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Abstract

One of the issues in any learning model is how it scales with problem size. Neural networks
have not been immune to scaling issues. We show that a dynamically-driven discrete-time
recurrent network (DRNN) can learn rather large grammatical inference problems when the
strings of a finite memory machine (FMM) are encoded as temporal sequences. FMMs are a
subclass of finite state machines which have a finite memory or a finite order of inputs and
outputs. The DRNN that learns the FMM is a neural network that maps directly from the
sequential machine implementation of the FMM. It has feedback only from the output and not
from any hidden units; an example is the recurrent network of Narendra and Parthasarathy.
(FMMs that have zero order in the feedback of outputs are called definite memory machines and
are analogous to Time-delay or Finite Impulse Response neural networks.) Due to their topology
these DRNNs are as least as powerful as any sequential machine implementation of a FMM and
should be capable of representing any FMM. We choose to learn “particular FMMs.” Specifically,
these FMMs have a large number of states (simulations are for 256 and 512 state FMMs) but
have minimal order, relatively small depth and little logic when the FMM is implemented as
a sequential machine. Simulations for the number of training examples versus generalization
performance and FMM extraction size show that the number of training samples necessary
for perfect generalization is less than that sufficient to completely characterize the FMM to be
learned. This is in a sense a best case learning problem since any arbitrarily chosen FMM with a
minimal number of states would have much more order and string depth and most likely require
more logic in its sequential machine implementation.



1 Introduction

1.1 Background

Dynamically—driven recurrent neural networks (DRNNs) have empirically shown the ability to
perform inference in problems as diverse as grammar induction (Cleeremans et al., 1989; Das and
Das, 1991; Elman, 1991; Frasconi et al., 1992a; Giles et al., 1992; Mozer and Bachrach, 1990;
Pollack, 1991; Zeng et al., 1994) and system identification in control (Barto, 1990; Billings et al.,
1992; Narendra and Parthasarathy, 1990). We discuss results concerning the learning of temporal
sequences for a particular class of discrete-time recurrent neural network architectures (Narendra
and Parthasarathy, 1990). This DRNN has tapped delays both on the input and on the feedback of
the output. Because of this model’s similarity to an IIR filter, we will refer to it as a neural network
IIR (NNIIR). Such models are very similar to feedback networks described by others (Back and
Tsoi, 1991; Billings et al., 1992; Frasconi et al., 1992b; Jordan, 1986; Sastry et al., 1994; Vries and
Principe, 1992).

We show that this DRNN when trained on strings encoded as temporal sequences is able to
learn and emulate a large finite state machine (FSM) and its associated grammar. The finite state
machines we easily learned have the following distinct properties: they are from a subclass of FSMs
called finite memory machines (Kohavi, 1978) that are defined by the type of memory used and
how fed back, they have relatively low depth, and when implemented as a sequential machine they
require minimal memory and simple combinational logic.

1.2 Benchmark Problems for Recurrent Neural Networks

Though there are many benchmark databases for feedforward networks, few exist for dynamic
networks. We propose a specific problem of system identification as one good benchmark for the
computational capabilities of dynamically—driven recurrent networks. As a benchmark for dynamic
networks, the training data must have dynamical characteristics. Temporal signals can have many
characteristics: discrete or continuous; real, complex or binary valued; dimensionality; stochastic or
deterministic; one or many samples; labeled or unlabeled. If grammatical strings from deterministic
regular grammars are interpreted as temporal sequences, then these temporal sequences have the
simple set of characteristics described above. However, the problem of learning (or inferring these
sequences) can be NP—complete in the worst case. As such we propose grammatical inference with
temporal sequences as a good benchmark problem for the computational capabilities of recurrent
neural networks, irrespective of possible applications. However, potential applications in natural
language processing (Fu, 1994; Sun, 1994) and more recently in intelligent control (Nerode and
Kohn, 1993a; Nerode and Kohn, 1993b) have been proposed.

2 Properties of Finite State and Memory Machines

Since we are learning finite state machines from temporal sequences, we briefly introduce finite state
machines (FSMs) and their properties. A FSM is an abstraction of a device that can be described
by alabeled directed cyclic graph that consists of inputs, states and outputs. In this paper all FSMs
are deterministic. A sequential machine (SM) refers specifically to the logical implementation of
that machine, consisting of logic and fed back memory functions, for example delay lines, latches,
flip—flops, etc. All SMs described in the paper are synchronous. Another important difference
between sequential machines and FSM is that because of feedback, time is an explicit parameter
for sequential machines. For machine, time is just one of many possible parameterizations of the



u(k) —= — Y(K)
Combinatorial
Logic

Finite Memory
i a9

/\;

X (k+1)

Figure 1: A sequential machine.

state transitions and of input and output sequences. We will see that there a topological similarities
between various types of sequential machines and recurrent neural networks.

2.1 Finite State Machines

Finite state machines operate with a finite number of input and output symbols and have a finite
number of internal states and an output for each corresponding input. An FSM is defined as:

Definition 1 A finite state machine (FSM) is a sextuple M = (Q,X,A,8, A, qo), where @ is a
finite set of states; X is a finite set of symbols called the input alphabet; A is a finite set of symbols
called the output alphabet; 6 : () X ¥ — @ is a transition function; A : () X ¥ — A is an output
function; qo is the initial state. a

For this work, the output alphabet, like the input alphabet, will always be binary, i.e. A = {0, 1}.
We shall assume that the reader is familiar with the conventional extensions of 6 and A to the free
monoid of X, if not see citehopcroft79b.

2.2 Sequential Machines

Sequential Machines (SMs) are implementations of an FSM which consist of logic and memory
elements. An example of a SM is shown in Figure 1. In high—level VLSI synthesis generating the
SM from the high-level FSM design is one of the first steps in logic synthesis (Ashar et al., 1992).
A great deal of effort has gone into facilitating and automating this process.

We can explicitly associate time with an FSM in the following way. The input, output and
state to the machine at time & will be denoted by respectively u(k), y(k) and z(k). The encoding
of the input and output alphabets into u(k) and y(k) must be defined. When these variables are
related by logic and time delays or memory, this implementation is called a sequential machine
(see Figure 1). Note that if the combinational logic in Figure 1 is replaced by a feedforward neural
network, the sequential machine becomes a general-purpose recurrent neural network.
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Figure 2: A finite memory machine of input—order 2 and output—order 1.

2.3 Useful properties of FSMs

A finite state machine is minimal if it is the machine with the fewest number of states for a
given input/output behavior. The FSMs described here are all minimal. Two useful measures of
characterizing a F'SM are its depth and its degree of distinguishability. States ¢; and ¢; of a 'SM
are said to be distinguishable if there exists a finite length sequence which when the machine is
started in state ¢; produces a different output sequence than the output sequence produced when
the machine is started in state ¢;. The degree of distinguishability is the smallest integer p such that
for every pair of non—equivalent states in the FSM there exists an input sequence not longer than
p that induces a different output sequence when the machine is started in each of the two states.
(Two states, p and ¢, of a FSM are nonequivalent if there exists a string wa, called a distinguishing
string, such that A(é(p,w),a) # A(6(q,w),a).) The depth is the smallest integer d such that every
state in the FSM can be reached from the starting state in no more than d steps.

2.4 Finite Memory Machines

We will be interested in a subclass of FSMs known as finite memory machines (FMMs).

Definition 2 A finite state machine M is said to be a finite memory machine of input—order n
and output-order m if n and m are the least integers, such that the present state of M can always
be determined uniquely from the knowledge of the last n inputs and the last m outputs, for all
possible sequences of length max(n,m). O

Note that the definition excludes the possibility of any knowledge of the initial state of the machine.
For example, the FSM shown in Figure 2, has input—order two and output—order one, since for any
input sequence of length two, the state of the FSMs can always be determined from knowledge of
the past two inputs and the last output as illustrated in Table 1. Not all FSMs have finite memory,
some have infinite order. For example, the Dual Parity FSM, shown in Figure 3, has infinite order
since one can observe an infinite sequence of ones at the input and an infinite sequence of zeros at
the output without being able to determine whether the FSM is in state gz or ¢s (unless one has
knowledge of the initial state of the machine).

Given an arbitrary FSM there exist efficient algorithms to determine if the machine has finite
memory and, if so, its corresponding order (Kohavi, 1978). For more properties of F'MMs, please
see the Appendix.

Since the state of an FMM depends only on a finite number of previous inputs and outputs, the
sequential machine implementation of an FMM can always be implemented by tapped delay lines
(TDLs) on the input and output and a block of combinational logic as shown in Figure 4. Again,
if the combinational logic is replaced by a feedforward neural network, the sequential machine
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Table 1: The state of the machine as a function of the previous two inputs and previous output.

1/0
)
1/1

[ [
00| |01 0/0 | | 00

n 1/0 Ve
(o &)
1/0

Figure 3: The Dual Parity FSM.
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Figure 4: Sequential machine implementation of a finite memory machine. TDL refers to a tapped
delay line.
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Figure 5: Sequential machine implementation of a definite memory machine.

implementation of a FMM becomes a recurrent network similar to those used in control (Narendra
and Parthasarathy, 1990) and time series (Connor et al., 1994).

FMMs of input—order n and output—-order 0 are said to be definite memory machines. Im-
plementations of such machines do not require feedback from the combinational logic as shown
in Figure 5. Definite memory machines are analogous to recurrent neural networks that have no
feedback from the output states but still time delays on the inputs. These neural networks have
been called TDNNs (Lang, 1992) and finite impulse response neural nets (Wan, 1994).

2.5 Constructing FMMs of Minimal Order and Small Logic

Finding example FMMs with a large number of states is nontrivial. One could potentially pick
the tap size and logic function of a SM implementation randomly. However, the resulting FMM
more often than not has an smaller order than the choice of taps and an unpredictable number
of states. Indeed, using this approach the resulting FMM is often a trivial machine with only a
few states. Instead, we developed theory to devise a method for constructing machines to use for
example learning problems. This theory allows us to construct FMMs through a method we call
the Group Linking Method (GLM), a method which permits a certain amount of control over a
number of properties of the FMM including the order, number of states, and the complexity of the
logic function which defines the mapping from previous inputs and outputs to the current output.
See the Appendix for a complete discussion of the GLM.

2.6 Grammatical Inference and FMMs

Grammatical inference (Fu and Booth, 1975) is the problem of finding a FSM consistent with
a set of positive and negative strings. (These results are often given for deterministic finite-state
automata (DFA). However, it is straightforward to map a DFA into a FSM.) Grammatical inference
is known to be NP-complete (Angluin, 1978) in the worst case. However, some approaches have
been suggested which seem to work well on relatively large problems.

First, if there is a sufficient amount of data it is always possible to construct the smallest
corresponding FSM in polynomial time (Trakhenbrot and Barzdin, 1973). Specifically, given the
complete set of strings not longer than d + p + 1, where d is the depth of the machine and p its
degree of distinguishability, it is always possible to find the minimum consistent FSM. The input to
the algorithm is a tree—structured FSM that directly embodies the training set. The tree can then



be collapsed into a smaller graph by merging all pairs of states that represent compatible mappings
from string suffices to labels.

If the FSM is known to have finite memory, then it is possible to construct the corresponding
FMM from a much smaller set of strings. We prove in the appendix that it is possible to identify
a minimal order FMM of depth d from the complete set of strings not longer than d + 1.

3 Recurrent Neural Networks

In the past few years several recurrent neural network (RNN) models have been proposed (Back and
Tsoi, 1991; Billings et al., 1992; Elman, 1990; Frasconi et al., 1992b; Giles et al., 1990; Hopfield,
1982; Jordan, 1986; Leighton and Conrath, 1991; Narendra and Parthasarathy, 1990; Nerrand
et al., 1993; Poddar and Unnikrishnan, 1991; Robinson and Fallside, 1988; Vries and Principe,
1992; Watrous and Kuhn, 1992a; Williams and Zipser, 1989) Here we use a class of networks in
which output is computed as a nonlinear function of a window of past inputs and outputs (Narendra
and Parthasarathy, 1990), i.e.

y(t) = fu(t),u(t —1),...,u(t—n),y(t —1),y(t = 2),...,y(t — m))

where n and m are the size of the input and output windows respectively. Note that the activations
of hidden neurons are not fed back, the only recurrent connections are from the output(s) of the
network. Because of the similarity to infinite impulse response filters (IIRs), we (as well as others)
will refer to these recurrent network models as neural network IIRs (NNIIRs). Many variations
of this model have been proposed by Narendra and Parthasarathy (Narendra and Parthasarathy,
1990), and have been used extensively for system identification and control problems. In the most
general model, the function f(-) is implemented as a multilayer perceptron. One can also interpret
the NNIIR model as a special case of the recurrent net proposed by (Jordan, 1986).

This class of networks also includes the Time Delay Neural Networks (TDNN), which are simply
a tapped delay line followed by some kind of multilayer perceptron (Lang et al., 1990; Lapedes and
Farber, 1987; Waibel et al., 1989). Strictly speaking, this network is not a RNN, since no nodes
are fed back, i.e. the network implements a functions of the form

y(t) = f(ult),u(t—1),...,u(t—n)).

However, the tapped delay line does provide a simple form of dynamics that gives the network the
ability model a limited class of nonlinear dynamic systems.

Since multilayer networks are capable of implementing arbitrary logic functions, it follows that
these models are capable of implementing arbitrary FMMs using the implementation shown in Fig-
ure 4. Similarly, networks like the TDNN are capable of implementing arbitrary definite machines
when the combinatorial logic in Figure 5 is replaced with a multilayer feedforward network. It
should be obvious that neural networks that feedback hidden neurons have full FSM representa-
tional capabilities and are also capable of representing FMMs, a subclass of FSMs in general.

4 Learning Finite Memory Machines

4.1 A Large FMM with Little Logic

We have successfully been able to learn various FMMs with minimal order using the NNIIR models.
Because of the minimal order, it is possible to learn very large machines. We also make the further



Figure 6: A 512 state finite memory machine of minimal order.

restriction that the specific FSM to be learned has a simple logic function.
In this paper we present results for learning two FMMs. The first machine has 512 states and
corresponds to the following logic function,

y(k) = a(k — 5)a(k) + a(k — 5)y(k — 4) + u(kyu(k - 5)g(k — 4) (1)

where z represents the complement of z. The FSM is shown in Figure 6. It has an input—order of
5, an output—order of 4, a depth of 9 and a degree of distinguishability of 6.

The second machine has 256 states and has the more complex, though still learnable, logic
function

y(k) = a(k = 1) [alk — Hylk = (k) + u(k — Hulk) + u(k — 9)g(k — 4)|
+ulk = D)k = 1) [u(k = D)y(k = Hu(k) + alk — 9)g(k — 4) + a(k — 4)a(k)]
_I_
This machine has an input—order of 4, an output—order of 4, a depth of 9 and a degree of distin-
guishability of 6.



Positive Target Negative Target
Strings Values Strings Values
10 71 0 0
110 701 11 70
0010 0771 000 070
0101 0771 011 070
0110 0701 0000 0700
1010 7171 0011 0770
1110 7071 1100 7010
1111 7070

Table 2: Example of how to construct intermediate target information from a data set.

4.2 Training and Testing Set

To create a training set, we generated all strings of length 1 to L and labeled them with a 0 or
1 depending on whether the FSM rejected or accepted them. All strings of length L = d + 1 are
sufficient to identify an FMM according to Theorem 2 (see the Appendix). For both the 256-
and 512-state FMMs d = 9 and L = 10 giving a total of 2046 strings. Thus, this value should be
sufficient for any algorithm (neural network or otherwise) which has a representational bias towards
FMMs. However, if the algorithm is not biased toward an FFMM, then according to (Trakhenbrot
and Barzdin, 1973) all strings of length L = d 4+ p+ 1 = 16 may be required for a total of 131,071
strings. From such a data set we randomly selected subsets of strings for training and reserved the
remaining samples for testing.

In principle, the neural network is capable of learning machines with a larger depth. However,
in order to run the large number of experiments we did in a reasonable amount of time, we have
limited ourselves to machines with relatively low depth, and thus to small training and testing sets.
It should be noted that the size of these sets would become unmanageably large as the depth of
the target machine increases. For example, a machine of depth 20 would have a set of 4,194,302
strings.

It is possible to generate target outputs at intermediate points in each string for a given training
set. For example, consider the set of strings shown in Table 2. Since the string “0” is a negative
string, then for any string that begins with “0” can be assigned a target output of 0 on the first time
step. Similarly, any string that begins with “10” can be assigned a target value of 1 on the second
time step. By utilizing all of this information, many intermediate target values can be constructed
for each string, although typically not nearly as many as illustrated in the table above. One benefit
of intermediate labeling is to give an improved error measure for each string. In addition, teacher
forcing (Williams and Zipser, 1989) can be used to force the target value into the feedback loop to
improve the speed of convergence, and indeed to enhance the ability of the network to converge at
all.

The strings were encoded such that input and output (target) values of 0s and 1s corresponded
to floating point values of 0.0 and 1.0. However, many experiments in which we tried different
encodings such as —1.0 and 1.0 did not give significantly different results.



4.3 Specific Network Architecture

The NNIIR architecture for both problems had five input taps and four output taps. On the first
problem, we used a two layer network with 4 nodes in the hidden layer and one output node, on
the second problem we used 15 hidden layer nodes. In both networks each node used the standard
sigmoid nonlinearity. The initial values of all delay elements was chosen to be zero. The networks
had 49 and 181 adjustable weights respectively with the initial values of the weights randomly
chosen from a uniform distribution in the range [—0.1,0.1].

4.4 Training Algorithm

The network was trained with Backpropagation Through Time Algorithm (Williams and Peng,
1990; Williams and Zipser, 1990), augmented with a number of heuristics found useful for gram-
matical inference problems. No batching was done on the training set, i.e. the weights were up-
dated after processing each string (although see comment below on selective updating). Weight
decay (Krogh and Hertz, 1992) was used with a weight decay parameter of 0.0001.

For sample presentation we used teacher forcing. When target values are available at interme-
diate points during the processing of a string, these target values are used in the feedback loop
instead of the actual node output values. However, this presents several complications. First,
teacher forcing effectively replaces feedback with an external input, and therefore gradients can
not propagate back through that pathway. Second, when the network is run during the testing
phase, it can only feedback the actual node outputs. This can lead to poor performance if the fed
back values are not sufficiently close to the teacher forced values. In order to compensate for this
effect, we replaced the output node’s nonlinearity with a hard limiter during testing. This assures
that the network feeds back values that are either 0 or 1. In addition, this effectively converts the
feedforward part of the network to a logic function, which can be immediately used to extract an
FSM from the final network.

We used a selective updating scheme in which the weights were only updated if the absolute
error on the training sample currently being processed was greater than 0.2. This effectively speeds
up the learning algorithm by avoiding gradient calculations for weight updates that only add a
marginal improvement to the overall performance.

We have also found it useful to encourage the network to learn the shortest strings first by using
an incremental training algorithm. In this algorithm the training set is ordered lexicographically,
and an epoch is terminated if there are more than thirty samples that have an absolute error greater
than 0.2. Thus, the network must learn the shortest strings first in order to train on longer strings.
Additionally, we imposed the condition that an initial set of 50 samples must be learned to within
an absolute error of 0.2 before the remaining samples are used for training. Once this initial set is
learned, an additional fifty samples are added and then these must be learned to within the same
error, then another 50 samples are added, and so on.

The learning algorithm was stopped when all examples in the training set yield a absolute
error less than 0.2, or if the network exceeded 5000 epochs for the 512-state or 10000 epochs for
the 256-—state FMM respectively. On the first experiment, the algorithm typically required about
500 epochs to converge. It did not converge in only 9 of the 1500 experiments. On the second
experiment, the algorithm required about 2500 epochs and did not converge on 68 of the 1500
experiments.

All of the parameters discussed above were selected by trial and error and our experiences with
learning similar problems. For every simulation we used a learning and momentum rate of 0.25.
No effort was made to try to optimize any of the parameters described.



4.5 Experimental Results

We ran many experiments to determine the generalization ability and the size of the extracted FSM
implemented by the learned network as a function of the size of the training set. Because a NNIIR
model is representationally biased towards FMMs, data is randomly selected from a complete data
set of length L. = 10. For learning the 512-state FMM we chose 30 different training set sizes
ranging from 10 to 300 samples in increments of 10, while for the 256-state FMM the set sizes
ranged from 25 to 750 in increments of 25. For each training set size we ran 50 experiments. In
each case a different random sample of strings was chosen, and the weights of the network were
initialized differently each time.

The generalization was determined by computing the performance on the samples which were
not chosen for training from the 2046 possible samples needed to completely specify the machine.
The results are shown in Figures 7 and 9. The average error rate is plotted with an error bar of
one standard deviation around the mean.

It is easy to extract the size of the FSM that the network actually learns. By replacing the
output node’s nonlinearity with a hard limiter, the network effectively implements a logic function
since all input and output values are zeros and ones. This logic function defines a FSM for that
machine. This FSM can be minimized using a standard FSM minimization algorithm (Hopcroft
and Ullman, 1979). The average size of the extracted FSMs are plotted in Figures 8 and 10 with
an error bar of one standard deviation around the mean.

4.6 Discussion of Experimental Results

For learning the 512-state FMM, one notices from Figure 7 that as the percentage of training
strings increases, the variance in generalization performance decreases and finally approaches zero.
Similar behavior is noticed for extraction size in Figure 8 as the extracted FMM approaches the
correct size. Note that the number of strings needed for perfect generalization was about 250. This
is approximately an order of magnitude less than the 2046 strings necessary to characterize the
FMM.

For learning the 256-state FMM we see a similar behavior, although the network is not usually
able to achieve perfect generalization. In fact, when the sigmoid is replaced by a hard-limiting
threshold function, the network does not even correctly classify the training set most of the time.
This implies that the network may actually be utilizing the transition region of the sigmoid in order
to solve the problem, and so a more complex extraction algorithm may be needed (see for example
(Watrous and Kuhn, 1992b)), although we have not investigated this. Nevertheless, the extracted
FMM does get the majority of test samples correct and infers an FMM with size comparable to
the target machine.

In the first experiment (the 512-state F'MM), the order or number of taps in the recurrent net
was exactly equal to the order of the target machine, while in the second experiment (the 256-state
FMM) there was a single unnecessary tap in the recurrent net. It would be interesting to explore
how the NNIIR’s performance changes as the number of input and output taps (or order) is varied.

5 Conclusions

The problem of learning finite state machines (FSMs) from examples with recurrent neural networks
has been extensively explored. However, these results are somewhat disappointing in the sense
that the machines that can be learned are too small to be competitive with existing grammatical
inference algorithms. In this paper we show that large finite state machines can be learned if we

10



Figure 7: Generalization as a function of training set size on the 512-state FMM.
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Figure 8: Size of extracted FSM as a function of training set size on 512-state FMM.
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Figure 9: Generalization as a function of training set size on 256-state FMM.
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limit the class of machines and choose a neural network whose structure is representationally biased
towards the problem class to be learned.

The particular DRNN we investigate has tapped delay lines on both the inputs and outputs
but no feedback from any hidden states. These values are fed through a Multilayer Perceptron
to compute the next output value. For convenience and because of the network’s similarity to
IIR filters, we refer to this recurrent network as a NNIIR. This network can be interpreted as a
sequential machine if the nodes of the neural network are interpreted as threshold logic functions
and the delays as memory elements. In fact, this structure corresponds to a specific class of FSMs
called finite memory machines (FMMs).

We showed an NNIIR is capable of learning large (up to 512 states) finite memory machines
when trained on grammatical strings encoded as temporal sequences. After training on a sufficient
sized training set, the correct FMM, or at least one with a very low error rate, could be consis-
tently extracted from the NNIIR. However, certain restrictions were required in order to make the
problem practical. These restrictions include limiting the order (which is related to the required
tap delay length) and depth (which impacts the size of the training set) of the FFSM. Furthermore
the sequential machine implementation of the FMM could only have relatively simple logic. As
the logic becomes more complex, the task of finding an appropriate set of weights becomes more
difficult. We speculate that the task of learning arbitrary logic functions, i.e. the loading prob-
lem (Blum and Rivest, 1988; Judd, 1990), is the greatest barrier for learning arbitrary FMMs (and
FSMs in general). It is important to keep in mind that the restrictions discussed above on what
can be learned with a recurrent net define a very small class of all possible FMMs.

It might be possible to identify other types of DRNNs which have a representational bias
towards other classes of FSMs. For example, it would be interesting to establish if networks with
local recurrence correspond to some other subclass of FSMs, or if they are capable of implementing
arbitrary FSMs. The reader should keep in mind that this analogy is somewhat limited since it
has been shown that the nonlinearity in simple DRNNs enables them to be computationally very
powerful (Siegelmann and Sontag, 1992). It is an open question how the nonlinearity of DRNNs
with restricted and local topological connections (Tsoi and Back, 1994) limits their representational
power.
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Appendix: The Group Linking Method

In this section, we describe a method, called the Group Linking Method (GLM), for constructing
minimal FMMs with 2°t™ states that have the lowest possible order. In addition, we prove that
the GLM yields FMMs that are minimal, derive the number of machines in this class, and prove
how the set of strings up to length d 4+ 1, where d is the depth of the FMM, is sufficient to uniquely
identify an FMM.

Properties of FMMs

Perhaps the most important consideration is the order of the machine. The maximum input or
output order of an FMM is 19 |§|_1 (Kohavi, 1978). However, this implies that even if these

13



machines have a small number of states |@Q], a large number of tapped delay lines may be required
for their implementation. For example, for |Q)] = 20, the maximum order is 190, which implies
that as many as 380 taps may be required to implement the machine! In contrast the minimum
order of the machine is %log |Q|, since a system with n+m taps and binary inputs and outputs can
implement a machine of size at most 2”7, In such cases, very large machines can be implemented
with a very small number of taps. For example, a machine with 1024 states may be implementable
with only 10 taps. In order to learn large FMMs, we only consider those machines that have
minimal order. In general, such machines will have a relatively low depth compared to the number
of states, which in turn implies that a relatively small training set will be sufficient to infer the
machine (see the discussion at the end of this appendix). The GLM provides a way to create a
wide variety of such machines.

An interesting property of FMMs is that they have a very limited next state function. In
unconstrained FSMs, a state can potentially make a transition to any one of the n states within
the machine. But in FMMs, each state can only go to two possible states on a given input. For
example, assume that the states are labeled as n 4+ m bit numbers from 00...0 to 11...1, where the
first n bits correspond to the values u(k — n),u(k —n +1),...,u(k — 1) and the following m bits
correspond to y(k — m),y(k—m+1),...,y(k — 1). Since the next state is completely defined by
the content of the taps and the current input and output, there are only two possible states that
any state can transition to on an input of zero, and another two on an input of one. For example,
consider the case when n = m = 2. On an input of zero, the state g; = 0111, can only transition
to either ¢io = 1010 if the output is defined to be zero or g;; = 1011 if the output is defined to be
one. Table 3 shows the possible sets of next states for each of the sixteen states in an FMM with
n=m=2.

It turns out that there are always exactly four states that can go to the same two possible next
states. We define these four states as a group. The four states within each group correspond to
the possible values of u(k — n) and y(k — m), since these are the values that are discarded on a
subsequent time step. Formally,

Definition 3 A set of states is said to define a group if the encoding of these states are identical
except for the values of u(k —n) and y(k — m). Denote a group by the vector of the common n — 1
values of the input and m — 1 values of the output, i.e. by

G=lutk—n+1) . ulk=1) ylk—m+1) ... y(k—1)].
O

Since there are only four possible assignments to u(k —n) and y(k —m), every group consists of

exactly four states. So, if the machine has |()| states, it will have |§—| groups. Furthermore, every

state in the same group has the same set of possible next states as illustrated in Table 3.
Property 1 Two states in different groups cannot have a common next state. o

The above property must be true since if the groups are different, then by definition they differ
in at least one bit that will define the encoding of the state on the next time step, thus corresponding
to different states.

Constructing FMMs of Minimal Order: The Group Linking Method

The fundamental rule of the Group Linking Method is to ensure that there are no two states in the
same group which produce the same outputs for both u(k) = 0 and u(k) = 1. There are exactly
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Present state | Encoding | Group Nezxt state

wk)=0 | u(k)=1
90 0000 [00] go Or ¢q G4 OT 5
“ 0010 [00] | qoorqi | ¢aorgs
0z 1000 [00] qo or qi ga OF g5
qio 1010 [00] qo Or qq g4 OT G5
q1 0001 [01] g2 OT ¢3 ¢e OT qr
43 0011 [01] G2 OF g3 ge O q7
0o 1001 [01] G2 OT (3 ge Or g7
qi1 1011 [01] g2 OT g3 g6 OT g7
4 0100 [10] gs O g9 | G12 OT 13
6 0110 [10] g3 Or g9 | G12 OF ¢13
712 1100 [10] g8 OT g9 | q12 OT ¢13
G4 1110 [10] g8 OT g9 | q12 OT 13
s 0101 [11] | quo or q11 | qu4 OT q15
q7 0111 [11] | qi0 o q11 | q14 OT qi15
qi3 1101 [11] | quo Or qu1 | qua O g15
qis 1111 [11] | qu0 Or qu1 | qua O g15

Table 3: Possible state transitions for a FMM of input order n and output order m. The encoding
of the states corresponds to the values u(k — 2), u(k — 1), y(k — 2), y(k — 1). Each entry labeled
“g; or ¢;” corresponds to an output of either 0 or 1 respectively.
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Present state | encoding | group y(k) Next state
u(k) =0 | u(k)=1]u(k)=0]uk)=1
90 0000 [00] 0 0 90 q4
g2 0010 [00] 0 1 q0 qs
qs 1000 [00] 1 0 Tn q4
Q10 1010 [00] 1 1 N qs
" 0001 | [01] 0 1 “ .
0 0011 | [01] 1 1 0 e
% 001 | [oi] | 0 0 0 %
i 1011 | [01] 1 0 @ o
“ 0100 | [10] 0 0 gs a1
g6 0110 [10] 1 0 49 q12
q12 1100 [10] 1 1 q9 q13
14 1110 [10] 0 1 qs q13
s 0101 [11] 1 1 qu1 Q15
o 011r | [11] 1 0 0 14
q13 1101 [11] 0 0 q10 14
¢i5 1111 [11] 0 1 ¢10 ¢i5

Table 4: An example FMM constructed to have minimal order. The encoding of the states corre-
sponds to the values u(k — 2), u(k — 1), y(k —2), y(k — 1).

four choices for output assignments for each state. Specifically, the choices are

{o/0,1/0}, {o/0,1/1}, {o/1,1/0}, and {o/1,1/1} (3)

where u/y denotes an input/output pair. Since there are exactly four states in every group, then
the choices of possible outputs must be a permutation of the values in equation (3). For each group
there are exactly 4! = 24 possible ways, called group mappings, to specify the next state mapping
for each of the four states within a group in such a way that no two states have the same next state
mapping for both inputs. A consequence of the GLM is that any pair of states within the same
group is distinguishable in one time step.

For example, one possible FMM constructed by the GLM with n = m = 2 is illustrated in
Table 4.

Finally, we will shall always assume that the initial state of the machine ¢o corresponds to the
zero vector, i.e. w(k—i)=0fori=1,...,nand y(k—¢)=0fori=1,...,m.

Controlling the logic complexity with the GLM

If the group mappings are chosen to have the same “pattern” for each group, then the resulting
logic function is simple and only depends on the current input and the last tap in each delay line,
ie. u(k), u(k—n), and y(k —m). For example, our the FMM defined by equation (1) was obtained
by having one group mapping for all groups. The resulting logic function was easily be obtained by
simply forming a logic table which defined y(k) in terms of u(k), u(k —5) and y(k — 4), and then
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deriving the function through a standard Karnaugh map (Kohavi, 1978).

One the other hand, if the group mappings are chosen randomly, then the resulting logic function
may be quite complex, and will in all likelihood depend on all of the previous input and output
values.

Logic functions of intermediate levels of complexity can be constructed by having the group
mapping depend on a small collection of other variables. For example, the FMM defined by
equation (2) was obtained by having three different group mappings: one when uw(k — 1) = 0,
one when u(k — 1) = 1 and y(k — 1) = 0, and a different group mapping when w(k — 1) = 1
and y(k — 1) = 1. In fact, the terms inside the brackets are logic functions corresponding to each
group mapping, and the terms outside of each bracket effectively multiplex the appropriate group
mapping depending on the values of u(k — 1) and y(k — 1).

A Proof that the GLM yields minimal FMMs

In order to prove that the GLM yields minimal FMMs of size 2", then we must prove that
every pair of states is distinguishable and every state is reachable from the initial state. Proving
distinguishability turns out to be relatively simple, but the proof of reachability is rather complex.
We begin with the proof of distinguishability.

Lemma 1 Every pair of states in an FMM constructed using the Group Linking Method is dis-
tinguishable. a

Proof: Because the machine has finite memory, then by definition all pairs of states either have a
distinguishing string of length at most max(n,m)+ 1, or the pair of states transitions to a single
state on some input. According to Property 1, if the states are in different groups, they cannot
have the same next state. Thus, they must have a distinguishing string. If the pair of states is in
the same group, then by definition of the GLM, all such pairs are 1-distinguishable.

Q.E.D.

In order to prove that every state is reachable from the initial state, we shall prove that the
graph corresponding to the FMM is strongly connected. This is a sufficient, but much stronger
condition than necessary to prove reachability. We begin with the following property.

Property 2 If the FMM with n,m > 2 is constructed using the GLM, then each state has two
different successors in different groups and has two different predecessors from the same group. O

This property must hold for the following two reasons. First, the successors must be different
since on an input of zero, every state goes to a state in some group that has a zero in the (n —1)-st
component of the group vector, i.e. to

Go=[utk—n+1) ... 0 ylh—m+1) ... y(k—1)],

while on an input of one, the group must have a one in that component, i.e. to a state in group
Gr=lu(k—n+1) ... 1 ylk—m+1) ... y(k—1)].

Second, according to Property 1, the successors of a state must be in the same group.

Lemma 2 If the graph corresponding to a FMM is connected and has Property 2, then the graph
is strongly connected. a
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Figure 11: States ¢y, ¢», ¢y, and ¢, are all in the same group. According to the GLM, it follows
that they must be in a connected subgraph.

Proof: Assume this connected graph is not strongly connected, then we can always divide this
graph into two subgraphs, ; and G, such that there are edges from nodes in &; to nodes in G,
but not in the opposite direction. According to Property 2, there are exactly two incoming and
two outgoing edges for each node in the graph, so all incoming edges in graph G are accounted
for by the outgoing edges from the nodes within ;. Thus, it is impossible to have additional
incoming edges from graph G; without violating Property 2, and thus by contradiction, if the
graph is connected, it must also be strongly connected.

Q.E.D.

Lemma 2 is not sufficient to prove that the graph is strongly connected, since it leaves open the
possibility that the graph is disconnected with multiple strongly connected components. We shall
now prove that the graph is connected, by first showing that the states within a group must be in
a common connected graph, and then showing that all of the groups are connected.

Lemma 3 If the graph corresponding to a FMM has a subgraph which contains at least one
element of a group, then this subgraph must contain all elements of this group. a

Proof: Suppose some state ¢, from group G is in some subgraph. By definition ¢, is connected
to at least two other nodes ¢, ¢ and g, 1, corresponding to the transitions on an input of 0 and 1
respectively. (Note that g, 0 or ¢, 1 may be the same state as ¢, but this will not affect the result.)
According to the way the FMM is constructed, then there is exactly one additional state, g, € G,
that transitions to ¢, on an input of 0. By definition of the GLM this state must transition to
a different state, ¢, 1, on an input of 1, as illustrated in Figure 11. By the same argument, there
must be a third state, ¢, € &, that connects to ¢, 1, but not to ¢, 0. Instead, on an input of 0, ¢,
must transition to yet another state ¢, . Applying this argument a third and final time, it follows
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Figure 12: A path in a group graph need not correspond to a valid path in the FMM. Here the
path corresponding the the input/output pair 0/1 followed by 1/0 will traverse a path from group
G1 to Gy to G3. In the corresponding FMM, the input/output pair 0/1 can take the machine to
a state ¢; € Gg, but from here it is impossible to get to a state in group G5 since an input of 1
produces and output of 1 from state ¢;.

that there must be a fourth state, ¢. € ¢, that connects to ¢, . On an input of 1, this state will
transition to ¢, 1.

Q.E.D.

Lemma 3 shows that all of the states within a group must be in a common connected subgraph.
The following lemma, proves that all of these connected subgraphs are themselves connected to-
gether, thus showing that the entire graph is connected. First, we need the following definition.

Definition 4 The group graph for M is a labeled digraph G = (V, F') where each vertex v; corre-
sponds to a group G, and an arc exists between two vertices v; and v; if there is a transition from
some state in (; to some state in ;. This arc is labeled by u/y where u is the input which causes
the transition between the states and y is the corresponding output. a

Lemma 4 The group graph is strongly connected. a

Proof: Assume the FMM has input order n and output order m. According to the GLM, for any
value of u and y there exists exactly two states in every group that on an input of u produces an
output of y. Thus, every node in the group graph will have four outgoing arcs labeled 0/0, 0/1,
1/0, and 1/1. Because every group corresponds to the values of

[ulk—n+1) . u(k=1) ylk—m+1) ... y(k—1)]

then there exists a path of length max(n — 1, m — 1) from any vertex in G to any other vertex. For
example, in order to get to vertex corresponding to the group

0...00... 0
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from any other vertex, we simply follow the path corresponding to all arcs labeled 0/0. (In general,
a path in the group graph will not correspond to a path in the corresponding FMM, as illustrated
in Figure 12.) Since any state can be reached by any other state, then by definition the graph is
strongly connected.

Q.E.D.

Lemma 5 Every statein an FMM constructed according to the Group Linking Method is reachable
from the initial state ¢q. a

Proof: Lemmas 3 and 4 show that the graph corresponding to an FMM constructed by the GLM
is connected. According to Lemma 2, the graph must be strongly connected. Therefore, every state
is reachable from the initial state.

Q.E.D.
Theorem 1 An FMM constructed according to the Group Linking Method is minimal. O

Proof: From Lemmas 1 and 5, it follows that an FMM constructed according to the GLM is
minimal.

Q.E.D.

The number of FMMs of minimal order

The number of FMMs that can be constructed using the GLM is extremely large. First, we note
that any two FMMs constructed according to the method are different. Minimal FSMs have the
property that they are unique up to a relabeling of their states. Because of the nature of FMMs,
the encoding is predetermined by the fact that the states of the machine are delayed versions of
the input and output. In addition, the initial state of an FMM constructed according to the GLM
is always the zero vector, i.e. u(k—i)=0fori=1,...,nand y(k—1i)=0for ¢ =1,...,m. Thus,
it is impossible for two different FMMs constructed according to the GLM to be equivalent.

In each group, there are 4! = 24 different next state assignments collectively for the four states
in each group corresponding to the possible permutations of the four values given in equation (3).
In a FMM of input order n and output order m, there are 2°t7~2 groups. So the number of
different FMMs constructible according to the GLM is

n4+m—2
T

(24

For comparison, if there are no restrictions placed on the transitions of states within a group,
there are 41 = 256 possible different next state assignments for the four states in each group, since
each of the four states can be given one of the four output assignments in equation (3). Many of
these assignments may yield equivalent FMMs, or even FMMs with non-reachable states. In any
case, there are at most

(256)>"" 7.
different FMMs. Thus the FMMs constructed according to the GLM is a considerable portion of
all possible FMM:s.

Minimal Order FMM Identification

Theorem 2 It is possible to identify a minimal order FMM of depth d from the complete set of
strings not longer than d + 1. a
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Proof: We assume that the input and output alphabets are binary. We also assume that the initial
state of the machine is known. Specifically, for a hardware implementation like the one illustrated
in Figure 4, the appropriate initial values of the taps must be known. Thus, all we need to know
is how many states there are and what the transition and output functions are.

First, in a complete data set every prefix of every string is also in the data set. Thus, it is
possible to use the labeling of these prefixes to determine the output at every time step for every
string in the training set. Since the state of an FMM is completely specified by it previous n inputs
and m outputs (where knowledge of the initial state defines previous values for strings of length
less than max(m,n)), then the state of the system is known for every time step for every string.
Furthermore, since the data set consists of every string up to length d, every state is visited.

Second, if, for each state ¢ and each input symbol a, the data set contains the string w = wya
such that 6(qo,w) = ¢, then A(g,a) is defined by the label of w. Since |w,| < d and, by the
arguments above, the state is known at each time step, having the complete data set up to length
d 4 1 will be sufficient to define every value of A(q, a).

Finally, once the output function is known it is trivial to determine the transition function,
since the states of the FMM can always be implemented as tapped delay lines of the inputs and
outputs, as shown in Figure 4. The values of the taps at the next time step are easily computed
from the current values, and the current input and output.

Q.E.D.
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