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activities are considered during the design phase. As design is an interactive process, speed is a criticalfactor in systems that enable designers to explore and experiment with alternative ideas during the designstage. Achieving interactivity requires an increasingly sophisticated allocation of computational resources inorder to perform design analyses and generate feedback in real time.It is becoming increasingly evident that one necessary component of an automated design analysis tool is asubsystem for recognizing manufacturing features directly from a CAD or solid model. This problem has beenthe focus of extensive research over the last decade. Feature recognition is used for a variety of applications,including the generation of process plans [29], translation between design and manufacturing features, andproduction of redesign suggestions [5, 11]. What has also become evident is that feature recognition, forrealistic classes of parts with multiple and interacting feature interpretations, is computationally expensive.Hence, generating the features from a part may become a computational bottleneck within a design system.Further, existing feature recognition research has dealt exclusively with serial computer architectures.In this paper we present our initial e�orts toward developing a methodology for recognizing a class ofmachining features using a distributed, multi-processor algorithms. Feature recognition has been approachedusing a variety of techniques, some of which are easier to parallelize than others. In previous work [24], wedescribed trace-based, serial algorithms for �nding feature instances from solid model data. This current workindicates that trace-based feature recognition methodologies are particularly well suited for parallelization.The basic steps in this approach are:1. Task initialization. Initialization is performed at four levels: (1) the features to be recognized; (2)the types of trace information used to construct the feature instances; (3) the geometry and topology ofthe traces; and (4) simpli�cation of the part geometry to reduce the costs to solid modeling operations.2. Task distribution. Divide the problem using the task decomposition, isolating independent portionsof the recognition problem and identifying a suitable computational resource for solving it.3. Synthesis of results. Combine the results obtained by each separate processor into a global solution.This solution set can then be passed on to the application at hand|in the context of our previouswork, this application is a system for automated manufacturability analysis and redesign for machinedparts [12, 13, 11].The bene�ts of applying this approach include:� It increases the complexity of parts that are now computationally feasible. In the feature recognitionarea, serial approaches have experienced great di�culty when scaled to address complex, real-world,parts which have thousands of geometric and topological entities and several hundred interactingfeature instances. This approach is best suited for parts in which there might be thousands of featureinstances, but the individual features themselves are simple in structure. A distributed approach canput a greater number of such components within reach of existing computational tools.� It makes use of existing commercial solid modeling tools directly, and does not require parallelizedversions of common algorithms or the implementation of multi-threaded, multi-processor solid modelingsystems.� It enables more interactive analysis and feedback. Recognition of the many alternative features canbe done for complex parts in real time. This facilitates faster and more comprehensive analyses ofmanufacturability for the part at hand.� It exploits the growing ubiquity and power of networked computing facilities to provide a exible meansof utilizing networked computational resources. E�ective utilization of large collections of inexpensiveprocessors enables applications to perform computationally intensive CAD/CAM activities e�cientlyand interactively. 1



The remainder of the paper is organized as follows: Section 2 gives an overview of related work onmulti-processor solid modeling and recognition of features. Section 3 outlines the problem domain. Section 4presents our method for dividing the recognition problem to be solved distributedly on multiple machines.Section 5 briey discusses the implementation and presents an example of the performance improvements.Lastly, Section 6 contains concluding remarks and discussion.2 Related WorkThe bibliography of work on multi-processor algorithms for solid modeling applications is limited but growing.Currently, most works have focused on parallel operations on CSG trees and other CSG representationsof polygonal or polyhedral entities. Ellis et al. [7] have developed the RayCasting Engine: a hardware-implemented facility for sampling solids represented in CSG for a variety of purposes, including renderingand mass-property calculations. They outline how this special-case hardware makes possible brute-forcesolutions to di�cult computational problems, such as spatial sweeping and o�setting.Narayanaswami and Franklin [21] present a parallel multi-processor method for calculating the massproperties of polygonal CSG objects and outlined some extensions for applying the techniques to 3-D poly-hedra. Banerjee et al. [2] have developed parallelized algorithms for evaluating CSG trees that operate witha �xed number of processors with shared memory.In the domain of boundary representation modeling, Karinthi et al. [18] have produced a parallel algorithmfor performing boolean set operations on polygons and polygons with holes. In Almasi et al. [1], thesetechniques are extended to more general loops of edges.Strip and Karasick [27] present techniques for performing solidmodeling operations on a massively parallelSIMD (single instruction multiple data) computer. They provide a data structure for representation of solidmodels and a variety of parallel algorithms for implementing solid modeling operations. In addition, theypresent performance comparisons with serial implementations.Existing work on recognition of features has dealt with exclusively serial computer architectures. Thesefeature technologies are based heavily on the geometric and topological manipulation capabilities of solidmodeling systems and deal predominantly with form or machining features. Much has been written on thistopic in the literature and we will not attempt to cover all of this work here. We present below several ofthe more recent and relevant works.The work of Henderson has continually brought new computational techniques to address the featurerecognition problem. The work described in [15] was the �rst to apply expert systems to the feature recog-nition problem. Gavankar and Henderson [10] present techniques to identify protrusions and depressions inthe boundary model of a part. More recently, Prabhakar and Henderson [23] described the use of neuralnetworks to recognize and classify features. A strength of this approach is that it exploits the trainability ofa neural net to incorporate new feature types. Further, neural nets have been demonstrated to be e�ectivein classifying patterns in domains where there is \noise." This noise is in the form of incomplete or missingfeature data lost due to feature intersections.Graph-based algorithms have proven useful for extracting some classes of features. These methods fallinto two categories: those based on graph search [6, 4] and those based on pattern matching [17, 22, 26]. Acommon di�culty for both categories of graph-based approaches is that the graph-based representations forsolid models of parts are di�cult to extend to the complex geometry and topology found in real industrialparts. Secondly, methods based on pattern matching and �nding subgraph isomorphisms (a problem knownto be NP-hard) are prone to combinatorial di�culties.Chuang and Henderson [3] explore graph-based pattern matching techniques to classify feature patternsbased on geometric and topological information from the part. E�orts at Carnegie Mellon University [22, 26]have employed graph grammars for �nding features in models of injection molded parts. Recently, Corneyand Clark [4] have employed graph-based algorithms to �nd general feature classes from 212-dimensionalparts.Gadh and Prinz [9] were the �rst to describe techniques for combating the combinatorial costs of han-2
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p(a): hole h, a drilling feature (b): pocket m, an end-milling featureFigure 1: Examples of machining featuresdling complex and realistic industrial parts (i.e., those with thousands of topological entities). They pointout that, in such cases, traditional knowledge-based, decomposition, and pattern-matching techniques arecomputationally impractical because the fundamental algorithms (i.e., forward chaining in a frame-basedreasoning system or subgraph pattern matching) are inherently exponential. Gadh and Prinz's method isto abstract an approximation of the geometric and topological information in a solid model and �nd shapefeatures in the approximation. Their approach employs a di�erential depth �lter to reduce the number oftopological entities. A second pass maps the topological entities onto structures called \loops." In theirwork, features are de�ned using the higher-level loops as opposed to being de�ned as patterns in the bound-ary representation's geometry and topology. This approach signi�cantly reduces the number of entities thatneed to be searched to build feature instances. While this kind of approach holds much promise for address-ing combinatorial problems,it does not address how to extend the techniques to better handle interactingfeatures and more non-linear (non-faceted) solid models.Fields and Anderson [8] present an approach to feature recognition that overcomes some of the repre-sentation and e�ciency problems common in previous work. Unlike pattern-based or decomposition-basedrecognition methodologies, they categorize sets of faces on the surface of the part into classes of generalmachining features: protrusions, depressions, and passages. The shapes within each class, while sharingmany operational similarities, may vary in geometry and topology. For each of their feature classes, theypresent a linear-time algorithm.Many aspects of the feature recognition problem are still open and active areas of research. Among theseare: recognizing and representing interacting features [29], incremental recognition of features [19, 14], mod-eling alternative feature interpretations and completeness [20, 24], and reasoning about the manufacturabilityof features [12].3 Approach to Feature RecognitionIn this section we outline a basic feature recognition technique on which we will build our multiprocessoralgorithms in Section 4. We have chosen to adopt a trace-based methodology for this purpose; the reasonsfor this choice shall become evident. Fundamentally, a trace-based approach to feature recognition attemptsto reconstruct feature instances from the information that they contribute to the �nal CAD model of theproduct.The work of Marefat and Kashyap [20] presented an early trace-based technique. They expanded on thework of Joshi and Chang [17], augmenting it with hypothesis testing techniques. In Marefat and Kashyap'smethod, information from the solid model is used to generate hypotheses about the existence of features.These hypotheses are tested to see if they give rise to valid feature instances.Vandenbrande and Requicha [29] were the �rst to formalize trace-based (or hint-based) techniques for3



(a): part (after machining) (b): part (underside view, after machining)Figure 2: An example part.constructing features from information in a solid model. In the work of Vandenbrande, the traces are used to�ll \feature frames" in a frame-based reasoning system. After �lling frames with the trace informationpresentin the part, the system classi�es the partial frames and attempts to complete the frame information for thosethat appear promising using a variety of geometric reasoning and computational geometry techniques.Regli et al. [25, 24] present an approach for guaranteeing completeness of a recognition algorithm, i.e., itdescribes how one can de�ne a class of features and verify that a particular approach was capable of producingall features in that class. They presented feature recognition as an algorithmic problem in which traces arefound by traversing the geometry and topology of the part and then used to construct feature instances.They formally describe the behavior of their algorithm and calculate a general measure of its complexity.This approach has been employed for automated design analysis [12] and automated redesign [5, 11].Trace-based approaches have several properties that are just beginning to be exploited by researchers,including:� Feature traces can be derived from a variety of design information such as tolerances, surface �nishrequirements, and functional information associated with surfaces. Traditional feature recognitionmethodologies often consider only the part's geometry and topology.� Feature classes can be customized by users. Recognition routines for new features can be built byintroducing traces for the new features and methods for building instances of the new features fromthese traces.� Trace-based techniques can be adapted to recognize features from a variety of manufacturing domainsand processes. Existing feature recognition literature focuses primarily on machined parts, due in partto the fact that the functionality of solid modeling systems is well suited for manipulating volumesthat describe material to be machined and decomposing these volumes into features.Trace-based techniques also lend themselves well to parallelization, providing several levels at whichthe problem can be divided. What might be less evident is that, in parallelizing the problem, one canmake additional geometric and topological simpli�cations to independent problem subtasks to reduce theircomputational di�culty.The remainder of this section will specify a common example domain of machined parts and some basictrace-based recognition techniques. Using this domain we present a multi-processor recognition methodologyin Section 4. 4



3.1 Machining FeaturesA machining feature, M , is a parameterized volumetric template that represents the solid volume removedfrom a workpiece by a machining operation. An instance of a machining feature, f , is created by a speci�cmachining operation with a single cutting tool in one tool setup. To perform a machining operation, onesweeps the tool along some trajectory. Only a portion of this swept volume corresponds to the volume ofmaterial that is to be removed by the machining feature. This volume is called removal volume of feature f .Machining features are referred to in terms of the operations used to create them. For example, we saythat the hole h in Figure 1(a) is an instance of a drilling feature. The pocket p in Figure 1(b) is an aninstance of an end-milling feature and is characterized by the edge pro�le bounding the area swept by themilling tool.3.2 Machining Feature RecognitionThe initial workpiece, S, is represented as a solid model of raw stock material to be acted upon by a setof machining operations. The machined part is a solid object, represented by a solid model of the partP , to be produced as a result of a �nite set of machining operations. The delta volume is the regularizeddi�erence [16] of the initial workpiece and the part: � = S �� P .In general, there may be several alternative interpretations of the part as collections of machining features,each interpretation corresponding to a di�erent way of manufacturing it. A feature-based model is a collectionof features that models a single, unique interpretation of the part. The feature recognition problem can bede�ned as follows: given a collection of machining feature types, M = fM1;M2; : : :Mjg, a part P , and apiece of stock S, �nd the set F of feature instances in M recognized from P and S. The feature set F is a�nite set of features composed of the union of those features in the alternative feature-based models for thepart [24].3.3 Trace-based Recognition of FeaturesA trace represents the partial information in the solid model of the part produced by an instance of a feature.Intuitively, a trace tM corresponds to the information contributed to the part by an instance of a feature oftype M . The trace provides su�cient information for calculating the parameters of a feature instance f oftype M . For example, one trace for the drilling feature in Figure 1(a) is the conical ending surface of thehole h. Similarly, a trace for the end-milling feature m in Figure 1(b) is its bottom surface.The basic structure of a trace-based feature recognition system includes:1. Each feature type M in M has associated with it set of traces tM1; tM2; : : : tMk.2. There is a procedure P() such that P(tMi) constructs, from the information in the solid model of thepart and stock material, instances of features of type M capable of producing the trace tMi.An outline for a generic algorithm for trace-based recognition of features can be presented as follows:1. Input a collection of feature types, M, a solid model for the part P , and a solid model for the initialstock material S.2. From P and S, identify the set of all potential traces present, T .3. For each potential trace t in T do:If t matches a tMi, call the procedure P(tMi) and construct (if possible) feature instances, f1; f2; : : : fnof type M . Add these to the set of all feature instances, F .5



Example traces. For an illustration, the task of recognizing drilling and end-milling features can beaccomplished using the following traces:1. drilling features:(a) Trace 1: a convex conical surface in the delta volume as a conical ending surface describing thecutting tip of a drilling tool. This trace is used to build an instance of a drilling feature whenonly a portion of its ending tip surface remains on the boundary of the delta volume.(b) Trace 2: a convex cylindrical surface in the delta volume as a side surface created by a drillingoperation. This trace is used to build instances of drilling features when a portion of their sidesurface remains on the boundary of the delta volume.2. end-milling features(a) Trace 1: a planar surface in the delta volume as a surface created by the cutting tip of an end-mill.This trace is used to build instances of end-milling features when only a portion of their bottomsurfaces are present on the boundary of the delta volume.The following two traces are used to build instances of end-milling features when only a portion oftheir side surfaces are present on the boundary of the delta volume. In these cases, the end-millingfeatures may extend completely through the stock material. Examples of such features includethrough pockets.(b) Trace 2: a cylindrical surface in the delta volume as a surface created by the side cutting surfaceof an end-mill.(c) Trace 3: a pair of non-parallel planar surfaces in the delta volume, as faces created by the sidecutting surface of an end-mill.A presentation of the details of the various procedures P(tMi) for constructing feature instances fromthese traces is not central to the focus of this paper. Such algorithms have been developed in previous work,notably: Vandenbrande [29] for drilling feature traces 1 and 2 and end-milling feature trace 1; and Regli etal. [25, 24] for all of the above traces.4 Approach to ParallelizationIn the distributed computing paradigm, collections of autonomous computational resources are intercon-nected on a network, as illustrated in Figure 3 [28]. While these resources do not share main memory, theymay share access to common devices such as peripherals, �le systems, output devices, etc. Software systemscan use the network and shared peripherals to exchange information among the autonomous resources.In this section, we will apply distributed algorithms to the example problem domain from Section 3.4.1 MotivationsThe feature types and their traces each introduce natural partition lines along which the problem can bedivided into independent subproblems to be solved by di�erent processors.As presented in Section 3.2, the �nal feature set F contains all those feature instances fromM that aremembers of feature-based models of the part. F contains all instances of the feature types in M present inthe given part. Note that for the features inM, the act of recognizing a feature of type M1 is independent ofthe recognition of a feature of type M2|hence the feature instances of type M1 can be calculated separatelyfrom those of type M2. For instance, in the example domain presented in Section 3, the fact that a particulardrilling feature f is a member of some feature-based model does not alter the existence of any end-millingfeatures. 6



NetworkFigure 3: Internetworked computational resources.Secondly, the set of traces T (from the generic algorithm in Section 3.3) introduces an additional levelfor partitioning the problem. Recall that for each feature type M in M, there is a collection of tracestM1; tM2; : : : tMk for building instances of features of type M . One can decompose the problem of �nding allfeatures of type M using the traces by handling each trace tMi on a di�erent processor.One observation is that this may introduce some redundancy; i.e., it may be possible to �nd the samefeature instance f in di�erent ways using di�erent traces. There are two possible approaches to handlingthis redundancy. One method is to delete duplicate features while building the �nal feature set F . A secondapproach, and the one that we will employ, is to handle the traces capable of producing equivalent featureinstances together on the same processor and remove duplicates as they are found. This introduces anotherlevel of parallelization by dividing the set of traces found into independent subsets. In this way redundanciesare addressed at the level at which they occur, thus simplifying the task of building the �nal feature set F .Parallelizing feature recognition produces other, less obvious bene�ts. In particular, a large portion ofthe costs in a feature recognition system are due to the complexity of geometric computations and geometricreasoning. When isolating independent problem subtasks, one can make geometric and topological simpli-�cations that identify the information in the original part needed to build and verify the feature instances.In this way, many of the subproblems may require only a fraction of the information present in the solidmodels of the original part and stock.
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ResourcesFigure 4: Source machine distributing the tasks to clients.4.2 Distributed MethodologyFor the example domain of Section 3, our approach is to have a central computing resource act as a serverto set up the problem and transmit subtasks to client machines distributed on the network, as illustrated in7



Figure 4. Each of the individual client processors is given an independent portion of the particular globalfeature recognition problem.A distributed algorithm. Recalling the serial trace-based algorithm of Section 3.3, we present an outlinefor a multi-processor trace-based feature recognition system. There are two main components to this system:a server algorithm and a client algorithm. The server algorithm is presented as follows:Server algorithm.1. Input a collection of feature types, M, a solid model for the part P , and a solid model for the initialstock material S. Initialize F = ;.2. For each feature type M in M do(a) Fork a new process on a free resource(b) For each trace type tMi for feature type M doi. Find the set TtMi of instances of traces of type tMi.ii. Decompose the set TtMi into independent subtasks, �1; �2; : : : �j .iii. For each �i doA. Decompose the part P using the �i. Result P 0.B. Fork a new process on a free resource to call the client recognition algorithm on P 0.iv. Let FtMi be the set of features returned by the client.3. F = F S8tMi FtMi.4. Remove duplicate features from F .5. Return F .The client algorithm, to be invoked by the server on multiple computational resources, is presented below:Client algorithm.1. Input a feature type, M , a trace type, tMi, a set of instances of T of trace tMi, and solid models forthe part P 0, and the stock material S.2. Simplify the solid model of the part P 0. Result P 00.3. Call P(tMi) to build feature set FtMi.4. Return FtMi .To implement this client-server algorithm, three technical areas must be addressed:
8



Task Initialization There are four levels at which the recognition problem is initialized:� Types of features to be recognized: di�erent feature types (in this example drilling and end-milling) areconsidered by separate computing resources, as discussed in Section 4.1.� Types of feature traces: di�erent traces for each of the feature types are considered by separate com-puting resources, as discussed in Section 4.1.� Trace decomposition: given a speci�c feature type and a trace for recognizing it, decompose the set ofinstances of this trace to independent subsets to subdivide the recognition task. This is discussed inSection 4.3.1.� Part simpli�cation: given a speci�c feature type and a trace for recognizing it, alter the geometric andtopological information in the solid model of the part to reduce its complexity. This is discussed inSection 4.3.2.Speci�c details are given in Section 4.3.Task Distribution. Once tasks are initialized, the next phase is to distribute the individual tasks tothe available computing resources. This is done by invoking a client feature recognition procedure for eachseparate task; each task to be performed on its own processor.In the example domain in Section 3, distributing tasks is straightforward. This becomes more complexwhen bounds are placed on the number of available computing resources.Synthesis of Results Each separate client procedure, upon termination of its portion of the recognitiontask, transmits its results back to the server machine. The features returned are then integrated into anoverall solution. In this domain, recombining results requires building the �nal feature set as the union ofthose features returned by each client machine.However, the fact that this example domain lends itself well to building an overall solution from theseparate subtasks may not generalize to other manufacturing domains. For example, this phase mightinclude additional computations such as modeling feature interactions, eliminating redundant features, oridentifying compound features or feature groups.4.3 An Example of Task InitializationThe task initialization stage groups feature information and isolates traces to be handled by separate com-puting resources. There are four levels of task decomposition.For illustration purposes, we shall assume there is no limit on our computational resources. When thereis a bound on the number of processors available, the task decomposition or the distribution of the task mayvary to more e�ciently partition the problem. In our implementation (discussed in Section 5), we distributethe tasks evenly over the available processors.The decomposition by feature type and decomposition by trace, as noted before, are straightforward. Indeveloping techniques for part decomposition and simpli�cation, one is faced with a trade o� between thesophistication of techniques and their computational costs. Using very sophisticated techniques to maximizethe ability of each individual processor to produce useful feature instances in a minimal amount of time mightincrease the computational overhead to a degree that mitigates the bene�ts of parallelization. In choosingthe following conditions, we have picked decompositions and simpli�cations that are computationally cheap.While it is certainly possible to present more complex decomposition criteria, an important considerationis that the conditions themselves cannot be more complex than the original recognition problem. If thedecomposition conditions are themselves costly, the overhead considerations might eliminate any of thespeedup bene�ts we hope to achieve using a multi-processor approach.The remainder of this section discusses the decomposition of part geometry and topology and techniquesfor part simpli�cation. 9



4.3.1 Trace DecompositionA given feature instance might be created from any one of several traces it leaves in the part. The objectiveof this phase is to collect all of the trace information capable of producing equivalent or identical feature in-stances. While we will only consider geometric and topological information in this paper, this decompositioncan be extended to include other data (i.e., tolerances, surface properties, etc.).We present a four step decomposition for the geometric and topological information in the part. Theconditions are based on properties of the traces for constructing feature instances. There may be otherconditions that provide an equivalent means of arriving at a task decomposition with the desired properties.Decomposition of the geometry and topology based on feature types and traces proceeds as follows:1. Drilling traces 1 and 2:Group together convex cylindrical and conical faces with equivalent axes.Rationale: This collects all possible drilling traces that might be machined in the same orientation.Drilling features with multiple traces (e.g., several separate cylindrical faces) can be isolated andidenti�ed.2. End-milling trace 1:Group together all coplanar faces. In the example illustrated in Figure 5(b), six disjoint planar partfaces are grouped to be handled together on the same processor. This grouping collects all faces sharingthe same underlying surface.Rationale: This collects all possible end-milling traces that might be machined in the same orientation.End-milling features with multiple traces (e.g., a bottom surface divided into multiple subfaces) canbe isolated and identi�ed.3. End-milling trace 2:Group convex cylindrical surfaces with equivalent axis directions.Rationale: This groups all potential corner radii for end-milling features with the same machiningorientation.4. End-milling trace 3:Group planar surfaces with normals perpendicular to a common vector; i.e., for each grouping thereis a vector v such that, for all surfaces si and sj in the grouping, normal(si) � v = normal(sj) � v = 0.Note that some surfaces may be present in more than one group.Rationale: This groups traces for end-milled features based on machining orientation; hence throughfeatures that can be machined in the same orientation are place in the same group.The above decomposition groups those traces from the part which might produce equivalent featureinstances. In this way, redundancies can be eliminated at the sub-process level and later recombination ofresults can be facilitated.4.3.2 Part Simpli�cationThe objective of this step is to reduce the amount of data that must be considered by each processor to aminimum amount su�cient to construct feature instances from the traces it has been given. The goal is toreduce the cost of operations during feature recognition. For example, one can reduce the number of geometricand topological entities while still retaining the information required to construct feature instances from theparticular trace. In this way, the complex part geometry not e�ecting the feature trace being considered canbe eliminated. 10
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3. End-milling trace 1:Given a planar surface p in the delta volume with a root point d and normal vector v, P 0 contains allthe portions of P that lie in the half-space de�ned by d and v.Rationale: This simpli�cation retains all geometric and topological information that lies above thebottom surface of the milling feature and discards all information below it.4. End-milling traces 2 and 3:No simpli�cations are made for these traces.Rationale: Finding these types of end-milling feature instances might require consideration of infor-mation from the entire part, and sophisticated simpli�cations in this case would be costly.Figure 5 shows four illustrations of part simpli�cation for end-milling trace 1. In the �gure, the planarfaces are being considered as traces indicating potential bottom surfaces of several end-milled features; vectorv denotes the orientation of the potential feature. In each case, the trace information is used to eliminate theportion of the part lying below the trace|information that does not get considered when building a featureinstance in direction v. Note that in making this rudimentary simpli�cation the number of geometric andtopological entities to be considered is greatly reduced.4.4 Potential for Computational ImprovementWe can expect the speedup to be no more than a factor of K, where K is the number of processors available.In reality, the task decomposition to set up parallelization incurs some added cost, as does the recombinationof results at the end. These additions are negligible, however, when compared with the costs incurred toperform the recognition process on the subproblems.Within a trace-based methodology, as outlined in Section 3.3, the overall complexity of recognitiondepends on two factors: the di�culty in generating the set T of potential traces, and the complexity of themethods for generating feature instances from traces.A rough upper bound on the size of T can be computed from the model of the part and the typesof traces by counting the number of geometric and topological entities. The complexity of the featureconstruction routines is more di�cult to assess and is where the majority of the computational costs occur.Much of this cost is due to geometric queries and reasoning operations used to �nd the parameters of featureinstances. While there is no authoritative reference on the general complexity of solid modeling operationssuch as booleans, sweeps, and the like, the consensus is that these operations account for the majority ofthe computational cost during feature recognition [29]. The complexity of boolean operations appears tolie between O(n2) and O(n4) or O(n5) time, depending on the particular con�guration of geometric entitiesand many implementation-speci�c details.The fact that these basic solid modeling routines are at least quadratic in the size of the model impliesthat small reductions in the number of entities in the model translate into large reductions in computationalcost.In the next section, we provide rough estimates of both the speedup factor and the reduction in thenumber of geometric and topological entities achieved by this approach.5 Implementation and ExamplesA proof-of-concept implementation of this distributed feature recognition methodology, dubbed F-Rex, hasbeen done in C++ using version 3.0.1 of the AT&T C++ compiler from SUN Microsystems running onnetworked SUN SPARCStations. F-Rex employs version 1.5.1 of Spatial Technologies' ACIS c solid modelingsystem and version 3.14 of the NIH C++ Class Library developed at the National Institutes of Health.12



Additional tools include Ithaca Software's HOOPS c Graphics System and the Tcl/Tk embeddable commandlanguage and user interface toolkit from the University of California at Berkeley.F-Rex is the feature recognition subsystem for IMACS, an interactive manufacturability analysis toolunder development at the University of Maryland's Institute for Systems Research. One of the fundamentalgoals of IMACS is to provide interactive feedback and redesign suggestions to the user. Multi-processoralgorithms have provided IMACS with a means of handling computational bottlenecks.F-Rex runs on a cluster of SUN workstations; processes communicate over the Internet using UNIX-basedand TCP/IP-protocol-based network software utilities and shared disk storage. The geometric computationsrequired for task initialization are implemented with direct C++ calls to the ACIS kernel; distributedprocesses are invoked using UNIX remote shell commands; and the resulting feature set is generated byexamining the features produced by each processor and eliminating redundancies.The data for the examples below has been collected using six processors, one SPARCStation model 10,one model 2, and 4 IPX models. In this version of the implementation, when the number of tasks is greaterthan 6, the tasks are distributed evenly over the available processors.These timing results represent the elapsed clock and CPU times and are not absolute measures of theintrinsic di�culty of the feature recognition problem|this example domain is not directly comparable tothose of other feature recognition e�orts. Further, there are hidden costs in the implementation not directlyrelated to the recognition of feature templates (such as feature accessibility analysis) and these algorithmsand their implementation can certainly be optimized. The results are intended to provide a rough indicationof the time-lag experienced by the user of the system. More signi�cant than any precise calculation of elapsedtime is the speedup factor between the serial and parallelized algorithms. Measurements of elapsed CPUtime are summarized in the table in Figure 8.
(a): example from [29] (b): example from [24]Figure 6: Two example parts addressed in previous literature.Example 1. The example part in Figure 6(a), taken from [29], contains 21 part faces. Vandenbrandeand Requicha [29] report identifying 7 features (3 slots, 3 open pockets, and a step) in two and a halfminutes on a SUN 4/360. The OOFF system [29] handles a wide variety of machining features and processplanning constraints; hence it is not directly comparable to the approach outlined in this paper. It does,however, provide a general indication of the computational costs required to recognize features in relativelystraightforward parts. 13



Figure 7: A �xture from ICEM's PART System.Running in serial on the SPARC 10, our system �nds 1 drilling and 8 end-milling features in approximately1 minute. In parallel on 6 processors, it takes approximately 3 seconds to set up the decomposition and12 seconds to recognize the features. Using the simpli�cation techniques, the number of geometric andtopological entities that had to be considered was reduced by 22%.Example 2. The example part in Figure 6(b) is a socket taken from [24]. This part, when machined from acylindrical piece of stock material, has 37 faces in the delta volume. There are 12 drilling and 20 end-millingfeatures in its feature-based models that can be produced with the traces given above. In serial runningon the SPARC 10, F-Rex identi�es these 32 feature instances in approximately 65-70 seconds. When rundistributedly, using 6 processors, F-Rex takes 10 seconds to set up the decomposition and approximately12-16 seconds to identify the features. In this case, simpli�cation resulted in a 35% reduction in the numberof geometric and topological entities that had to be considered.Example 3. The example part in Figure 7 is a �xture used in Control Data Corporation's1 ICEM PARTProcess Planning System. The solid model for this part contains 245 faces. When running in serial, F-Rex takes over one hour to �nd the feature instances. In parallel, F-Rex takes 1.3 minutes to set up theproblem and approximately 12 minutes to recognize the features. In this case, simpli�cation resulted in a23% reduction in the number of geometric and topological entities that had to be considered.1This part was used with the permission of CDC and it is available for anonymous ftp from the NIST Process PlanningTestbed at ftp.cme.nist.gov. 14



Example Serial DistributedSet Up Recognition1 53.59s 0.96s 9.79s2 126.90s 1.23s 6.39s3 > 1920:0s 74.98s 699.82s4 > 1920:0s 19.41s 701.47sFigure 8: Table of elapsed CPU times for each example.Example 4. The example part in Figure 2 is a shuttle intended to move along a guideway, with manyof the feature instances added to reduce weight. The solid model of this part contains 281 faces. In serial,F-Rex takes over one hour to �nd the more than 100 feature instances. When running distributedly, F-Rextook 2 minutes to set up the task decomposition and approximately 32 minutes to �nd the features. In thiscase, simpli�cation resulted in a 43% reduction in the number of geometric and topological entities that hadto be considered.6 ConclusionsCollaborative engineering and product design are pushing more downstream manufacturing issues into thedesign phase. The need to build e�ective and interactive design and analysis tools to address these issues ismaking e�cient and sophisticated allocation of computational resources increasingly important.Use of a multi-processor architecture can provide a large increase in computational power by exploitingthe available computing resources. The bene�ts of migrating to a multi-processor architecture include anincrease in the complexity of feasible mechanical designs and the ability to produce real-time feature datafor complex parts.Discussion of ResultsOur preliminary results con�rm that performance gains can certainly be made through e�ective paral-lelization of algorithms. However, it is di�cult to assess what a typical speedup factor will be. We suspectthat the considerable variation in our experiments between parallel and serial speedup can be traced to thecomplexity of the parts themselves. The example part in Figure 6(a) has only one curved surface, whilethat in Figure 2 contains many dozens. A more general analysis of speedup factors would require testing thesoftware against a set of benchmark parts of varying degrees of complexity.We believe that parallelized trace-based feature recognition is highly suitable for parts in which thefeature instances themselves are relatively simple, but numerous. It is not as well suited to problems wherethe feature instances themselves have very complex geometric con�gurations.ContributionsIn this paper we have presented our initial work toward an approach for performing trace-based featurerecognition using a distributed multi-processor architecture. We present a commonly addressed collection offeatures and illustrate how to identify a task decomposition of the recognition problem. The task decom-position is used then to divide the work among several distributed computing resources whose individualresults are integrated into a uni�ed solution for the part at hand. This kind of approach shows promise fordomains of complex parts containing, possibly, thousands of features instances, but for which the structuresof the feature instances themselves are relatively simple.Future Work 15



Application of distributed algorithms to solid modeling and problems in engineering design and analysisholds immediate promise for enhancing existing CAD tools. We hope that this work motivates more re-search into how to e�ectively migrate current solid modeling applications toward a distributed computingframework. In the future, as distributed computing technologies become more accessible, algorithms thatcoordinate e�orts between autonomous and geographically diverse computing resources will be commonplacein the modern manufacturing enterprise.Making this transition will require changes to the underlying architecture of solid modeling systems, theirdata structures, and algorithms to exploit multi-processor computing. In addition, as engineering softwareapplications built on top of modelers continue to grow in complexity, obtaining performance improvementsincreasingly will involve distributed algorithms.We anticipate that this new distributed feature recognition technology will increase the complexity ofmechanical parts within the reach of traditional feature recognition systems and will reduce the computationalbottlenecks they pose. This will enable more sophisticated design analyses and, in turn, aid in buildingan environment that will allow designers to create high-quality products that can be manufactured moreeconomically|thus reducing the need for redesign, lowering product cost, and shortening lead times.AcknowledgementsThis work was supported in part by the National Institute of Standards and Technology and National ScienceFoundation Grants DDM-9201779, IRI-9306580, and NSFD EEC 94-02384 to the University of Maryland.Additional support from the General Electric Corporation Forgivable Loan program was awarded to WilliamRegli. Any opinions, �ndings, and conclusions or recommendations expressed in this material are those of theauthors and do not necessarily reect the views of the supporting government and commercial organizations.Certain commercial equipment, instruments, or materials are identi�ed in this document. Such identi�-cation does not imply recommendation or endorsement by the University of Maryland, College Park, or thesupporting government and commercial entities; nor does it imply that the products identi�ed are necessarilythe best available for the purpose.The authors would like to extend their thanks to NIST readers Ted Hopp and Tom Kramer for theirhelpful comments.Solid models for the example parts in this paper can be obtained through the World Wide Web at URLhttp://www.cs.umd.edu/�regli/distrib/paper.html. For more information on parts available throughthe NIST Process Planning Testbed, please see URL http://elib.cme.nist.gov.References[1] George Almasi, Raghu Karinthi, and Kankanahalli Srinivas. A parallel algorithm for computing setoperations on loops. Technical Report TR 93-10, Department of Statistics and Computer Science, WestVirginia University, August 1993.[2] Raja P. K. Banerjee, Vineet Goel, and Amar Mukherjee. E�cient parallel evaluation of CSG trees using�xed number of processors. In Jaroslaw Rossignac, Joshua Turner, and George Allen, editors, SecondSymposium on Solid Modeling Foundations and CAD/CAM Applications, pages 313{322, New York,NY 10036, USA, May 1993. ACM SIGGRAPH, ACM Press. Montreal, Canada.[3] S. H. Chuang and M. R. Henderson. Three-dimensional shape pattern recognition using vertex classi�-cation and the vertex-edge graph. Computer Aided Design, 22(6):377{387, June 1990.[4] J. Corney and D. E. R. Clark. Method for �nding holes and pockets that connect multiple faces in 212dobjects. Computer Aided Design, 23(10):658{668, December 1991.16
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