
AUTOMATIC ANALYSIS OF CONSISTENCY BETWEEN

IMPLEMENTATIONS AND REQUIREMENTS

�

Marsha Chechik John Gannon

Computer Science Department

University of Maryland

College Park, MD 20742

fchechik,gannong@cs.umd.edu

Date: July 28, 1995

Abstract

Formal methods like model checking can be used to demonstrate that safety

properties of embedded systems are enforced by the system's requirements. Unfortu-

nately, proving these properties provides no guarantee that they will be preserved in

an implementation of the system. We have developed a tool, called Analyzer, which

helps discover instances of inconsistency and incompleteness in implementations with

respect to requirements.

Analyzer uses requirements information to automatically generate properties which

ensure that required state transitions appear in a model of an implementation.

A model is created through abstract interpretation of an implementation anno-

tated with assertions about values of state variables which appear in requirements.

Analyzer determines if the model satis�es both automatically-generated and user-

speci�ed safety properties.

This paper presents a description of our implementation of Analyzer and our

experience in applying it to a small but realistic problem.

�

This research is supported in part by the Air Force O�ce of Scienti�c Research under

contract F49620-93-1-0034.

1 Introduction

The keys to winning acceptance for employing formal methods during system development

include demonstrating that their use improves software quality, amortizing the cost of their

creation across several di�erent analysis activities, and reducing the cost of their application

through automation. Software quality can be improved by eliminating errors arising from

inconsistencies within the description of a system or between two di�erent descriptions of

a system. Automated techniques can be used to derive a �nite-state representation of a set

of requirements, and determine if it is a model for system safety properties expressed as

temporal logic assertions[4]. We present a complementary technique which automatically

compares properties derived from a set of requirements with a �nite state representation

of its implementation.

Requirements for embedded systems often describe a system as a set of concurrently

executing state machines ([2, 15, 24, 13]) which respond to events in their environment. An

implementation is consistent with its requirements if the implementation's state transitions

are enabled by the same events as those of the requirements, all the requirement's state

transitions appear in the implementation, and the requirement's safety properties hold in

the implementation.

Generally, these properties are judged during code inspections conducted by teams of

reviewers. Reviewers successfully discover local inconsistencies, but the bookkeeping tasks

needed to determine all the possible system states at a particular program point make it

di�cult to ensure that global properties of the system hold. We developed a prototype tool,

called Analyzer[5, 6], which automatically determines if an implementation is consistent

with its requirements. The inputs to the tool are a requirements speci�cation and a C

source program annotated with comments describing the values of variables which appear

in the requirements. As Figure 1 illustrates, our tool automatically generates a set of checks

equivalent to temporal logic formulas to ensure the consistency of an implementation with

its requirements. The implementation is abstracted into a �nite-state machine (FSM),

and a special-purpose model checking algorithm determines if the FSM is a model of the

properties.

In this paper we describe the tool and show results of a case study in which we ana-

lyzed an implementation of a water-level monitoring system (WLMS) [31] and discovered

several latent errors. The rest of the paper is organized as follows: Section 2 presents our

requirements speci�cation format. In Section 3, we describe the types of global system

properties which are automatically generated from the speci�cations. Section 4 discusses

the process of building a �nite-state model of the implementation. In Section 5, we present

an algorithm to check automatically-generated and user-de�ned system properties. Sec-

tion 6 discusses our approach to processing programs with multiple procedures. Section 7

1

Transformation
 Algorithm

Temporal
 Logic
 Formulas

Finite State
 Machine

Transformation
 Algorithm

Program

Model Checker
Specialized

Inconsistencies

 SCR
Requirements
 +
 Safety
 Properties

Figure 1: Algorithm to solve the problem.

presents the WLMS case study. Finally, in Section 8, we compare the approach taken in

Analyzer with related work and discuss limitations of our approach.

2 Requirements Notation

This section describes the requirements speci�cation format. Software Cost Reduction

(SCR) requirements[2, 14, 16, 17] model a system as a set of concurrently executing state

machines, where each machine interacts with its environment's state variables. Each state

machine represents one mode class, whose states are modes and whose transitions occur in

response to events. Modes within a mode class are disjoint, and the system is in exactly

one mode of each mode class at all times. Changes to its monitored state variables may

cause the system to change its mode or to alter values of its controlled variables (see Figure

2). A condition is a predicate on monitored or mode class variables. An event occurs when

the value of a condition changes. For example, @T(A) WHEN [B] occurs if a condition A

changes its value from False to True while a condition B is True. We refer to A and B as

Triggering and When conditions, respectively.

2

Environment

Monitored
Variables

Controlled
Variables

Mode
class

Mode
class

Figure 2: SCR Requirements notation.

SCR requirements use tables to de�ne the values of controlled variables and mode

transitions. There is one table for each controlled variable and for each mode class. Each

entry in a condition table de�nes a value of a variable as a function of a system's modes

and events. Each entry in a mode transition table maps a mode and an event to another

mode in the same mode class.

Table 1 shows a mode transition table for a simple system. We use this example

throughout the paper, referring to it as the Simple System Example (SSE). This system

has one mode class M with modes M1, M2, and M3; three monitored variables A, B, and C;

and two controlled variables D and E. Mode class M starts in mode M1, and all variables

except B and E are initially False. M transitions from M1 to M2 when C becomes True

(indicated by \@T") while B is True (indicated by \t"), and transitions to M3 when B

becomes False (\@F"). Entries marked by \{" are generally considered \don't care" values,

although some values can be inferred from relationships between variables (see below).

Current Mode A B C New Mode

M1 { t @T M2

{ @F { M3

M2 @T @T { M1

t @F { M3

M3 @T { { M1

{ f @F M2

Initial: M1 if (�A & B & �C)

Table 1: Mode transition table for SSE.

3

The values of controlled variables change in response to events when the system is in

particular modes. Table 2 shows an event table for a controlled variable D. This variable

starts with value False and becomes True when the system is in mode M1 and an event

@T(C) occurs.

Mode Triggering Event

M1 @T(C) {

M3 { @F(C)

D = True False

Initial: False

Table 2: Event table for a controlled variable D.

Our analysis tool processes a simpli�ed version of SCR speci�cations in ASCII format,

using boolean variables to represent predicates on monitored and controlled variables.

In addition to mode transition and event tables, our requirements format also includes

declarative information about system variables which often appears in other sections of an

SCR requirements document. This information records relationships between monitored

or controlled variables. Relationships help requirements designers eliminate redundant

information and increase the clarity of speci�cations[3]. They also improve readability and

reduce the e�ort involved in annotating an implementation. The following is a list of the

relationships which we implemented:

� An equivalence (B = C) is a relationship which indicates that B and C change their

values at the same time.

� An implication (B -> C) is a relationship which indicates that when B is True, C

should be True; and when C is False, B should be False. In specifying SSE, we use

a relationship E -> �D to indicate that whenever E is True, D is False.

� A strict implication relationship (B ->> C) is similar to implication except that

when B becomes True, C should already True, and when C becomes False, B should

already be False.

� A timeline relationship (T1 < T2) exists between variables which represent di�erent

lengths of time during which a particular condition holds. For example, T1 indicates

that a condition is True for a shorter length of time than T2. T1 must be True when

T2 becomes True, and must become False when T2 becomes False.

� An enumeration relationship (A j B j C) indicates that exactly one of the conditions

is True at all times.

4

� A range enumeration relationship (A | B | C) is an enumeration relationship with

an extra restriction that changes can a�ect only adjacent conditions, e.g., when A

becomes True, B becomes False and C remains False.

The requirements designer may also specify system safety properties. Such properties

duplicate information stored in the transition tables, but capture the desired information

more compactly. We allow the following properties to be speci�ed (P , P

1

and P

2

represent

propositional logic formulae; M is a system mode):

� smi(M , P) (strong mode invariant) is satis�ed when P is an invariant of a mode M .

For SSE, we specify smi(M=M1, A) to indicate that A is True when the system is

in mode M1 of mode class M.

� wmi(M , P) (weak mode invariant) is similar to smi. Conditions which change values

as the result of triggering events may still be part of a weak mode invariant. For

example, if conditions A and B are False when mode M1 is entered, and the event

@T(A) WHEN �B causes a transition from M1, then the strong and the weak mode

invariants are smi(M1, �B) and wmi(M1, �A & �B).

� cause(P

1

, P

2

) is satis�ed if whenever P

1

is True, either P

2

is True or the next transi-

tion of the system will establish a state in which P

2

holds. For example, a property

cause(M=M3 & �C, D) in SSE speci�cations indicates that the system will reach a

state where D is True on all paths where the system is in mode M3 and C is False.

� strcause(P

1

, P

2

) is satis�ed if whenever P

1

is True, the next transition of the system

will establish a state in which P

2

holds.

� reach(P) is satis�ed if the system can reach a state in which Property holds. reach

properties are usually used to ensure that other types of properties are not satis�ed

vacuously. For example, specifying reach(M=M3) for SSE indicates that the system

should eventually transit to mode M3.

A full speci�cation of SSE can be found in Appendix A.

3 Implementation Properties

An implementation is consistent with its requirements if it implements all state transi-

tions speci�ed in the requirements, does not implement any state transitions which are not

speci�ed in the requirements, and satis�es all user-de�ned safety properties. A require-

ments speci�cation can be translated into a list of properties which capture this notion

5

of consistency. To prove that an implementation is consistent with its requirements, we

demonstrate that the implementation is a model of all of all these properties. We express

system properties as Computation Tree Logic (CTL)[8] formulae. CTL is a propositional

branching time logic, whose temporal operators permit explicit quanti�cation over all pos-

sible futures. Table 3 summarizes some CTL operators.

CTL Operator Description

A
(f) f holds in every immediate successor

E
(f) f holds in some immediate successors

A3(f) f eventually holds on all paths

E3(f) f eventually holds on some paths

A2(f) f holds on all paths

Table 3: CTL Operators.

3.1 Automatically-Generated Safety Properties

The properties that an implementation of SSE would have to satisfy appear in Figure

3. Properties P

1

- P

3

ensure that the only transitions to a mode are those speci�ed in

P

1

= A2(M1 _ (E
M

1

! (M1 _ (M

2

& @T (A) & @T (B)) _ (M

3

& @T (A)))))

P

2

= A2(E
M

2

! (M

2

_ (M

1

& B & @T (C)) _ (M

3

& �B & @F (C))))

P

3

= A2(E
M

3

! (M

3

_ (M

1

& @F (B)) _ (M

2

& A & @F (B))))

P

4

= E3(M

1

& B & @T (C) & E
M

2

)

P

5

= E3(M

1

& @F (B) & E
M

3

)

P

6

= E3(M

2

& @T (A) & @T (B) & E
M

1

)

P

7

= E3(M

2

& A & @F (B) & E
M

3

)

P

8

= E3(M

3

& @T (A) & E
M

1

)

P

9

= E3(M

3

& �B & @F (C) & E
M

2

)

Figure 3: Properties to ensure consistency with SCR mode tables.

the requirements. For example, P

2

asserts that if the system will be in mode M

2

in

its next state, then either it must already be in that mode or one of the requirements'

transitions is occurring: the system is in mode M

1

with an event @T (C) WHEN[B], or in

M

3

with an event @F (C) WHEN[� B]. P

2

was obtained from composing the rows in the

SCR tables which have M

2

in their right columns. P

1

slightly di�ers from P

2

since it

captures the fact that the system starts in mode M

1

. Such properties are called \only

6

legal transitions" (OLT). There is one such property generated for every requirements

mode (of every modeclass). Properties P

4

- P

9

ensure that all transitions speci�ed in

the requirements appear in implementations and are called \all legal transitions" (ALT)

properties. P

4

and P

5

correspond to the two transitions leaving mode M

1

and can be

obtained by composing the rows of the SCR tables which have M

1

in their left columns.

There is one ALT property for every row of every mode transition table speci�ed in the

requirements. Properties generated for the controlled variable D are shown in Figure 4. P

10

and P

11

are OLT properties which ensure that D changes value only as a result of speci�ed

events, and P

12

- P

13

are ALT properties which ensure that all changes to D speci�ed in

the requirements appear in the implementation. There are two OLT properties generated

for each controlled variable, re
ecting changes of value to True and False, respectively, and

one ALT property generated for each row of every event table.

P

10

= A2(�D _ (E
�D! (�D _ (@F (C) &M3))))

P

11

= A2(E
D ! (D _ (@T (C) &M1)))

P

12

= E3(D & @F (C) &M3 & E
�D)

P

13

= E3(�D & T (C) &M1 & E
D)

Figure 4: Properties for the controlled variable D.

3.2 User-Speci�ed Safety Properties

The �ve types of properties that the user can specify in our requirements format can be

easily translated into CTL formulae, as shown in Figure 5. This Figure clearly identi�es

the di�erence between smi and wmi properties. Property smi(M;P) means that for every

state of the system P holds whenever the system is in mode M . In contrast, property

wmi(M;P) means that P holds only in those states where the system is in mode M and

remains in M in at least one of its next states.

U

1

= smi(M;P) = A2(�M _ P)

U

2

= wmi(M;P) = A2((�M _ P) _ A
�M)

U

3

= cause(P

1

; P

2

) = A2(�P

1

_ (P

2

_ A
 P

2

))

U

4

= strcause(P

1

; P

2

) = A2(�P

1

_ A
 P

2

)

U

5

= reach(P

1

) = E3(P

1

)

Figure 5: Formulae for user-speci�ed properties.

These types of user-speci�ed properties frequently appear in requirements documents,

and during our case studies we did not need to verify any other types of properties. Re-

7

quirements speci�cations of realistic size and complexity (like [2]), however, contain global

properties which cannot be expressed using only these assertions. Allowing the user to

specify a richer set of properties is relatively easy, although not every CTL-expressible

formula can be veri�ed during our analysis. We defer a further discussion of this issue

until Section 8.

4 Creating a Program Abstraction

Annotated program
(ANP)

Finite−State Machine

(FSM)

(ACFG)

Annotated control
 flow graph

Figure 6: Layers of abstraction.

In this section we present a way to create an abstraction of a program which we use for

our analysis. We need a way to establish a correspondence between the implementation

and information speci�ed in the requirements. Our solution involves annotating the pro-

gram and, assuming that the annotations correctly re
ect what the code does, using these

annotations together with control-
ow information of the program to create the necessary

abstraction (see Figure 6). Afterwards, we use this abstraction to check system properties.

4.1 Annotating an Implementation

Annotations are user-speci�ed comments which record mode transitions and changes to the

values of controlled and monitored variables. Annotations are interleaved with the program

statements, but start with @@ to distinguish them from the program text. Annotations

capture local rather than invariant program properties, and therefore are relatively easy

to specify.

We distinguish between controlled, monitored, and mode class variables. Monitored

and controlled variables have boolean values; mode class variables have values which form

8

enumerated types whose constant values are the modes of the mode class. Thus our system

states consist of a �nite number of variables whose types contain only a �nite number of

values.

An Initial annotation indicates the starting state of each mode class. It uncondition-

ally assigns values to variables. This annotation corresponds to initialization information

speci�ed in the requirements. An Update annotation assigns values to variables, identify-

ing points at which the program changes its state. Analyzer uses Update annotations to

compute sets of values that requirements variables may have at these points (i.e., possible

system states). An Assert annotation asserts that variables must have particular values

in the current system state. Static analysis usually gives imprecise results because system

states are aggregated. Assert annotations reduce the amount of information in the system

state to what the programmer knows to be true.

The usual objections to inserting annotations in the code are that this process greatly

increases the amount of work during the implementation step and that the properties

described by annotations may be complex. Annotations generally correspond to assign-

ments of constants to variables or predicates on a variable's value. Thus, blocks of code

which compute new values of variables often do not need to be annotated. Our experience

indicates that the usual code/annotation ratio is about 10/1. The properties described

by annotations are simple since they describe local state changes rather than invariant

properties.

Figure 7a contains a fragment of an implementation of the Water-Level Monitoring

system which is the subject of our case study. We presented the code with some typical user

comments in order to compare the comments and our annotations (Figure 7b). Although

the �rst portion of the code manipulates variables to compute a new system state, it is

not annotated. The remaining part, consisting of predicates and assignments of constant

values to variables, is heavily annotated.

Although most of our experience came from annotating existing code, we envision a

code development process in which annotations are inserted while the program is being

written.

4.2 Creating an Annotated Flow Graph

We construct a CFG of the program from the source text and annotations, and then

propagate the state information about the requirements variables throughout the CFG.

Figure 8a shows a small fragment of the implementation of the SSE. We have omitted all

program variables and kept only the program control
ow and annotations. This is the

9

 SET_MODE (OperatingClass, Operating);

 }

 ...

 GET_MODE(OperatingClass, OPCM);

 if (!MODE_EQ(OPCM, Test))) &&

 (PRESSED(SlfTst))){

 /* we are not in Test and self-test */

 /* button is pressed */

 SET_MODE(OperatingClass, Test);

 INIT_DRVS();

 }

 ...

}

while(TRUE) {

 ...

 GET_MODE(OperatingClass, OPCM);

 WATER_LEVEL(&LVLCM);

 INLIM=((LVLCM<(float)DPAR_HWL) &&

 (LVLCM>(float)DPAR_LWL));

 GET_TIME(SHUTER, &SHUTTM);

 if (ERR_VAR_F(CLK_ERR)==CLK_OVERFLOW) {

 RESET_TIMER(SHUTER);

 SHUTTM=0;

 }

 (SHUTTM<DPAR_SLT) && !PRESSED(SlfTst)){

 if (MODE_EQ(OPCM, Shutdown) && INLIM &&

while(TRUE) {

 ...

 GET_MODE(OperatingClass, OPCM);

 WATER_LEVEL(&LVLCM);

 INLIM=((LVLCM<(float)DPAR_HWL) &&

 (LVLCM>(float)DPAR_LWL));

 GET_TIME(SHUTER, &SHUTTM);

 if (ERR_VAR_F(CLK_ERR)==CLK_OVERFLOW) {

 RESET_TIMER(SHUTER);

 SHUTTM=0;

 }

 (SHUTTM<DPAR_SLT) && !PRESSED(SlfTst)){

 /* we are in mode Shutdown and water */

 /* is within limits */

 if (MODE_EQ(OPCM, Shutdown) && INLIM &&

 SET_MODE (OperatingClass, Operating);

 }

 ...

 GET_MODE(OperatingClass, OPCM);

 if (!MODE_EQ(OPCM, Test))) &&

 (PRESSED(SlfTst))){

 SET_MODE(OperatingClass, Test);

 INIT_DRVS();

 }

 ...

}

b)a)

 @@ Assert Normal(Shutdown);

 @@ Update WithinLimits & ~SlfTstPressed
& ~ShutdownLockTime200;

@@ Update Normal(Operating);

 @@ Assert ~Normal(Test);

 @@ Update SlfTstPressed;

@@ Update Normal(Test);

Figure 7: Annotations in WLMS code.

starting point for the analysis of the SSE.

De�nition 4.1 A CFG of an annotated program P (ACFG) is a directed graph G = hV,

E, V

0

i, where

V is a �nite set of nodes corresponding to decisions, joins and annotations of P .

E � V � V is a set of directed edges, s.t. (v

1

, v

2

) 2 E i� v

2

can immediately follow

v

1

in some execution sequence; and

V

0

2 V is an entry node.

10

We interpret annotations in an ANP to create a set-based approximation of attainable

values for each requirements' variable[10, 11]. We compute two sets of information for our

analysis: reaching values (RVs) and conditions (Conds). The RV of a variable at a node is a

set of values that a variable may attain if the control reaches the node. RVs are computed

by interpreting Update and Initial annotations. The Cond of a variable at a node is a

set of values the variable must attain if control reaches the node. Conds are computed by

interpreting all annotations.

We use a simple abstraction function � to map the �nite sets of values that variables

may and must attain to abstract values representing these respective sets:

� : 2

V

c

! V

a

where V

c

is a set of concrete values that a variable may (or must) attain if control reaches

some program node and V

a

is a set of abstract values used to represent RVs and Conds for

each variable. Values of V

a

are partially ordered via set inclusion.

A concretization function
 : V

a

! 2

V

c

:

(a) =

_

c; 8(c 2 V

c

) ^ (�(c) = a)

is an inverse of �, and gives the concrete form of an abstract value, treating variables with

abstract values corresponding to multiple concrete values as having each of these values.

For example, if the abstract value of A is fTrue,Falseg, then A can have concrete values

True or False.

De�nition 4.2 A system state SS at a node n is a set of triples (i; v; c) such that

i 2 R, where R is the set of all controlled, monitored and mode class variables;

v 2 V

a

is an abstract value representing the RV of i at the node n; and

c 2 V

a

is an abstract value representing the Cond of i at the node n.

For a system state SS, let

RV(SS) = f(i; v) j (i 2 R) ^ (v 2 V

a

) ^ (9c 2 V

a

s:t: (i; v; c) 2 SS)g

Cond(SS) = f(i; c) j (i 2 R) ^ (v 2 V

a

) ^ (9v 2 V

a

s:t: (i; v; c) 2 SS)g

RV(SS; i) = fv j (i; v) 2 RV(SS)g

Cond(SS; i) = fc j (i; c) 2 Cond(SS)g

To evaluate programs abstractly, we de�ne the meaning of union and widening opera-

tions ([10]) for system states. These operations are used to combine state information at

11

join nodes of condition and loop statements, respectively. The union operation combines

RV and Cond values of variables using the usual set union operation. If SS

1

and SS

2

are

two system states, then their union SS

r

is de�ned as follows:

SS

r

= SS

1

S

SS

2

= f(i; v; c) j (i 2 R) ^ (v 2 V

a

) ^ (c 2 V

a

) ^

(v = RV (SS

1

; i) [RV (SS

2

; i)) ^

(c = Cond(SS

1

; i) [Cond(SS

2

; i))g

Thus, our system states form a complete

S

-lattice under the partial ordering of set inclu-

sion. Given that all variables inR have a �nite number of abstract values, our system states

do not have an in�nite increasing chain of values[10], and thus we can de�ne our widening

operation to be the same as union. Thus, we no longer need to distinguish between the

two types of join nodes, which simpli�es our analysis signi�cantly.

Our computation of system states at each node of the ACFG is similar to that of reach-

ing de�nitions via data
ow techniques ([1, 7]). gen sets capture new values generated at

each node in an ACFG. The sets are empty except for nodes corresponding to annotations,

which contain variable-value pairs for each variable. These pairs are produced from values

in annotations and from information about the relationships between variables. Variables

which are unrelated to those appearing in annotations, have empty-set values in the gen

set. Two di�erent gen sets are calculated, gen

u

and gen

a

, to compute RVs and Conds.

These sets are identical except at nodes corresponding to Assert annotations where gen

u

is an empty set and gen

a

contains variable-value pairs derived from the annotation.

kill sets contain values that variables no longer have after each node. Two di�erent

kills, kill

u

and kill

a

, are computed from the following template by replacing gen with

gen

u

and gen

a

respectively.

kill(n) = f(i; v

1

) j ((i; v

2

) 2 gen(n)) ^ ((v

2

= ? ! v

1

= ?) _ (v

2

6= ?! v

1

= >� v

1

))g;

where \{" is set di�erence and > indicates the set of all possible values for i.

Figure 8b shows the ACFG for the code fragment in Figure 8a. gen and kill sets

computed at each node are shown in bold face on this �gure. We did not include variables

whose values are empty sets. The �rst Assert generates Cond information that mode class

M has to be either in mode M1 or M3, and thus the value M2 is killed. The second

Assert (on the left branch) generates the value True for B (killing False), and the Update

generates the value True for C, a�ecting both gen

a

and gen

u

sets. The right branch is

similar. The Update on the join generates the value True for D and M2 for M. Since D is

related to E via implication, this Update also generates the value False for E.

We compute in(n) and out(n) attributes whose values are system states before and

after a node n, respectively (SS(n) = out(n)), via a least �xed point algorithm using the

12

following system of equations:

in(n) =

S

8 k; s:t: (k;n) 2 E

out(k)

RV(out(n)) = gen

u

(n) [(RV(in(n))� kill

u

(n))

Cond(out(n)) = gen

a

(n) [(Cond(in(n))� kill

a

(n))

where union and di�erence are the usual set operations. Figure 8b shows Conds and RVs

in italic and regular fonts, respectively. Nodes of the graph which a�ect the computation

of reaching values are shaded. Assume that processing starts with RV and Cond sets being

f(A, fg), (B, fTrue, Falseg), (C, fg), (D, fTrue, Falseg), (E, fFalseg), (M, fM1,M2,M3g)g.

The �rst Assert changes the value of M in Cond to fM1,M3g. The Assert on the left branch

restricts the value of B to fTrueg in the Cond set, whereas the Update changes the value

of C to fTrueg in both the subsequent Cond and RV sets. The right branch is similar. At

the join, we union the possible values for variables in RVs and Conds. C and B are fTrueg

on the left branch and fFalseg on the right, and so their resulting values are fTrue, Falseg

in both RV and Cond sets.

4.3 Constructing a Finite-State Machine

We create a Finite-State Machine FSM from an ACFG (see Figure 6) and use it for

veri�cation of the system properties. In an ACFG (G = hV;E; V

0

i), let U � V and I �

V be sets of nodes containing Update and Initial annotations, respectively. (U and I are

disjoint.)

De�nition 4.3 An FSM over a program P is a Kripke structure M = hA, S, L, N, s

0

i,

where

A is a set of system states;

S = U [I is a �nite set of nodes;

L: S ! A is a function labeling each node with a system state which holds

in that node;

N � S � S is a total transition relation

1

, i.e. 8x 2 S 9y 2 S s.t. (x, y) 2 N.

N is obtained by connecting nodes of S s.t. there is an Update-clear path

between them in ACFG; and

s

0

2 S is an entry node.

De�nition 4.4 A path is an in�nite sequence of nodes s

0

, s

1

, s

2

, ..., s.t. N(s

i

, s

i+1

) is

true for every i. A path is feasible if it can be taken during some execution of the program.

1

We add loops at terminal states since our speci�cations describe only in�nite behaviors.

13

@@ Assert M(M1) or M(M3);
if (...) {
 @@ Assert B;
 @@ Update C;
}
else {
 @@ Assert ~B;
 @@ Update ~C;
}
@@ Update M(M2) & D;

Assert M(M1) or M(M3)

Assert B Assert ~B

Update C Update ~C

Update M(M2) & D

b)

a)

Cond = {(A, {}), (B, {True}) ,
(C, {}), {D, {True,False}),
(E, {False}), (M, {M1,M3})}

genu = gena = {(C, {True})}
killu = killa = {(C,{False})}

RV = {(A, {}), (B, {True,False}),
(C, {True}), (D, {True,False}),
(E, {False}), (M, {M1,M2,M3})}

Cond = {(A, {}), (B, {True}),
(C, {True}), (D, {True,False}),
(E, {False}), (M, {M1,M3})}

RV = {(A, {}), (B, {True,False}),
(C, {False}), (D, {True,False}),
(E, {False}), (M, {M1,M2,M3})}

Cond = {(A, {}), (B, {False}),
(C, {False}), (D, {True,False}),
(E, {False}), (M, {M1,M3})}

genu = gena = {(C, {False})}
killu = killa = {(C, {True})}

Cond = {(A, {}), (B, {True,False}),
(C, {True,False}), (D, {True,False}),
(E, {False}), (M, {M1,M2,M3})}

RV = {(A, {}), (B, {True,False}),
(C, {True,False}), (D, {True}),
(E, {False}), (M, {M2})}

Cond = {(A, {}), (B, {True,False}),
(C, {True,False}), (D, {True}),
(E, {False}), (M, {M2})}

killa = {(B, {False})}

gena = {(B, {False})}
killa = {(B, {True})}

Cond = {(A, {}), (B, {True,False}),
(C, {}) , (D, {True,False}),
(E, {False}), (M, {M1,M3})}

gena = {(M, {M1,M3})}
killa = {(M, {M2})}

RV = {(A, {}), (B, {True,False}),
(C, {}), (D, {True,False}),
(E, {False}), (M, {M1,M2,M3})}

Cond = {(A, {}), (B, {True,False}),
(C, {}), (D, {True,False}),
(E, {False}), (M, {M1,M2,M3})}

gena = {(B, {True})}

genu = gena = {(M, {M2}),
(D, {True}), (E, {False})}
killu = killa = {(M, {M1,M3}),
(D, {False}), (E, {True})}

Cond = {(A, {}), (B, {False}),
(C, {}), (D, {True,False}),
(E, {False}), (M, {M1,M3})}

RV = {(A, {}), (B, {True,False}),
(C, {True,False}), (D, {True,False}),
(E, {False}), (M, {M1,M3})}

Figure 8: Computation of Conds and RVs. a) A code fragment. b) A corresponding ACFG.

We combine RV and Cond information for each node of the FSM , resulting in Info

sets.

Info(n) = f(i; r) j (i 2 R) ^ (r 2 V

a

) ^ ((i; v; c) 2 SS(n)) ^ (r = v \ c)g;

where \ is the usual set intersection. This de�nition can be viewed as computing Info(n) =

Cond(n) u RV(n). We verify an implicit property P

14

, indicating that each variable may

14

S1

@@ Update ~CS2@@ Update C S3

@@ Update M(M2) & DS4

@@ Update ~E

{(A, {}), (B, {True,False}),
(C, {}), (D, {True,False}),
(E, {False}), (M, {M1,M3})}

{(A, {}), (B, {False}),
(C, {False}), {D, {True,False}),
(E, {False}), (M, {M1,M3})}

{(A, {}), (B, {True}),
(C, {True}), (D, {True,False}),
(E, {False}), (M, {M1,M3})}

{(A, {}), (B, {True,False}),
(C, {True,False}), (D, {True}),
(E, {False}), (M, {M2})}

Figure 9: Finite-state abstraction.

attain at least one of the values it must attain:

P

14

= A2(8i 2 R 9(i; v; c) 2 SS(n) 9(i; r) 2 Info(n) s:t: c 6= fg ! r 6= fg)

This is the \assertion satis�ed in current state" (ASCS) property, saying that if a Cond

value for some variable is di�erent from fg, then there is a value other then fg resulting

from computation of Info for this variable.

Figure 9 shows a fragment of an FSM which abstracts the code in Figure 8, with Info

sets shown at every state. In this �gure, all states correspond to nodes containing Update

annotations in the ACFG in Figure 8b.

5 Verifying Properties

In this section we describe how automatically-generated and user-speci�ed properties are

veri�ed.

5.1 Formal Model

We use the �nal abstraction, FSM , to verify properties about the system. To understand

which of these properties are preserved in the correctly annotated program, we need to

formalize our discussion, using notation similar to that in [33]

2

:

2

Unfortunately, it is impossible to analyze the actual program behavior when annotations are missing

or wrong. We are currently exploring ways to explicitly connect annotations and code.

15

LetM be a class of models. In our case,M contains ANP, ACFG, and FSM.

Let P be a class of speci�cation formulas, i.e., all automatically-generated and user-

speci�ed properties. These have a well-de�ned interpretation, i.e.

8M 2 M;8p 2 P; (M j= p) _ (M 6j= p)

Let �: M!M be a mapping from one model to another.

We note that we utilize an abstraction function � to go from the concrete domain V

c

to the abstract domain V

a

in ANP. Thus, we de�ne a separate model, ANP

a

, representing

ANP on abstract values. The following is the process we undertook to create FSM from

ANP:

ANP

�

�! ANP

a

�

1

�! ACFG

�

2

�! FSM;

where �

1

and �

2

are transformation functions de�ned in addition to the abstraction function

�.

We verify all properties in FSM and are interested in their interpretation in ANP. In

our case, it is hard to determine the correct interpretation of results of verifying properties

since FSM was an abstraction designed speci�cally to bridge the gap in event granularity

between requirements and an implementation. We further note that some of the paths

in ANP are infeasible, and thus not all nodes in the resulting FSM can occur during the

actual runs of the program. Let FSM

r

and FSM

rc

represent FSM produced by the actual

runs of the program on abstract and concrete values of variables, respectively, and we will

interpret the results with respect to FSM

rc

. The interpretation process goes as follows:

FSM

�

3

�! FSM

r

�! FSM

rc

;

where �

3

is a transformation function de�ned in addition to the concretization function

. We further de�ne a combined transformation function � = �

3

�
, and thus FSM

= �(FSM

rc

). Once we establish that a property holds (does not hold) on FSM

rc

, we

conclude that it holds (does not hold) on ANP . However, results of property veri�cation

on FSM are interpreted di�erently for FSM

rc

, depending on the property being veri�ed,

due to the presence of infeasible paths and the fact that
 is not one-to-one.

De�nition 5.1 A map � is falseness-preserving with respect to speci�cation formula p,

written FP(�,p), i� 8M 2 M, if M 6j= p, then �(M) 6j= p.

De�nition 5.2 A map � is truth-preserving with respect to speci�cation formula p, written

TP(�,p), i� 8M 2 M, if M j= p, then �(M) j= p.

16

a) b)

Pf
P(s)Pf P(s)

Figure 10: a) Optimistic and b) Pessimistic interpretations of a formula holding in a state.

De�nition 5.3 A map � is not consistent with respect to speci�cation formula p i�

(�TP (�; p)) ^ (�FP (�; p)):

We say that a property p is pessimistic for a map � if TP(�, p) and optimistic if FP(�, p).

In our case, the map �: FSM ! FSM

rc

is truth-preserving with respect to some

properties and falseness-preserving with respect to some others. OLT properties involve

quanti�cation over every possible state. Thus, if one of these properties is preserved

in the model, it is preserved in the annotated program. The map � should then be

falseness-preserving with respect to these properties. The ASCS property is also universally

quanti�ed and thus we need to de�ne � so that it is falseness-preserving with respect to

it. However, ALT properties are existentially quanti�ed, i.e., if there a state satisfying

these properties in the model, there might not be one in the actual program because the

paths on which these properties hold in the model might be infeasible. Thus, � should be

truth-preserving with respect to these properties.

When we determine if a state is a model of a formula, we should make sure that �

remains consistent for every formula, i.e., � is truth-preserving or falseness-preserving for

every formula. We de�ne two interpretations for a formula holding in a state, one for pes-

simistic and another for optimistic properties. Variables in states have values represented

by sets, so we treat atomic (or negated atomic) propositions in formulas as assertions about

sets of values, e.g., P is treated as P = fTrueg and �M(M1) is treated asM = fM2;M3g.

To check if a state s is a model of an atomic proposition P , we compare P 's asserted value

(P

f

) with its value in state s (P (s)). For optimistic analysis, if there are common values

between P

f

and P (s), i.e., P

f

\ P (s) 6= ; (see Figure 10a), we assume that P

f

holds in

s. In pessimistic analysis we want to �nd the maximum number of errors, and thus we

consider P

f

to hold in a state s only if (P (s) 6= fg) ^ (P (s) � P

f

), i.e., all values of P (s)

17

are present in P

f

(see Figure 10b). This way, during the interpretation step,

8p 2 P; ((FP (�; p) ^ FSM j= p)! (FSM

rc

j= p)) ^

((TP (�; p) ^ FSM 6j= p) ! (FSM

rc

6j= p));

i.e., pessimistic properties which hold in FSM , also hold in FSM

rc

, and optimistic prop-

erties violated in FSM , are also violated in FSM

rc

.

5.2 Checking Automatically-Generated Properties

To verify the automatically-generated properties, we take advantage of their rather re-

stricted forms and verify all of them in a single traversal of the FSM . These properties

involve state transitions which occur only in response to events. To calculate a node's

event, we traverse the FSM backwards until a node containing an Update annotation is

found on each branch. We form conjunctions of the Triggering and When conditions in

these Updates. For example, consider calculating the event which results in the transition

to M(M2) at node S

4

in Figure 9. Predecessors on this node are S

2

and S

3

. The Trigger-

ing conditions for transitions from S

2

to S

4

and from S

3

to S

4

consist of the information

speci�ed in the corresponding gen

u

sets. The When conditions are the Info sets at S

2

and

S

3

. The set I of transitions and events discovered by Analyzer is shown in Figure 11.

Transitions from M(M1) to M(M2) (or from M(M3) to M(M2)):

I

1

(I

2

) : @T (C) WHEN [B = fTrueg & D = fTrue; Falseg& E = fFalseg]

I

3

(I

4

) : @F (C) WHEN [B = fFalseg & D = fTrue; Falseg& E = fFalseg]

Transitions from D to D (or from � D to D):

I

5

(I

6

) : @T (C) WHEN [B = fTrueg & E = fFalseg &M = fM1;M3g]

I

7

(I

8

) : @F (C) WHEN [B = fFalseg & E = fFalseg &M = fM1;M3g]

Figure 11: Events and transitions discovered for node S

4

.

Our event calculations change the semantics of SCR events in two ways. Although

an SCR event occurs only when a value of a condition on a monitored variable changes,

we assume that every Update annotation marks an event. This analysis exaggerates the

number of events we calculate since an Update may not change a value of its variable,

but this treatment simpli�es searches for events in FSM . Secondly, SCR state transitions

occur instantaneously with the events that trigger them, while our state transitions may

be triggered by events associated with Update annotations which are textually remote

18

from the annotation marking the state transition. This di�erence is the result of analyzing

implementations in which variables triggering events and those recording state transitions

change values in di�erent statements, each of which is separately annotated.

Veri�cation of ASCS Property

The ASCS property is checked for each state during the FSM traversal which computes

Info sets. A programmer might intentionally annotate his program with an assertion

which \contradicts" RVs at some node, thus violating the ASCS property. This is done to

explicitly mark a node in the FSM as unreachable to ensure that it is not considered in

the veri�cation of other properties. Thus, when Analyzer �nds a violation of the ASCS

property in a node, it marks the node as unreachable and skips it during the rest of the

property veri�cation step. The ASCS property is universally quanti�ed, and thus � is

pessimistic with respect to it, i.e. more errors could be reported than are present in the

annotated program.

Veri�cation of OLT Properties

One of the OLT properties automatically generated from the requirements of SSE was

P

2

= A2(E
M

2

! (M

2

_ (M

1

& B & @T (C)) _ (M

3

& �B & @F (C))))

All such properties have the general form P = A2(E
F ! (F _G)). Since A2(E
F !

(F _G)) = A2(A
 (�F)_ (F _G)), these properties are universally quanti�ed and thus

can be veri�ed pessimistically, thus possibly identifying illegal transitions even if they

actually occur on infeasible paths. We need to examine only those states in which F is

False and in whose successors F is True (nodes S

2

and S

3

in our example). Thus, we check

the formula only for predecessors of states labeled with Update annotations for F . In our

example, the calculated events I

1

and I

4

establish P

2

for S

2

and S

3

, respectively. We check

all OLT properties in one traversal of the FSM by the following algorithm:

Algorithm 1

For every node y reachable from s

0

in the depth-�rst order of the FSM

If y contains an Update annotation establishing F then

For every x s.t. (x; y) 2 N , where N is the successor relation

If x j= �F then

If x j= � G then

19

Report error

Continue

Theorem 1. The successful execution of Algorithm 1 indicates that a property P =

A2(E
 F ! (F _ G)) holds in our model, i.e., if the algorithm reports no error, then

FSM j= P .

Proof. We will prove a contrapositive of the above statement, i.e., if FSM 6j= P , then

the algorithm reports an error.

Assume that FSM 6j= P . Then 9z 2 S s.t. z is reachable from s

0

and z j= �P , i.e.

z j= E
 F but z 6j= F and z 6j= G. Then 9w; (z;w) 2 N ^ w j= F which means that w

contains an annotation establishing F . The algorithm starts with s

0

, comes to w during

its depth-�rst traversal, �nds z (since (z;w) 2 N), checks that z j= �F and z j= �G, and

reports an error.

So, if FSM 6j= P then the algorithm reports an error. 2

Veri�cation of ALT Properties

The following are some of the ALT properties for SSE:

P

4

= E3(M

1

& B & @T (C) & E
M

2

)

P

9

= E3(M

3

& �B & @F (C) & E
M

2

)

P

13

= E3(�D & T (C) &M1 & E
D)

Properties P

4

and P

9

hold in the model because the node S

4

satis�es them via transitions I

1

and I

4

, respectively (see Table 11). Analyzer marks ALT properties indicating that they

have been satis�ed if the implementation's calculated event contains values that would

cause a requirement's state transition. Any properties remaining unmarked at the end of

analysis are reported as errors. This analysis is optimistic since it considers state transitions

to satisfy a property even if they occur on infeasible paths. Thus, we might not report all

unimplemented transitions. We also use an optimistic interpretation for a formula holding

in a state. For example, while verifying property P

13

, we �nd that the node S

4

satis�es it

by our treatment of transition I

6

. This node is reachable from the starting node, and thus

the property is considered to hold.

20

5.3 Verifying User-Speci�ed Properties

Recall that a user can specify �ve types of properties - reach, smi, wmi, strcause and cause.

Each of these properties is veri�ed in a separate traversal of the FSM.

� reach(P) properties are existentially quanti�ed and thus are veri�ed optimistically,

i.e., Analyzer searches the state space for a state where P holds, and if one is found,

the entire property is considered to hold.

� During the veri�cation of smi(M , P) = A2(�M _P) properties, Analyzer takes all

states where �M does not hold, and determines if P holds in each of these states. As

soon as an error is discovered, the process terminates. These properties are veri�ed

pessimistically, i.e., if there is one state which violates the invariant (although it

can be on an unreachable path), the entire property is considered violated. All

remaining types of properties are also universally quanti�ed, and so their veri�cation

is pessimistic.

� During the veri�cation of wmi(M , P) = A2((�M _ P) _ A
 �M) properties,

Analyzer looks for the nodes s.t. M holds in the node and in at least one of its

successors, and checks that P holds in this node. The veri�cation stops as soon as

an error is discovered.

� During the veri�cation of cause(P

1

, P

2

) properties, Analyzer starts with all states

where �P

1

fails and checks if P

2

holds there; if not, it looks at all successor states

and reports an error if P

2

does not hold in either of these.

� Veri�cation of strcause(P

1

, P

2

) properties is done similarly to cause(P

1

, P

2

) except

that only successor states are examined.

Figure 12 summarizes the basic steps of our analysis.

6 Processing Functions

In Section 4, we presented our algorithm for intraprocedural analysis of annotated pro-

grams, which creates an ACFG. However, since programs usually consist of several proce-

dures, we needed to extend our analysis technique to process these programs. We perform

interprocedural analysis using an adaptation of a technique called cloning [9]. A similar

algorithm was described in [32]. This technique enables Analyzer to process programs

with cycles in their call graphs (recursion), to analyze each called function only a constant

21

1. Start with an annotated program. Build its CFG.

2. Abstract it to ACFG:

Compute gen and kill sets for each node containing an annotation.

Propagate RVs and Conds throughout the graph.

3. Abstract ACFG to FSM :

Remove all nodes except those containing Update or Initial annotations

For each node, compute Info = Cond u RV and check the ASCS property.

If violated, report violation and mark the node as unreachable.

4. Generate P - a set of properties to ensure that the implementation is

consistent with the requirements.

5. Check that FSM j= P:

For each reachable event changing a mode class or controlled variable:

Compute Triggering and When conditions from all predecessors.

Verify that each of the transitions is speci�ed in requirements.

Mark these transitions as used.

Report unused mode transitions, if any.

7. Verify user-speci�ed properties of the system.

Figure 12: Summary of the algorithm.

number of times, and to achieve reasonable precision in the analysis. Our algorithm clones

a CFG of a function each time it is called in a new calling context (i.e., new RVs or Conds).

We verify each copy of a function once with its own set of reaching values and conditions.

Since we ignore functions without annotations and the number of possible calling contexts

is �nite (and hopefully small), we avoid many potential problems with the combinatorial

growth of the CFG of the entire program.

De�nition 6.1 An ACFG of an annotated program P in the presence of function calls

is a directed graph G = hV, E, V

0

i, where

V is a �nite set of nodes corresponding to decisions, joins, function calls and

annotations of P .

E � V � V is a set of directed edges, s.t. (v

1

, v

2

) 2 E $ v

2

can immediately

follow v

1

in some execution sequence; and

V

0

is an entry node.

We use an example in Figure 13b to illustrate how the computation of RVs is performed

in the presence of function calls. This program uses recursion to decrement a counter until

22

a)

b)

int x;
int main() {
 @@ Initial M: M(M0);
 x = 3;
 @@ Update Xgt0;
 F();
 return 1;
}

void F() {
 @@ Update Xge0;
 if (x > 0) {
 @@ Update Xgt0;
 x−−;
 F();
 }
 else {
 @@ Update Xeq0;
 @@ Update M(M1);
 }
}

Relationships

 Xgt0 | Xeq0
 Xgt0 −> Xge0
 Xeq0 −> Xge0

Update Xgt0

F()

Update Xeq0

Update M(M1)

Update Xgt0

F()

Update Xgt0

F()

Update Xeq0

Update M(M1)

Update Xge0

Update Xge0

Initial M: M(M0)

c)

RV = {(M, {M0}), (Xgt0, {True}),
 (Xge0, {True}), (Xeq0, {False})}

RV = {(M, {M0}), (Xgt0, {True}),
 (Xge0, {True}), (Xeq0, {False})}

RV = {(M, {M0}), (Xgt0, {True}),
 (Xge0, {True}), (Xeq0, {False})}

RV = {(M, {M0}), (Xgt0, {True}),
 (Xge0, {True}), (Xeq0, {False})}

RV = {(M, {M1}), (Xgt0, {False})
 (Xge0, {True}), (Xeq0, {True})}

RV = {(M, {M1}), (Xgt0, {False})
 (Xge0, {True}), (Xeq0, {True})}

RV = {(M,{M0,M1}), (Xgt0, {True,False},
 (Xge0, {True}), (Xeq0, {True,False})}

RV = {(M,{M0,M1}), (Xgt0, {True,False},
 (Xge0, {True}), (Xeq0, {True,False})}

Figure 13: Computing RVs in the presence of function calls. a) Some relationships

between the monitored variables. b) An implementation. c) An ACFG generated for

this example.

it reaches zero. The three monitored variables, Xgt0, Xeq0, Xge0, stand for \X greater

than 0", \X equal to 0" and \X greater than or equal to 0", respectively. These are

connected via relationships shown in Figure 13a. Figure 13c presents the ACFG produced

for this example. Ellipses indicate function calls. While computing RVs and encountering

a call to F from the main routine, Analyzer creates a copy of the F's ACFG in the

environment where the initial information, in(RV), is f(M, fM0g), (Xgt0, fTrueg), (Xge0,

fTrueg), (Xeq0, fFalseg)g, which is used as the RV set at the start of the function, and

the computation is continued through the ACFG of F. When the function calls itself (the

shaded node in Figure 13b), the RV of the call site is identical to that of the original call, so

Analyzer skips the recursive call and sets the output information, out(RV), of the call site

to its in(RV). Processing of the non-recursive branch of F yields the context f(M, fM1g),

(Xgt0, fFalseg), (Xeq0, fTrueg), (Xge0, fTrueg)g. When these two sets are merged at join

node at the end of F, F's out(RV) set is f(M, fM0, M1g), (Xgt0, fTrue,Falseg), (Xge0,

fTrueg), (Xeq0, fTrue,Falseg)g. This also becomes the out(RV) set of main's call to F.

23

A similar computation occurs for condition propagation except that both RV and Cond

information should match in order for the recursive call to be skipped. The algorithm

for processing function calls appears in Appendix B. After RV and Cond information is

calculated, Analyzer abstracts ACFG to FSM and uses it to verify the system properties,

as described in Sections 4 and 5.

7 Case Study

A Water-Level Monitoring System (WLMS) monitors and displays the water level in a

container. It also raises visual and audio alarms and shuts o� its pump when the level is

out of range or when the monitoring system fails. Two push buttons, SelfTest and Reset,

permit the operator to test the system and return it to normal operation. A complete

description of this system can be found in [31]. WLMS has two mode classes, Normal and

Failure, whose modes are described in Table 4. The system starts in mode Standby of

mode class Normal and mode AllOK of mode class Failure. Monitored variables indicate

the water level in the container (both that it is within its limits and its more stringent

hysteresis range, InsideHysR ->WithinLimits), the lengths of time that buttons have been

pressed (SlfTstPressed < SlfTstPressed500) or that the system has been in a mode (InTest

< InTest2000 < InTest4000 < InTest14000), and device failures. Controlled variables are

set to trigger alarms and to display the water level to the operator. A mode transition

table for modeclass Normal is shown in Table 5.

The requirements included four user-de�ned safety properties, identical to those used in

[4]. They are shown in Table 6. If the SelfTest button has been pressed for 500ms or more,

the system is either in mode Test or will be in mode Test after its next transition. When

the system is in mode Standby, the SelfTest button has not been pressed for 500ms. If the

system is in mode Operating, then either the water level is WithinLimits or the SelfTest

button has been pressed long enough to cause a transition to mode Test. If the system is

in mode Shutdown, then either the water level is outside the hysteresis water-level range

and the system has been in mode Shutdown for less than 200 ms, or the SelfTest button

has been pressed but not long enough to cause a transition to mode Test.

The WLMS was originally implemented by roughly 1300 lines of FORTRAN and As-

sembler code. To analyze the program, we translated it into C and replaced its PC interface

routines with an Xlib interface. We annotated the program with 32 Update annotations

corresponding to monitored variables, 30 Update annotations corresponding to mode class

and controlled variables, and 33 Assert annotations. Out of 54 functions in the implemen-

tation, only eight had annotations.

After we eliminated annotation errors in the implementation, Analyzer reported a num-

24

Mode Class Mode Meaning

Normal Operating The system is running properly.

Shutdown The water level is out of range and the system will be

shutdown unless conditions change.

Standby The system is waiting for the operator to push a button

to select test or operating mode.

Test The system is not operating, but controlled variables are

being checked.

Failure AllOK No device failures.

BadLevDev The water level cannot be measured.

HardFail Unrecoverable failure.

Table 4: WLMS Modes.

Current Inside Within SlfTst SlfTst In Reset Shutdown New

Mode HysR Limits Pressed Pressed Test Pressed LockTime Mode

500 1400 3000 200

Standby t { { { { @T { Operating

{ { { @T { { { Test

Operating { @F f { { { { Shutdown

{ { { @T { { { Test

Shutdown @T { f { { { f Operating

{ { f { { { @T Standby

{ { { @T { { { Test

Test { { { { @T { { Standby

Initial: Standby (�SlfTstPressed500 & �ResetPressed3000 & �InTest14000 &

�ShutdownLockTime200)

Table 5: Mode transition table for mode class Normal.

ber of inconsistencies between the requirements and the implementation (see Table 7).

These numbers overestimate the actual errors in the implementation. First of all, some

mode transitions and controlled variable value changes resulted in a number of OLT prop-

erties violations. For example, �ve illegal mode transitions generated 34 violation messages

because several illegal transitions were detected at each location. Also, all the mode tran-

sition problems can be attributed to three principal causes: the wrong monitored variable

was checked to enable mode transitions (WithinLimits rather than InsideHysR), the times

25

Properties

cause(SlfTstPressed500, Normal(Test))

wmi(Normal=Standby, �SlfTstPressed500)

wmi(Normal=Operating, (�SlfTstPressed500 & (WithinLimits OR SlfTstPressed)))

wmi(Normal=Shutdown, (�SlfTstPressed500 &

((�InsideHysR & �ShutdownLockTime200) OR �SlfTstPressed)))

Table 6: Properties of the WLMS.

Property Type Violations Locations

OLT properties for modeclasses 34 5

OLT properties for controlled variables 56 5

ALT properties for modeclasses 10

ALT properties for controlled variables 26

Table 7: Results of analyzing the WLMS.

that the operator pressed the SelfTest and Reset buttons were not calculated or checked,

and no transitions to a mode corresponding to complete system failure were implemented.

Most of the illegal assignments to the controlled variables occurred because the order of

triggering events in the implementation di�ered from that in the requirements.

Each of the four safety properties was veri�ed by Analyzer. These results are not

particularly interesting because all the safety properties included negated monitored vari-

ables that were never assigned True values in the implementation (i.e., InsideHysR and

SlfTstPressed500). Thus most formulas hold trivially. The third formula:

wmi(Normal=Operating, ~SlfTstPressed500 & (WithinLimits OR SlfTstPressed)))

was veri�ed since WithinLimits was set to True before each transition to Operating, and

whenever WithinLimits and SlfTstPressed were set to False, the system immediately tran-

sitioned to mode Shutdown.

26

8 Discussion and Conclusion

This section compares our approach with related work and discusses potential improve-

ments in our analysis method.

8.1 Related Work

Analyzer contains features similar to those in several other static analysis systems. To

simplify the veri�cation of properties of implementations, these systems restrict the forms

of their formal speci�cation notations or create abstract models from implementations that

could be analyzed with state-exploration rather than theorem-proving techniques.

In Inscape[28, 29, 30], complex logical formulas are abstracted to simple predicates

which may be primitive or de�ned in terms of other predicates (like our relationships).

Predicates form pre- and postconditions used to specify implementations. A programmer

constructs an implementation with an editor that analyzes the implementation's control

ow and operation invocations to calculate its pre- and postconditions. During the calcula-

tion, Inscape uses pattern matching and simple deduction to determine if the precondition

of an operation has been satis�ed before its invocation. If not, unsatis�ed predicates

are propagated backwards through the control-
ow graph until Inscape �nds operations

satisfying them. The predicates of an operation's postconditions are propagated forward

through the graph so that they might satisfy a subsequent operation's precondition. To de-

termine if an implementation is correct, Inscape compares its calculated and the speci�ed

conditions.

Quick Defect Analysis (QDA)[18, 20] also uses a simpli�ed speci�cation language. Par-

tial speci�cations called hypotheses are embedded in comments to describe properties

that objects should have at particular program points. Other comments contain assertions

about properties of objects. An interpreter builds an abstract model of the implementation

from the assertions and the implementation's control
ow graph. Hypotheses are veri�ed

with respect to this model. More recent work[19] enriches QDA's speci�cation language so

assertions also describe event occurrences and hypotheses assert that the implementation's

events occur in certain sequences.

The Cecil speci�cation language permits the description of sequencing constraints on

user-de�nable program events (e.g., de�nitions or uses of variables, operation invocations,

etc.) by anchored, quanti�ed regular expressions (AQREs)[25, 26, 27]. After a user speci�es

a mapping from programming language constructs to Cecil events, the Cesar analyzer uses

data
ow analysis techniques to determine if the implementation meets Cecil constraints.

27

Aspect's[21, 22, 23] speci�cation notation permits users to write pre- and postconditions

about the data dependencies of an operation. Data
ow analysis is used to compute an

upper bound on the data dependencies of the implementation. If an asserted dependency

is missing, an error is reported.

Clarke et al. [7] also create abstract, �nite state models of programs, and use model

checking techniques to verify formulas. Programs written in a special �nite-state pro-

gramming language are translated into relational expressions characterizing the program's

initial state and transition relation. To reduce the size of the model, users de�ne mappings

of implementation values to abstract values and symbolically execute operations on the

values. The model checking approach is pessimistic for formulas expressed in 8CTL*[12],

a subset of CTL* in which only a universal path quanti�cation is allowed. The authors

also identify a large class of temporal formulas for which the veri�cation results are exact,

i.e., formulas hold in the model i� they hold in the original program.

8.2 Conclusion and Future Work

We have de�ned a notion of consistency between SCR-style requirements and an anno-

tated program. We have also presented a technique to ensure this notion of consistency,

implemented in a tool called Analyzer. Analyzer creates a �nite-state abstraction of an

annotated program and checks it against a set of properties automatically generated from

the requirements or speci�ed by the user. This approach can be applied to small but

realistic systems, as indicated by the case study that was presented here.

The algorithm which creates a �nite-state model of a program uses only annotations and

the control-
ow of the program. Thus, it might happen that the annotations are correct,

but the corresponding constructs of the program are incorrect or missing. Also, a program

has to be fully (and correctly) annotated to obtain maximum bene�ts from the analysis. We

are currently looking at means of connecting requirements and program variables. The user

will provide declarative information describing the dependencies between implementation

and requirements variables. We hope that this approach will enable us to �nd missing or

incorrect annotations and, in many cases, insert necessary annotations automatically.

The language for user-speci�ed safety properties is very restricted. Let � be a mapping

from an annotated program to FSM . � is truth-preserving with respect to CTL formulas

quanti�ed over all possible paths and falseness-preserving with respect to formulas quan-

ti�ed over some paths. Therefore, � is not consistent with respect to an arbitrary CTL

formula p, i.e., verifying p on FSM gives no information about its validity on the annotated

program. So, assuming that a formula does not include negated quanti�ers (i.e. � A2(P)

= E3(� P), we can verify it only if it does not contain mixed quanti�ers. Young and

28

Taylor[34] reach the same conclusion. All properties discussed in earlier sections contained

just one quanti�er, and thus could be processed. We plan to extend Analyzer to be able

to verify arbitrary consistent CTL formulae.

Acknowledgements

We would like to thank Rich Gerber and Bill Pugh for many valuable technical contribu-

tions to this work.

References

[1] A. Aho, R. Sethi, and J. Ulman. Compilers: Principles, Techniques, and Tools,

Chapter 10. Addison Wesley, 1988.

[2] T. Alspaugh, S. Faulk, K. Britton, R. Parker, D. Parnas, and J. Shore. \Software

Requirements for the A-7E Aircraft". Technical report, Naval Research Laboratory,

March 1988.

[3] J. Atlee. \Automated Analysis of Software Requirements". PhD thesis, University of

Maryland, College Park, Maryland, December 1992.

[4] J.M. Atlee and J. Gannon. \State-Based Model Checking of Event-Driven System

Requirements". IEEE Transactions on Software Engineering, pages 22{40, January

1993.

[5] M. Chechik and J. Gannon. \Automatic Veri�cation of Requirements Implementa-

tions". In Proceedings of the 1994 ISSTA, pages 1{14, Seattle, Washington, August

1994.

[6] M. Chechik and J. Gannon. \Automatic Analysis of Consistency Between Implemen-

tations and Requirements: A Case Study". In Proceedings of 10th Annual Conference

on Compute Assurance, pages 123{131, June 1995.

[7] Edmind M. Clarke, Orna Grumberg, and David E. Long. \Model Checking and

Abstraction". In Proceedings of the Ninth Annual Symposium on Principles of Pro-

gramming Languages, pages 343{354, August 1992.

[8] E.M. Clarke, E.A. Emerson, and A.P. Sistla. \Automatic Veri�cation of Finite-State

Concurrent Systems Using Temporal Logic Speci�cations". ACM Transactions on

Programming Languages and Systems, 8(2):244{263, April 1986.

29

[9] Keith D. Cooper, Mary W. Hall, and Ken Kennedy. \Procedure Cloning". In Proceed-

ings of IEEE International Conference on Computer Languages, pages 96{105, April

1992.

[10] Patrick Cousot and Radhia Cousot. \Static Determination of Dynamic Properties of

Programs". In Proceedings of the "Colloque sur la Programmation", April 1976.

[11] Patrick Cousot and Radhia Cousot. \Abstract Interpretation: A Uni�ed Lattice

Model For Static Analysis of Programs by Construction or Approximation of Fix-

points". In Proceedings of the 4th POPL, pages 238{252, Los Angeles, California,

1977.

[12] O. Grumberg and D.E. Long. \Model Checking and Modular Veri�cation". In Proceed-

ings of CONCUR'91: 2nd International Conference on Concurrency Theory, 1991.

[13] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-

Trauring, and M. Trakhtenbrot. \STATEMATE: A Working Environment for the

Development of Complex Reactive Systems". IEEE Transactions on Software Engi-

neering, 16(4):403{414, April 1990.

[14] C. Heitmeyer and B. Labaw. \Consistency Checks for SCR-Style Requirements

Speci�cations". Technical Report NRL Report 93-9586, Naval Research Laboratory,

November 1993.

[15] C. Heitmeyer, B. Labaw, and D. Kiskis. \Consistency Checking of SCR-Style Re-

quirements Speci�cations". In Proceedings of RE'95 International Symposium of Re-

quirements Engineering, March 1995.

[16] K. Heninger. \Software Requirements for the A-7E Aircraft". Technical Report NRL

Report 3876, Naval Research Laboratory, Washington, DC, 1978.

[17] K. Heninger. \Specifying Software Requirements for Complex Systems: New Tech-

niques and Their Applications". IEEE Transactions on Software Engineering, SE-

6(1):2{12, January 1980.

[18] W.E. Howden. \Comments Analysis and Programming Errors". IEEE Transactions

on Software Engineering, 16(1):72{81, January 1990.

[19] W.E. Howden and G.M. Shi. \Linear and Structural Event Sequence Analysis". Sub-

mitted to ISSTA'96, June 1995.

[20] W.E. Howden and B. Wieand. \QDA { A Method for Systematic Informal Program

Analysis". IEEE Transactions on Software Engineering, 20(6):445{462, June 1994.

[21] D. Jackson. Aspect: A Formal Speci�cation Language for Detecting Bugs. PhD thesis,

MIT, Cambridge, Massachusetts, June 1992.

30

[22] Daniel Jackson. \Abstract Analysis with Aspect". In Proceedings of the 1993 Inter-

national Symposium on Software Testing and Analysis (ISSTA), pages 19{27, June

1993.

[23] Daniel Jackson. \Aspect: Detecting Bugs with Abstract Dependences". (submitted

to Transactions on Software Engineering and Methodology), November 1993.

[24] N.G. Levenson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. \Requirements Spec-

i�cation for Process-Control Systems". IEEE Transactions on Software Engineering,

20(9):684{707, September 1994.

[25] Kurt M. Olender and Leon J. Osterweil. \Cesar: A Static Sequencing Constraint

Analyzer". In Proceedings of the ACM SIGSOFT '89 Third Symposium on Software

Testing, Analysis, and Veri�cation (TAV3), pages 66{74, December 1989.

[26] Kurt M. Olender and Leon J. Osterweil. \Cecil: A Sequencing Constraint Language for

Automatic Static Analysis Generation". IEEE Transactions on Software Engineering,

16(3):268{280, March 1990.

[27] Kurt M. Olender and Leon K. Osterweil. \Interprocedural Static Analysis of Se-

quencing Constraints". ACM Transactions of Software Engineering and Methodology,

1(1):21{52, January 1992.

[28] Dewayne E. Perry. \Software InterconnectionModels". In Proceedings of the 9th Inter-

national Conference on Software Engineering, pages 61{69. IEEE Computer Society

Press, 1987.

[29] Dewayne E. Perry. \The Inscape Environment.". In Proceedings of the 11th Interna-

tional Conference on Software Engineering, pages 60{68, Pittsburgh PA, May 1989.

[30] Dewayne E. Perry. \The Logic of Propagation in The Inscape Environment". In

Proceedings of the 3rd Symposium on Software Testing, Analysis, and Veri�cation

(TAV3), pages 114{121, Key West, Florida, December 1989.

[31] A. J. van Schouwen. \The A-7 Requirements Model: Re-examination for Real-Time

Systems and an Application to Monitoring Systems". Technical Report TR-90-276,

Queen's University, Kingston, Ontario, May 1990.

[32] Ben Wegbreit. \Property Extraction in Well-Founded Property Sets". IEEE Trans-

actions on Software Engineering, 1(3):270{285, September 1975.

[33] Michal Young. \How to Leave Out Details: Error-Preserving Abstractions of State-

Space Models". In Proceedings of the Workshop on Software Testing, pages 63{70,

1988.

31

[34] Michal Young and Richard N. Taylor. "Rethinking the Taxonomy of Fault Detec-

tion Techniques". In Proceedings of the 11th International Conference on Software

Engineering, pages 53{62, May 1989.

A SSE Requirements speci�cation

MONITORED CONTROLLED VARIABLES

A, B, C VARIABLE D

INITIAL False

CONTROLLED True @T(C) WHEN [M=M1]

D, E False @F(C) WHEN [M=M3]

MODECLASS M VARIABLE E

INITIAL M1 (~A & B & ~C & D) INITIAL True

MODE M1 False @T(C) WHEN [M=M1]

M2 @T(C) WHEN [B] True @F(C)

M3 @F(B)

MODE M2 RELATIONSHIPS

M1 @T(A) & @T(B) E -> ~D

M3 @F(B) WHEN [A]

MODE M3 PROPERTIES

M1 @T(A) smi (M=M1, A)

M2 @F(C) WHEN [~B] reach (M=M3)

cause (M=M3 & ~C, D)

All such speci�cations adhere to the same format: monitored and controlled variables

are listed separately, followed by a mode transition table for each mode class. Event tables

for controlled variables, a list of relationships and a list of user-speci�ed properties complete

the speci�cation.

B Algorithm to Process Function Calls

We store separate copies of CFGs of each function for di�erent calling contexts. Every call

cite contains a pointer to a CFG of a copy of a function it calls, or a null pointer if it calls a

function without annotations. To distinguish between copies of the functions, we associate

a list of contexts with each of them. Each context contains the following information: in

and out which contain system states at the start and the end of the function; graph which

is a pointer to the CFG of the function with this calling environment; and color which

32

indicates the processing status: eitherwhite (unprocessed), gray (partially processed), or

black (processed). Initially, ins and outs are empty, and each context is marked white.

In the presentation of the algorithm, when these �elds have a two argument (e.g., in(RV,

cl)), they represent reaching value or condition information about the node corresponding

to the function call, and when they have three arguments (e.g., in(RV, ct, fn)), they

represent information about the body of the function in a particular context. Let PR be

a set of functions which needs to be processed, i.e. those which contain annotations or call

other functions which need to be processed. Figure 14 contains the algorithm.

33

1. Compute RVs. When a node calls a function in PR, check its list of contexts.

If there exists a context ct s.t. in(RV,ct,fn) is in(RV,cl) then

If color(ct,fn) is black (already processed) then

out(RV,cl) out(RV,ct,fn)

Elseif color(ct,fn) is gray (recursion) then

out(RV,cl) in(RV,ct,fn)

/* skip the call */

Else

New context nct CopyCFG (graph(ct,fn))

graph(cl) graph(nct,fn)

color(nct,fn) gray

in(RV,nct,fn) in(RV,first block(fn)) in(RV,cl)

Recursively propagate RVs through the function

color(nct,fn) black;

out(RV,last block(fn)) out(RV,cl) out(RV,nct,fn)

2. Mark all copies of all functions white.

3. Compute Conds. If a node calls a function in PR, check its list of contexts.

If there is a context ct s.t. in(RV,ct,fn) is in(RV,cl) and

in(Cond,ct,fn) is in(Cond,cl) then

If color(ct,fn) is black (already processed) then

graph(cl) graph(ct,fn)

out(Cond,cl) out(Cond,ct,fn)

Elseif color(ct, fn) is gray (recursion) then

out(Cond,cl) in(Cond,ct,fn)

Else

New context nct CopyCFG (graph (ct,fn))

/* copy graph together with RVs */

graph(cl) (graph(nct,fn)

color(nct,fn) gray

in(Cond,nct,fn) in(Cond,fist block(fn)) in(Cond,cl)

Recursively compute conditions in the function

color(nct,fn) black

out(Cond,last block(fn)) out(Cond,cl) out(Cond,nct,fn)

Figure 14: Algorithm to Process Function Calls.

34

