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engineers have tended to view AI approaches as im-practical for real manufacturing problems.One reason for this di�culty is the di�erencesin how AI planning researchers and manufacturingplanning researchers view the world. For example,the �rst author's work on manufacturing planning(e.g., [27, 21, 22, 28, 15, 16, 14, 13, 12, 3, 31]) hassigni�cantly inuenced his research on AI planning(e.g., [9, 41, 10, 6, 5, 20, 4]), and vice versa. How-ever, this inuence is not particularly evident in thepublications themselves, because they were writtento address two di�erent audiences, who have di�er-ent ideas of what the important problems are andhow they should be solved:� AI planning researchers usually want to solvegeneral conceptual problems, and are less in-terested in problem-dependent details. Thus,the AI approach to manufacturing planninghas typically been to create an abstract prob-lem representation that omits unimportant de-tails, and then look for ways to solve the ab-stract problem. However, from the viewpointof the manufacturing engineer, these \unimpor-tant details" can often be essential parts of theproblem. This leads manufacturing engineers toview AI planning techniques as impractical forsolving the problems they really want to solve.� In manufacturing planning research, the goalis to solve a particular manufacturing problem.Manufacturing engineers present their researchresults within the context of this problem|andwhether or how the approach might general-ize to other planning domains is usually notdiscussed, because it is not their primary con-cern. From the standpoint of AI researchers,this makes it di�cult to see what the under-lying conceptual problems are, or whether theapproach embodies a general idea that can beapplied to other problems. Thus, AI planning1
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Figure 1: Basic approach used in IMACS.researchers have tended to view manufacturingplanning as a problem domain in which thereare no general principles and approaches|justad-hoc, domain-speci�c programs.Some of the issues that arise manufacturing plan-ning are similar to issues that have been investi-gated by AI planning researchers, and others are dis-tinctly di�erent. For the former, it may be possibleto adapt existing AI planning techniques|and forthe latter, it may be possible to develop new plan-ning techniques that are useful for AI planning ingeneral. However, one of the di�culties is that AIresearchers are not aware what the interesting gener-alizations are, and which techniques from AI mightbest be applied to realistic manufacturing problems.In order to develop AI planning techniques that havea greater impact on manufacturing tasks such asprocess planning, AI planning researchers will needa better understanding of manufacturing concerns,and how they compare with issues of interest in AIplanning.In this paper we attempt to provide a step inthis direction, by describing the planning techniquesused in IMACS (Interactive Manufacturability Anal-ysis and Critiquing System), a computer system forhelping designers produce designs that are easier tomanufacture. IMACS analyzes the manufacturabil-ity of proposed designs for parts to be machined ina three-axis vertical machining center, by generat-ing and evaluating operation plans for the proposeddesign as shown in Figure 1. This paper comparesand contrasts IMACS's planning techniques to someof the techniques used in AI planning, and describessome planning techniques used in IMACS that may

also be useful in other planning domains.2 Operation Planning in IMACSThis section describes the techniques IMACS uses togenerate and evaluate operation plans. Each subsec-tion discusses one of the steps in Figure 1.2.1 Step 1: Finding Machining FeaturesA part, P , is the �nal component created by execut-ing a set of machining operations on a piece of stock,S. For example, Figure 2 shows a design for a socketwhich we will call P0, and Figure 3 shows the stockS0 from which P0 is to be produced. The annota-tions in Figure 2 are tolerance speci�cations that tellhow much variation from the nominal geometry isallowable in any physical realization of P . As input,IMACS takes solid models of P and S, along withtolerance speci�cations for P .An operation plan is a sequence of machining op-erations capable of to creating P from S. A work-piece is the intermediate object produced by startingwith S and performing zero or more machining op-erations. A machining feature is a portion of theworkpiece a�ected by a machining operation. Themachining operations IMACS currently considers areend milling, side milling, face milling and drilling.A primary feature is a machining feature whoseintersection with the stock S is as large as possible,and whose intersection with the space outside thestock S is as small as possible. Figure 4 shows ex-amples of primary and non-primary features; for adetailed de�nition the reader is referred to [13]. As2
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described in [11, 32], the reason why we are inter-ested in primary features is that in every operationplan we will have any interest in considering, eachmachining operation will create either a primary fea-ture or a truncation of a primary feature. Thus, pri-mary features can be used to derive every machiningoperation that IMACS will ever want to consider.F is the set of all primary features for P and S.IMACS generates F automatically from the solidmodels of P and S, using an algorithm describedin [31, 12]. For example, there are 22 primary fea-tures for the socket P0, as shown in Figure 5. Sincethe features in F can overlap, not all of them willalways be needed in order create P from S. For ex-ample, in Figure 5, we would not need to machineboth s3 and s4 in order to create P0.2.2 Step 2: Generating FBMsA Feature Based Model (FBM) is any irredundantsubset of features F � F such that P can be pro-duced from S by removing the features in F . Forexample, here are two FBMs for the socket P0, com-posed of features from Figure 5:FBM1 = fs2; s4; s6; s8; s9; s10;h1; h3; h5; h7; h9; h11; h12g;FBM2 = fs1; s3; s5; s7; s9; s10;h1; h3; h5; h7; h9; h11; h12g:As described in [13, 32], each operation plan O ofinterest to us corresponds to an FBM, in the sensethat each machining operation in O will create eithera feature in F or a truncation of a feature in F .Since each FBM is a subset of F , FBMs can begenerated using set-covering techniques. However,we usually will not want to generate all of theseFBMs. For a given part and stock, there can beexponentially many FBMs|for example, from the22 primary features shown in Figure 5 one can form512 FBMs for the socket P0. In general, only a fewof the FBMs will lead to good operation plans.As described in [14, 13], IMACS avoids enumerat-ing all of the FBMs by doing a depth-�rst branch-and-bound search: as shown in Figure 1, FBMs aregenerated one at a time and are pruned if they ap-pear unpromising. For example, IMACS generatesonly 16 of the 512 FBMs for the socket P0.

2.3 Step 3: Generating Operation PlansEach FBM can lead to several operation plans, ofwhich some are better than others. Thus, to gener-ate operation plans from a given FBM, IMACS againdoes a depth-�rst branch-and-bound search. Thesearch procedure incorporates the following steps:� Find precedence constraints. Due to var-ious types of interactions (accessibility, setup,etc.) among the features in an FBM F , thefeatures of F cannot be machined in any ar-bitrary order. Instead, these interactions intro-duce precedence constraints requiring that somefeatures of F be machined before or after otherfeatures. For example, in Figure 6, the hole h1must be machined before the slot s9 in orderto achieve reasonable machining tolerances andavoid tool breakage.� Generate total orderings. If the precedenceconstraints contradict each other (i.e., if thereis no total ordering consistent with them), thenwe consider F to be unmachinable. Otherwise,IMACS generates the total orderings on F con-sistent with the precedence constraints.� Truncate features. Each total ordering willrequire a di�erent set of modi�cations to the fea-tures in F , so that the machining operations willnot spend a lot of time trying to remove metalthat was already removed in previous machin-ing operations. As an example, several of thefeatures shown in Figure 6(a) were produced bytruncating the corresponding features in FBM1.� Identify Unpromising FBMs. Once the fea-tures have been truncated, IMACS will discardan FBM if it contains features whose dimen-sions and tolerances appear unreasonable. Ex-amples would include a hole-drilling operationhaving too large a length-to-diameter ratio; arecess-boring operation having too large a ratioof outer diameter to inner diameter; two con-centric hole-drilling operations with tight con-centricity tolerance and opposite approach di-rections.� Analyze Fixturability. IMACS does notyet do �xturability analysis in any detailedmanner|but in order to discard unpromisingFBMs, it does some elementary �xturability-based pruning, based on the assumption that4
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(c) process detailsFeature Feature Tool diam Feed Number Pass lengthname type (mm) (mm/min) of passes (mm)s4 end-milling 50 166 2 225s8 end-milling 50 166 2 225s2 end-milling 50 166 2 225s6 end-milling 50 166 2 225h7 drilling 20 244 1 106h9 drilling 20 244 1 106h11 drilling 30 203 1 39h12 drilling 30 203 1 39h1 drilling 75 108 1 172.5h3 drilling 20 244 1 56h5 drilling 20 244 1 56s9 end-milling 50 166 1 250s10 end-milling 40 207 3 240Figure 6: An operation plan derived from FBM1. This plan is the least costly one for making the socketP0. Table 1: Estimated production time for the operation plan of Figure 6.Operation Time (min) Operation Time (min)drill h1 2.3 mill s2 5.0drill h3 0.3 mill s4 5.0drill h5 0.3 mill s6 5.0drill h7 0.6 mill s8 5.0drill h9 0.6 mill s9 4.0drill h11 0.3 mill s10 4.2drill h12 0.3 3 setups 6.0Total Time: 39 minutes5



a at-jaw vise is the only available �xturingdevice. We are currently developing more so-phisticated �xturability analysis techniques forIMACS; this will be described in a forthcomingpaper.� Relax redundant constraints. Once thetruncated features have been produced, sev-eral of the resulting FBMs may have identi-cal features but di�erent precedence constraints.When this occurs, the precedence constraintsthat di�er can be removed, translating the to-tal orders into partial orders. For example, Fig-ure 6(b) shows the partial order for the FBM ofFigure 6(a).� Incorporate �nishing operations. For faceswith tight surface �nishes or tolerances, IMACSadds �nishing operations, with precedence con-straints so that each �nishing operation comesafter the corresponding roughing operation.Currently, one �nishing operation per face is al-lowed.� Determine setups. On a three-axis verticalmachining center, features cannot be machinedin the same setup unless they have the sameapproach direction. This and the partial order-ing constraints can be used to determine whichfeatures can be machined in the same setup, asshown in Figure 6(b).� Determine process details. To selectcutting parameters for the machining opera-tions, IMACS uses the recommendations ofthe Machinability Data Center's handbook [23].The maximum recommended cutting parame-ters are used, rather than attempting to selectoptimal cutting parameters; thus IMACS's esti-mates involve considerable approximation.2.4 Step 4: Operation Plan EvaluationDesigners give design tolerance speci�cations tospecify how far the design can vary from its nom-inal geometry. To verify whether a given operationplan will satisfy the design tolerances, IMACS mustestimate what tolerances the operations can achieve.Unlike typical approaches for computer-aided toler-ance charting (which are computationally very in-tensive, and only consider limited types of tolerances

[18, 26]), IMACS evaluates the manufacturability as-pects of a wide variety of tolerances without gettinginto optimization aspects; our approach is describedin [13]. For example, the operation plan shown inFigure 6 satis�es the tolerances shown in Figure 2.Thus, it is an acceptable operation plan for makingP0 from S0.The total time of a machining operation consists oftwo components: the cutting time (when the tool isactually engaged in machining), and the non-cuttingtime (including the tool-change time, setup time,etc.). Methods have been developed for estimat-ing the �xed and variable costs of machining oper-ations; our formulas for estimating these costs arebased on standard handbooks related to machiningeconomics, such as [39, 38]. As an example, Table 1shows the estimated production time for the opera-tion plan of Figure 6.3 Comparison with AI PlanningTwo of the most popular approaches to AI planningare STRIPS-style planning1 [8, 2, 1, 9, 25, 24, 42,30, 6] and hierarchical task-network (HTN) plan-ning [33, 35, 37, 36, 40, 19, 5, 4]. In both cases,the planner typically starts with some initial statethat is represented as a collection of logical atoms.In STRIPS-style planning, the objective is to pro-duce a state that satis�es a goal condition expressedas a collection of logical atoms, and the planner pro-duces the plan by reasoning about the preconditionsand e�ects of STRIPS-style planning operators. InHTN planning, the objective is expressed as a set oftasks to be performed and constraints on how theyare to be performed, and the planner produces theplan using methods that specify ways to decomposetasks into operators and other tasks, and critics thatpoint out problems in the plan decomposition.Below, we compare and contrast the techniquesused in IMACS to the techniques used in STRIPS-style planning and HTN planning.� The overall goal. In manufacturing planning,the goal to be achieved is represented by a de-sign speci�cation such as the one in Figure 2.In AI planning systems, the goal is typically1By this, we mean planning systems that use STRIPS-styleoperators (with no decompositions), ignoring algorithmic dif-ferences among them that are not relevant to the current work.This includes partial-order planners such as ABTWEAK [42]and UCPOP [30].6



something that must be achieved exactly|butin planning a sequence of machining operations,it is physically impossible to produce the exactnominal geometry of the design. Thus, the ob-jective is to �nd any plan that can produce anapproximation of the design geometry that sat-is�es various design tolerances, such as thoseshown in Figure 2.� Goal modi�cation. AI planning systems typ-ically treat the goal as a �xed entity. However,IMACS is intended to operate as part of a \de-sign loop" such as the one shown in Figure 7,in which the designer proposes a design, usesIMACS to evaluate its manufacturability, andmodi�es the design accordingly. In the currentimplementation of IMACS, the design modi�ca-tions are proposed only by the designer, but in[3] we discuss ways to extend IMACS to au-tomatically make suggestions to the designerabout ways to modify the design that will im-prove its manufacturability while satisfying thedesigner's objectives. From an AI perspective,this would correspond to changing the goal tomake it easier to achieve.� Finding subgoals. In principle, design spec-i�cations such as the one in Figure 2 could beexpressed as collections of logical atoms: for ex-ample, each face, edge, and vertex in the CADmodel could be represented by a di�erent atom.However, this would not be very useful. In orderto make use of the design speci�cations, IMACSdoes feature extraction in order to transformthem into something quite di�erent: a set ofmachining features such as those shown in Fig-ure 5.Since the machining features correspond one-for-one to machining operations that will cre-ate them, feature extraction can be thought ofas �nding subgoals to achieve. In AI planners,subgoals normally arise during plan construc-tion, because they are speci�ed in task decom-positions or occur as preconditions of planningoperators. However, the set of primary featuresF found by IMACS corresponds to all of thesubgoals it will care to consider|and IMACS�nds these subgoals during the feature extrac-tion step, before it ever tries to construct a plan.� Alternative sets of subgoals. Since F cor-

responds to the set of all possible subgoals thatmight occur during planning, each FBM F � Fcorresponds to a collection of subgoals that issu�cient to produce the �nal goal. In principle,it would be possible to combine the features inF into a goal formula like those used in classicalAI planners, but this formula would be a dis-junct of conjuncts of the form F1_F2_ : : :_Fn,where each FBM Fi � F is taken to representthe conjunctive goal of creating all features inFi. Since there can be an exponential numberof FBMs, representing this goal formula explic-itly would require exponential time and space inthe worst case. Rather than constructing thisformula explicitly, IMACS uses a branch-and-bound approach to generate the FBMs one at atime, pruning the unpromising ones before theyare fully generated.� Resolving goal interactions. Each featurein an FBM corresponds to a machining opera-tion, so the entire FBM corresponds to a par-tially ordered plan. If the interactions amongthese features cannot be resolved by creatingprecedence constraints, then IMACS discardsthe plan. There would be no point in addingadditional operators to the plan, because theseoperators would just create redundant features.� Subgoal modi�cation. During planning,IMACS sometimes truncates some of the fea-tures, so that the resulting operation planswon't end up spending too much time machin-ing air. Truncating the features correspondsto modifying the subgoals in such a mannerthat the ultimate goal will still be achieved|something that usually does not occur in tradi-tional AI planners.� Finding optimal plans. Most AI planningsystems stop as soon as they have found a planthat achieves the goal|but IMACS looks forthe least costly plan capable of producing thedesign. Thus, IMACS uses a branch-and-boundsearch to continue generating and evaluatingplans until it is evident that none of the re-maining plans will be any better than the bestone seen so far. In order to do this e�ciently,IMACS prunes a plan whenever various costcomputations make it evident that the plan isunpromising.7
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parametersFigure 7: Using IMACS as part of a design loop.4 ConclusionsIn developing IMACS, we did not care whether ornot we were using AI planning techniques; the goalwas to �nd a useful solution to a real manufacturingproblem. Thus, although there are some similaritiesbetween the techniques used in IMACS and thoseused in classical AI planning systems, there are alsosome signi�cant di�erences. Some of these di�er-ences can be generalized in ways that may be usefulin other domains as well.One example is IMACS's use of primary featuresand feature-based models. Each primary featurecorresponds to a subgoal to be achieved|and (ex-cept for �nishing operations, which are handled sep-arately), the set F of all primary features includesall subgoals that might ever be relevant for achievingthe overall goal. This simpli�es the task of resolv-ing goal interactions, in the following manner. EachFBM F � F is a set of subgoals whose achievementis su�cient to achieve the overall goal, and if it con-tains a goal interaction that cannot be resolved byintroducing precedence constraints, then there is nopoint in introducing new operators into the plan. Ifa promising plan exists for achieving the overall goal,then it can instead be found among the other FBMs.Thus if IMACS cannot resolve goal interactions in anFBM by introducing precedence constraints, it dis-cards the FBM and tries another one.In [11] we point out that this approach is use-ful not only in producing operation plans for ma-chined parts, but also in other manufacturing do-mains. The same kind of approach should be usefulin other planning problems regardless of whether ornot they are manufacturing problems, provided thatthey are problems for which one can enumerate inadvance all of the goals or tasks that one might need

to achieve.In order to develop realistic and robust approachesto manufacturing planning, it is important to ad-dress some of the details of manufacturing that AIresearchers have typically ignored. The developmentof IMACS illustrates that it is possible to do this ina principled manner. Furthermore, some of the prin-ciples that are developed in this way may be relevantfor planning in general.References[1] Tom Bylander. Complexity results for planning.In IJCAI-91, 1991.[2] David Chapman. Planning for conjunctivegoals. Arti�cial Intelligence, 32:333{379, 1987.[3] D. Das, S. K. Gupta, and D. Nau. Reducingsetup cost by automated generation of redesignsuggestions. In ASME Conf. Computers in En-gineering, 1994. Best-paper award winner. Alsoavailable as ISR TR 94-12.[4] K. Erol, J. Hendler, and D. Nau. Complex-ity results for hierarchical task-network plan-ning. Annals of Mathematics and Arti�cial In-telligence, (CS-TR-3240, UMIACS-TR-94-32),1994. To appear.[5] K. Erol, J. Hendler, and D. S. Nau. HTN plan-ning: Complexity and expressivity. In AAAI-94, 1994.[6] K. Erol, D. Nau, and V. S. Subrahmanian.Complexity, decidability and undecidability re-sults for domain-independent planning. Arti�-cial Intelligence, 1994. To appear.8



[7] F. Famili, D. S. Nau, and S. Kim, editors. Arti�-cial Intelligence Applications in Manufacturing.AAAI Press/MIT Press, 1992.[8] R. E. Fikes and N. J. Nilsson. Strips: a newapproach to the application of theorem prov-ing to problem solving. Arti�cial Intelligence,2(3/4):189{208, 1971.[9] Naresh Gupta and Dana S. Nau. Complexity re-sults for blocks-world planning. In Proc. AAAI-91, 1991. Honorable mention for the best paperaward.[10] Naresh Gupta and Dana S. Nau. On the com-plexity of blocks-world planning. Arti�cial In-telligence, 56(2-3):223{254, August 1992.[11] S. Gupta, W. Regli, and D. Nau. Manufacturingfeature instances: Which ones to recognize? InACM Solid Modeling Conference, 1995. To ap-pear. Available as CS-TR-3376, UMIACS-TR-94-127, ISR-TR-94-81.[12] S. K. Gupta, T. R. Kramer, D. S. Nau, W. C.Regli, and G. Zhang. Building MRSEV modelsfor CAM applications. Advances in EngineeringSoftware, 1994. To appear. Also available as ISRTR 93-84, CS-TR-3331, UMIACS-94-97.[13] S. K. Gupta and D. S. Nau. A systematic ap-proach for analyzing the manufacturability ofmachined parts. Computer Aided Design, 1994.To appear. Also available as ISR TR 93-76, CS-TR-3158, UMIACS-TR-93-105.[14] S. K. Gupta, D. S. Nau, W. C. Regli, andG. Zhang. A methodology for systematic gen-eration and evaluation of alternative operationplans. In Jami Shah, Martti Mantyla, and DanaNau, editors, Advances in Feature Based Man-ufacturing, pages 161{184. Elsevier/North Hol-land, 1994.[15] S. K. Gupta, D. S. Nau, and G. Zhang. Concur-rent evaluation of machinability during productdesign. IEEE Computer, 26(1):62{63, January1993.[16] S. K. Gupta, W. C. Regli, and D. S. Nau. In-tegrating DFM with CAD through design cri-tiquing. Concurrent Engineering: Research andApplications, 1994. To appear. Also available as

ISR TR 94-11, CS-TR-3330, UMIACS-TR-94-96.[17] Inyong Ham and Stephen C.-Y. Lu. Compute-aided process planning: The present and thefuture. Annals of the CIRP, 37(2):591, 1988.[18] Ping Ji. A tree approach for tolerance charting.International Journal of Production Research,31(5):1023{1033, 1993.[19] S. Kambhampati and J. Hendler. A validationstructure based theory of plan modi�cation andreuse. Arti�cial Intelligence, May 1992.[20] S. Kambhampati and D. S. Nau. On the na-ture and role of modal truth criteria in plan-ning. Arti�cial Intelligence, 1994. To appear.Also available as ISR-TR-93-30, CS-TR-3049,UMIACS-TR-93-27.[21] R. Karinthi and D. Nau. An algebraic approachto feature interactions. IEEE Trans. PatternAnalysis and Machine Intelligence, 14(4):469{484, April 1992.[22] R. Karinthi and D. Nau. Geometric reasoningusing a feature algebra. In F. Famili, S. Kim,and D. S. Nau, editors, Arti�cial IntelligenceApplications in Manufacturing, pages 41{59.AAAI Press/MIT Press, 1992.[23] Machinability Data Center. Machining DataHandbook. Metcut Research Associates, Cincin-nati, Ohio, third edition, 1980.[24] David McAllester and David Rosenblitt. Sys-tematic nonlinear planning. In AAAI-91, pages634{639, July 1991.[25] S. Minton, J. Bresna, and M. Drummond. Com-mitment strategies in planning. In Proc. IJCAI-91, July 1991.[26] R. O. Mittal, S. A. Irani, and E. A. Lehtihet.Tolerance control in the machining of discretecomponents. Journal of Manufacturing Sys-tems, 9(3):233{246, 1990.[27] D. S. Nau. Automated process planning usinghierarchical abstraction. TI Technical Journal,pages 39{46, Winter 1987. Award winner, TexasInstruments 1987 Call for Papers on AI for In-dustrial Automation.9



[28] D. S. Nau, G. Zhang, and S. K. Gupta. Gen-eration and evaluation of alternative operationsequences. In A. R. Thangaraj, A. Bagchi,M. Ajanappa, and D. K. Anand, editors, Qual-ity Assurance through Integration of Manufac-turing Processes and Systems, ASME WinterAnnual Meeting, volume PED-Vol. 56, pages93{108, November 1992.[29] James L. Nevins and Daniel E. Whitney, ed-itors. Concurrent Design of Products & Pro-cesses. McGraw-Hill Publishing, 1989.[30] J. Penberthy and D. S. Weld. UCPOP: Asound, complete, partial order planner for ADL.In Proc. Third International Conference onKnowledge Representation and Reasoning. Oc-tober 1992.[31] W. C. Regli, S. K. Gupta, and D. Nau. Featurerecognition for manufacturability evaluation. InASME Conf. Computers in Engineering, 1994.To appear. Also available as ISR TR 94-10.[32] W. C. Regli and D. S. Nau. Recognition of vol-umetric features from CAD models: Problemformalization and algorithms. 1993. Submittedfor journal publication. Available as ISR-TR-93-41.[33] E. D. Sacerdoti. A Structure for Plans and Be-havior. American Elsevier Publishing Company,1977.[34] Jami Shah, Martti Mantyla, and Dana Nau, edi-tors. Advances in Feature Based Manufacturing.Elsevier/North Holland, 1994.[35] Austin Tate. Generating project networks. InProc. 5th International Joint Conf. Arti�cialIntelligence, 1977.[36] David E. Wilkins. Practical Planning: Ex-tending the Classical AI Planning Paradigm.Morgan-Kaufmann Publishers, Inc., San Mateo,CA, 1988.[37] David E. Wilkins. Domain-independent plan-ning: Representation and plan generation. InJames Allen, James Hendler, and Austin Tate,editors, Readings in Planning, pages 319{335.Morgan Kaufman, 1990. Originally appearedin Arti�cial Intelligence 22(3), April 1984.

[38] F.W. Wilson and P.D. Harvey. ManufacturingPlanning and Estimating Handbook. McGrawHill, 1963.[39] W. Winchell. Realistic Cost Estimating forManufacturing. Society of Manufacturing En-gineers, 1989.[40] Q. Yang. Formalizing planning knowledge forhierarchical planning. Computational Intelli-gence, 6:12{24, 1990.[41] Q. Yang, D. S. Nau, and J. Hendler. Mergingseparately generated plans with restricted inter-actions. Computational Intelligence, 8(2):648{676, February 1992.[42] Q. Yang and J. D. Tenenberg. Abtweak: Ab-stracting a nonlinear, least commitment plan-ner. In AAAI-90, pages 204{209, 1990.

10


