOS thus carries outoptimization through two phases, the inspector phase and the executor phase [20]. During programexecution, the CHAOS inspector routines examine the data references, given in global indices, andconvert them into local indices by using the translation table. Duplicate references are then removedthrough simple software caching, and unique references are coalesced to reduce communicationlatency and startup costs. The result of these optimizations is a communication schedule, whichis later used by CHAOS data transportation routines in the executor phase to e�ciently collectthe data needed for the computation phase. CHAOS also provides primitives to redistribute dataarrays e�ciently at runtime. Special attention has been devoted towards optimizing the inspectorfor adaptive applications, where communication patterns are not reused many times [21].2.2 Issues in Runtime Support for Pointer-Based Data StructuresThe CHAOS library has been successfully applied to irregular and adaptive problems that usedistributed arrays of primitive data types (integers, double precisions, etc.). Data access patterns inthese applications are typically represented as global indices, and a simple assignment or a functioncall to an e�cient block copy routine is used to pack and unpack array elements in bu�ers formessage passing. However, in an object-oriented model, where programmers are allowed to de�necomplex composite data types and build data structures that contain pointers to other objects, twomain problems must be addressed for any runtime system to support applications that make use ofsuch complex data structures. The CHAOS++ library provides solutions to both problems, as willbe described in Section 3.First, the runtime system must provide support for arbitrarily complex data types that maycontain pointers to other nested objects. This typically happens when a hierarchy of data types areemployed, and sub-objects within an object are instantiated dynamically at runtime. As a conse-quence, remote accesses to these objects, which are carried out by message passing on a distributedmemory architecture, require more sophisticated functions than a simple memory block copy rou-tine to pack and unpack the complex objects from message bu�er. The runtime system must followpointers when packing an object into a message for a send operation, and restore the pointers whenunpacking an object from a message for a corresponding receive operation.The second problem that must be addressed is support for naming and �nding o�-processorobjects. Since elements (objects) may be added to and removed from pointer-based data structuresdynamically, no static global names are associated with the elements and accesses to those elementsare done through pointer dereferencing. Thus, partitioning a pointer-based data structure mayassign two elements connected via pointers to two di�erent processors, and raises the need for globalpointers. A global pointer, as supported by several language extensions including Split-C [11],CC++ [3], and pC++ [13], may point to an object owned by another processor, and e�ectively3



consists of a processor identi�er and a local pointer (that is only valid on the named processor).3 The CHAOS++ Runtime LibraryCHAOS++ is designed to e�ectively support applications that contain complex data types andpointer-based data structures. As for applications that utilize the CHAOS library, a parallel ap-plication executing in loosely synchronous mode using CHAOS++ performs a preprocessing phasebefore each computation phase to determine the communication required to execute the computa-tion. A communication schedule is generated, and is used by CHAOS++ data exchange routines toperform the required communication.As was described in Section 2, CHAOS++ must be able to deal with complex data types andglobal pointers. These two problems are handled by mobile objects and globally addressable objects.We will now discuss these techniques in more detail. The approach that CHAOS++ takes reliesheavily on class inheritance, as provided by the C++ language.3.1 Mobile ObjectsCHAOS++ de�nes an abstract data type, called Mobject, for mobile objects. These are objectsthat may be sent from one processor to another, so must know how to pack and unpack themselvesto or from a message bu�er. The Mobject class contains two virtual member functions, pack andunpack, and is designed as a base class for all objects that may migrate between processors, and/orwill be accessed by processors other than the ones they are currently assigned to. In C++, virtualfunctions allow for dynamic binding for a function call, so that the pack or unpack function thatthe CHAOS++ runtime system calls to pass an object from one processor to another will be basedon the actual type of the object at runtime (so CHAOS++ can always use the type of the base class,Mobject, in its routines).For an object that only occupies consecutive memory locations, the pack and unpack functionsconsist of a simple memory copy between the object data and the message bu�er. CHAOS++provides default implementations of the virtual functions that can be used for this case, althoughthe size of the object must be given.For a more complex object that contains pointers to sub-objects, and thus has parts to becopied scattered throughout the programmemory (runtime heap), the application programmer mustprovide an implementation of pack and unpack that supports a deep copy. To be more speci�c,the pack function should copy both the contents of the object and its sub-objects into the messagebu�er. A straightforward implementation of pack for an object with sub-objects can be done by alsoderiving the classes for all sub-objects fromMobject, and having the pack function for an objectrecursively call the pack function for each of its sub-objects. On the receiving processor side, theunpack function must perform the inverse operation. That is, it must interpret the attened objectdata in the bu�er, packed using the sender's pack functions, and restore the complete structure ofthe object. This includes recursively unpacking all the sub-objects, and setting up all the pointermembers properly. Restoring the pointer members properly is not trivial because a local pointer on4



one processor is not valid across processor boundaries on distributed memory architectures.In many applications, the contents (sub-objects) for multiple Mobjects will be disjoint. Onthe other hand, special caution must be used in the implementation of the pack and unpackfunctions when more than one Mobject may contain a pointer to the same sub-object. Somescheme for ensuring that only one copy of an object (sub-object) exists at any point during theprogram execution must be used in these cases (e.g. reference counting). On the other hand, suchproblems can also be alleviated by the use of globally addressable objects, as is described in the nextsection.3.2 Globally Addressable ObjectsElements in a pointer-based data structure are linked and accessed through pointers. As describedin Section 2.2, global pointers are needed in an SPMD execution model to successfully partitionpointer-based data structures. One obvious approach is to de�ne a C++ class for global pointers, andoverload the dereference operator ("*") so that when a global pointer is dereferenced, the necessaryinterprocessor communication is generated transparently to the application program. This approach,however, complicates bu�er management in the loosely synchronous model, and imposes overheadfor converting global pointers between references to remote objects and references to local bu�er.Instead of de�ning a class for global pointers, CHAOS++ supports global pointers by de�ningan abstract C++ base class for globally addressable objects, or Gobjects. A Gobject is an objectthat is assigned to one processor, but allows copies to reside on other processors. The copies arereferred to as ghost objects. Each Gobject has a function that determines whether it is a real object(the permanent version of the object) or a copy of a remote object (a ghost object). Each processorother than the one assigned ownership of the Gobject may have a local copy of the Gobject as aghost object. The ghost object is used to cache the content of the remote real counterpart, so thatonce �lled with data from its real counterpart, accesses to the object can be carried out locally. Thecontents of ghost objects are updated by explicit calls to CHAOS++ data exchange routines, andthe decision of when to update a ghost object from a real object is made by the application. Notethat this implies that all Gobjects are also Mobjects.In this model, a pointer-based data structure is viewed as a collection ofGobjects interconnectedby pointers. Partitioning a pointer-based data structure thus breaks down the whole data structureinto a set of connected components, each of which is surrounded by one or more layers of ghostobjects. Pointers between two Gobjects residing on the same processor are represented as localpointers, while those that conceptually go across processor boundaries (global pointers) will pointto the local ghost object copies of the remote objects. The outermost layer of ghost objects can bethought of as the boundary of the distributed data structure assigned to the local processor, andwould be the nodes where a local traversal of the data structure terminates. Figure 1 illustratesan example of partitioning a graph between two processors. The dashed circles represent ghostGobjects . Note how the edges that get partitioned in the original graph are pointing to ghostobjects in the partitioned graph.Since accesses to elements of a pointer-based data structure are done through pointers, the layers5



B

A

C

D

E

F

G

D

E

F

G

H

I

B

A

C

D

E

F

G

H

I

processor 0 processor 1Figure 1: Partitioning a graph between two processors. At top is the original graph, partitioned atthe vertical bar, with the resulting processor assignment shown at bottom.of ghost objects surrounding each connected component encapsulate all the possible remote accessesemerging from that connected component. Accesses to remote objects that are more than one "link"away can be satis�ed by creating ghost objects for remote objects that are pointed to by local ghostobjects, and �lled on demand. A mapping structure is employed by CHAOS++ for each pointer-based data structure on each processor, to manage the ghost objects residing on that processor.The mapping structure serves as the equivalent of the CHAOS translation table (for irregular datamappings), and is used during the inspector phase described in Section 2.1 for translating globalreferences into processor and local address pairs to generate communication schedules. In Figure 1,the dashed box for each processor represents the CHAOS++ mapping structure. The CHAOS++data exchange routines then use the schedules to transfer data between real Gobjects and ghostGobjects.3.3 Data Exchange RoutinesThe data transfer between realGobjects and ghostGobjects is carried out by the CHAOS++ dataexchange routines, which use the pack and unpack functions of Mobjects to enable deep copies(all Gobjects are also Mobjects). The communication schedules generated during the inspectorphase ensure that neither polling nor interrupts are needed at the receiving processors, so thatcommunication can be performed e�ciently.Although the data exchanges required to manage Mobjects and Gobjects can be made quite6



e�cient, additional optimizations are still necessary. For complex data types, objects may becomequite large, and simply transporting the entire contents of the object for every communicationoperation may impose unnecessary overhead. CHAOS++ therefore allows an application to specifywhat data is exchanged during every communication phase. This is done by allowing applicationsto specify a pair of customized pack and unpack functions every time a CHAOS++ data exchangeroutine is invoked. The pack and unpack functions of a Mobject are then only used by default,when no customized routines are provided. This exibility can increase the possibility of reusinga communication schedule, since di�erent portions of an object may be needed during di�erentcomputation phases, but the same schedule can be reused as long as di�erent pack and unpackfunctions are provided for the data exchanges for each phase.4 Applications and Performance ResultsTo provide examples of using CHAOS++, and to evaluate the CHAOS++ library, we will presentperformance results for three applications. The applications are taken from three distinct classes:computational aerodynamics (scienti�c computation), geographic information systems (spatial databaseprocessing), and image processing.The �rst application is a Direct Simulation Monte Carlo (DSMC) method. DSMC is a techniquefor computer modeling of a real gas by a large number of simulated particles. It includes movementand collision handling of simulated particles on a spatial ow �eld domain overlaid by a Cartesianmesh [18]. Depending upon its current spatial location, each particle is associated with a meshcell, and moves from cell to cell as it participates in collisions and various boundary interactions inthe simulated physical space. Mesh cells are distributed among the processors to achieve a goodload balance, and since particles move between mesh cells, the cells are redistributed across theprocessors occasionally (once every few time steps) to maintain a good load balance. Moon [14]describes a parallel implementation of the DSMC application that uses the CHAOS runtime library.In the CHAOS implementation, various physical quantities associated with each particle are stored inseparate arrays, and the association between the Cartesian mesh cells and the particles is representedby indirection arrays. We have reimplemented the DSMC application in C++, using the CHAOS++library to maintain the distributed data structures required for parallel execution. In the C++version, a Cell class is de�ned for the mesh cells, and the particles, represented as objects from classParticle, are stored as an array pointed to by a member in the Cell class. Both the Cell and Particleclasses are derived from the CHAOS++ Mobject base class, and a deep copy of the Cell class isused in redistributing the cells to move all the particles associated with a cell between processors,along with other data for the cell.Table 1 gives the performance for both the C++/CHAOS++ code and the Fortran/CHAOScode. The simulated space consists of 9,720 cells, and initially contains about 50,000 particles. 400time steps are performed, and a chain partitioner [14] is used to partition the mesh cells at runtime.The Fortran code has been shown to be a reasonably good implementation, and is about 33% fasterthan the C++ version. Further analysis shows that the computation part of the C++ code was7



Number of processors C++/CHAOS++ Fortran/CHAOS8 295.83 222.9116 168.71 119.2532 97.15 70.0164 62.09 48.59128 46.62 34.04Table 1: Execution time (in sec) for Direct Simulation Monte Carlo method on Intel iPSC/860.much slower than that of the Fortran code, and was the main reason for the slow down. The C++code is currently being ported to the IBM SP-2, and the performance on the SP-2 will be given inthe �nal paper.The second application is called Vegetation Index Measurement (VIM). VIM is an applicationthat computes a measure of the vegetation on the ground from a set of satellite sensor images. Ithas been developed as part of the on-going Grand Challenge project in Land Cover Dynamics at theUniversity of Maryland [17]. The overall project involves developing scalable and portable parallelprograms for a variety of image and map data processing applications, eventually integrated withnew models for parallel I/O of large scale images and maps. The main focus of the Grand Challengeproject is in applying high performance computing to the analysis of remotely sensed imagery, withthe initial studies targeted at generating land cover maps of the world's tropical rain forest duringthe past three decades. The VIM application is an example of one form of processing that willcontribute to such studies.In the VIM application, a user speci�es a query region of interest on the ground and a set ofsatellite images to process. The images may be images of the region taken from the same sensorover a period of time, or images from multiple sensors taken at the same time. The query regionis overlaid with a mesh, whose resolution is very likely to be coarser or �ner than that of the givenimages. For each mesh cell, the algorithm selects from the given images the set of data points thatspatially intersect with the mesh cell, using a C++ class library that supports spatial operators(currently under development as part of the Grand Challenge project), and computes a vegetationindex. CHAOS++ has been linked to this spatial operator class library to implement a parallelversion of VIM. In the parallel version, a satellite image is de�ned as a vector of data vectors, eachof which is represented by a class derived from Mobject. This was done primarily for e�cientimplementation of the spatial operators provided by the existing class library. The data vectors are�rst distributed across the processors by CHAOS++, based upon the given query region, to obtaingood load balance. After local computation is carried out, the CHAOS++ library is then used tocombine the results for each mesh cell across all processors, since the mesh cells may not be spatiallyaligned with the satellite data and are thus distributed di�erently from the satellite data.The results of running VIM on both the Intel iPSC/860 and the IBM SP-1 are illustrated inTable 2. In this experiment, three satellite images, each of which consists of 600� 100 data points,are used to compute the vegetation index for a query region consisting of 120 � 20 mesh points.8



Number of processors Intel iPSC/860 IBM SP-11 334.00 153.462 174.29 80.754 93.40 43.878 55.45 25.7216 34.73 16.1332 22.68 10.55Table 2: Execution time for Vegetation Index Measurement (in sec).Although the speedup appear to be quite good, it attens out when more processors are used.This is because the satellite images are quite small, and each processor only gets a small data set.Therefore, in the current implementation, each processor ends up wasting a lot of time processingmesh cells that do not intersect with its assigned pieces of the satellite data. A new algorithm isnow being developed to take advantage of the spatial continuity of the mesh cells so that work isdone only on mesh cells that intersect with the locally assigned parts of the satellite data.Another application under development is image segmentation. This application segments agiven image into a hierarchy of components, based on the border contrast between the components,and serves as a preprocessing phase of an appearance-based object recognition system developedat the University of Maryland [19]. The hierarchy this preprocessing generates is then used bya high-level vision phase to heuristically combine components from various levels of the hierarchyinto possible instances of objects. Further analysis by shape delineation processes would select thecombinations that correspond to the locally best instances of objects.To be more speci�c, this image segmentation application �rst classi�es all the pixels in a givenimage into components, based on some given criterion. The algorithm then collapses neighboringcomponents into larger components, based on a series of weaker and weaker criteria on the bordercontrast. The history of component collapses is kept as a hierarchy of image segmentations for lateruse as described above. In the parallel implementation, the initial image is represented as an arrayregularly distributed across the processors. CHAOS++ routines preprocess remote accesses and fetchnon-local pixels into a local bu�er, so that the computation for clustering pixels into componentscan be carried out locally. Once formed, the components are stored as an undirected weightedgraph, with nodes representing components and edges representing component connectivity. Theweight associated with each edge represents the border contrast between a pair of components. AC++ class is derived from the CHAOS++ Gobject base class to represent components, and theCHAOS++ mapping structure is used to manage the ghost Gobjects of the constructed graph.Communication schedules are generated by CHAOS++ for e�cient exchange of component databetween real Gobjects and ghost Gobjects to perform graph contraction.Table 3 shows the performance results for segmenting a 400� 400 image on the Intel iPSC/860.The parallel implementation is based on sequential code that has not been optimized, so the speed-up is given relative to the execution time of running the parallel code on a single node (which is9



Number of processors Execution time (sec) Speed-up1 812.29 -2 384.48 2.114 109.36 7.428 33.50 24.2516 11.74 69.1932 5.66 143.51Table 3: Performance results for image segmentation on iPSC/860.faster than the sequential C code). In this experiment, 7,935 components, connected with 17,816edges, are initially generated by clustering the pixels, and then used to build a hierarchy of height�ve. In the current implementation, all edges are kept in a linked list, sorted by their weights, andnew edges are added to the list as new components are formed. Note that inserting an edge to asorted linked list takes time proportional to the length of the list. With a large number of edges,list sorting dominates the running time of the algorithm. Partitioning the graph reduces not onlythe number of components per processor, and thus the number of edges per processor, but also thenumber of new components per processor, and thus the number edges that need to be added tothe list. This results in the super-linear speed up shown in Table 3. A new implementation is nowin progress to reduce the cost of maintaining the edges. In this new approach, edges are storedseparately by the level in the hierarchy they correspond to, and those that correspond to the samelevel do not need to be kept sorted. This should reduce the cost for maintaining the edges. Resultsof the new implementation will be given in the full paper.5 Related WorkIn this section, we briey discuss related work from the area of object-oriented concurrent program-ming. Roughly speaking, there are two types of systems that are relevant.The �rst type of system augments an existing language, usually C++, with parallel constructs.Parallelism is exploited by both a compiler and an associated runtime system. Examples of thistype of system include Mentat [7], CC++ [3], Charm++ [9], and pC++ [13]. However, all of thesesystems, except pC++, consider program execution as completely unstructured interactions amonga set of objects, and thus only support asynchronous communication. pC++ uses a collection to rep-resent a structured set of objects, but still provides only asynchronous communication. CHAOS++,in contrast, is a user-level class library, and does not assume any language or compiler support.CHAOS++ uses a preprocessing phase to analyze and optimize communication patterns. The re-quired objects are fetched in an e�cient way and cached so that all computation can be carried outlocally. Collaborative work is now under way on incorporating CHAOS++ into the pC++ runtimesystem.The second type of system is a user-level class library that assumes no special support from thecompiler, just like CHAOS++. Examples include P++ [16] and LPARX [10]. These libraries both10



provide e�cient management of dynamic arrays distributed across processors. CHAOS++, however,performs optimization through preprocessing techniques, and provides e�cient support for dynamicdistributed data structures, including pointer-based data structures.6 Conclusions and Future WorkWe have presented a portable object-oriented runtime library that supports SPMD execution ofadaptive irregular applications that contain dynamic distributed data structures. In particular,CHAOS++ supports distributed pointer-based data structures, in addition to distributed arrays,consisting of arbitrarily complex data types. CHAOS++ translates global object references intolocal references, manages bu�er allocation, generates communication schedules, and carries oute�cient data exchange. The library assumes no special compiler support, and does not rely on anyarchitecture-dependent parallel system features. Integration with the CHAOS runtime library, forarray-based adaptive irregular applications has already been accomplished, and integration with theMultiblock PARTI runtime library [23, 1], for multiple structured grid applications, is currently inprogress.CHAOS++ is targeted as a prototype library that will be used to provide part of the runtimesupport needed for High Performance Fortran and High Performance C/C++ compilers. We arein the process of integrating CHAOS++ into the runtime software being developed by the Par-allel Compiler Runtime Consortium. Finally, we also plan to link CHAOS++ to the Jovian I/Olibrary [2], a library that aims at optimizing the I/O performance of multiprocessor architectureswith multiple disks or disk arrays. The resulting software is intended to support disk-based dataparallel applications with datasets that do not �t in the processor memory of even very large parallelmachines, such as the VIM application from the Grand Challenge in Land Cover Dynamics project.AcknowledgementsThe authors would like to thank Richard Wilmoth at NASA Langley and Bongki Moon at Marylandfor the use of their sequential and parallel DSMC codes; also Carter T. Shock at UMIACS and SamGoward in the Department of Geography at Maryland for their help on the VIM application; andLarry Davis and Claudia Rodr��guez at Maryland for many discussions on the image segmentationproblem and the use of their sequential code.The authors are also grateful to the National Institute of Health for providing access to theiriPSC/860, and the Cornell Theory Center for providing access to their SP-1.References[1] Gagan Agrawal, Alan Sussman, and Joel Saltz. Compiler and runtime support for structured and blockstructured applications. In Proceedings Supercomputing '93, pages 578{587. IEEE Computer SocietyPress, November 1993.[2] Robert Bennett, Kelvin Bryant, Alan Sussman, Raja Das, and Joel Saltz. Jovian: A frameworkfor optimizing parallel I/O. In Proceedings of the 1994 Scalable Parallel Libraries Conference. IEEEComputer Society Press, October 1994. 11



[3] K. Mani Chandy and Carl Kesselman. CC++: A declarative concurrent object oriented programmingnotation. Technical Report CS-TR-92-01, Department of Computer Science, California Institute ofTechnology, 1992.[4] R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The design and implementation ofa parallel unstructured Euler solver using software primitives. AIAA Journal, 32(3):489{496, March1994.[5] Raja Das, Mustafa Uysal, Joel Saltz, and Yuan-Shin Hwang. Communication optimizations for irreg-ular scienti�c computations on distributed memory architectures. Journal of Parallel and DistributedComputing, 22(3):462{479, September 1994. Also available as University of Maryland Technical ReportCS-TR-3163 and UMIACS-TR-93-109.[6] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving problems on concurrentprocessors, general techniques and regular problems, volume 1. Prentice Hall, 1988.[7] Andrew S. Grimshaw, Jon B. Weissman, and W. Timothy Stayer. Portable run-time support fordynamic object-oriented parallel processing. Technical Report CS-93-40, Dept. of Computer Science,University of Virginia, Charlottesville, Virginia 22903, July 1992.[8] Yuan-Shin Hwang, Raja Das, Joel Saltz, Bernard Brooks, and Milan Hodoscek. Parallelizing moleculardynamics programs for distributed memory machines: An application of the CHAOS runtime supportlibrary. Technical Report CS-TR-3374 and UMIACS-TR-94-125, University of Maryland, Departmentof Computer Science and UMIACS, November 1994. Submitted to IEEE Computational Science andEngineering.[9] L.V. Kale and Sanjeev Krishnan. CHARM++ : A portable concurrent object oriented system based onC++. In Proceedings of the 1993 Object-Oriented Programming Systems, Languages, and Applications,pages 91{108, Washington, DC, October 1993. ACM.[10] S.R. Kohn and S.B. Baden. A robust parallel programming model for dynamic non-uniform scienti�ccomputations. In Proceedings of the Scalable High Performance Computing Conference (SHPCC-94),pages 509{517. IEEE Computer Society Press, May 1994.[11] A. Krishnamurthy, D.E. Culler, A. Dusseau, S.C. Goldstein, S. Lumetta, T. von Eicken, and K. Yelick.Parallel programming in Split-C. In Proceedings Supercomputing '93, pages 262{273. IEEE ComputerSociety Press, November 1993.[12] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM Transactions onComputer Systems, 7(4):321{359, November 1989.[13] A. Malony, B. Mohr, P. Beckman, D. Gannon, S. Yang, F. Bodin, and S. Kesavan. Implementing aparallel C++ runtime system for scalable parallel systems. In Proceedings Supercomputing '93, pages588{597. IEEE Computer Society Press, November 1993.[14] B. Moon and J. Saltz. Adaptive runtime support for direct simulation Monte Carlo methods on dis-tributed memory architectures. In Proceedings of the Scalable High Performance Computing Conference(SHPCC-94), pages 176{183. IEEE Computer Society Press, May 1994.[15] Bill Nitzberg and Virginia Lo. Distributed shared memory: A survey of issues and algorithms. IEEEComputer, 24(8):52{60, August 1991.[16] Rebecca Parsons and Daniel Quinlan. Run-time recognition of task parallelism within the P++ parallelarray class library. In Proceedings of the 1993 Scalable Parallel Libraries Conference, 1993.[17] Rahul Parulekar, Larry Davis, Rama Chellappa, Joel Saltz, Alan Sussman, and John Towhshend. Highperformance computing for land cover dynamics. In Proceedings of the International Joint Conferenceon Pattern Recognition, September 1994.[18] D.F.G. Rault and M.S. Woronowicz. Spacecraft contamination investigation by direct simulation MonteCarlo - contamination on UARS/HALOE. In Proceedings AIAA 31th Aerospace Sciences Meeting andExhibit, Reno, Nevada, January 1993.[19] Claudia Rodr��guez. An appearance-based approach to object recognition in aerial images. Master'sthesis, University of Maryland, College Park, MD 20742, 1994.[20] Joel H. Saltz, Ravi Mirchandaney, and Kay Crowley. Run-time parallelization and scheduling of loops.IEEE Transactions on Computers, 40(5):603{612, May 1991.12



[21] Shamik D. Sharma, Ravi Ponnusamy, Bongki Moon, Yuan-Shin Hwang, Raja Das, and Joel Saltz.Run-time and compile-time support for adaptive irregular problems. In Proceedings Supercomputing'94, pages 97{106. IEEE Computer Society Press, November 1994.[22] J.P. Singh, T. Joe, J.L. Hennessy, and A. Gupta. An empirical comparison of the kendall square researchKSR-1 and stanford DASH multiprocessors. In Proceedings Supercomputing '93, pages 214{225. IEEEComputer Society Press, November 1993.[23] Alan Sussman, Gagan Agrawal, and Joel Saltz. A manual for the multiblock PARTI runtime primi-tives, revision 4.1. Technical Report CS-TR-3070.1 and UMIACS-TR-93-36.1, University of Maryland,Department of Computer Science and UMIACS, December 1993.

13


