
A Scalable Virtual Circuit Routing Scheme for ATM Networks�Cengiz Alaettino�glu Ibrahim Matta A. Udaya ShankarInformation Sciences Institute Institute for Advanced Computer StudiesUniversity of Southern California Department of Computer ScienceMarina del Rey, CA 90292 University of MarylandCollege Park, MD 20742October 1994AbstractHigh-speed networks, such as ATM networks, are expected to support diverse quality-of-service (QoS) requirements, including real-time QoS. Real-time QoS is required by many appli-cations such as voice and video. To support such service, routing protocols based on the VirtualCircuit (VC) model have been proposed. However, these protocols do not scale well to largenetworks in terms of storage and communication overhead.In this paper, we present a scalable VC routing protocol. It is based on the recently proposedviewserver hierarchy, where each viewserver maintains a partial view of the network. By queryingthese viewservers, a source can obtain a merged view that contains a path to the destination.The source then sends a request packet over this path to setup a real-time VC through resourcereservations. The request is blocked if the setup fails. We compare our protocol to a simpleapproach using simulation. Under this simple approach, a source maintains a full view of thenetwork. In addition to the savings in storage, our results indicate that our protocol performsclose to or better than the simple approach in terms of VC carried load and blocking probabilityover a wide range of real-time workload.Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Archi-tecture and Design|packet networks; store and forward networks; C.2.2 [Computer-Communication Net-works]: Network Protocols|protocol architecture; C.2.m [Routing Protocols]; F.2.m [Computer NetworkRouting Protocols].� This work is supported in part by ARPA and Philips Labs under contract DASG60-92-0055 to Department ofComputer Science, University of Maryland, and by National Science Foundation Grant No. NCR 89-04590. The workof C. Alaettino�glu is also supported by National Science Foundation Grant No. NCR 93-21043. The views, opinions,and/or �ndings contained in this report are those of the author(s) and should not be interpreted as representing theo�cial policies, either expressed or implied, of the Advanced Research Projects Agency, PL, the National ScienceFoundation, or the U.S. Government.

Contents1 Introduction 12 Related Work 43 Viewserver Hierarchy Query Protocol 54 Update Protocol for Dynamic Network Conditions 105 Evaluation 136 Numerical Results 166.1 Results for Network 1 : 166.2 Results for Network 2 : 187 Conclusions 19

i

1 IntroductionIntegrated services packet-switched networks, such as Asynchronous Transfer Mode (ATM) net-works [21], are expected to carry a wide variety of applications with heterogeneous quality of ser-vice (QoS) requirements. For this purpose, new resource allocation algorithms and protocols havebeen proposed, including link scheduling, admission control, and routing. Link scheduling de�neshow the link bandwidth is allocated among the di�erent services. Admission control de�nes thecriteria the network uses to decide whether to accept or reject a new incoming application. Routingconcerns the selection of routes to be taken by application packets (or cells) to reach their desti-nation. In this paper, we are mainly concerned with routing for real-time applications (e.g., voice,video) requiring QoS guarantees (e.g., bandwidth and delay guarantees).To provide real-time QoS support, a number of virtual-circuit (VC) routing approaches havebeen proposed. A simple (or straightforward) approach to VC routing is the link-state full-viewapproach. Here, each end-system maintains a view of the whole network, i.e. a graph with a vertexfor every node1 and an edge between two neighbor nodes. QoS information such as delay, band-width, and loss rate are attached to the vertices and the edges of the view. This QoS informationis ooded regularly to all end-systems to update their views. When a new application requests ser-vice from the network, the source end-system uses its current view to select a source route to thedestination end-system that is likely to support the application's requested QoS, i.e., a sequence ofnode ids starting from the source end-system and ending with the destination end-system. A VC-setup message is then sent over the selected source route to try to reserve the necessary resources(bandwidth, bu�er space, service priority) and establish a VC.Typically, at every node the VC-setup message visits, a set of admission control tests areperformed to decide whether the new VC, if established, can be guaranteed its requested QoSwithout violating the QoS guaranteed to already established VCs. At any node, if these admissiontests are passed, then resources are reserved and the VC-setup message is forwarded to the nextnode. On the other hand, if the admission tests fail, a VC-rejected message is sent back towardsthe source node releasing resource reservations made by the VC-setup message, and the applicationrequest is either blocked or another source route is selected and tried. If the �nal admission testsat the destination node are passed, then a VC-established message is sent back towards the sourcenode con�rming resource reservations made during the forward trip of the VC-setup message. Uponreceiving the VC-established message, the application can start transmitting its packets over its1 We refer to switches and end-systems collectively as nodes.1

reserved VC. This VC is torn down and resources are released at the end of the transmission.Clearly, the above simple routing scheme does not scale up to large networks. The storage ateach end-system and the communication cost are proportional to N � d, where N is the number ofnodes and d is the average number of neighbors to a node.A traditional solution to this scaling problem is the area hierarchy used in routing protocolssuch as the Open Shortest Path First (OSPF) protocol [18]. The basic idea is to aggregate nodeshierarchically into areas: \close" nodes are aggregated into level 1 areas, \close" level 1 areas areaggregated into level 2 areas, and so on. An end-system maintains a view that contains the nodesin the same level 1 area, the level 1 areas in the same level 2 area, and so on. Thus an end-systemmaintains a smaller view than it would in the absence of hierarchy. Each area has its own QoSinformation derived from that of the subareas. A major problem of an area-based scheme is thataggregation results in loosing detailed link-level QoS information. This decreases the chance of therouting algorithm to choose \good" routes, i.e. routes that result in high successful VC setup rate(or equivalently high carried VC load).Our schemeIn this paper, we present a scalable VC routing scheme that does not su�er from the problems ofareas. Our scheme is based on the viewserver hierarchy we recently proposed in [3, 2] for largeinternetworks and evaluated for administrative policy constraints. Here, we are concerned with thesupport of performance/QoS requirements in large wide-area ATM-like networks, and we adapt ourviewserver protocols accordingly.In our scheme, views are not maintained by every end-system but by special switches calledviewservers. For each viewserver, there is a subset of nodes around it, referred to as the viewserver'sprecinct. The viewserver only maintains the view of its precinct. This solves the scaling problemfor storage requirement.A viewserver can provide source routes for VCs between source and destination end-systemsin its precinct. Obtaining a route between a source and a destination that are not in any singleview involves accumulating the views of a sequence of viewservers. To make this process e�cient,viewservers are organized hierarchically in levels, and an associated addressing structure is used.Each end-system has a set of addresses. Each address is a sequence of viewserver ids of decreasinglevels, starting at the top level and going towards the end-system. The idea is that when the viewsof the viewservers in an address are merged, the merged view contains routes to the end-system2

from the top level viewservers.We handle dynamic topology changes such as node/link failures and repairs, and link costchanges. Nodes detect topology changes a�ecting itself and neighbor nodes. Each node commu-nicates these changes by ooding to the viewservers in a speci�ed subset of nodes; this subset isreferred to as its ood area. Hence, the number of packets used during ooding is proportional tothe size of the ood area. This solves the scaling problem for the communication requirement.Thus our VC routing protocol consists of two subprotocols: a view-query protocol between end-systems and viewservers for obtaining merged views; and a view-update protocol between nodes andviewservers for updating views.EvaluationIn this paper, we compare our viewserver-based VC routing scheme to the simple scheme usingVC-level simulation. In our simulation model, we de�ne network topologies, QoS requirements,viewserver hierarchies, and evaluation measures. To the best of our knowledge, this is the �rstevaluation of a dynamic hierarchical-based VC routing scheme under real-time workload.Our evaluation measures are the amount of memory required at the end-systems, the amountof time needed to construct a path2, the carried VC load, and the VC blocking probability. Weuse network topologies each of size 2764 nodes. Our results indicate that our viewserver-based VCrouting scheme performs close to or better than the simple scheme in terms of VC carried loadand blocking probability over a wide range of workload. It also reduces the amount of memoryrequirement by up to two order of magnitude.Organization of the paperIn Section 2, we survey recent approaches to VC routing. In Section 3, we present the view-queryprotocol for static network conditions, that is, assuming all links and nodes of the network remainoperational. In Section 4, we present the view-update protocol to handle topology changes. InSection 5, we present our evaluation model. Our results are presented in Section 6. Section 7concludes the paper.2 We use the terms route and path interchangeably. 3

2 Related WorkIn this section, we discuss routing protocols recently proposed for packet-switched QoS networks.These routing protocols can be classi�ed depending on whether they help the network supportqualitative QoS or quantitative (real-time) QoS. For a qualitative QoS, the network tries to providethe service requested by the application with no performance guarantees. Such a service is oftenidenti�ed as \best-e�ort". A quantitative QoS provides performance guarantees (typically requiredby real-time applications); for example, an upper bound on the end-to-end delay for any packetreceived at the destination.Routing protocols that make routing decisions on a per VC basis can be used to provide eitherqualitative or quantitative QoS. For a quantitative QoS, some admission control tests should beperformed during the VC-setup message's trip to the destination to try to reserve resources alongthe VC's path as described in Section 1.On the other hand, the use of routing protocols that make routing decisions on a per packetbasis is problematic in providing resource guarantees [5], and qualitative QoS is the best servicethe network can o�er.Since we are concerned in this paper with real-time QoS, we limit our following discussion toVC routing schemes proposed or evaluated in this context. We refer the reader to [19, 6] for a goodsurvey on many other routing schemes.Most of the VC routing schemes proposed for real-time QoS networks are based on the link-state full-view approach described in Section 1 [6, 1, 10, 24]. Recall that in this approach, eachend-system maintains a view of the whole network, i.e. a graph with a vertex for every node andan edge between two neighbor nodes. QoS information is attached to the vertices and the edges ofthe view. This QoS information is distributed regularly to all end-systems to update their viewsand thus enable the selection of appropriate source routes for VCs, i.e. routes that are likely tomeet the requested QoS. The proposed schemes mainly di�er in how this QoS information is used.Generally, a cost function is de�ned in terms of the QoS information, and used to estimate thecost of a path to the VC's destination. The route selection algorithm then favors short paths withminimum cost. See [17, 22] for an evaluation of several schemes.A number of VC routing schemes have also been designed for networks using the Virtual Path(VP) concept [15, 14]. This VP concept has been proposed to simplify network management andcontrol by having separate (logically) fully-connected subnetworks, typically one for each serviceclass. In each VP subnetwork, simple routing schemes that only consider one-hop and two-hop4

paths are used. However, the advantage of using VPs can be o�set by a decrease in statisticalmultiplexing gains of the subnetworks [15]. In this work, we are interested in general networktopologies, where the shortest paths can be of arbitrary hop length and the overhead of routingprotocols is of much concern.All the above VC routing schemes are based on the link-state approach. VC routing schemesbased on the path-vector approach have also been proposed [13]. In this approach, for each desti-nation a node maintains a set of paths, one through each of its neighbor nodes. QoS informationis attached to these paths. For each destination, a node exchanges its best feasible path3 with itsneighbor nodes. The scheme in [13] provides two kinds of routes: pre-computed and on-demand.Pre-computed routes match some well-known QoS requirements, and are maintained using thepath-vector approach. On-demand routes are calculated for speci�c QoS requirements upon re-quest. In this calculation, the source broadcasts a special packet over all candidate paths. Thedestination then selects a feasible path from them and informs the source [13, 23]. One drawbackof this scheme is that obtaining on-demand routes is very expensive since there are potentiallyexponential number of candidate paths between the source and the destination.The link-state approach is often proposed and favored over the path-vector approach in QoSarchitectures for several reasons [16]. An obvious reason is simplicity and complete control of thesource over QoS route selection.The above VC routing schemes do not scale well to large QoS networks in terms of storageand communication requirements. Several techniques to achieve scaling exist. The most commontechnique is the area hierarchy described in Section 1.The landmark hierarchy [26, 25] is another approach for solving the scaling problem. The link-state approach can not be used with the landmark hierarchy. A thorough study of enforcing QoSand policy constraints with this hierarchy has not been done.Finally, we should point out that extensive e�ort is currently underway to fully specify andstandardize VC routing schemes for the future integrated services Internet and ATM networks [9].3 Viewserver Hierarchy Query ProtocolIn this section, we present our scheme for static network conditions, that is, all links and nodesremain operational. The dynamic case is presented in Section 4.3 A feasible path is a path that satis�es the QoS constraints of the nodes in the path.5

Conventions: Each node has a unique id. NodeIds denotes the set of node-ids. For a node u, weuse nodeid(u) to denote the id of u. NodeNeighbors(u) denotes the set of ids of the neighbors of u.In our protocol, a node u uses two kinds of sends. The �rst kind has the form \Send(m) to v",where m is the message being sent and v is the destination-id. Here, nodes u and v are neighbors,and the message is sent over the physical link (u; v). If the link is down, we assume that the packetis dropped.The second kind of send has the form \Send(m) to v using sr", where m and v are as aboveand sr is a source route between u and v. We assume that as long as there is a sequence of uplinks connecting the nodes in sr, the message is delivered to v. This requires a transport protocolsupport such as TCP [20].To implement both kind of sends, we assume there is a reserved VC on each link for sendingrouting, signaling and control messages [4]. This also ensures that routing messages do not degradethe QoS seen by applications.Views and ViewserversViews are maintained by special nodes called viewservers. Each viewserver has a precinct, which isa set of nodes around the viewserver. A viewserver maintains a view, consisting of the nodes in itsprecinct, links between these nodes and links outgoing from the precinct4. Formally, a viewserverx maintains the following:Precinctx � NodeIds. Nodes whose view is maintained.V iewx: View of x.= fhu; timestamp; expirytime; fhv; costi : v 2 NodeNeighbors(u)gi :u 2 PrecinctxgThe intention of V iewx is to obtain source routes between nodes in Precinctx. Hence, thechoice of nodes to include in Precinctx and the choice of links to include in V iewx are not arbitrary.Precinctx and V iewx must be connected; that is, between any two nodes in Precinctx, there shouldbe a path in V iewx. Note that V iewx can contain links to nodes outside Precinctx. We say that anode u is in the view of a viewserver x, if either u is in the precinct of x, or V iewx has a link froma node in the precinct of x to node u. Note that the precincts and views of di�erent viewserverscan be overlapping, identical or disjoint.4 Not all the links need to be included. 6

For a link (u; v) in the view of a viewserver x, V iewx stores a cost. The cost of the link (u; v)equals a vector of values if the link is known to be up; each cost value estimates how expensive itis to cross the link according to some QoS criteria such as delay, throughput, loss rate, etc. Thecost equals 1 if the link is known to be down. Cost of a link changes with time (see Section 4).The view also includes timestamp and expirytime �elds which are described in Section 4.Viewserver HierarchyFor scaling reasons, we cannot have one large view. Thus, obtaining a source route between a sourceand a destination which are far away, involves accumulating views of a sequence of viewservers. Tokeep this process e�cient, we organize viewservers hierarchically. More precisely, each viewserver isassigned a hierarchy level from 0; 1; : : :, with 0 being the top level in the hierarchy. A parent-childrelationship between viewservers is de�ned as follows:1. Every level i viewserver, i > 0, has a parent viewserver whose level is less than i.2. If viewserver x is a parent of viewserver y then x's precinct contains y and y's precinctcontains x.3. The precinct of a top level viewserver contains all other top level viewservers.In the hierarchy, a parent can have many children and a child can have many parents. We extendthe range of the parent-child relationship to ordinary nodes; that is, if Precinctx contains the nodeu, we say that u is a child of x, and x is a parent of u. We assume that there is at least one parentviewserver for each node.For a node u, an address is de�ned to be a sequence hx0; x1; : : : ; xti such that xi for i < t isa viewserver-id, x0 is a top level viewserver-id, xt is the id of u, and xi is a parent of xi+1. Anode may have many addresses since the parent-child relationship is many-to-many. If a sourcenode wants to establish a VC to a destination node, it �rst queries the name servers to obtain aset of addresses for the destination5. Second, it queries viewservers to obtain an accumulated viewcontaining both itself and the destination node (it can reach its parent viewservers by using �xedsource routes to them). Then, it chooses a feasible source route from this accumulated view andinitiates the VC setup protocol on this path.View-Query Protocol: Obtaining Source RoutesWe now describe how a source route is obtained.5 Querying the name servers can be done in the same way as is done currently in the Internet.7

We want a sequence of viewservers whose merged views contains both the source and thedestination nodes. Addresses provide a way to obtain such a sequence, by �rst going up in theviewserver hierarchy starting from the source node and then going down in the viewserver hierarchytowards the destination node. More precisely, let hs0; : : : ; sti be an address of the source, andhd0; : : : ; dli be an address of the destination. Then, the sequence hst�1; : : : ; s0; d0; : : : ; dl�1i meetsour requirements. In fact, going up all the way in the hierarchy to top level viewservers may notbe necessary. We can stop going up at a viewserver si if there is a viewserver dj ; j < l, in the viewof si (one special case is where si = dj).The view-query protocol uses two message types:� (RequestView; s address; d address)where s address and d address are the addresses for the source and the destination respec-tively. A RequestView message is sent by a source node to obtain an accumulated view con-taining both the source and the destination nodes. When a viewserver receives a RequestViewmessage, it either sends back its view or forwards this request to another viewserver.� (ReplyView; s address; d address; accumview)where s address and d address are as above and accumview is the accumulated view. AReplyView message is sent by a viewserver to the source or to another viewserver closer tothe source. The accumview �eld in a ReplyView message equals the union of the views ofthe viewservers the message has visited.We now describe the view-query protocol in more detail (please refer to Figures 1 and 2). Toestablish a VC to a destination node, the source node sends a RequestView packet containing thesource and the destination addresses to its parent in the source address.Upon receiving a RequestView packet, a viewserver x checks if the destination node is in itsprecinct6. If it is, x sends back its view in a ReplyView packet. If it is not, x forwards the requestpacket to another viewserver as follows (details in Figure 2): x checks whether any viewserver inthe destination address is in its view. If there is such a viewserver, x sends the RequestView packetto the last such one in the destination address. Otherwise x is a viewserver in the source address,and it sends the packet to its parent in the source address.When a viewserver x receives a ReplyView packet, it merges its view to the accumulated viewin the packet. Then it sends the ReplyView packet towards the source node in the same way itwould send a RequestView packet towards the destination node (i.e. the roles of the source address6 Even though the destination can be in the view of x, its QoS characteristics is not in the view if it is not in theprecinct of x. 8

ConstantsFixedRoutesu(x); for every viewserver-id x such that x is a parent of u,= fhy1; : : : ; yni : yi 2 NodeIdsg. Set of routes to xEventsRequestV iewu(s address; d address) fExecuted when u wants a source routegLet s address be hs0; : : : ; st�1; sti; and sr 2 FixedRoutesu(st�1);Send(RequestView; s address; d address) to st�1 using srReceiveu(ReplyView; s address; d address; accumview)Choose a feasible source route using accumview;If a feasible route is not foundExecute RequestV iewu again with another source address and/or destination addressFigure 1: View-query protocol: Events and state of a source node u.ConstantsPrecinctx: Precinct of x.VariablesV iewx: View of x.EventsReceivex(RequestView; s address; d address)Let d address be hd0; : : : ; dti;if dt 62 Precinctx thenforwardx(RequestView; s address; d address; fg);else forwardx(ReplyView; d address; s address; V iewx); faddresses are switchedgendifReceivex(ReplyView; s address; d address; view)forwardx(ReplyView; s address; d address; view [V iewx)where procedure forwardx(type; s address; d address; view)Let s address be hs0; : : : ; sti; d address be hd0; : : : ; dli;if 9i : di in V iewx thenLet i = maxfj : dj in V iewxg;target := di;else target := si such that si+1 = nodeid(x);endif;sr := choose a route to target from nodeid(x) using V iewx;if type = RequestView thenSend(RequestView; s address; d address) to target using sr;else Send(ReplyView; s address; d address; view) to target using sr;endif Figure 2: View-query protocol: Events and state of a viewserver x.and the destination address are interchanged). 9

When the source receives a ReplyView packet, it chooses a feasible path using the accumviewin the packet. If it does not �nd a feasible path, it can try again using a di�erent source and/ordestination addresses. Note that the source does not have to throw away the previous accumulatedviews; it can merge them all into a richer accumulated view. In fact, it is easy to change the protocolso that the source can also obtain views of individual viewservers to make the accumulated vieweven richer. Once a feasible source route is found, the source node initiates the VC setup protocol.Above we have described one possible way of obtaining the accumulated views. There arevarious other possibilities, for example: (1) restricting the ReplyView packet to take the reverseof the path that the RequestView packet took; (2) having ReplyView packets go all the wayup in the viewserver-hierarchy for a richer accumulated view; (3) having the source poll theviewservers directly instead of the viewservers forwarding request/reply messages to each other;(4) not including non-transit nodes (e.g. end-systems) other than the source and the destinationnodes in the accumview; (5) including some QoS requirements in the RequestView packet, andhaving the viewservers �lter out some nodes and links.4 Update Protocol for Dynamic Network ConditionsIn this section, we �rst describe how topology changes such as link/node failures, repairs and costchanges, are detected and communicated to viewservers, i.e. the view-update protocol. Then, wemodify the view-query protocol appropriately.View-Update Protocol: Updating ViewsViewservers do not communicate with each other to maintain their views. Nodes detect andcommunicate topology changes to viewservers. Updates are done periodically and also optionallyafter a change in the outgoing link costs.The communication between a node and viewservers is done by ooding over a set of nodes.This set is referred to as the ood area. The topology of a ood area must be a connected graph.For e�ciency, the ood area can be implemented by a hop-count.Due to the nature of ooding, a viewserver can receive information out of order from a node. Inorder to avoid old information replacing new information, each node includes successively increasingtime stamps in the messages it sends. The timestamp �eld in the view of a viewserver equals thelargest timestamp received from each node. 10

Due to node and link failures, communication between a node and a viewserver can fail, resultingin the viewserver having out-of-date information. To eliminate such information, a viewserverdeletes any information about a node if it is older than a time-to-die period. The expirytime �eldin the view of a viewserver equals the end of the time-to-die period for a node. We assume thatnodes send messages more often than the time-to-die value (to avoid false removal).The view-update protocol uses one type of message as follows:� (Update; nid; timestamp; floodarea; ncostset)is sent by the node to inform the viewservers about current costs of its outgoing links. Here,nid and timestamp indicate the id and the time stamp of the node, ncostset contains a costfor each outgoing link of the node, and floodarea is the set of nodes that this message is tobe sent over.Constants:F loodAreag: (� NodeIds). The ood area of the node.Variables:Clockg : Integer. Clock of g. Figure 3: State of a node g.The state maintained by a node g is listed in Figure 3. We assume that consecutive reads ofClockg returns increasing values.Constants:Precinctx: Precinct of x.T imeToDiex : Integer. Time-to-die value.Variables:V iewx: View of x.Clockx : Integer. Clock of x. Figure 4: State of a viewserver x.The state maintained by a viewserver x is listed in Figure 4.The events of node g are speci�ed in Figure 5. The events of a viewserver x are speci�ed inFigure 6. When a viewserver x recovers, V iewx is set to fg. Its view becomes up-to-date as itreceives new information from nodes (and remove false information with the time-to-die period).11

Updateg fExecuted periodically and also optionally upon a change in outgoing link costsgncostset := compute costs for each outgoing link;floodg((Update; nodeid(g); Clockg; F loodAreag; ncostset));Receiveg (packet) fan Update packetgfloodg(packet)where procedure floodg (packet)if nodeid(g) 2 packet:floodarea thenfremove g from the ood area to avoid in�nite exchange of the same message.gpacket:floodarea := packet:floodarea | fnodeid(g)g;for all h 2 NodeNeighbors(g) ^ h 2 packet:floodarea doSend(packet) to h;endifNode Failure Model: A node can undergo failures and recoveries at anytime. We assume failures arefail-stop (i.e. a failed node does not send erroneous messages).Figure 5: View-update protocol: Events of a node g.Receivex(Update; nid; ts; F loodArea; ncset)if nid 2 Precinctx thenif 9hnid; timestamp; expirytime; ncostseti 2 V iewx ^ ts > timestamp thenfreceived is more recent; delete the old onegdelete hnid; timestamp; expirytime; ncostseti from V iewx;endifif :9hnid; timestamp; expirytime; ncostseti 2 V iewx thenncostset := subset of edge-cost pairs in ncset that are in V iewx;insert hnid; ts; Clockx + T imeToDiex ; ncostseti to V iewx;endifendifDeletex fExecuted periodically to delete entries older than the time-to-die periodgfor all hnid; tstamp; expirytime; ncseti 2 V iewx ^ expirytime < Clockx dodelete hnid; tstamp; expirytime; ncseti from V iewx;Viewserver Failure Model: A viewserver can undergo failures and recoveries at anytime. We assumefailures are fail-stop. When a viewserver x recovers, V iewx is set to fg.Figure 6: View update events of a viewserver x.Changes to View-Query ProtocolWe now enumerate the changes needed to adapt the view-query protocol to the dynamic case (theformal speci�cation is omitted for space reasons).Due to link and node failures, RequestView and ReplyView packets can get lost. Hence, the12

source may never receive a ReplyView packet after it initiates a request. Thus, the source shouldtry again after a time-out period.When a viewserver receives a RequestView message, it should reply with its views only if thedestination node is in its precinct and its view contains a path to the destination. Similarly duringforwarding of RequestView and ReplyView packets, a viewserver, when checking whether a nodeis in its view, should also check if its view contains a path to it.5 EvaluationIn this section, we present the parameters of our simulation model. We use this model to com-pare our viewserver-based VC routing protocols to the simple approach. The results obtained arepresented in Section 6.Network ParametersWe model a campus network which consists of a campus backbone subnetwork and several depart-ment subnetworks. The backbone network consists of backbone switches and backbone links.Each department network consists of a hub switch and several non-hub switches. Each non-hubswitch has a link to the department's hub switch. And the department's hub switch has a link toone of the backbone switches. A non-hub switch can have links to other non-hub switches in thesame department, to non-hub switches in other departments, or to backbone switches.End-systems are connected to non-hub switches. An example network topology is shown inFigure 7.In our topology, there are 8 backbone switches and 32 backbone links. There are 16 departments.There is one hub-switch in each department. There is a total of 240 non-hub switches randomlyassigned to di�erent departments. There are 2500 end-systems which are randomly connected tonon-hub switches. Thus, we have a total of 2764 nodes.In addition to the links connecting non-hub switches to the hub switches and hub switches tothe backbone switches, there are 720 links from non-hub switches to non-hub switches in the samedepartment, there are 128 links from non-hub switches to non-hub switches in di�erent departments,and there are 64 links from non-hub switches to backbone switches.The end-points of each link are chosen randomly. However, we make sure that the backbonenetwork is connected; and there is a link from node u to node v i� there is a link from node v to13

Department 1 Department 2

Backbone

Backbone switches

Hub switches

Non−hub switches

End−systems

u

v

w

xy

z

s d

q

pFigure 7: An example network topology.node u.Each link has a total of C units of bandwidth.QoS and Workload ParametersIn our evaluation model, we assume that a VC requires the reservation of a certain amount ofbandwidth that is enough to ensure an acceptable QoS for the application. This reservation amountcan be thought of either as the peak transmission rate of the VC or its \e�ective bandwidth" [12]varying between the peak and average transmission rate.VC setup requests arrive to the network according to a Poisson process of rate �, each requiringone unit of bandwidth. Each VC, once it is successfully setup, has a lifetime of exponential durationwith mean 1=�. The source and the destination end-systems of a VC are chosen randomly.An arriving VC is admitted to the network if at least one feasible path between its source anddestination end-systems is found by the routing protocol, where a feasible path is one that has linkswith non-zero available capacity. From the set of feasible paths, a minimum hop path is used toestablish the VC; one unit of bandwidth is allocated on each of its links for the lifetime of the VC.On the other hand, if a feasible path is not found, then the arriving VC is blocked and lost.We assume that the available link capacities in the views of the viewservers are updated instan-14

taneously whenever a VC is admitted to the network or terminates.Viewserver Hierarchy SchemesWe have evaluated our viewserver protocol for several di�erent viewserver hierarchies and querymethods. We next describe the di�erent viewserver schemes evaluated. Please refer to Figure 7 inthe following discussion.The �rst viewserver scheme is referred to as base. Each switch is a viewserver. A viewserver'sprecinct consist of itself and the neighboring nodes. The links in the viewserver's view consist ofthe links between the nodes in the precinct, and links outgoing from nodes in the precinct to nodesnot in the precinct. For example, the precinct of viewserver u consists of nodes u; v; w; s.As for the viewserver hierarchy, a backbone switch is a level 0 viewserver, a hub switch is alevel 1 viewserver and a non-hub switch is a level 2 viewserver. Parent of a hub switch viewserveris the backbone switch viewserver it is connected to. Parent of a non-hub switch viewserver is thehub switch viewserver in its department. Parent of an end-system is the non-hub switch viewserverit is connected to.We use only one address for each end-system. The viewserver-address of an end-system is theconcatenation of four ids. Thus, the address of s is z:v:u:s. Similarly, the address of d is z:v:x:d.To obtain a route between s and d, it su�ces to obtain views of viewservers u; v; x.The second viewserver scheme is referred to as base-QT (where the QT stands for \query upto top"). It is identical to base except that during the query protocol all the viewservers in thesource and the destination addresses are queried. That is, to obtain a route between s and d, theviews of u; v; x; z are obtained.The third viewserver scheme is referred to as vertex-extension. It is identical to base exceptthat viewserver precincts are extended as follows: Let P denote the precinct of a viewserver in thebase scheme. For each node u in P, if there is a link from node u to node v and v is not in P, nodev is added to the precinct; among v's links, only the ones to nodes in P are added to the view. Inthe example, nodes z; y; x; q are added to the precinct of u, but outgoing links of these nodes toother nodes are not included (e.g. (x; p) and (z; q) are not included). The advantage of this schemeis that even though it increases the precinct size by a factor of d (where d is the average number ofneighbors to a node), it increases the number of links stored in the view by a factor less than 2.The fourth viewserver scheme is referred to as vertex-extension-QT. It is identical to vertex-extension except that during the query protocol all the viewservers in the source and the destination15

addresses are queried.6 Numerical Results6.1 Results for Network 1The parameters of the �rst network topology, referred to as Network 1, are given in Section 5. Thelink capacity C is taken to be 20 [6], i.e. a link is capable of carrying 20 VCs simultaneously.Our evaluation measures were computed for a (randomly chosen but �xed) set of 100,000 VCsetup requests. Table 1 lists for each viewserver scheme (1) the minimum, average and maximumof the precinct sizes (in number of nodes), (2) the minimum, average and maximum of the mergedview sizes (in number of nodes), and (3) the minimum, average and maximum of the number ofviewservers queried.Scheme Precinct Size Merged View Size No. of Viewservers Queriedbase 5 / 16.32 / 28 4 / 56.46 / 81 1 / 5.49 / 6base-QT 5 / 16.32 / 28 27 / 59.96 / 81 6 / 6.00 / 6vertex-extension 22 / 88.11 / 288 14 / 155.86 / 199 1 / 5.49 / 6vertex-extension-QT 22 / 88.11 / 288 113 / 163.28 / 199 6 / 6.00 / 6Table 1: Precinct sizes, merged view sizes, and number of viewservers queried for Network 1.The precinct size indicates the memory requirement at a viewserver. More precisely, the memoryrequirement at a viewserver is O(precinct size � d), except for the vertex-extension and vertex-extension-QT schemes. In these schemes, the memory requirement is increased by a factor lessthan two. Hence these schemes have the same order of viewserver memory requirement as the baseand base-QT schemes.The merged view size indicates the memory requirement at a source end-system during thequery protocol; i.e. the memory requirement at a source end-system is O(merged view size � d)except for the vertex-extension and vertex-extension-QT schemes. Note that the source end-systemdoes not need to store information about end-systems other than itself and the destination. Thenumbers in Table 1 take advantage of this.The number of viewservers queried indicates the communication time required to obtain themerged view at the source end-system. Hence, the \real-time" communication time required toobtain the merged view at a source is slightly more than one round-trip time between the source16

and the destination.As is apparent from Table 1, using a QT scheme increases the merged view size by about 6%,and the number of viewservers queried by about 9%. Using the vertex-extension scheme increasesthe merged view size by about 3 times (note that the amount of actual memory needed increasesonly by a factor less than 2).The above measures show the memory and time requirements of our protocols. They clearlyindicate the savings in storage over the simple approach as manifested by the smaller view sizes. Toanswer whether the viewserver hierarchy �nds many feasible paths, other evaluation measures suchas the carried VC load and the percent VC blocking are of interest. They are de�ned as follows:� Carried VC load is the average number of VCs carried by the network.� Percent VC blocking is the percentage of VC setup requests that are blocked due to the factthat a feasible path is not found.7In our experiments, we keep the average VC lifetime (1=�) �xed at 15000 and vary the arrivalrate of VC setup requests (�). Figure 8 shows the carried VC load versus � for the simple approachand the viewserver schemes. Figure 9 shows the percent VC blocking versus �. At low values of �,all the viewserver schemes are very close to the simple approach. At moderate values of �, the baseand base-QT schemes perform badly. The vertex-extension and vertex-extension-QT schemes arestill very close to the simple approach (only 3.4% less carried VC load). Note that the performanceof the viewserver schemes can be further improved by trying more viewserver addresses.Surprisingly, at high values of �, all the viewserver schemes perform better than the simpleapproach. At � = 0:5, the network with the base scheme carries about 30% higher load than thesimple approach. This is an interesting result. Our explanation is as follows. Elsewhere [2], wehave found that when the viewserver schemes can not �nd an existing feasible path, this path isusually very long (more than 11 hops). This causes our viewserver hierarchy protocols to rejectVCs that are admitted by the simple approach over long paths. The use of long paths for VCs isundesirable since it ties up resources at more intermediate nodes, which can be used to admit manyshorter length VCs.In conclusion, we recommend the vertex-extension scheme as it performs close to or betterthan all other schemes in terms of VC carried load and blocking probability over a wide range ofworkload. Note that for all viewserver schemes, adding QT yields slightly further improvement.7 Recall that we assume a blocked VC setup request is cleared (i.e. lost).17

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
ar

ri
ed

 V
C

 lo
ad

Arrival rate

CARRIED VC LOAD vs Arrival rate

flat
base

base-QT
vertex-extension

vertex-extension-QTFigure 8: Carried VC load versus arrival rate for Network 1.
0

10

20

30

40

50

60

70

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

 V
C

 b
lo

ck
in

g

Arrival rate

PERCENT VC BLOCKING vs Arrival rate

flat
base

base-QT
vertex-extension

vertex-extension-QTFigure 9: Percent VC blocking versus arrival rate for Network 1.6.2 Results for Network 2The parameters of the second network, referred to as Network 2, are the same as the parametersof Network 1. However, a di�erent seed is used for the random number generation, resulting in adi�erent topology and distribution of source-destination end-system pairs for the VCs.We again take C = 20, and we �x 1=� at 15000. Our evaluation measures were computed for18

a set of 100,000 VC setup requests. Table 2, and Figures 10 and 11 show the results. Similarconclusions to Network 1 hold for Network 2. An interesting exception is that at high values of �,we observe that the vertex-extension scheme performs slightly better than the vertex-extension-QTscheme (about 4.2% higher carried VC load). The reason is the following: Adding QT gives richermerged views, and hence increases the chance of �nding a feasible path that is possibly long. Asexplained in Section 6.1, this results in performance degradation.Scheme Precinct Size Merged View Size No. of Viewservers Queriedbase 4 / 16.32 / 33 4 / 57.61 / 80 1 / 5.52 / 6base-QT 4 / 16.32 / 33 30 / 60.64 / 80 6 / 6.00 / 6vertex-extension 17/ 90.36 / 282 16 / 159.70 / 214 1 / 5.52 / 6vertex-extension-QT 17 /90.36 / 282 113 / 166.97 / 214 6 / 6.00 / 6Table 2: Precinct sizes, merged view sizes, and number of viewservers queried for Network 2.We have repeated the above evaluations for other networks and obtained similar conclusions.7 ConclusionsWe presented a hierarchical VC routing protocol for ATM-like networks. Our protocol satis�es QoSconstraints, adapts to dynamic topology changes, and scales well to large number of nodes.Our protocol uses partial views maintained by viewservers. The viewservers are organizedhierarchically. To setup a VC, the source end-system queries viewservers to obtain a merged viewthat contains itself and the destination end-system. This merged view is then used to compute asource route for the VC.We evaluated several viewserver hierarchy schemes and compared them to the simple approach.Our results on 2764-node networks indicate that the vertex-extension scheme performs close to orbetter than the simple approach in terms of VC carried load and blocking probability over a widerange of real-time workload. It also reduces the amount of memory requirement by up to two orderof magnitude. We note that our protocol scales even better on larger size networks [3].In all the viewserver schemes we studied, each switch is a viewserver. In practice, not allswitches need to be viewservers. We may associate one viewserver with a group of switches. This isparticularly attractive in ATM networks where each signaling entity is responsible for establishingVCs across a group of nodes. In such an environment, viewservers and signaling entities can be19

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
ar

ri
ed

 V
C

 lo
ad

Arrival rate

CARRIED VC LOAD vs Arrival rate

flat
base

base-QT
vertex-extension

vertex-extension-QTFigure 10: Carried VC load versus arrival rate for Network 2.
0

10

20

30

40

50

60

70

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

 V
C

 b
lo

ck
in

g

Arrival rate

PERCENT VC BLOCKING vs Arrival rate

flat
base

base-QT
vertex-extension

vertex-extension-QTFigure 11: Percent VC blocking versus arrival rate for Network 2.combined.However, there is an advantage of each switch being a viewserver; that is, source nodes do notrequire �xed source routes to their parent viewservers (in the view-query protocol). This reducesthe amount of hand con�guration required. In fact, the base and base-QT viewserver schemes donot require any hand con�guration.Our evaluation model assumed that views are instantaneously updated, i.e. no delayed feedback20

between link cost changes and view/route changes. We plan to investigate the e�ect of delayed feed-back on the performance of the di�erent schemes. We expect our viewserver schemes to outperformthe simple approach in this realistic setting as the update of views of the viewservers requires lesstime and communication overhead. Thus, views in our viewserver schemes will be more up-to-date.As we pointed out in [3], the only drawback of our protocol is that to obtain a source routefor a VC, views are merged at (or prior to) the VC setup, thereby increasing the setup time. Thisdrawback is not unique to our scheme [8, 16, 7, 11]. Reference [3] describes several ways, includingcacheing and replication, to reduce the setup overhead and improve performance.References[1] H. Ahmadi, J. Chen, and R. Guerin. Dynamic Routing and Call Control in High-Speed IntegratedNetworks. In Proc. Workshop on Systems Engineering and Tra�c Engineering, ITC'13, pages 19{26,Copenhagen, Denmark, June 1991.[2] C. Alaettino�glu and A. U. Shankar. Viewserver Hierarchy: A New Inter-Domain Routing Protocol andits Evaluation. Technical Report UMIACS-TR-93-98, CS-TR-3151, Department of Computer Science,University of Maryland, College Park, October 1993. Earlier version CS-TR-3033, February 1993.[3] C. Alaettino�glu and A. U. Shankar. Viewserver Hierarchy: A New Inter-Domain Routing Protocol. InProc. IEEE INFOCOM '94, Toronto, Canada, June 1994.[4] A. Alles. ATM in Private Networking: A Tutorial. Hughes LAN Systems, 1993.[5] P. Almquist. Type of Service in the Internet Protocol Suite. Technical Report RFC-1349, NetworkWorking Group, July 1992.[6] L. Breslau, D. Estrin, and L. Zhang. A Simulation Study of Adaptive Source Routing in IntegratedServices Networks. Available by anonymous ftp at catarina.usc.edu:pub/breslau, September 1993.[7] J. N. Chiappa. A New IP Routing and Addressing Architecture. Big-Internet mailing list., 1992.Available by anonymous ftp from munnari.oz.au:big-internet/list-archive.[8] D.D. Clark. Policy routing in Internet protocols. Request for Comment RFC-1102, Network InformationCenter, May 1989.[9] R. Coltun and M. Sosa. VC Routing Criteria. Internet Draft, March 1993.[10] D. Comer and R. Yavatkar. FLOWS: Performance Guarantees in Best E�ort Delivery Systems. In Proc.IEEE INFOCOM, Ottawa, Canada, pages 100{109, April 1989.[11] D. Estrin, Y. Rekhter, and S. Hotz. Scalable Inter-Domain Routing Architecture. In Proc. ACMSIGCOMM '92, pages 40{52, Baltimore, Maryland, August 1992.[12] R. Guerin, H. Ahmadi, and M. Naghshineh. Equivalent Capacity and its Application to BandwidthAllocation in High-Speed Networks. IEEE J. Select. Areas Commun., SAC-9(7):968{981, September1991.[13] A. Guillen, R. Kia, and B. Sales. An Architecture for Virtual Circuit/QoS Routing. In Proc. IEEEInternational Conference on Network Protocols '93, pages 80{87, San Francisco, California, October1993.[14] S. Gupta, K. Ross, and M. ElZarki. Routing in Virtual Path Based ATM Networks. In Proc. GLOBE-COM '92, pages 571{575, 1992.[15] R-H. Hwang, J. Kurose, and D. Towsley. MDP Routing in ATM Networks Using Virtual Path Concept.In Proc. IEEE INFOCOM, pages 1509{1517, Toronto, Ontario, Canada, June 1994.[16] M. Lepp and M. Steenstrup. An Architecture for Inter-Domain Policy Routing. Internet Draft. Availablefrom the authors., June 1992.[17] I. Matta and A.U. Shankar. An Iterative Approach to Comprehensive Performance Evaluation of Inte-grated Services Networks. In Proc. IEEE International Conference on Network Protocols '94, Boston,Massachusetts, October 1994. To appear.[18] J. Moy. OSPF Version 2. RFC 1247, Network Information Center, SRI International, July 1991.21

[19] C. Parris and D. Ferrari. A Dynamic Connection Management Scheme for Guaranteed PerformanceServices in Packet-Switching Integrated Services Networks. Technical Report TR-93-005, InternationalComputer Science Institute, Berkeley, California, January 1993.[20] J. Postel. Transmission Control Protocol: DARPA Internet Program Protocol Speci�cation. Requestfor Comment RFC-793, Network Information Center, SRI International, 1981.[21] M. Prycker. Asynchronous Transfer Mode - Solution for Broadband ISDN. Ellis Horwood, 1991.[22] S. Rampal, D. Reeves, and D. Agrawal. An Evaluation of Routing and Admission Control Algorithmsfor Multimedia Tra�c in Packet-Switched Networks. Available from the authors, 1994.[23] H. Suzuki and F. Tobagi. Fast Bandwidth Reservation Scheme with Multi-Link and Multi-Path Routingin ATM Networks. In Proc. IEEE INFOCOM '92, pages 2233{2240, Florence, Italy, May 1992.[24] E. Sykas, K. Vlakos, I. Venieris, and E. Protonotarios. Simulative Analysis of Optimal Resource Allo-cation and Routing in IBCN's. IEEE J. Select. Areas Commun., 9(3):486{492, April 1991.[25] P. F. Tsuchiya. The Landmark Hierarchy: Description and Analysis, The Landmark Routing: Ar-chitecture Algorithms and Issues. Technical Report MTR-87W00152, MTR-87W00174, The MITRECorporation, McLean, Virginia, 1987.[26] P. F. Tsuchiya. The Landmark Hierarchy:A New Hierarchy For Routing In Very Large Networks. InProc. ACM SIGCOMM '88, August 1988.

22

