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Chapter 1IntroductionDatabases of the near future will be required to support non-traditional datatypes, such as spatial objects [71]. Multimedia databases [54], GeographicalInformation Systems (GIS) [66], and medical databases [4] are examples ofdatabases receiving increasing attention. Handling spatial and multidimensionalobjects is a common requirement among these databases. For example, in multi-media databases we should be able to store images [5], voice [56], video [62] etc.In GIS, maps contain multidimensional points, lines, and polygons all of whichare new data types. Another example of such non-traditional data types can befound in medical databases which contain 3-dimensional brain scans (e.g. PETand MRI studies); in these databases we want to ask a query such as \display thePET studies of 40-year old females that show high physiological activity insidethe hippocampus" where high activity corresponds to high glucose consumption.Temporal databases �t easily in the framework, since time can be considered asone more dimension [48, 50]. Multidimensional objects appear even in tradi-tional databases, where a record with k attributes corresponds to a point in thek-d space.In the above applications, one of the most typical queries is the range query:1



Given a rectangle in k-d space, retrieve all the elements that intersect it. Aspecial case of the range query is the point query or stabbing query, where thequery rectangle degenerates to a point. Spatial join is an important query whichis also expensive to compute. It is used to combine spatial objects of two setsaccording to some spatial properties. For example, consider two spatial relationsthat de�ne the borders of lakes and counties. The query \give me a list of countiesand all the lakes in them" is an example of a spatial join query. Other queriesof interest include the nearest neighbor queries [6]. The query \�nd the nearestlake to Prince Georges county" is an example of a nearest neighbor query.Several spatial access methods approximate objects with, for example, theirminimum bounding rectangle (MBR), (or circle, or ellipse, etc.). Range queriesare also approximated by their MBR's, requiring a post-processing step to dis-card the false alarms. We focus on the �rst step, that is, on how to organizee�ciently a large set of multidimensional rectangles for range queries. This isone of the major goals of this thesis.The second goal is to examine issues of declustering and data partitioning.All the above applications have a common property in that they deal with hugeamounts of data. With the increase in the volume of data, the response timeof the range query increases. Also, the data itself eventually will not �t on onedisk. One way to relieve these problems is to distribute the data carefully onmore than one unit so that the data can be retrieved and searched in parallel(e.g. [43, 69]).The remainder of the thesis is organized as follows: Chapter 2 presents someof the related work on spatial indexing. In Chapter 3, we present the MultiplexedI/O R-tree. In Chapter 4, we present two new R-tree designs based on the Hilbert2



curve for a centralized environment. Chapter 5 gives some concluding remarksand directions for future research.
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Chapter 2SurveyIn this chapter we present a classi�cation of older spatial access methods, asurvey of declustering methods, and a survey of analysis of R-trees. A recentsurvey can be found in [67]. Several spatial access methods have been proposed.For the purpose of this dissertation, we provide the following mean of classifyingthe structures.1) Methods that are designed for storing multidimensional points only. Thesemethods are called Point Access Methods (PAM) { e.g., Grid �les [35], LSDtree [34], buddy tree [68], and DOT [20]. One way to use PAM for storingnon-point objects is to transform the objects to points in higher-dimensionalspace [35]. For example, rectangles in two-dimensional space can be transformedto points in four-dimensional space by using the x,y coordinates of two oppositecorners. Other transformations are also possible, such as using the coordinate ofthe center and the extent values along the x and y axes. This technique however,has drawbacks, for example, the mapping from the original space into the pointspace may result in a skewed point distribution and may thus adversely a�ectthe search performance.2) Methods for spatial objects `Spatial Access Method' or (SAM) : Other in-4



dexes are designed to store points as well as non-point objects { e.g., Quadtree [28][3], R-tree [32, 7, 44, 41, 16], Z-order [60], R+-tree [70], and Cell tree [31].In this thesis, we concentrate on R-tree like-structures.2.1 Point Access Methods (PAMS)PAM are designed to handle multidimensional points. Non-point objects can betransformed to points in higher dimensional space before being stored. SeveralPAM have been proposed. We can divide them into hierarchical structures suchas the K-D-B tree [63] and non-hierarchical structures such as Grid �les [55] andtheir variants.2.1.1 Hierarchical StructuresThe k-d tree [8] is a generalization of the binary search tree for multi-dimensionalpoints. At each level a di�erent attribute (or key) value is tested to determinethe direction in which a branch is to be made. The k-d tree is a main memory-based structure; it was the inspiration of several disk-based data structures suchas the K-D-B tree and the LSD tree.Henrich et al: [34] proposed the Local Split Decision (LSD) tree. Its directorystructure is similar to that of the k-d tree [8]. It partitions the data space intopairwise disjoint cells. The cutting boundaries may occur at arbitrary positions.Henrich also introduced an algorithm for paging a multi-dimensional binary tree.The LSD tree can store only multi-dimensional points. K-dimensional intervalsare transformed into points in a 2k-dimensional space.The K-D-B tree of Robinson [63] is one of the �rst multidimensional indexes5



proposed for secondary storage. It combines the properties of the k-d tree [8] andthe B+-tree. Each time an overow occurs, the search space is partitioned intotwo disjoint rectangular subspaces along one axis. Like the B-tree, the K-D-Btree is a balanced tree; that is, all paths to leaves of the tree are equal in length.All data is stored in leaf nodes. The internal nodes containing only entrieswhich direct the search. When a non-leaf node is split, the split may propagatedownwards; the structure thus does not guarantee minimum space utilization.To avoid this problem several variants have been proposed, including the Buddytree [68] and the hB-tree [52].Seeger and Kriegel [68] proposed the Buddy tree, which is similar to the K-D-B tree [63]. They avoided some of the drawbacks of the K-D-B tree, such as thedownward split, by using a partitioning schema similar to the buddy system [47].The buddy tree stores the MBR of the data in each node in order to better prunethe search space.Lomet and Salzberg [52] suggested a variant of the K-D-B tree called thehB-tree, which exhibts the following distinctions. Index nodes are organized asa k-d tree to improve the intra-node search response. When a node overows, itis not necessarily split into two rectangular k-dimensional regions (bricks), butrather divides into \holey" bricks, or bricks from which smaller bricks have beenremoved. Because of this, hB-trees can avoid the downward split propagationthat occurs in K-D-B tree. The hB-tree guarantees at least 33% node utilization.The BANG �le [24] of Freeston is a grid �le type (Grid �les are explained inthe next section), but its directory is organized as a tree structure (as opposedto a multi-dimensional array as in Grid �les). As in the B-tree, the updates andsplits propagate upwards through the tree, thus balancing the tree.6



2.1.2 Non-hierarchical StructuresNievergelt's Grid �le [55] is a non-hierarchical index structure for data charac-terized by several keys or attributes. The records can be represented as pointsin a multi-dimensional space formed by the Cartesian product of the domains ofthe keys. The space is divided into a grid; each grid cell is stored in a disk pageand contains b records (points) at most. A multi-dimensional array (`directory')is used to map grid cells to the corresponding pages on the disk. The directorymay reside on the disk. A set of one-dimensional arrays called linear scales areused to store the partition points along each attribute. They enable access tothe appropriate grid cells by aiding the computation of cell addresses as deter-mined by the value of the relevant attributes. The linearscales are kept in mainmemory. When a page overows, the corresponding grid cell has to split; thedirectory may grow. Similarly, when deletions occur, grid cells can be merged.The grid �le guarantees that any record can be retrieved (exact match query)with two disk accesses, one for the directory and one for the data.Tamminen's EXCELL [72] is similar to the grid �le. It is based on a regulardecomposition of the space, and it requires a grid directory; however, all gridcells are of the same size. The main di�erence between the grid �le and EXCELLis that when a data page overows, the grid �le splits only the correspondingdirectory cell. In contrast, the EXCELL method splits all directory cells andresults in a doubling of the size of the grid directory. As a result, the sizes of thedirecory cells are the same. In contrast, the directory cells of the grid �le arenot necessarily of the same size. Because the directory cells are all of the samesize, EXCELL does not require a set of linear scales to access the grid directory,as does the grid �le. 7



For a data set with correlated attributes, the index size increases and becomessparse and thus the search performance degrades. Hinrichs and Nievergelt [35]suggested using the grid �le after a rotation of the axes. The rotation is necessaryin order to avoid non-uniform distribution of points, which would lead to poorgrid �le performance. Faloutsos and Rego [19] proposed dividing the addressspace into triangular cells (as opposed to rectangular one as in the grid �les) inorder to better handle the correlated data and non-point geometric objects.The standard grid �les achieve about 70% storage utilization. Huteszet al: [38] proposed the `Twin Grid File' which achieves roughly 90% storageutilization. The basic idea is to use two grid �les instead of one as in the stan-dard Grid �le. A new point is inserted in either �le in such a way as to avoidnode splits as much as possible. They showed experimentally that the storagegain is obtained at no extra cost and that range queries can be answered in twingrid �les at least as fast as in the standard grid �le.2.2 Spatial Access MethodsIn this section we present spatial access methods that are designed to handlepoint as well as non-point spatial objects.2.2.1 Quadtree-based MethodsThe quadtree is a hierarchical data structure based on a recursive decompositionof the space [23]. Quadtrees are used for points, as in the point quadtree [23],the MX quadtree, and the PR quadtree [57, 65]; for rectangles, as in the MX-CIF [45, 1]; and for lines, as in the PMR quadtree. The decomposition may8



be regular (e.g. the PR quadtree) or irregular (e.g. point quadtree). \Irregu-lar" decomposition means that the decomposition is driven by the data: Splitsoccur at each data point, which is represented as a node in the tree. In \reg-ular" decomposition, the space is decomposed into quadrants of the same size.Orenstein [57] proposed a k-d trie which is similar to the PR quadtree but usesbinary trees instead of quadtrees. Octrees [37, 39] are the extension of quadtreesin three-dimensional space. A detailed survey of the quadtree and its variantscan be found in [67].Gargantini [28] proposed a disk-resident quadtree called the linear quadtree.Spatial objects are divided into quadtree blocks, whose z-order (Morton key)is used as the primary key for a B+-tree [1] organization. Equivalently, Oren-stein [60, 58] proposed the Z-order which divide the spatial object into rectangu-lar blocks and store them in any PAM. In order to avoid an excessive number ofelements, Orenstein also studied the trade-o� between the number of elementsthat cover the spatial object (amount of redundancy introduced) and the amountof extra space they cover [59].The Z-order is a member of a family of curves called `space-�lling curves'. Oneof their characteristics is to pass by every point in the space exactly once. Otherspace-�lling curves such as the Hilbert and Gray codes can be used to linearizethe multi-dimensional space and to store the data in a PAM [21]. In [21, 40]they experimentally showed that the Hilbert curve achieves the best clusteringamong other methods.
9



2.2.2 R-tree-based MethodsOne of the most characteristic approaches in spatial access methods is the R-tree proposed originally by Guttman [32]. It is an extension of the B-tree formulti-dimensional objects. The R-tree is a balanced structure, and it maintainsat least 50% space utilization. A geometric object is represented by its minimumbounding rectangle (MBR). Non-leaf nodes contain entries of the form (ptr,R)where ptr is a pointer to a child node in the R-tree; R is the MBR that coversall rectangles in the child node. Leaf nodes contain entries of the form (obj-id, R), where obj-id is a pointer to the object description, and R is the MBRof the object. The R-tree allows father nodes to overlap. In this way, theR-tree can guarantee good space utilization and remain balanced. Figure 2.1illustrates data rectangles (in black) organized in an R-tree with fanout value
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4 5 6 7 8 9 10 11 12Figure 2.2: The �le structure for the R-tree in Figure 2.1 (fanout=3).correspond to disk pages. On the other hands, excessive overlaps of the fathernodes penalizes the search performance. The worst case for the search is toretrieve the whole tree, but this rarely happens with practical datasets.The R-tree is a dynamic structure in the sense that insertions and deletionsmay be intermixed with queries; the tree grows and shrinks accordingly. Whena node overows as a result of an insertion, a split occurs to create two nodes,each of which is half full. The split may propagate up the tree until the root issplit, in which case the tree grows by one level. Guttman originally proposedthree splitting algorithms, the linear split, quadratic split, and the exponentialsplit. Their names reect their complexity; among the three, the quadratic splitis the one that achieves the best trade-o� between splitting time and searchperformance.The R-tree inspired much subsequent work, the main focus of which was toimprove the search time. A packing technique proposed by Roussopoulos [64]minimizes the overlap between di�erent nodes in the R-tree for static data. Thatis their R-tree does not support insertion nor deletion; once the R-tree is built, itis breezed. The idea is to sort the data on the either x or y coordinate of one ofthe corners of the rectangles. The sorted list of rectangles is scanned; successive11



rectangles are assigned to the same R-tree leaf node until the node is full; a newleaf node is then created and the scanning of the sorted list continues. Thus, thenodes of the resulting R-tree will be fully packed, with the possible exception ofthe last node at each level. The utilization is thus � 100%. Their experimentalresults on point data showed that their packed R-tree performs much better thandoes the linear split R-tree for point queries. Sellis et al: [70] proposed the R+-tree that avoids the overlap between non-leaf nodes of the tree by clipping datarectangles that cross node boundaries. In this model there is therefore only onepath to the data in a given region as opposed to the multiple paths of Guttman'sR-tree. The trade-o� is that for a speci�c data object there might be more thanone entry in the R+-tree, and there can thus be more levels in the search paththan in that of an equivalent R-tree. Also, a non-leaf node split in the R+-treemight cause a downward split propagation. When splits propagate downwards,there is no way to guarantee a minimum number of entries per node. Beckmanet al: proposed the R�-tree [7]. Their experiment showed that it gives betterperformance than other R-tree variants. The main idea in their proposal is theconcept of forced re-insert, which is analogous to the deferred-splitting in B-trees.When a node overows, some of its children are deleted and re-inserted, usuallyresulting in a better-structured R-tree. Beckman et al: also introduced a newsplitting and a new insertion algorithm. These algorithms take into considerationnot only the area as in Guttman's R-tree, but also the perimeter and the overlapof the directory rectangles.Gunther's Cell tree [31] is an extension of the BSP tree [26, 25] for secondarystorage. It divides the search space into disjoint polyhedron cells. The data areorganized in a hierarchical structure. The interior nodes correspond to nested12



hierarchy of convex polyhedra. Jagadish [41] suggested the use of polygonalbounding instead of rectangular bounding of the spatial objects. He showedthat the bene�t, in terms of better selectivity due to improved bounding, issigni�cant for the �rst few dimensions; however, the incremental bene�t of anadded dimension goes down as more dimensions are added.R-trees can also be used for spatial join queries. Brinkho� et al: [11, 10]studied spatial join processing when two R-trees are available. Their primaryidea is the use of several (typically three) �lter steps. In the �rst step, thespatial join is performed on the minimum bounding rectangles (MBR's) of theobjects. In the second step, they use a geometric �lter that better approximatesthe object. In the last step, the join predicate is checked for all remainingcandidates using the exact match geometry. They used several algorithms foreach �lter step. For the last step, they decomposed the polygonal objects intosets of trapezoids. Each object is organized in a memory resident tree. They haveshown experimentally that using their approach improves the total executiontime of the spatial join by a factor of more than three over the straightforwardapproach.For the case in which we have one dataset with an R-tree index and anotherdataset without such an index, Lo and Ravishankar [51] suggested to build anR-tree like structure called a seeded tree for the second data set at the join time.Using some parameters from the �rst R-tree, they build the seeded tree in sucha way to minimize the join cost.
13



2.3 Distributed Spatial IndexingMuch work has been done on methods for organizing traditional �le structureson multi-disk or multi-processor machines. For the B-tree, Pramanic and Kimproposed the PNB-tree [61], which uses a `super-node' (`super-page') scheme onsynchronized disks. Seeger and Larson [69] proposed an algorithm to distributethe nodes of the B-tree on di�erent disks. Their algorithm takes into accountnot only the response time of the individual query but also the throughput ofthe system.A large number of methods have been proposed to decluster the Cartesianproduct �les (i.e. Grid �les). These methods can be grouped into two classes: Inthe �rst class, the methods are designed for partial match queries. Methods inthis class include the Disk Modulo family [13], the �eld-wise exclusive OR (FX)method [46], methods using error correcting codes (ECC) [17], and methodsusing minimumspanning trees [22]. In the second class, the methods are designedfor range queries: e.g., HCAM [15] and MAGIC [29]. In HCAM [15] the Hilbertcurve is used to impose linear order on the buckets in a multi-dimensional space,and then to traverse this sorted list of buckets, assigning each bucket to the diskin round-robin fashion. In MAGIC [29], it is assumed that the access patternis known, and the size of the bucket is calculated in order to balance the loadsat the units. Also, the number of processors activated per query is restricted inorder to minimize the overhead imposed by parallelism.
14



Chapter 3Multiplexed I/O R-trees3.1 IntroductionIn this chapter we study the problem of improving the search performance usingparallel I/O architectures such as multiple disk units. There are two main reasonsfor using multiple disks as opposed to a single disk:(a) Spatial database applications are mostly I/O bound. Our measurementson a DEC station 5000 showed that the CPU time to process an R-treepage, once brought in core, is 0.12 msec. This is 156 times smaller than theaverage disk access time (20 msec). Therefore it is important to parallelizethe I/O operation.(b) The second reason for using multiple disk units is that several of the aboveapplications involve huge amounts of data, which do not �t in one disk.For example, NASA expects 1 Terabyte (=1012) of data per day; thiscorresponds to 1016 bytes of satellite data per year. Geographic databasescan be large; for example, the TIGER database mentioned above is 19Gigabytes. Historic and temporal databases tend to archive all the changes15



and tend to grow quickly in size.The target system is intended to operate as a server, responding to range queriesof concurrent users. Our goal is to maximize the throughput, which translatesinto the following two requirements:`minLoad' Queries should touch as few nodes as possible, imposing a light loadon the I/O sub-system. As a corollary, queries with small search regionsshould activate as few disks as possible.`uniSpread' Nodes that qualify under the same query should be distributed overthe disks as uniformly as possible. As a corollary, queries that retrievemuch data should activate as many disks as possible.The proposed hardware architecture consists of one processor with several disksattached to it. Multi-processor architectures are still under study [49]On this architecture, we will distribute the nodes of a traditional R-tree. Wepropose and study several heuristics in order to determine how to choose a diskon which to place a newly created R-tree node. The most successful heuristic,based on the `proximity index', estimates the similarity of the new node with theother R-tree nodes already on a disk, and chooses the disk with content havingthe least degree of similarity. Experimental results have shown that our schemeconsistently outperforms other heuristics.The rest of this chapter is organized as follows. Section 3.2 proposes the`multiplexed' R-tree as a way to store an R-tree on multiple disks. Section3.3 examines alternative criteria for choosing a disk for a newly created R-treenode. It also introduces the `proximity' measure and derives the formulas forit. Section 3.4 presents experimental results and observations. Section 3.5 gives16



some concluding remarks.3.2 Alternative DesignsThe underlying �le structure is the R-tree. Given that, our goal is to designa server for spatial objects on a parallel architecture in order to achieve highthroughput under concurrent range queries.The �rst step is to select the hardware architecture. For the reasons men-tioned in the introduction, we propose a single processor with multiple disksattached to it. The next step is to decide how to distribute an R-tree over multi-ple disks. There are three major approaches: (a) d independent R-trees, (b) Diskstripping (or `super-nodes', or `super-pages'), and (c) the `Multiplexed' R-tree,or MUX R-tree for short, which we describe and propose later. We examine thethree approaches qualitatively:3.2.1 Independent R-treesIn this scheme we can distribute the data rectangles among the d disks and builda separate R-tree index for each disk. This works primarily for unsynchronizeddisks. The performance will depend on how we distribute the rectangles overthe di�erent disks. There are two major approaches:Data Distribution. The data rectangles are assigned to the di�erent disksin a round robin fashion, or through the use of a hashing function. The dataload (number of rectangles per disk) will be balanced. However, this approachviolates the minimum load (`minLoad') requirement: even small queries willactivate all the disks. 17



Space Partitioning. In this method the space is divided into d partitions,and each partition is assigned to a separate disk. For example, for the R-tree ofFigure 3.1, we could assign nodes 1, 2, and 3 to disks A, B, and C, respectively.The children of each node follow their parent on the same disk. This approachwill activate few disks on small queries, but it will fail to engage all disks onlarge queries, thus violating the uniform spread (`uniSpread') requirement.3.2.2 Super-nodesIn this scheme we have only one large R-tree, with each node (=`super-node')consisting of d pages; the i-th page is stored on the i-th disk (i = 1; : : : ; d). Toretrieve a node from the R-tree, we read in parallel all d pages that constitutethis node. In other words, we `stripe' the super-node on the d disks, usingpage-striping [27]. Almost identical performance will be obtained with bit- orbyte-level striping.This scheme can work both with synchronized and unsynchronized disks.However, this scheme violates the `minimum load' requirement: regardless ofthe size of the query, all the d disks become activated.3.2.3 Multiplexed (MUX) R-treeIn this scheme we use a single R-tree, with each node spanning one disk page.Nodes are distributed over the d disks, with pointers across disks. For example,Figure 3.2 shows one possible multiplexed R-tree, corresponding to the R-treeof Figure 3.1. The root node is kept in main memory while other nodes aredistributed over the disks A, B, and C. For the multiplexed R-tree, each pointercontains a disk id in addition to the page id of the traditional R-tree. However,18
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Disk A Disk B Disk CFigure 3.2: An R-tree stored on three disks.perform both the methods that use super-nodes as well as the ones that use dindependent R-trees. Our goal now is to �nd a good heuristic for assigning nodesto disks.By its construction, the multiplexed R-tree ful�lls the minimum load require-ment. To meet the uniform spread requirement, we must �nd a good heuristic forassigning nodes to disks. In order to measure the quality of such heuristics, weshall use the response time as a criterion; response time is calculated as follows.Let R(q) denote the response time for the query q. We must �rst discusshow the search algorithm operates. Given a range query q, the search algorithmneeds a queue of nodes, which is manipulated as follows:Algorithm 1: Range SearchS1. Insert the root node of the R-tree in the processing queue.S2. While (more nodes in queue)� Pick the next node n from the processing queue.� Process node n by checking for intersections with the query rectangle.20



If this is a leaf node, print the results; otherwise, send a list of requeststo some or all of the d disks, in parallel and insert their node-id's intothe FIFO queueSince the CPU is much faster than the disk, we assume that the CPU timeis negligible (=0) compared to the time required by a disk to retrieve a page.Thus, the measure for the response time is the time (in terms of number of diskaccesses) required by the latest disk to �nish servicing the query. The `disk-time'diagram helps visualize this concept better. Figure 3.3 presents the `disk-time'diagram for the query Ql of Figure 3.1. The horizontal axis is time, which isdivided into slots. The duration of each slot is the time for a disk access and isconsidered constant. The diagram indicates when each disk is busy, as well asthe page it is seeking, during each time slot. Thus, the response time for Ql is2, while its load L(Ql)= 4, because Ql retrieved four pages total.As another example, the `huge' queryQh of Figure 3.1 results in the disk-timediagram of Figure 3.4, with response time R(Qh)=3, and a load of L(Qh)=7.
Disk C

Disk B

Disk A

time

3

11

9
2

page access time

1 2 3Figure 3.3: Disk-Time diagram for the large query Ql.Given the above examples, we have the following de�nition for the responsetime: 21



Disk C

Disk B

Disk A

time

3

11

92

page access time

8

12

10

1 2 3Figure 3.4: Disk-Time diagram for the huge query Qh.De�nition 1 (Response Time) . The response time R(q) for a query q is theresponse time of the latest disk in the disk-time diagram.3.3 Disk Assignment AlgorithmsThe problem we examine in this section is how to assign nodes to disks withinthe Multiplexed R-tree framework. The goal is to minimize the response timeand to satisfy the requirement for uniform disk activation (`uniSpread'). Asdiscussed before, the minimum load requirement is ful�lled.When a node (page) in the R-tree overows, it is split into two nodes. Oneof these nodes, say, N0, has to be assigned to another disk. If we carefully selectthis new disk we can improve the search time. Let diskOf() be the functionthat maps nodes to the disks in which they reside. Ideally, we should considerall the nodes that are on the same level with N0, before we decide where to storeN0. Such consideration, however, would require too many disk accesses. Thus,we consider only the sibling nodes N1; : : : ; Nk, that is, the nodes that have thesame father Nfather as N0. Accessing the father node comes at no extra cost,22



because we have to bring it into main memory anyway to insert N0. Notice thatwe do not need to access the sibling nodes N1; : : : ; Nk because all the informationwe need about them (extent of MBR and disk of residence) are recorded in thefather node.Thus, the problem can be informally abstracted as follows:Problem 1: Disk assignmentGiven a node (= rectangle) N0, a set of nodes N1; : : : ; Nk and the assignmentof nodes to disks (diskOf() function)Assign N0 to a disk in such a way as to maximize the response time on rangequeries.There are several criteria that we have considered:Data balance: Ideally, all disks should have the same number of R-tree nodes.If a disk has many more pages than do other disks, it is more likely tobecome a `hot spot' during query processing.Area balance: Since we are storing not only points but also rectangles, the areaof the pages stored on a disk is another factor. A disk that covers a largerarea than the rest is again more likely to become a hot spot.Proximity: Another factor that a�ects the search time is the spatial relationbetween the nodes that are stored on the same disk. If two nodes intersect,or are close to each other, they should be stored on di�erent disks tomaximize parallelism.We can not satisfy all these criteria simultaneously because some of them mayconict. We now describe some heuristics, each of which attempts to satisfy23



one or more of the above criteria. In Section 3.4 we compare these heuristicsexperimentally.Round Robin (`RR'). When a new page is created by splitting, this criterionassigns it to a disk in a round robin fashion. Without deletions, this schemeachieves perfect data balance. For example, in Figure 3.5, RR will assignN0 to the least populated disk, that is, disk C.Minimum Area (`MA'). This heuristic tries to balance the area of the disks:When a new node is created, the heuristic assigns it to the disk that hasthe smallest area covered. For example, in Figure 3.5, MA would assignN0 to disk A, because the light gray rectangles N1, N3, N4 and N6 of diskA have the smallest combined area.
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such that the new node intersects as little as possible with the other nodeson that disk. Ties are broken using one of the above criteria.Proximity Index (`PI'). This heuristic is based on the proximity measure, whichwe describe in detail in the next subsection. Intuitively, this measurecompares two rectangles and assesses the probability that they will beretrieved by the same query. As we shall soon see, this procedure is relatedto the Manhattan (or city-block or L1) distance. Rectangles with highproximity (i.e., intersecting, or close to each other) should be assignedto di�erent disks. The proximity index of a new node N0 and a disk D(which contains the sibling nodes N1; : : : ; Nk) is the proximity of the most`proximal' node to N0. A metric for the proximity index (as a function ofthe proximity measure) is explained in the next section.The algorithm works as follows: It calculates the proximity index betweenthe new node N0 and each of the available disks. Then it assigns node N0to the disk with the lowest proximity index, i.e., to the disk with the leastsimilar nodes with respect to N0. Ties are resolved using the number ofnodes (data balance): N0 is assigned to the disk with the fewest nodes. Forthe setting of Figure 3.5, PI will assign N0 to disk B because it containsthe most remote rectangles (least Proximity Index). Intuitively, disk B isthe best choice for N0.Although favorably prepared, the example of Figure 3.5 indicates that PIshould perform better than the rest of the heuristics. Next we show how tocalculate exactly the `proximity measure' of two rectangles.25



3.3.1 Proximity MeasureWhenever a new R-tree node N0 is created, it should be placed on the disk thatcontains nodes (= rectangles) that are as dissimilar to N0 as possible. Herewe try to quantify the notion of similarity between two rectangles. The pro-posed measure can be trivially generalized to hold for hyper-rectangles of anydimensionality. For clarity, we examine one- and two- dimensional spaces �rst.Intuitively, two rectangles are similar if they qualify often under the samequery. Thus, a measure of similarity of two rectangles R and S is the proportionof queries that retrieve both rectangles. Thus,proximity(R;S) = Prob f a query retrieves both R and S gor, formally proximity(R;S) = #of queries retrieving bothtotal# of queries = jqjjQj (3.1)To avoid complications with in�nite numbers, let us assume during this subsec-tion that our address space is discretized, with very �ne granularity. (The caseof a continuous address space will be the limit for in�nitely �ne granularity).Based on the above de�nition, we can derive the formulas for proximity, giventhe coordinates of the two rectangles R and S. To simplify the presentation, letus consider the one-dimensional case �rst.One-d CaseWithout loss of generality, we can normalize our coordinates, and assume thatall our data segments lie within the unit line segment [0,1]. Consider two linesegments R and S where R=(rstart, rend) and S=(sstart, send).26



If we represent each segment X as the point (xstart, xend), the segments Rand S are transformed into two-dimensional points [35] as shown in Figure 3.6.In the same Figure, the area within the dashed lines is a measure of the number
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denoting the x and y projections of R. A query X will retrieve both R andS if and only if (a) its x-projection Xx retrieves both Rx and Sx and (b) itsy-projection Xy retrieves both Ry and Sy.Since the x and y sizes of the query rectangles are independent, the fractionof queries that meet both of the above criteria is the product of the fractions foreach individual axis; i.e., the proximity measure proximity2() in two dimensionsis given by:proximity2(R;S) = proximity(Rx; Sx)� proximity(Ry; Sy) (3.7)The generalization for n-dimensions is straightforward:proximityn(R;S) = nYi=1 proximity(Ri; Si) (3.8)whereRi and Si are the projections on the i-th axis, and the proximity() functionfor segments is given by Eqs. 3.4 and 3.6.The proximity index measures the similarity of a rectangle R0 to a set ofrectangles R = fR1; : : : ; Rkg. We need this concept to assess the similarity ofa new rectangle R0 and a disk D containing the rectangles of the set R. Theproximity index is the proximity of the most similar rectangle in R. Formally:proximityIndex(R0;R) = maxRi2R proximityn(R0; Ri) (3.9)where Ri 2 R, and n is the dimensionality of the address space.In Figure 3.9, we calculate the proximity measure between N0 and each of itssiblings, namely N5, N7, and N8 and then pick the largest proximity measure asa value for the proximity index between N0 and disk A (= 0.15 in this example).30
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they move toward each others. When R and S are separate from each other (nointersection), the separation is measured by the distance between the edges ofR and S and is represented by positive values. On the other hand, when R andS intersect, the length of the intersection represented as a negative distance inFigure 3.10(b). Note that the proximity index decreases quadratically with theincrease in the distance between the non-intersecting segments while it increaseslinearly with increasing the overlap region for the intersecting segments.In the two-dimensional case, the proximitymeasure is better than the (inverseof) the Manhattan distance:� For overlapping rectangles, the Manhattan distance is zero, regardless ofthe area of overlap. On the contrary, the proximity measure takes intoaccount not only the area, but the perimeter of the intersection as well.� For disjoint rectangles, the Manhattan distance ignores the relative posi-tion of the rectangles. For example, in Figure 3.11, the rectangles R andT have the same Manhattan distance from the rectangle S. Intuitively, Ris `more similar' to S than T is to S. The proximity measure reects thisfact: proximity2(R;S)= 0.126 > 0.09=proximity2(T; S).In conclusion, the behavior of the proximity measure completely agrees withour intuition: It related to the inverse Manhattan distance of two objects; inaddition, it takes into account the relative position of the objects, and it handlesoverlapping objects correctly.
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0.60.40.2Figure 3.11: Example illustrating the accuracy of the proximity index over theManhattan distance.3.4 Experimental ResultsTo assess the merit of the proximity index heuristic over the other heuristics,we ran simulation experiments on two-dimensional rectangles. We augmentedthe original R-tree code with some routines to handle the multiple disks (e.g.,`choose disk()', `proximity()', etc.) The code is written in C under Ultrix andthe simulation experiments ran on a DECstation 5000. We used both the linearand the quadratic splitting algorithm of Guttman [32]. The quadratic algorithmresulted in better R-trees, i.e., R-trees with smaller father nodes. The exponen-tial algorithm was very slow and was not used. Unless otherwise stated, all theresults we present are based on R-trees that used the quadratic split algorithm.In our experiments we assume that� all D disk units are identical.� the page access time is constant.34



Symbols De�nitionsa average area of a data rectangle� data density (`cover quotient')D number of disksdiskOf() maps nodes to disksL(q) `Load': total number of pages touched by query qN number of data rectanglesp size of a disk page in Kbytesproximityn() proximity of two n-d rectanglesqs side of a query rectangleR(q) response time for query q (in disk accesses)r(q) relative response time (compared to PI)s speed-upTable 3.1: Summary of symbols and de�nitions.
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� the �rst two levels of the Multiplexed R-tree (the root and its children) �tin main memory. The required space is of the order of 100 Kb, which is amodest requirement even for personal computers.� the CPU time is negligible. As discussed before, the CPU is two ordersof magnitude faster than the disk. Thus, for the number of disks we haveexamined (1-25 disks), the delay caused by the CPU is negligible. In thefollowing experiments, we use the number of disk accesses as a measuringunit for the query response time.Without loss of generality, the address space was normalized to the unit square.There are several factors that a�ect the search time. We used real data as wellas synthetic data. The reason for using synthetic data is that we have bettercontrol over the several parameters that characterize the data set. One real dataset comes from the TIGER �les (Bureau of Census). It consists of 39,717 linesegments, representing the roads of Montgomery County in Maryland. Using theminimum bounding rectangles of the segments, we obtained 39,717 rectangles,with data density � = 0.35. We refer to this dataset as the `MGCounty' dataset.Another dataset, which came from NASA, consists of 11,284 observation pointsfrom the International Ultraviolet Explorer (IUE) satellite. We refer to thisdataset as the 'IUE' dataset. It is important to note that these data sets arenon-uniform and highly skewed. We studied the following input parameters:The number of disks D: It ranged from 5-25.The total number of data rectangles N : It ranged from 11,000 to 200,000rectangles. 36



The size of queries qs� qs: The query side qs ranged from 0 (point queries) to0.25.The page size p: It ranged from 1Kb to 4Kb.Another important factor, which is derived from N and the average area a ofthe data rectangles, is the \data density" � (or \cover quotient") of the datarectangles. This is the sum of the areas of the data rectangles in the unit square,or equivalently, the average number of rectangles that cover a randomly selectedpoint. Mathematically: � = N � a. For the selected values of N and a, the datadensity ranges from 0.25 to 2.0.The synthetic data rectangles were generated as follows: Their centers wereuniformly distributed in the unit square; their x and y sizes were uniformlydistributed in the range [0,max], where max = 0.006The query rectangles were squares with side qs. Their centers are uniformlydistributed in the unit square. For every experiment, 100 randomly generatedqueries were asked and the results were averaged. Data or query rectangles thatwere not completely inside the unit square were clipped. The proximity indexheuristic performed very well in our experiments and is therefore the proposedapproach.In the following subsections, we present: (a) A comparison among the node-to-disk assignment heuristics (MI, MA, RR and PI); recall that they are allwithin the Multiplexed R-tree framework. (b) A comparison of the proximityindex versus Round Robin. (c) A comparison of the MUX R-tree + PI versusthe super-node method. (d) A study of the speed-up achieved by PI.37



3.4.1 Comparison of the Disk Assignment Heuristics
Montgomery County data set, page size = 4k, no disks = 10
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better than other heuristics. This behavior is typical for other real datasets
IUE data set, page size = 2k, no disks = 7
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Data density = 0.25, page size = 4k, no disks = 10
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Data density=0.26, # rect=25k, # disks=10
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Page size = 4k, No disks = 10
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queries. For small queries, the number of nodes to be retrieved is small, leavinglittle room for improvement. For huge queries, almost all the nodes need to beretrieved, in which case the data balance of RR achieves good results.We ran experiments with the linear split algorithm of the R-tree. The PIheuristic outperformed the RR consistently, with smaller relative gains, how-ever. The peak gain was �20-30%, instead of the 30-60% that we achieved inFigures 3.15 and 3.16. This di�erence occurs because the proximity index an-ticipates that most of the nodes that are close to the new node will be underthe same father. Linear splitting, however, does not pack nodes together as wellas does quadratic splitting. As a result, in the linear splitting R-tree, manynodes that are close to the new node will not be considered by the PI algorithmbecause they are not siblings.3.4.3 Comparison with the Super-node MethodIn order to justify our claims about the advantages of the Multiplexed (`MUX')R-tree over the super-node method, we compared the two methods with respectto the two requirements, `uniSpread' and `minLoad'. The measure for the �rstrequirement is the response time R(q); the measure for the second is the loadL(q). We present graphs with respect to both measures.Figure 3.17 compares the response time of the Multiplexed R-tree (with PI)against the super-node method. Notice that the di�erence in performance in-creases with the query size qs. In general, the Multiplexed R-tree outperformsthe super-node scheme for large queries. The only situation where the super-node scheme performs slightly better is when there are many disks D and thequery is small. This phenomenon occurs because, since D is large, the R-tree43



Data density = 2, # rect = 100k
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Data density = 2, # rect = 100k
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system with D disks. Then: s = R1(q)Rd(q) (3.10)In this subsection we examine exclusively the Multiplexed R-tree method withthe PI heuristic because it seems to o�er the best performance. Figure 3.19shows the speed-up for data density �=2, page size p=4Kb and for query sidesize qs ranging from 0 to 0.25. The speed-up is high, e.g., 84% of the linear speed-up (for qs=0.25). It achieves even higher values for smaller D. Moreover, thespeed-up increases with the size of the query, apparently because larger queriescan take better advantage of more disks.Conversely, small queries reach a plateau in their speed-up curve. The smallerthe query size, the sooner the speed-up reaches the plateau. Figure 3.20 providesthe explanation pictorially. It shows the actual response times versus the numberof disks D for the very same setting. Notice that all curves approach the optimalbound, namely, the number of levels of the tree that are not in core. A smallquery will reach this bound quickly for a small D. Thus, the attening of thespeed-up curves means that the respective queries enjoy minimal response time.Finally, in Figure 3.21 we show how speed-up is a�ected by data density. Thequery size is �xed at qs=0.25 and everything else remain the same. Increasing� yields higher speed-ups exactly because the query retrieves more nodes and istherefore more amenable to parallelism.3.5 DiscussionUsing R-trees as the underlying �le structure, we have studied alternative designsfor a spatial object server, We focused on rectangular range queries. Our goal is46



Data density = 2, page size = 4k
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With respect to speed-up, the proposed method can achieve near-linear speed-up for large queries. Thus, the multiplexed R-tree with the PI heuristic seemsto be the best method for implementing a spatial object server.
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Chapter 4Hilbert R-trees4.1 IntroductionIn this chapter, we introduce two new spatial indexes based on space-�llingcurves. The �rst index is suitable for the static database in which updates arevery rare or in which there are no updates at all. The nodes of the resultingR-tree will be fully packed, with the possible exception of the last node at eachlevel. Thus, the utilization is � 100%; we call this structure a Static HilbertR-tree. The second index supports insertions and deletions and is suitable for adynamic environment; we call it a Dynamic Hilbert R-tree.For the static environment, we design and study several heuristics for buildingthe R-tree bottom-up. Most of these heuristics are based on space-�lling curves,and speci�cally on the Hilbert curve. The di�cult step is to sort the rectanglesin some meaningful way; once this is done, we scan them, assigning each groupof C rectangles to a leaf page of the R-tree (where C stands for the capacityof the disk page). We report experiments from two-dimensional data, althoughour method can handle higher dimensionalities. The experimental results showthat the most e�ective of our heuristics is the one that sorts the data rectangles51



according to the Hilbert value of their centers (`2D-c' heuristic). This heuristicconsistently outperforms all the known R-tree variants, namely, the quadratic-split R-tree and the R�-tree, as well as the method proposed by Roussopoulosand Leifker [64], which is the only method of R-tree packing known up to now.For the dynamic case, we propose an e�cient indexing method for spatialdata; this method is called the Dynamic Hilbert R-tree or simply \Hilbert R-trees." Our proposed indexing scheme combines the best characteristics of theR-tree and the B�-tree. The Hilbert R-tree uses a simple insertion and splittingalgorithms similar to those used in the B�-tree. A new data rectangle is insertedinto the tree according to its place on the Hilbert curve that passes through allthe data in the space. Unlike other dynamic R-tree variants which have about70% space utilization [7], the Hilbert R-tree can demonstrate much higher spaceutilization. When a node overows, it refrains from splitting. If the left sibling isnot full, the overowing node pushes some of its entries to it. If the left sibling isfull, the two nodes are split into three nodes. This idea is known as local rotation[47]. Moreover, the overowing node can refrain from splitting unless s of thesibling nodes are full. Thus, by varying the parameter `s' (splitting policy), theHilbert R-tree trade o� insertion cost for search speed and higher utilization.The rest of this chapter is organized as follows. Section 4.2 describes ourproposed heuristics for building the static Hilbert R-tree. Section 4.3 describesthe Dynamic Hilbert R-tree. In section 4.4, we introduce the analytical formulafor computing the average response time for a given R-tree instance, given someinformation about the minimum bounding rectangles of its nodes. Section 4.5presents our experimental results, which verify the validity of the analyticalformula and compare the proposed methods (namely the Static and Dynamic52



Hilbert R-trees) with other R-tree variants. Section 4.6 gives the conclusionsand directions for future research.4.2 Static Version { Ordering RectanglesMethod name Description2D-c sorts on the 2d-Hilbert value of the centers (cx; cy)4D-xy sorts on the 4-d Hilbert value of the two corners,i.e., (lowx; lowy; highx; highy)4D-cd sorts on 4-d Hilbert value of the center anddiameters, i.e., (cx; cy; dx; dy)2Dz-c sorts on the z-value of the center (cx; cy)lowx packed R-tree [64] sorts on the x coordinate of the lower left cornerlinear-split R-tree [32] Guttman's R-tree with linear splitquadratic-split R-tree [32] Guttman's R-tree with quadratic splitR�-tree [7] R-tree variant, better packing, forced reinsertTable 4.1: List of methods - the proposed ones are in italics.We assume that the data are static, or that the frequency of modi�cationis low. Our goal is to design a simple heuristic for constructing an R-tree with100% space utilization, which, at the same time, will have as good response timeas possible. For a static environment, Roussopoulos and Leifker [64] proposed amethod for building a packed R-tree that achieves (almost) 100% space utiliza-tion. The idea is to sort the data on the x or y coordinate of one of the corners53



of the rectangles. The sorted list of rectangles is scanned; successive rectanglesare assigned to the same R-tree leaf node until that node is full; a new leaf nodeis then created and the scanning of the sorted list continues. Thus, the nodes ofthe resulting R-tree will be fully packed, with the possible exception of the lastnode at each level. Thus, the utilization is � 100%. Higher levels of the treeare created in a similar way. Their experimental results on point data showedthat their packed R-tree performs much better than does the linear split R-treefor point queries. In our experiments (Section 4.5), their packed R-tree outper-formed the quadratic split R-tree and the R�-tree as well for point queries onpoint data. However, the method does not perform that well for region queriesand/or rectangular data.We shall refer to the Roussopoulos and Leifker's method as the lowx packedR-tree. In our implementation of their method, we sort the rectangles accordingto the x value of the lower left corner (`lowx'). Sorting on any of the other threevalues gives similar results; thus our implementation does not impose an unfairdisadvantage to the lowx packed R-tree. The fact that the lowx packed R-treeperforms worse than do dynamic designs (e.g. R�-tree) compels us to compareour new packing methods with both Static and Dynamic designs, including thelowx packed R-tree, the Guttman R-tree, and the R�-tree. Figures 4.1 and 4.2highlight the problem of the lowx packed R-tree. Figure 4.2 shows the leaf nodesof the R-tree that the lowx packing method will create for the points of Figure4.1. The fact that the resulting father nodes cover little area explains why thelowx packed R-tree achieves excellent performance for point queries; the fact thatthe fathers have large perimeters (in conjunction with the rami�cation of Eq. 4.3which is given in Section 4.4), explains the degradation of performance for region54



queries. Intuitively, the packing algorithm should ideally assign nearby pointsto the same leaf node. Ignorance of the y-coordinate by the lowx packed R-treetends to violate this empirical rule.
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0.00 20.00 40.00 60.00 80.00 100.00Figure 4.1: 200 points uniformly distributed.In order to cluster the data better than can be done by the lowx packedR-trees, we propose the use of space-�lling curves and speci�cally, the Hilbertcurve.A space-�lling curve visits all the points in a k-dimensional grid exactly onceand never crosses itself. The Z-order (or Morton key order, or bit-interleaving,or Peano curve), the Hilbert curve, and the Gray-code curve [14] are examples ofspace-�lling curves. In [21], it was shown experimentally that the Hilbert curveachieves the best clustering of the above three methods.We now provide a brief introduction to the Hilbert curve. The basic Hilbertcurve on a 2x2 grid, denoted by H1, is shown in Figure 4.3. To derive a curveof order i, each vertex of the basic curve is replaced by the curve of order i� 1,55
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Algorithm Hilbert-Pack:(packs rectangles into an R-tree)Step 1. Calculate the Hilbert value for each data rectangleStep 2. Sort data rectangles on ascending Hilbert valuesStep 3. /* Create leaf nodes (level l=0) */While (there are more rectangles)generate a new R-tree nodeassign the next C rectangles to this nodeStep 4. /* Create nodes at higher level (l+ 1) */While ( there are > 1 nodes at level l)sort nodes at level l � 0 on ascendingcreation timerepeat Step 3Figure 4.4: Pseudo-code of the packing algorithm.
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the same algorithm (see Figure 4.4) to build the R-tree. The only point at whichthe proposed Hilbert-based methods distinguish themselves from each other is inthe way they compute the Hilbert value of a rectangle. We examine the followingalternatives:4d Hilbert through corners (`4D-xy'): Each data rectangle is mapped toa point in four-dimensional space formed by the lower left corner and theupper right corner, namely (lowx, lowy, highx, highy). The Hilbert valueof this four-dimensional point is the Hilbert value of the rectangle.4-d Hilbert through center and diameter(`4D-cd'): Each data rectangleis mapped to the four-dimensional point (cx; cy; dx; dy) where cx; cy are thecoordinates of the center of the rectangle and dx; dy the `diameters' or sidesof the rectangle. As in 4D-xy, the Hilbert value of this four-dimensionalpoint is the Hilbert value of the rectangle.2-d Hilbert through Centers Only (`2D-c'): Each data rectangle is rep-resented by its center only; the Hilbert value of the center is the Hilbertvalue of the rectangle.For the sake of comparison, we also examined a method that uses the Peanocurve, or `z-ordering', despite the fact that the z-ordering achieves inferior clus-tering compared to the Hilbert curve [21]. The z-value of a point is computedby bit-interleaving the binary representation of its x and y coordinates. Forexample, in Figure 4.5, the point (0,0) has a z-value of 0, while the point (1,3)has a z-value of 7.Z-order through Centers only (`2Dz-c'): The value of the rectangle is thez-value of its center. 59
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following:De�nition 2 : The Hilbert value of a rectangle is de�ned as the Hilbert valueof its center.4.3.1 DescriptionThe goal is to create a tree structure that can� behave like an R-tree on search.� support local rotation on insertion, using the Hilbert value of the inserteddata rectangle as the primary key.These goals can be achieved as follows: for every node n of our tree, we store(a) its MBR, and (b) the Largest Hilbert Value (LHV) of the data rectanglesthat belong to the subtree with root n.Speci�cally, the Hilbert R-tree has the following structure. A leaf node con-tains at most Cl entries each of the form(R, obj id)whereCl is the capacity of the leaf,R is the MBR of the real object (xlow ; xhigh ; ylow ; yhigh ),and obj � id is a pointer to the object description record. The main di�erencebetween the Hilbert R-tree and the R*-tree is that nonleaf nodes also contain in-formation about the LHVs. Thus, a non-leaf node in the Hilbert R-tree containsat most Cn entries of the form (R, ptr, LHV )61



where Cn is the capacity of a non-leaf node, R is the MBR that encloses all thechildren of that node, ptr is a pointer to the child node, and LHV is the largestHilbert value among the data rectangles enclosed by R. Notice that since thenon-leaf node picks one of the Hilbert values of the children to be the value of itsown LHV , we never calculate or use the Hilbert values of the MBR of non-leafnodes. Figure 4.6 illustrates some rectangles organized in a Hilbert R-tree. TheHilbert values of the centers are the numbers near the `x' symbols (shown onlyfor the parent node `II'). The LHV's are in [brackets]. Figure 4.7 shows how thetree of Figure 4.6 is stored on the disk; the contents of the parent node `II' areshown in more detail. Every data rectangle in node `I' has a Hilbert value �33;everything in node `II' has a Hilbert value greater than 33 and �107, etc.
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data Hilbert values <= data Hilbert values <= data Hilbert values <= 33 107 206Figure 4.7: The �le structure for the Hilbert R-tree.Before we continue, we list some de�nitions. A plain R-tree splits a node onoverow, creating two nodes from the original one. We call this policy a 1-to-2splitting policy. We propose to defer the split, waiting until two nodes split intothree. Note that this is similar to the B� � tree split policy. We refer to thismethod as the 2-to-3 splitting policy. In general, we can have an s-to-(s+1)splitting policy; we refer to s as the order of the splitting policy. To implementthe order-s splitting policy, the overowing node tries to push some of its entriesto one of its s � 1 siblings; if all of them are full, then we have an s-to-(s+1)split. We refer to the s� 1 siblings as the cooperating siblings of a given node.Next, we describe in detail the algorithms for searching, insertion, and over-ow handling.4.3.2 SearchingThe searching algorithm is similar to the one used in other R-tree variants.Starting from the root, it descends the tree and examines all nodes that intersectthe query rectangle. At the leaf level, it reports all entries that intersect the query63



window w as quali�ed data items.Algorithm Search(node Root, rect w):S1. Search nonleaf nodes:Invoke Search for every entry whose MBR intersects thequery window w.S2. Search leaf nodes:Report all entries that intersect the query window w ascandidates.4.3.3 InsertionTo insert a new rectangle r in the Hilbert R-tree, the Hilbert value h of thecenter of the new rectangle is used as a key. At each level we choose the nodewith the minimum LHV of all its siblings. When a leaf node is reached, therectangle r is inserted in its correct order according to h. After a new rectangleis inserted in a leaf node N , AdjustTree is called to �x the MBR and LHVvalues in the upper-level nodes.Algorithm Insert(node Root, rect r):/* Inserts a new rectangle r in the Hilbert R-tree. h is theHilbert value of the rectangle. */I1. Find the appropriate leaf node:Invoke ChooseLeaf(r, h) to select a leaf node L in which toplace r.I2. Insert r in a leaf node L: 64



If L has an empty slot, insert r in L in theappropriate place according to the Hilbert order and return.If L is full, invoke HandleOverow(L,r), whichwill return new leaf if split was inevitable.I3. Propagate changes upward:Form a set S that contains L, its cooperating siblingsand the new leaf (if any).Invoke AdjustTree(S).I4. Grow tree taller:If node split propagation caused the root to split, createa new root whose children are the two resulting nodes.Algorithm ChooseLeaf(rect r, int h):/* Returns the leaf node in which to place a new rectangle r. */C1. Initialize:Set N to be the root node.C2. Leaf check:If N is a leaf, return N .C3. Choose subtree:If N is a non-leaf node, choose the entry (R, ptr, LHV)with the minimum LHV value greater than h.C4.Descend until a leaf is reached:Set N to the node pointed by ptr and repeat from C2.65



Algorithm AdjustTree(set S):/* S is a set of nodes that contains the node being updated, itscooperating siblings (if overow has occurred) and the newlycreated node NN(if split has occurred).The routine ascends from the leaf level towards the root, adjusting MBRand LHV of nodes that cover the nodes in S.It propagates splits (if any). */A1. If root level is reached, stop.A2.Propagate node split upwardLet Np be the parent node of N .If N has been split, let NN be the new node.Insert NN in Np in the correct order according to its Hilbertvalue if there is room. Otherwise, invokeHandleOverow(Np, NN).If Np is split, let PP be the new node.A3.Adjust the MBR's and LHV's in the parent level:let P be the set of parent nodes for the nodes in S.Adjust the corresponding MBR's and LHV's of the nodes in Pappropriately.A4.Move up to next level:Let S become the set of parent nodes P, withNN = PP, if Np was split.repeat from A1. 66



4.3.4 DeletionIn the Hilbert R-tree we do NOT need to re-insert orphaned nodes whenever afather node underows. Instead, we borrow keys from the siblings or we merge anunderowing node with its siblings. We are able to do so because the nodes havea clear ordering (according to Largest Hilbert Value, LHV ); in contrast, in R-trees there is no such concept concerning sibling nodes. Notice that for deletionswe need s cooperating siblings, while for insertion we need s� 1 siblings.Algorithm Delete(r):D1.Find the host leaf:Perform an exact match search to �nd the leaf node Lthat contains r.D2.Delete r :Remove r from node L.D3. If L underowsborrow some entries from s cooperating siblings.if all the siblings are ready to underow,merge s+ 1 to s nodes,adjust the resulting nodes.D4.Adjust MBR and LHV in parent levels.form a set S that contains L and its cooperatingsiblings (if underow has occurred).invoke AdjustTree(S).
67



4.3.5 Overow HandlingThe overow handling algorithm in the Hilbert R-tree treats the overowingnodes either by moving some of the entries to one of the s � 1 cooperatingsiblings or by splitting s nodes into s+ 1 nodes.Algorithm HandleOverow(node N, rect r):/* return the new node if a split occurred. */H1. Let E be a set that contains all the entries from Nand its s� 1 cooperating siblings.H2. Add r to E.H3. If at least one of the s� 1 cooperating siblings is not full,distribute E evenly among the s nodes according toHilbert values.H4. If all the s cooperating siblings are full,create a new node NN anddistribute E evenly among the s+ 1 nodes accordingto Hilbert values.return NN .4.4 Analytical Formula for the Response TimeIn this section we introduce an analytical formula for evaluating the averageresponse time for a query of size qx � qy as a function of the geometric charac-teristics of a given instance of an R-tree. This means that once we have builtthe R-tree we can estimate the average response time of the query qx � qy with-68



Symbols De�nitionsp page size, in bytesC page capacity(max. number of rectangles per page)P (qx; qy) avg. pages retrieved by a qx � qy queryNd number of data rectanglesN number of tree nodes� density of datani node i in the R-treeni;x length of node i in x directionni;y length of node i in y directionLx sum of x-sides of all nodes in the treeLy sum of y-sides of all nodes in the treeTotalArea sum of areas of all nodes in the treeqx length of the query in x directionqy length of the query in y directionTable 4.2: Summary of symbols and de�nitions.
69



out generating random queries and then computing the average and variance oftheir response times. In this discussion we assume that queries are rectanglesuniformly distributed over the unit square address space. Without loss of gen-erality we consider a two-dimensional space. The same idea can be generalizedto higher dimensions.The response time of a range query is primarily a�ected by the time requiredto retrieve the nodes touched by the query plus the time required by the CPUto process the nodes. Since the CPU is much faster than the disk, we assumethat the CPU time is negligible (=0) compared to the time required by a diskto retrieve a page. Thus, the measure for the response time is approximated bythe number of nodes (pages) that will be retrieved by the range query.The next lemma forms the basis for the analysis:Lemma 1 If the node ni of the R-tree has an MBR of ni;x � ni;y, then theprobability DA(ni;x; ni;y) that this node will contribute one disk access to a pointquery is DA(ni;x; ni;y) = Prob(point query retrieves node ni)= ni;x � ni;y (4.1)DA() is the expected number of disk accesses that the speci�c node will con-tribute in an arbitrary point query. Notice that the level of the node in theR-tree is immaterial.Proof: Since we assume that the (point) queries are uniformly distributed inthe address space and the address space is the unit square. The probability thata random point fall within the rectangle (ni;x; ni;y) is the area of the rectangleni;x � ni;y. 70



The next two lemmas calculate the expected number of disk accesses for pointand rectangular queries respectively.Lemma 2 (Point query) For a point query, the expected number of disk ac-cesses P (0; 0) is given by P (0; 0) = NXi=1 ni;x � ni;y (4.2)Proof: Every node ni in the R-tree is represented in the native space by itsminimum bounding rectangle (MBR) of size say, ni;x, ni;y in the x, y directionrespectively. Given Lemma 1, each node of the R-tree contributes DA() diskaccesses; to calculate the average number of disk accesses resulting from all thenodes of the R-tree, we have to sum Eq. 4.1 over all the nodes.Similar analysis was done independently in ??.
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Figure 4.8: (a) Original nodes along with rectangular query qx�qy; (b) Extendednodes with point query Q.Lemma 3 (Rectangular query) For a rectangular query qx�qy, the expectednumber of disk accesses P (qx; qy) is given byP (qx; qy) = NXi=1 ni;x � ni;y + qy � NXi=1 ni;x71



+qx � NXi=1 ni;y +N � qx � qy (4.3)Proof: A rectangular query of size qx � qy is equivalent to a point query, ifwe `inate' the nodes of the R-tree by qx and qy in the x- and y-directionsrespectively (equivalently, the node can be inated by qx=2 along the x directionfrom the two ends and by qy=2 along the y direction from the two ends). Thus,the node ni with size ni;x�ni;y behaves like a node of size (ni;x+qx)� (ni;y+qy).Figure 4.8 illustrates the idea: Figure 4.8(a) shows a range query qx � qy withthe upper-left corner at Q; this query is equivalent to a point query anchored atQ as long as the data rectangles are `inated' as shown by the dotted lines inFigure 4.8(b). Applying (Eq. 4.2) on Figure 4.8(b) we obtain:P (qx; qy) = NXi=1(ni;x + qx) � (ni;y + qy) (4.4)which after trivial mathematical manipulations gives (Eq. 4.3).Notice that Lemma 3 givesP (qx; qy) =TotalArea+ qx � Ly + qy � Lx +N � qx � qy (4.5)where TotalArea = P (0; 0) is the sum of all the areas of the nodes of the tree,and Lx, Ly are respectively the sums of x and y extents of all nodes in the R-tree.There are several comments and observations with respect to the above for-mulas:� The formula is independent of the details of the R-tree creation/insertion/splitalgorithms; it holds for packed R-trees, for R�-trees, etc.� Notice that Eq. 4.3 for range queries reduces to Eq. 4.2 for point queriesif qx = qy = 0, as expected. 72
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Eq 4.3 to avoid issuing queries in their simulation studies. This eliminatesone randomness factor (the query), leaving the generation and insertionorder of the data as random variables.4.5 Experimental ResultsTo assess the merit of our proposed Hilbert R-trees, we implemented both thestatic and the dynamic Hilbert R-trees and ran experiments on a two dimensionalspace. The methods were implemented in C under UNIX. We compared ourmethods against the quadratic-split R-tree, the R�-tree, and the lowx R-tree.Since the CPU time required to process the node is negligible, we based ourcomparison on the number of nodes (=pages) retrieved by range queries.Without loss of generality, the address space was normalized to the unitsquare. There are several factors that a�ect the search time; we studied thefollowing ones:Data items: points and/or rectangles and/or line segments (represented bytheir MBRs)File size: ranged from 10,000 to 100,000 records.Query area Qarea = qx � qy: ranged from 0 to 0.3 of the area of the addressspace.Recall that the `data density' � (or `cover quotient') of the data rectangles isthe sum of the areas of the data rectangles in the unit square, or equivalently,the average number of rectangles that cover a randomly selected point. Math-ematically: � = N � a. For the selected values of N and a, the data density74



ranges from 0.25 to 2.0.To compare the performance of our proposed structures we used �ve data�les that contained di�erent types of data: points, rectangles, lines, or mixed.Speci�cally, we used:A) Real Data: we used real data from the TIGER system of the U.S. Bureauof Census. These were the same �les that we used before. We repeat theirdescription for convenience. An important observation is that the data inthe TIGER datasets follow a highly skewed distribution.`MGCounty' : This �le consists of 39,717 line segments representing theroads of Montgomery County in Maryland. Using the minimumbounding rectangles of the segments, we obtained 39,717 rectangles,with data density � = 0.35. We refer to this dataset as the `MG-County' dataset.`LBeach' : This �le consists of 53,145 line segments representing the roadsof Long Beach, California. The data density of the MBRs that coverthese line segments is � = 0:15. We refer to this dataset as the`LBeach' dataset.B) Synthetic Data: The reason for using synthetic data is that we can con-trol the parameters (data density, number of rectangles, ratio of points torectangles, etc.).`Points' : This �le contains 75,000 uniformly distributed points.`Rects' : This �le contains 100,000 rectangles, no points. The centers ofthe rectangles are uniformly distributed in the unit square. The datadensity is � = 1:0 75



`Mix' : This �le contains a mix of points and rectangles; speci�cally 50,000points and 10,000 rectangles; the data density is � = 0:029.The query rectangles were squares with side qs; their centers were uniformlydistributed in the unit square. For each experiment, 200 randomly generatedqueries were asked and the results were averaged. The standard deviation wasvery small and is not even plotted in our graphs. In the following subsectionswe present two groups of experiments to evaluate our methods in a static and ina dynamic environment respectively.4.5.1 Static Hilbert R-treesHere we evaluate the performance of our Hilbert R-tree for a static environment.In the following subsections we present experiments (a) verifying (Eq. 4.3) for theresponse time; (b) comparing the response time of the best of our methods (2D-c) with the response time of older R-tree variants (dynamic or static); and (c)comparing all proposed packing schemes against each other in order to pinpointthe best.Verifying the formula for the response timeIn the previous section we introduced a probabilistic model for the R-treeunder rectangular range queries. Equation 4.3 gives an estimate for the numberof pages retrieved by a query of size qx� qy. In this section we introduce exper-imental results to show how far our estimate is from the experimental values.Table 4.3 shows the number of pages retrieved as a function of the querysize (area). We carried out many experiments to compare the formula withthe simulation results. For each query size, 50 random queries are generated.76



query area Exper. nodes/query Theor. (Eq. 4.3)Qarea avg.(pages/query) std. dev. pages/query0.00000 3.88 0.86 3.750.00001 4.06 1.00 4.120.00027 5.84 1.24 5.950.00333 9.00 1.35 9.010.01333 16.94 1.91 17.670.08333 63.18 4.14 64.070.11111 208.20 7.41 209.45Table 4.3: Verifying (Eq. 4.3); theoretical vs. experimental response time(pages/query).The average and standard deviation are calculated, and compared with the onederived analytically. In Table 4.3, we use the area Qarea as the measure of thesize of queries. Column 2 shows the response time in terms of the number of diskaccesses measured experimentally for the di�erent query sizes in Column 1. Thestandard deviation in the experimental response time (due to the randomness inthe query) is shown in Column 3. Column 4 shows the response time (in termsof the number of page accesses) as estimated by (Eq. 4.3). The data �le contains75k points. Notice that the formula matches the experimental results extremelywell. The di�erence between the estimated number of pages retrieved by aquery and the experimental value is less than one standard deviation. For thisexperiment, the R-tree was built using the Hilbert 2D-c packing heuristic. Wealso experimented with the following R-tree structures: R�-tree, lowx packed R-tree, quadratic split R-tree, 4D-cd packed R-tree, and 4D-xy packed R-tree. We77



obtained similar results in all cases which we do not show, because they provideno additional information. These results are typical for several combinations ofparameter values (p = (1Kb � 4Kb); � = (0:25 � 1)) and several datasets (e.g.datasets consisting of both points and rectangles, etc.). In all the results wepresent throughout the rest of Section 4.5.1, we used (Eq. 4.3) to calculate thenumber of pages retrieved by a query.
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TIGER: Long Beach, CA : 53,145 line segments
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Mixture of 50k Points + 10k Rectangles
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ures 4.10- 4.13 plot the average number of pages retrieved as a function of Qarea(= query area = qx � qy). We show that the 2D-c packing method gives betterresponse times than do older R-tree variants. The fact that the lowx packedR-tree performs worse than do dynamic designs (such as R�-tree) compelled usto compare our new packing methods with both static and dynamic designs,namely the lowx packed R-tree, the Guttman R-tree with quadratic split, andthe R�-tree. In our plots we omit the results of the linear-split R-tree, becausethe quadratic-split R-tree consistently outperformed it. The exponential-split R-tree was very slow in building the tree, and it was not used. For the R�-tree, thepercentage of nodes to be deleted in case of node overow in the forced reinsertalgorithm is set to the recommended value of 30% [7]. To avoid cluttering theplots, we only plot the best of our proposed algorithms, namely the one usingthe `2D-c' heuristic. The detailed results for the other Hilbert-based packingalgorithms are presented in the next subsection.Figures 4.10- 4.13 plot the number of pages retrieved by a range query (fromEq. 4.3) as a function of the area of the query. In each graph we show four curvesfor the following R-tree variants: the Hilbert 2D-c packed R-tree (\Hilbert 2D-c"), the R�-tree, the quadratic split R-tree of Guttman (\R-tree 'q-split"'), andthe lowx packed R-tree (\lowx"). Figures 4.10 and 4.11 show the results for theTIGER data sets, which represent the roads of Montgomery County of Marylandand the roads of Long Beach of California respectively. Figure 4.12 shows theresults for 'Mix' data set. The fourth set (Figure 4.13) is the 'Rects' data set.A common observation is that, for point queries, all methods perform al-most the same, with small di�erences. However, for slightly larger queries, theproposed 2D-c Hilbert packed R-tree is the clear winner. The performance gap82



increases with the area of the queries.The second important observation is that the performance gap seems to in-crease with the skewness of the data distribution: for the TIGER data sets, theproposed method achieves up to 36% improvement over the next best method(R�-tree), and up to 58% improvement over the lowx packed R-tree. One mightexpect that the Hilbert R-tree would perform better because of its high spaceutilization (almost 100%). But since the performance of the static lowx packedR-tree (100% space utilization) is worse than the performance of the dynamicdesigns (e.g., quadratic split R-tree and the R�-tree), we ascribe the good per-formance of our proposed methods not only to the higher space utilization butalso to the good clustering property of the Hilbert curve.Moreover, the di�erence between the R�-tree and the quadratic split R-treeis even smaller when real data are used. The R�-tree performs better than thequadratic split R-tree for the following reasons. First, theR�-tree algorithms takeinto account the area and perimeter of the resulting nodes, while, the quadraticsplit R-tree tries to minimize the area only. Note that these empirical resultsconform with our analysis (Equation 4.3), which shows that the response timeof the rectangular queries depends on the area and the perimeter of the R-treenode. Second, the R�-tree employs the concept of \forced reinsert" when a nodeoverows; this factor helps in reorganizing the tree occasionally.Comparison of Hilbert-based packing schemesHere we compare all the packing heuristics that we have introduced in this pa-per, namely 2D-c , 4D-xy, 4D-cd and the only heuristic that uses the z-ordering,2Dz-c. Table 4.1 contains a list of these methods, along with a brief description.83



query area Hilbert Hilbert HilbertQarea 2D-c 4D-cd 4D-xy0.000000 3.74 5.10 7.040.000278 5.60 7.28 9.260.001111 8.22 10.24 12.040.004444 15.20 17.84 20.320.111111 169.76 177.06 180.54Table 4.4: Comparison (disk accesses/query) of di�erent schemes which use theHilbert order.Table 4.4 gives the response time versus the query area for all of theseheuristics that use the Hilbert order. The (synthetic) data �le consists of 50Kpoints and 10K rectangles. The page size p = 1Kb. The di�erences between thealternative methods are small. However, from Table 4.4 we see that (2D-c) doesbetter, especially for large queries. The next best method is the (4D-cd), whichuses a 4-d Hilbert curve on the parameter space (center-x, center-y, diameter-x,diameter-y). The last contender is the 4D-xy.For the same setting, Table 4.5 compares the 2D-c heuristic, which sorts thedata according to the 2d Hilbert-value of the centers of the data rectangles andthe 2Dz-c heuristic, which sorts according to the two-dimensional z-value of thecenter. Table 4.5 shows that the 2D-c which uses the Hilbert order, always per-forms better than the 2Dz-c which uses the z-order. In our experiments, we onlycompared the clustering property of the Hilbert and the z-order curves. For thecomparison to be fair, other properties need to be compared; such a comparisonwould include the cost of calculating the code, the cost of reversing the code and84



query area Hilbert Z-orderQarea 2D-c 2Dz-c0.000000 3.74 5.980.000278 5.60 8.640.001111 8.22 11.480.004444 15.20 20.280.111111 169.76 183.56Table 4.5: Schema that uses Hilbert order vs. one that uses z-order (disk ac-cesses/query).other properties which are important for image processing algorithms (such asadmissibility [12]), which are out of the scope of this thesis. In our application,the cost of calculating the Hilbert value is small. Also, we only need to computethe Hilbert value ONCE on insertion; and NEVER on search.The relative ranking of the methods was the same for every dataset we tried;we omit the results because they provide no new information.4.5.2 Dynamic Hilbert R-treesHere we evaluate the performance of the proposed Hilbert R-tree in a dynamic en-vironment. We compare the Hilbert R-tree to the original R-tree (quadratic split)and the R�-tree. Next we present experiments that (a) compare our methodagainst other R-tree variants, (b) show the e�ects of the di�erent split policieson the performance of the proposed method, and (c) evaluate the insertion cost.85



50k points and 10k rectangles; 2-to-3 split policy
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100k rectangles; 2-to-3 split policy
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0.00 50.00 100.00 150.00 200.00 250.00Figure 4.15: Dynamic Hilbert R-tree (2-to-3 split) vs. other R-tree variants;`Rects' dataset.
87



75k points; 2-to-3 split policy
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Montgomery County: 39,717 line segements; 2-to-3 split policy
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Long Beach: 53,145 line segements; 2-to-3 split policy
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followed by the R�-tree. The good performance of the Hilbert R-tree `2-to-3'split is due to the good clustering property of the Hilbert curve and the higherspace utilization (� 83%) achieved by the `2-to-3' split policy. The good spaceutilization is not a su�cient condition for the good performance simply becausethe lowx packed R-tree, which has 100% space utilization, performs worse thanthe R�-tree and the quadratic split R-tree. Note also that the performance ofthe three R-tree variants is comparable for point queries (Qarea = 0). In thelight of Equation 4.3, we can make the following observation: The total areas ofthe nodes of the three R-tree structures, namely the Hilbert R-tree, the R�-tree,and the quadratic split R-tree, are approximately equal; this is why all three R-tree structures give similar response times when Qarea=0. The three structuresdi�er, however, in total perimeter. The Hilbert R-tree gives the smallest totalperimeter. Note that the perimeter term appears and becomes dominant fornon-point queries (Qarea > 0). Also, the perimeter term is the one that givesthe edge to the R�-tree over the quadratic split R-tree. As we mentioned earlier,the split algorithm for the R�-tree minimizes the areas and the perimeters of theresulting nodes, while the quadratic split R-tree minimizes the area only.In all the given experiments, the Hilbert R-tree is the clear winner, achievingup to 28% savings in response time over the next best contender (the R�-tree).This maximum gain is achieved for the 'MGCounty' dataset (Figure 4.17). It isinteresting to note that the performance gap is larger for the real data, whosemain di�erence from the synthetic one is that it is skewed, as opposed to uniform.Thus, we can conjecture that the skewness of the data favors the Hilbert R-tree.
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The E�ect of the Split Policy on Performance
Montgomery County: 39717 line segements; different split policies
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0.00 200.00 400.00Figure 4.19: The e�ect of the split policy on the query retrieval time of theDynamic Hilbert R-tree.This section shows how the increase in the split policy a�ects the performance ofthe Hilbert R-tree. Intuitively, with the good clustering property of the HilbertR-tree, we expect the total area and perimeter of the resulting R-tree nodes todecrease with increasing space utilization. Consequently, the number of nodesretrieved by a query is expected to decrease. One would, of course, expect theinsertion cost to increase with increasing the split policy (see Section 4.5.2).Figure 4.19 shows the response time as a function of the query size for the 1-to-2, 2-to-3, 3-to-4 and 4-to-5 split policies. The corresponding space utilizationswere 65.5%, 82.2%, 89.1%, and 92.3% respectively. For comparison, we also92



plot the response times (in terms of the number of disk accesses) of the R�-tree.As expected, the response time for the range queries improves with the averagenode utilization. However, there seems to be a point of diminishing returns ass increases. For this reason, we recommend the `2-to-3' splitting policy, whichstrikes a balance between insertion speed (which deteriorates with s) and searchspeed, which improves with s.It is interesting to note that even with the simple 1-to-2 splitting policy (i.e.,no rotation), the Hilbert R-tree performs better than the quadratic split R-treeand at least as well as the R�-tree. With the recommended 2-to-3 splitting policy,the Hilbert R-tree clearly does better than the R�-tree and the quadratic splitR-tree.Insertion CostThe higher space utilization in the Hilbert R-tree comes at the expense of higherinsertion cost. As we employ a higher split policy, the number of cooperatingsiblings need to be inspected at overow increases. We show that the `2-to-3'policy is a good compromise between the performance and the insertion cost. Inthis section we present experimental results which compare the insertion cost ofthe Hilbert R-tree `2-to-3' split with the insertion cost in the R�-tree. Also, weshow the e�ect of the split policy on the insertion cost. The cost is measured bythe number of disk accesses per insertion.Table 4.6 shows the insertion cost of the Hilbert R-tree and of the R�-treefor the �ve di�erent datasets. The main observation here is that there is noclear winner in the insertion cost. Although the R�-tree does not employ localrotation as does the Hilbert R-tree, it has insertion cost comparable to that of93



(disk accesses)/insertiondataset Hilbert R-tree R� � tree(2-to-3 split)MGCounty 3.55 3.10LBeach 3.56 4.01Points 3.66 4.06Rects 3.95 4.07Mix 3.47 3.39Table 4.6: Comparison of insertion cost between the Hilbert R-tree with `2-to-3'split and the R�-tree; disk accesses per insertion (average over all datasets).split policy (disk accesses)/insertion1-to-2 3.232-to-3 3.553-to-4 4.094-to-5 4.72Table 4.7: The e�ect of the split policy on the insertion cost of the Hilbert R-tree`2-to-3' split; MGCounty dataset. 94



the Hilbert R-tree. This is because the R�-tree employs the `forced reinsert'technique. When a new data rectangle is inserted into the R�-tree, the �rstoverow on each level will be treated by deleting 30% of the entries of theoverowing node and by reinserting them in the tree. Note that more than oneoverows might take place as a result of one insertion. The number of timesthe forced reinsert is performed is unpredictable, and it even depends on theinsertion order of the data rectangles. This means that the insertion cost in theR�-tree might di�er for the same data set if the insertion order is changed. Thisalso explains the signi�cant di�erence in the insertion cost for `MGCounty' and`LBeach' in the R�-tree although both datasets represent roads in two countiesand both have the same insertion cost under the Hilbert R-tree. In contrast,the insertion cost in the Hilbert R-tree is less dependent on the insertion orderand depends rather on the split policy. Since the R�-tree reinserts 30% of theoverowed node, we expect that the gap between the insertion cost of the R�-treeand that of the Hilbert R-tree would increase with increasing node size.Table 4.7 shows the e�ect of increasing the split policy in the Hilbert R-treeon the insertion cost for the MGCounty dataset. As expected, the insertioncost increases monotonically with the order s of the split policy. This is simplybecause the number of cooperating siblings s� 1 that will be retrieved when anoverow occurs increases with increasing split policy.4.6 DiscussionIn this chapter we designed and implemented a new R-tree variant which out-perform all previous R-tree methods in rectangular query retrieval. The major95



idea is to introduce a method for achieving `good' ordering among rectangles.We introduced two variants of the Hilbert R-tree for static and dynamic envi-ronments.For static databases, our algorithms exploit the good clustering propertiesof the Hilbert curve. We proposed several schemes for sorting the data rectan-gles before grouping them into R-tree nodes. We performed experiments usingthese methods and the most promising competitors; our conclusion is that theproposed algorithms result in better R-trees. Speci�cally, the most successfulvariation (2D-c = 2-d Hilbert curve through centers) consistently outperformsthe best dynamic methods, namely, the R�-trees and the quadratic split R-trees,as well as the only previously known static method (lowx packed R-tree). Moreimportantly, the performance gap seems to be wider for real, skewed data dis-tributions. We also showed that the insertion cost is not penalized as one mightexpect.For the dynamic environment we introduced the Dynamic Hilbert R-tree. Bysimply de�ning an ordering, the R-tree structure is amenable to local rotation;this fact allows the utilization to approach the 100% mark as closely as we want.Better packing results in a shallower tree and a higher fanout. If the orderinghappens to be `good', that is, happens to group similar rectangles together, thenthe R-tree will also have nodes with small MBRs, and eventually, fast responsetimes.With this considerations in view, we designed in detail and implemented theHilbert R-tree, a dynamic tree structure that is capable of handling insertionsand deletions. Experiments on real and synthetic data showed that the proposedHilbert R-tree with the '2-to-3' splitting policy consistently outperforms all other96



R-tree methods in rectangular query retrieval with up to 28% savings over thebest competitor (the R�-tree).Moreover we provided an analytical formula (Eq. 4.3) to estimate the re-sponse time of an already built R-tree. From a practical point of view, it canhelp a query optimizer [33, 2] give a good estimate for the cost of an R-treeindex. Moreover, it makes the simulation analysis of R-trees easier and morereliable, eliminating the need to ask queries.

97



Chapter 5Conclusions { Future WorkIn this dissertation we have studied how to improve the performance of spa-tial indexing methods and speci�cally of R-trees under both parallel I/O andcentralized environments.For a parallel I/O environment we proposed a parallel I/O R-tree design fora server with one CPU and multiple disks. On this architecture, the nodes ofthe R-tree are distributed between the di�erent disks with cross-disk pointers(`Multiplexed R-tree'). When a new node is created, we have to decide on whichdisk it will be stored. We proposed and examined several criteria for choosing adisk for a new node. The most successful one, termed `Proximity Index' or PI,estimates the similarity of the new node with the other R-tree nodes already on adisk and chooses the disk with the least degree of similarity. Our experiments onreal data showed that our PI scheme consistently outperforms all other heuristicsfor node-to-disk assignments, with 55% gains over the Round Robin one.For a centralized environment, we proposed a new packing technique forR-trees for static databases. We used space-�lling curves and speci�cally theHilbert curve to achieve better ordering of rectangles and eventually better pack-ing. Our method achieves better performance than other packing algorithms and98



all other R-tree variations. For dynamic databases we introduced the Hilbert R-tree, in which every node has a well-de�ned set of sibling nodes; we can thus im-plement the concept of local rotation. By adjusting the split policy, the HilbertR-tree can achieve as high a degree of utilization as desired. In contrast, theR-tree/R*-tree has no control over utilization, typically achieving only 50% to70%.Future research directions include the following:� Extension of Parallel I/O R-tree structures on shared-nothing multicom-puters: This architecture consists of several computers (e.g. , worksta-tions), each one with its own memory and I/O system. The main advan-tage of shared-nothing multicomputers is that they can be scaled up tohundreds and probably thousands of computers that do not interfere withone another. This environment di�ers from the multi-disk environment intwo aspects: 1) the number and volume of messages becomes an issue, and2) the setup time (= time to initiate a query on a processor) can not beneglected. Of course, the total setup time increases with the number ofprocessors involved in the query. For a system consisting of thousands ofprocessors, the setup time for executing a query in parallel will constitutea substantial amount of the query execution time.� Finally, there are many interesting problem to be studied in multimediaindexing. One of the promising areas of research is the indexing of ob-jects to answer \similarity" queries. For example, in multimedia databaseswith audio (voice, music), video, etc., users might want to retrieve similarobjects, such as music scores or video clips. One way to handle the prob-lem is to map the objects into some feature space as multi-dimensional99



points [18, 42], and subsequently to organize them in a SAM.

100



Bibliography[1] D. Abel and J. Smith. A data structure and algorithm based on a linear keyfor a rectangle retrieval problem. Computer Vision Graph. Image Process.,24(1):1{13, October 1983.[2] W. Aref. Query processing and optimization in spatial databases. PhDthesis, Computer Vision Lab., Center for Automation Research, Universityof Maryland at College Park, August 1993. Also available as TechnicalReport CAR-TR-676, CS-TR-3097.[3] W. Aref and H. Samet. Optimization strategies for spatial query processing.In Proc. of VLDB Conf., pages 81{90, Barcelona, Spain, September 1991.[4] M. Arya, W. Cody, C. Faloutsos, J. Richardson, and A. Toga. QBISM:a prototype 3-D medical image database system. IEEE Data EngineeringBulletin, 16(1):38{42, March 1993.[5] M. Arya, W. Cody, and I. Kamel. Integrating visualization and databasesystems: A statement of direction. Workshop on Database Issues for DataVisualization, Visualization'93, November 1993.[6] F. Aurenhammer. Voronoi diagrams - a survey of a fundamental geometricdata structure. ACM Computing Surveys, 23(3):345{405, September 1991.101



[7] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree: ane�cient and robust access method for points and rectangles. In Proc. ofACM SIGMOD, pages 322{331, Atlantic City, NJ, May 1990.[8] J. Bentley. Multidimensional binary search trees used for associative search-ing. Comm. of ACM, 18(9):509{517, September 1975.[9] T. Bially. Space-�lling curves: Their generation and their application tobandwidth reduction. IEEE Trans. on Information Theory, IT-15(6):658{664, November 1969.[10] T. Brinkho�, R. Schneider H. Kriegel, and B. Seeger. Multi-step processingof spatial joins. In In Proc. of ACM SIGMOD, Minneapolis, MN, May 1994.[11] T. Brinkho�, H. Kriegel, and B. Seeger. E�cient processing of spatial joinsusing R-trees. In Proc. of ACM SIGMOD, pages 237{246, Washington,D.C., May 1993.[12] M. Dillencourt, H. Samet, and M. Tamminen. A general approach toconnected-component labeling for arbitrary image representations. Jour-nal of ACM, 39(2), April 1992.[13] H. Du and J. Sobolewski. Disk allocation for cartesian product �les onmultiple disk systems. ACM Trans. Database Systems (TODS), 7(1):82{101, March 1982.[14] C. Faloutsos. Gray codes for partial match and range queries. IEEE Trans.on Software Engineering, 14(10):1381{1393, October 1988. early versionavailable as UMIACS-TR-87-4, also CS-TR-1796.102



[15] C. Faloutsos and P. Bhagwat. Declustering using fractals. In 2nd Int.Conference on Parallel and Distributed Information Systems (PDIS), pages18{25, San Diego, CA, January 1993.[16] C. Faloutsos and I. Kamel. High performance R-trees. IEEE Data Engi-neering Bulletin, 16(3):28{33, September 1993.[17] C. Faloutsos and D. Metaxas. Declustering using error correcting codes.In Proc. of ACM SIGACT-SIGMOD-SIGART Symposium on Principles ofDatabase Systems (PODS), pages 253{258, Philadelphia, PA, March 1989.Also available as UMIACS-TR-88-91 and CS-TR-2157.[18] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequencematching in time-series databases. In Proc. of ACM SIGMOD, pages 419{429, Minneapolis, MN, May 1994.[19] C. Faloutsos and W. Rego. Tri-cell: a data structure for spatial ob-jects. Information Systems, 14(2):131{139, 1989. early version availableas UMIACS-TR-87-15, CS-TR-1829.[20] C. Faloutsos and Y. Rong. DOT: a spatial access method using fractals.In Proc. of Int. Conf. on Data Engineering (ICDE), pages 152{159, Kobe,Japan, April 1991. early version available as UMIACS-TR-89-31, CS-TR-2214.[21] C. Faloutsos and S. Roseman. Fractals for secondary key retrieval. InProc. of ACM SIGACT-SIGMOD-SIGART Symposium on Principles ofDatabase Systems (PODS), pages 247{252, Philadelphia, PA, March 1989.also available as UMIACS-TR-89-47 and CS-TR-2242.103



[22] M. Fang, R. Lee, and C. Chang. The idea of de-clustering and its appli-cations. In Proc. of VLDB Conf., pages 181{188, Kyoto, Japan, August1986.[23] R. Finkel and J. Bentley. Quad Trees: a data structure for retrieval oncomposite keys. ACTA Informatica, 4(1):1{9, 1974.[24] M. Freeston. The BANG �le: a new kind of Grid �le. In Proc. of ACMSIGMOD, pages 260{269, San Francisco, CA, May 1987.[25] H. Fuchs, G. D. Abram, and E. D. Grant. Near real-time shaded display ofrigid objects. Computer Graphics, 17(3), July 1983.[26] H. Fuchs, Z. Kedem, and B. Naylor. On visible surface generation by a priortree structures. Computer Graphics, 14(3), July 1980.[27] H. Garcia-Molina and K. Salem. The impact of disk striping on reliability.IEEE Database Engineering, 11(1):26{39, March 1988.[28] I. Gargantini. An e�ective way to represent quadtrees. Comm. of ACM,25(12):905{910, December 1982.[29] S. Ghandeharizadeh, D. DeWitt, and W. Qureshi. A performance analysisof alternative multi-attribute declustering strategies. In Proc. of SIGMODConf., pages 29{38, San Diego, CA, June 1992.[30] J. Gri�ths. An algorithm for displaying a class of space-�lling curves.Software-Practice and Experience, 16(5):403{411, May 1986.104



[31] O. Gunther. The design of the cell tree: an object-oriented index structurefor geometric databases. In Proc. of Int. Conf. on Data Engineering (ICDE),pages 598{605, Los Angeles, CA, February 1989.[32] A. Guttman. R-trees: a dynamic index structure for spatial searching. InProc. of ACM SIGMOD, pages 47{57, Boston, MA, June 1984.[33] L. Haas, J. Freytag, G. Lohman, and H. Pirahesh. Extensible query pro-cessing in Starburst. In Proc. of ACM SIGMOD Conf., pages 377{388,Portland, OR, May 1989.[34] A. Henrich, H. Six, and P. Widmayer. The LSD tree: spatial access tomultidimentional point and non point objects. In Proc. of VLDB Conf.,pages 45{53, Amsterdam, Netherlands, August 1989.[35] K. Hinrichs and J. Nievergelt. The Grid �le: a data structure to supportproximity queries on spatial objects. In M. Nagl and J. Perl, editors, Proc.of the WG'83 (Intern. Workshop on Graph Theoretic Concepts in ComputerScience), pages 100{113, Linz, Austria, 1983.[36] E. Hoel and H. Samet. A qualitative comparison study of data structuresfor large line segment databases. In Proc. of ACM SIGMOD Conf., pages205{214, San Diego, CA, June 1992.[37] G. Hunter. E�cient computation and data structures for graphics. In Ph.D.dissertation, Department of Electrical Engineering and Computer Science,Princeton University, Princeton, NJ, 1978.105



[38] A. Hutesz, H. Six, and P. Widmayer. Twin grid �les: space optimizingaccess schemes. In Proc. of ACM SIGMOD, pages 183{190, Chicago, IL,June 1988.[39] C. Jackins and S. Tanimoto. Quad-trees, oct-trees, and k-trees { a gen-eralized approach to recursive decomposition of Euclidean space. IEEETransaction on Pattern Analysis and Machine Intelligence, 5(5):533{539,September 1983.[40] H. Jagadish. Linear clustering of objects with multiple attributes. In Proc.of ACM SIGMOD Conf., pages 332{342, Atlantic City, NJ, May 1990.[41] H. Jagadish. Spatial search with polyhedra. In Proc. of Int. Conf. on DataEngineering (ICDE), pages 311{319, Los Angeles, CA, February 1990.[42] H. Jagadish. A retrieval technique for similar shapes. In Proc. of ACMSIGMOD Conf., pages 208{217, Denver, CO, May 1991.[43] I. Kamel and C. Faloutsos. Parallel R-Trees. In Proc. of ACM SIGMODConf., pages 195{204, San Diego, CA, June 1992. Also available as Tech.Report UMIACS TR 92-1, CS-TR-2820.[44] I. Kamel and C. Faloutsos. Hilbert R-tree: An improved R-tree using frac-tals. In Proc. of VLDB Conf., Santiago, Chile, September 1994. Alsoavailable as Tech. Report UMIACS TR 93-12.1, CS-TR-3032.1.[45] G. Kedem. The quad-CIF tree: a data structure for hierarical on-line algo-rithms. In Proc. of the 19th Design Automation Conference, pages 352{357,Las Vegas, NV, June 1982. 106



[46] M. Kim and S. Pramanik. Optimal �le distribution for partial match re-trieval. In Proc. ACM SIGMOD Conf., pages 173{182, Chicago, IL, June1988.[47] D. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Search-ing. Addison-Wesley, Reading, Mass, 1973.[48] C. Kolovson and M. Stonebraker. Segment indexes: dynamic indexing tech-niques for multi-dimensional interval data. In Proc. of ACM SIGMOD,pages 138{147, Denver, CO, May 1991.[49] N. Koudas, C. Faloutsos, and I. Kamel. Declustering r-trees on multi-computer architectures. Technical Report CS-TR-3276, Univ. of Maryland,May 1994.[50] V. Kouramajian, I. Kamel, R. Elmasri, and S. Waheed. The Time Index+:An incremental access structure for temporal databases. Proc. of 3rd Inter-national Conference on Information and Knowledge Management(CIKM-94), December 1994.[51] M. Lo and C. Ravishankar. Spatial joins using seeded trees. In Proc. ofACM SIGMOD, pages 209{220, Minneapolis, MN, May 1994.[52] D. Lomet and B. Salzberg. The hB-Tree: a multiattribute indexing methodwith good guaranteed performance. ACM TODS, 15(4):625{658, December1990.[53] B. Mandelbrot. Fractal Geometry of Nature. W.H. Freeman, NY, 1977.[54] A. Narasimhalu and S. Christodoulakis. Multimedia information systems:the unfolding of a reality. IEEE Computer, 24(10):6{8, October 1991.107



[55] J. Nievergelt, H. Hinterberger, and K. Sevcik. The Grid File: an adaptable,symmetric multikey �le structure. ACM TODS, 9(1):38{71, March 1984.[56] E. Oomoto and K. Tanaka. OVID: Design and implementation of a video-object database system. IEEE Trans. on Knowledge and Data Engineering,5(4):629{643, August 1993.[57] J. Orenstein. Multidimensional tries used for associative searching. Infor-mation Processing Letters, 14(4):150{157, June 1982.[58] J. Orenstein. Spatial query processing in an object-oriented database sys-tem. In Proc. of ACM SIGMOD, pages 326{336, Washington D.C., May1986.[59] J. Orenstein. Redundancy in spatial databases. In Proc. of ACM SIGMODConf., pages 294{304, Portland, OR, May 1989.[60] J. Orenstein and T. Merrett. A class of data structures for associativesearching. In Proc. of ACM SIGACT-SIGMOD-SIGART Symposium onPrinciples of Database Systems (PODS), pages 181{190, Waterloo, Ontario,Canada, April 1984.[61] S. Pramanik and M. Kim. Parallel processing of large node B-trees. IEEETrans on Computers, 39(9):1208{1212, September 1990.[62] P. Rangan and H. Vin. E�cient storage techniques for digital continousmultimedia. IEEE Trans. on Knowledge and Data Engineering, 5(4):565{573, August 1993. 108



[63] J. Robinson. The k-d-B-tree: a search structure for large multidimensionaldynamic indexes. In Proc. of ACM SIGMOD, pages 10{18, Ann Arbor, MI,April 1981.[64] N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databasesusing packed r-trees. In Proc. of ACM SIGMOD, pages 17{31, Austin, TX,May 1985.[65] H. Samet. The quadtree and related hierarchical data structures. ACMComputer Surveys, 16(2):187{260, June 1984.[66] H. Samet. Applications of Spatial Data Structures Computer Graphics, Im-age Processing and GIS. Addison-Wesley, Reading, MA, 1990.[67] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA, 1990.[68] B. Seeger and H. Kriegel. The Buddy-Tree: an e�cient and robust accessmethod for spatial data base systems. In Proc. of VLDB Conf., pages 590{601, Brisbane, Australia, August 1990.[69] B. Seeger and P. Larson. Multi-disk B-trees. In Proc. of ACM SIGMOD,pages 436{445, Denver, CO, May 1991.[70] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-Tree: a dynamicindex for multi-dimensional objects. In Proc. 13th International Conferenceon VLDB, pages 507{518, England, September 1987. also available as SRC-TR-87-32, UMIACS-TR-87-3, CS-TR-1795.109



[71] A. Silberschatz, M. Stonebraker, and J. Ullman. Database systems:Achievements and opportunities. Comm. of ACM (CACM), 34(10):110{120, October 1991.[72] M. Tamminen. The EXCELL method for e�cient geometric access to data.In Proc. of Design Automation Conference, pages 345{351, Las Vegas, NV,June 1982.

110


