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Abstract

The availability of significant metrics in the early phases of the software development

process allows for a better management of the later phases, and a more effective quality

assessment when software quality can still be easily affected by preventive or corrective

actions. In this paper, we introduce and compare four strategies for defining high-level

design metrics. They are based on different sets of assumptions (about the design process)

related to a well defined experimental goal they help reach: identify error-prone software

parts. In particular, we define ratio-scale metrics for cohesion and coupling that show

interesting properties. An in-depth experimental validation, conducted on large scale

projects demonstrates the usefulness of the metrics we define.

1 Introduction

Software metrics can help address the most critical issues in software development and

provide support for planning, predicting, monitoring, controlling, and evaluating the

quality of both software products and processes [BR88, F91]. Most existing software

metrics attempt to capture characteristics of software code [F91]; however, software code is

just one of the artifacts produced during software development, and, moreover, it is only

available at a late stage. It is widely recognized that the production of better software

requires the improvement of the early development phases and the artifacts they produce:

1  This work was supported in part by NASA grant NSG–5123, UMIACS, and NSF grant 01-5-24845.
Sandro Morasca was also supported by grants from MURST and CNR.
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The production of better specifications and better designs reduces the need for extensive

review, modification, and rewriting not only of code, but of specifications and designs as

well. As a result, this allows the software organization to save time, cut production costs,

and raise the final product's quality.

Early availability of metrics is a key factor to a successful management of software

development, since it allows for

. early detection of problems in the artifacts produced in the initial phases of the life-

cycle (specification and design documents) and, therefore, reduction of the cost of

change—late identification and correction of problems are much more costly than

early ones;

. better software quality monitoring from the early phases of the life-cycle;

. quantitative comparison of techniques and empirical refinement of the processes to

which they are applied;

. more accurate planning of resource allocation, based upon the predicted error-

proneness of the system and its constituent parts.

In this paper, we will focus on high-level design metrics for software systems. A number

of studies have been published on software design metrics in recent years. It has been

shown that system architecture has an impact on maintainability and error-proneness

[HK84, G86, R87, R90, S90, SB91, Z91, AE92, BTH93, BBH93]. These studies have

attempted to capture the design characteristics affecting the ease of maintaining and

debugging a software system. Most of the design metrics are based on information flow

between subroutines or declaration counts. We think that, even though it provides an

interesting insight into the program structure, this should not be the only strategy to be

investigated, since many other types of program features and relationships are a priori

worth studying. Moreover, there is a need for comparison between strategies in order to

identify worthwhile research directions and build accurate prediction models.

Besides this focus on information flow, most of the existing approaches share two

common characteristics. (1) They define metrics without making clear assumptions about

the contexts (i.e., processes, problem domain, environmental factors, etc.) in which they

can be applied (with the exception of [AE92], where this issue was partially addressed).

This implies they should have general validity, and be applicable to different environments

and problem domains. (2) There are not fully explicit goals, for whose achievement the

metrics are defined. This may cause problems in their application, since they may be

defined based on implicit assumptions which the context may not satisfy; interpretation,
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since their meaning is not clear; and validation [IS88, K88], since their relevance with

respect to a clearly stated goal is not established.

The definition of universal metrics (like in physical sciences) is an acceptable long-

term goal, which, however, is only achievable after we gain better insights into specific

processes from specific perspectives in the short term. It is our opinion that the definition

of a metric should be driven by both the characteristics of the context or family of contexts

in which it is used, and one or more clearly stated goals that it helps reach. In other words,

the assumptions underlying the defined metrics should rely on a deep knowledge of the

context and should be precisely related to a stated goal. After this, the defined metrics must

undergo a thorough experimental validation, to assess their significance and usefulness

with respect to the stated goals. Last, based on the experimental evidence, metrics may be

refined and modified, to better achieve the goals and comply with the process

characteristics.

The goal of the research documented in this paper is to define and validate a set of

high-level design metrics to evaluate the quality of the high-level design of a software

system with respect to its error-proneness, understand what high-level design

characteristics are likely to make software error-prone, and predict the error-proneness of

the code produced.

We introduce four families of metrics, which are based on different types of

mathematical abstractions of program designs [MGBB90]. In particular, we introduce a

family of metrics based on data declaration dependency links (Section 2.2.4). This strategy

allows us to introduce metrics for cohesion (Section 2.2.4.1) and coupling (Section

2.2.4.2) [F91] that are characterized by interesting properties and are based on consistent

principles. Such a consistency is important because it should facilitate future research on

quantitative tradeoff mechanisms between coupling and cohesion, i.e., variations can be

expressed using consistent measurement units. Other metric families include: metrics based

on declaration counts (Section 2.2.1), metrics based on the USES relationships between

modules [GJM92] (Section 2.2.2), and metrics based on the IS_COMPONENT_OF

relationships [GJM92] (Section 2.2.3).

In addition, we experimentally compare and validate the metrics introduced in

Section 2 on three NASA projects. The results are shown in Section 3. In Section 4, we

summarize the lessons we have learned, and outline directions for future research activities

based on these lessons.
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2 Defining Metrics for High-level Design

In this section, we first introduce the basic concepts of high-level design and the

terminology we will use in the paper (Section 2.1). We then define, based on the goals

stated in Section 1 and context assumptions, four families of high-level design metrics

(Section 2.2).

2 . 1 Basic Definitions

Our object of study is the high-level design of a software system. To define it, we will start

from its elementary constituents: software modules.

In the literature, there are two commonly accepted definitions of modules. The first

one sees a module as a routine, either procedural or functional, and has been used in most

of the design measurement publications [M77, CY79, HK84, R87, S90]. The second

definition, which takes an object-oriented perspective, sees a module as a collection of

type, data, and subroutine definitions, i.e., a provider of computational services [BO87,

GJM92]. In this view, a module is the implementation of an Abstract Data Type / Object. In

this paper, unless otherwise specified, we will use the term subroutine for the first

category, and reserve the term module for the second category. Modules are composed of

two parts: interface and body (which may be empty). The interface contains the

computational resources that the module makes visible for use to other modules. The body

contains the implementation details that are not to be exported.

At a higher level of abstraction, modules can be seen as the components of higher

level aggregations, as defined below.

Definition 1: Library Module Hierarchy (LMH).

A library module hierarchy is a hierarchy where nodes are modules and subroutines, arcs

between modules are IS_COMPONENT_OF [GJM92] relationships, and there is just one

top level node, which is a module.

◊

In the remainder of this paper, we will define concepts and metrics that can be applied to

both modules and LMHs, which are the most significant syntactic aggregation levels below

the subsystem level. For short, we will use the term software part (sp) to denote either a

module or an LMH.

In the high-level design phase of a software system, only module and subroutine

interfaces and their relationships are defined—module body and subroutine detail design is
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carried out at low-level design time. Therefore, we define the high-level design of a

software system as follows.

Definition 2: High-level Design

The high-level design of a software system is a collection of module and subroutine

interfaces related to each other by means of USES [GJM92] and IS_COMPONENT_OF

relationships. No body information is yet available at this stage.

◊

2 . 2 Strategies to Define High-level Design Metrics

In this section, we investigate several strategies for defining high-level design metrics. This

appears necessary at this stage of knowledge, where we can only rely on very limited

theoretical and empirical ground to help us identify interesting concepts, relationships and

objects of study. One of the results of this investigation is to provide directions to focus our

research on a smaller set of strategies and concepts.

Some of the concepts introduced in this section cannot be directly mapped onto all

imperative languages, because not all of them allow the implementation of Abstract Data

Types/Objects. However, these concepts are shared by many modern programming

languages.

As we said in the Introduction, context assumptions are necessary to define metrics

that are applicable and useful. Therefore, we list a context assumption for each of the

metrics of the four strategies we introduce below. We do not assume that all of these

process assumptions are equally important, i.e., not all of the process characteristics we

take into account have an equal impact on software error-proneness.

2 . 2 . 1 Declaration Counts

These metrics are counts of data declarations, associated with a software part, that are

imported, exported or declared locally.

Metric 1: Local.

Local(sp) will denote the number of locally defined data declarations of a software part sp.
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Assumption A-LO.

The count of declarations of a software part may be seen as a measure of size, which is

known to be associated with errors, i.e, the larger the set of declarations, the more likely

the errors.

◊

Metric 2: Global.

Global(sp) will denote the number of external data declarations visible from a software part

sp.

Assumption A-GL.

The larger the number of external declarations visible in a software part, the larger the

number of external concepts to be understood and used consistently, the higher the

likelihood of error.

◊

Metric 3: Scope.

Scope(sp) will denote the number of external data declarations for which the data

declarations of a software part sp are visible.

Assumption A-SC.

The larger the number of data declarations in the scope of the software part, the larger the

number of contexts of use, the more likely it is to be inadequate to fulfill the needs of the

declarations in the scope.

◊

2 . 2 . 2 Metrics Based on the USES Relationships

These metrics capture the dependencies between software parts based on the USES

relationships of the system.

Metric 4: Imported Software Parts.

ISP(sp) will denote the number of software parts imported and used by a software part sp.
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Assumption A-ISP.

The larger the number of used external software parts, the larger the context to be

understood, the more likely the occurrence of an error.

◊

Metric 5: Exported Software Parts.

ESP(sp) will denote the number of software parts that use a software part sp.

Assumption A-ESP.

The larger the number of contexts of use of a software part, the larger the number of

services it provides, the more flexible it must be, and, as a consequence, the more likely the

occurrence of error.

◊

2 . 2 . 3 Metrics Based on the IS_COMPONENT_OF Relationships

These metrics capture information about the structure of the IS_COMPONENT_OF graph.

Metric 6: Maximum/Average Depth.

Max_Depth(sp) / Avg_Depth(sp) will denote the maximum/average depth of the nodes

composing a software part sp.

Assumption A-M/A.

The larger the depth of a hierarchy, the larger the context information to be known in the

lower nodes, the more likely the occurrence of error.

◊

Metric 7: Number of paths.

No_Paths(sp) will denote the number of complete paths (from root to leaf) within a a

software part sp.

Assumption A-NOP.

The larger the number of paths, the larger the number of parent, sibling, and child

relationships to be dealt with, the larger the complexity of the hierarchy, the higher the

likelihood of error occurrence.

◊
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2 . 2 . 4 Interaction-Based Metrics

In this section, we focus specifically on the dependencies that can propagate inconsistencies

from data declarations to data declarations or subroutines when a new software part is

integrated in a system. Those relationships will be called interactions and will be used to

define metrics capturing cohesion and coupling within and between software parts,

respectively. (Interactions linking subroutines to subroutines or data declarations will not

be considered because they are, in the vast majority of cases, encapsulated in module or

routine bodies and are therefore not detectable in our framework, which only takes into

account high-level design.)

Definition 3: Data declaration-Data declaration (DD) Interaction.

A data declaration A DD-interacts with another data declaration B if a change in A's

declaration or use may cause the need for a change in B's declaration or use.

◊

The DD-interaction relationship is transitive. If A DD-interacts with B, and B DD-interacts

with C, then a change in A may cause a change in C, i.e., A DD-interacts with C. Data

declarations can DD-interact with each other regardless of their location in the designed

system. Therefore, the DD-interaction relationship can link data declarations belonging to

the same software part or to different software parts.

The DD-interaction relationships can be defined in terms of the basic relationships

between data declarations allowed by the language, which represent direct DD-interactions

(i.e., not obtained by virtue of the transitivity of interaction relationships). Data declaration

A directly DD-interacts with data declaration B if A is used in B's declaration or in a

statement where B is assigned a value. As a consequence, as bodies are not available at

high-level design time, we will only consider interactions detectable from the interfaces.

DD-interactions provide a means to represent the dependency relationships between

individual data declarations. Yet, DD-interactions per se are not able to capture the

relationships between individual data declarations and subroutines, which are useful to

understand whether data declarations and subroutines are related to each other and therefore

should be encapsulated into the same module (see Section 2.2.4.1 on cohesion).

Definition 4: Data declaration-Subroutine (DS) Interaction.

A data declaration DS-interacts with a subroutine if it DD-interacts with at least one of its

data declarations.

◊
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Whenever a data declaration DD-interacts with at least one of the data declarations contained

in a subroutine interface, the DS-interaction relationship between the data declaration and

the subroutine can be detected by examining the high-level design. For instance, from the

Ada-like code fragment in Figure 1, it is apparent that both type T1 and object OBJECT11

DS-interact with procedure SR11, since they both DD-interact with parameter PAR11,

procedure SR11's interface data declaration.

package M 1  is
…
type T1 is …;
OBJECT11, OBJECT12: T1;
procedure SR11(PAR11: in T1:=OBJECT11);
…
package  M2 i s

…
OBJECT13: T1;
type T2 is array (1..100) of T1;
OBJECT21: T2;
procedure SR21(PAR21: in out T2);
…

end M2;
…
OBJECT22: M2.T2;
…

end M1;

Figure 1. Program fragment

For graphical convenience, both sets of interaction relationships will be represented by

directed graphs, the DD-interaction graph, and the DS-interaction graph, respectively. In

both graphs (see Figure 2, which shows DD- and DS-interaction graphs for the code

fragment of Figure 1), data declarations are represented by rounded nodes, subroutines by

thick lined boxes, modules by thin lined boxes, and interactions by arcs.

Next, we will define high-level design metrics for cohesion and coupling, based on the

above definitions. It is generally acknowledged that system architecture should have low

coupling and high cohesion [CY79]. This is assumed to improve the capability of a system

to be decomposed in highly independent and easy to understand pieces. However, the

reader should bear in mind that high cohesion and low coupling may be conflicting goals,

i.e., a trade-off between the two may exist. For instance, a software system can be made of

small modules with a high degree of internal cohesion but very closely related to each other

and, therefore, with a high level of coupling. Conversely, a software system can be

composed of few large modules, representing its subsystems, loosely related to one

another, i.e., with low coupling, but with a low degree of internal cohesion as well.
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Figure 2. DD-interaction (a) and DS-interaction (b) graphs for the program fragment in

Figure 1

Moreover, high cohesion and low coupling are not the only factors to be taken into account

when designing a software system. Other issues (e.g., potential reuse) must be taken into

account as well.

2 . 2 . 4 . 1 Cohesion

Cohesion captures the extent to which, in a software part, each group of data declarations

and subroutines that are conceptually related belong to the same module. Based on

. an assumption (A-CH), which provides the rationale to define cohesion metrics;

. the concept of cohesive interactions, i.e., those interactions which contribute to

cohesion;

. a set of properties (Properties 1-3) that cohesion metrics must have in order to

measure cohesion

we now introduce a set of metrics (Metrics 8-11) to measure the degree of cohesion of a

software part.

Assumption A-CH:

A high degree of cohesion is desirable because information related to declaration and

subroutine dependencies should not be scattered across the system and among irrelevant
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information. Data declarations and subroutines which are not related to each other should

be encapsulated to the extent possible into different modules. As a result of such a strategy,

we expect the software parts to be less error-prone.

◊

Consistently with the definition of Abstract Data Type/Object, data declarations and

subroutines should show some kind of interaction between them, if they are conceptually

related. Therefore, we are interested in evaluating the tightness of the interactions between

the data declarations and data declarations or subroutines declared in a module interface.

We will capture this by means of cohesive interactions.

Definition 5: Cohesive Interaction.

The set of cohesive interactions in a module m, denoted by CI(m), is the union of the sets

of DS-interactions and DD-interactions, with the exception of those DD-interactions

between a data declaration and a subroutine formal parameter.

◊

We do not consider the DD-interactions linking a data declaration to a subroutine parameter

as relevant to cohesion, since they are already accounted for by DS-interactions and we are

interested in evaluating the degree of cohesion between data declarations and routines seen

as a whole. Furthermore, cohesive interactions occur between data declarations and

subroutines belonging to the same module. Interactions across different modules are not

considered cohesive, since cohesion is the extent to which data declarations and

subroutines that are conceptually related belong to the same module. Interactions across

different modules contribute to coupling. Therefore, given a software part sp, the sets of

cohesive interactions of its constituent modules (if any) are disjoint.

Remark.

It is worth reminding the reader that those relationships that cannot be detected by

inspecting the interfaces, i.e., global variables interacting with subroutine bodies, can

actually be quite relevant to cohesion evaluation, because they often represent the

connections between an object and the subroutines that manipulate it. This issue will be

further discussed later in this section.

◊
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We base our cohesion metrics for software parts on cohesive interactions. Before defining

them, we introduce the following three properties that they must satisfy in order to match

our assumptions1.

Property 1: Normalization.

Given a software part sp, the metric cohesion(sp) belongs to a specified interval [0,Max],

and cohesion(sp) = 0 if and only if CI(sp) is empty, and cohesion(sp) = Max if and only if

CI(sp) includes all possible cohesive interactions.

◊

Normalization allows meaningful comparisons between the cohesions of different software

parts, since they all belong to the same interval, and the extreme values of the cohesion

range must represent the extreme cases. We will denote by M(sp) the maximal set of

cohesive interactions of the software part sp, i.e., the set that includes all of sp's possible

cohesive interactions, obtained by linking every data declaration to every other data

declaration and subroutine with which it can interact. Some care must be used in defining

M(sp) for languages that allow circular type definitions, such as the ones used to define the

nodes of a linked list. In this case, the declarations of two types T1 and T2 are built in such

a way that T1 interacts with T2 and T2 interacts with T1. We choose to count only one

interaction between them. This is explained by the fact that a single interaction between two

data declarations justifies their encapsulation in a single module/Abstract Data Type.

Property 2: Monotonicity.

Let sp1 be a software part and CI(sp1) its set of cohesive interactions. If sp2 is a modified

version of sp1 with the same sets of data and subroutine declarations and one more

cohesive interaction so that CI(sp2) includes CI(sp1), then cohesion(sp2) ≥ cohesion(sp1).

◊

Adding cohesive interactions to a a software part cannot decrease its cohesion.

Property 3: Cohesive Modules.

Let sp be a software part, and let m1 and m2 be two of its modules. Let sp' be the software

part obtained from sp by merging the declarations belonging to m1 and m2 into a new

module m. If no cohesive interactions exist between the declarations belonging to m1 and

m2 when they are grouped in m, then cohesion(sp) ≥ cohesion(sp') .

◊

1Properties and metrics can be defined for module sets more general than software parts. However, for
simplicity, we will provide them only for software parts.
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Splitting two sets of declarations which are not related to each other via cohesive

interactions into two separate modules cannot decrease the cohesion of the software part.

Based on the properties defined above, we introduce a cohesion metric for software

parts.

Metric 8: Ratio of Cohesive Interactions (RCI) for a Software Part.

The Ratio of Cohesive Interactions for sp is

RCI(sp)=
|CI(sp)|
|M(sp)| (*)

It is straightforward to prove that RCI(sp) satisfies the above properties 1-3, and that,

based on properties 1-3, it is defined on a ratio scale [F91]. Furthermore, RCI(sp) can also

be computed as a weighted sum of the RCI(m)'s of the single modules m belonging to sp.

From Formula (*), since cohesive interactions only occur within modules, but not across

modules

|CI(sp)| = ∑
m∈sp

 |CI(m)|

|M(sp)| = ∑
n∈sp

 |M(n)|

so

RCI(sp)=∑
m∈sp

|CI(m)|
∑

n∈sp
|M(n)|

By multiplying and dividing each term in the summation by |M(m)|, we obtain

RCI(sp)=∑
m∈sp

|M(m)|
∑

n∈sp
|M(n)|

   
|CI(m)|

|M(m)| =∑
m∈sp

|M(m)|
∑

n∈sp
|M(n)|

 RCI(m)

The weights represent the potential contribution of each module m belonging to the

software part sp to the cohesion of the whole sp.
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Figure 3 shows an example of cohesion computation for a single module. T denotes

a type declaration, C a variable declaration, and SR1, SR2, and SR3 subroutine

declarations.

V

T

SR1

SR2

SR3

RCI = 4/7 = 0.571

Figure 3. Cohesion example

Based on the above cohesion metric, we can define a threshold for deciding whether a set

of data and subroutines should be kept in one single module or divided into two or more

modules. For simplicity, we will show here only the case in which we have to decide

whether the declarations belonging to a module m should be split into two modules m1 and

m2. This should be the case if the cohesion of the software part consisting of the two

modules m1 and m2 is greater than the cohesion of module m, i.e.,

|CI(m1)|+|CI(m2)|
|M(m1)|+|M(m2)|   >  

|CI(m1)|+|CI(m2)|+|CI12|
|M(m)|

where |CI12| is the number of cohesive interactions between the declarations belonging to

modules m1 and m2 when they are in module m. Based on the above inequality, we can

define a threshold on |CI12|, as follows

(|M(m)|-|M(m1)|-|M(m2)|) (|CI(m1)|+|CI(m2)|)
|M(m1)|+|M(m2)|

  >  |CI12|

We want to emphasize, however, that, since cohesion is not the only characteristic relevant

to software design, its increase should not be used as the only criterion on which to base

such a decision.
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The Role of  Additional Information

Additional information to what is visible in the interfaces may be available at the end of

high-level design. For instance, given the interface of a module m, the designers have at

least a rough idea of which objects declared in m will be manipulated by a subroutine in

m's interface. It will be left to the person responsible for the metric program to decide

whether or not it is worth collecting this kind of information, thus making the designer

describe which objects will be accessed by which subroutines. Formatted comments may

be a convenient way of conveying this information through module interfaces and therefore

of automating the collection of this type of information.

For instance, from the code fragment in Figure 1, we cannot tell whether

OBJECT12 DS-interacts (as a global variable) with subroutine SR11. In this case,

designers can answer in three different ways:

(1) OBJECT12 DS-interact with P11

(2) OBJECT12 does not DS-interact with P11

(3) the information they have is not sufficient

It is worth saying that answers of kind (2) provide valuable, though negative, information

on the DS-interactions present in a system. For instance, in the code fragment on Figure 1,

the designer may indicate the existence of a DD-interaction between object OBJECT12 and

PAR11 and the lack of interaction between OBJECT13 and PAR21. As a consequence, the

computation of cohesion is affected. If we take into account this additional information,

other alternative cohesion metrics can be defined.

Given a software part sp, and a pair <A,B>, where A is a data declaration and B is

either a data declaration or a subroutine, we will say that the interaction between them is

known if it is detectable from the high-level design or is signaled by the designers (they

provide an answer similar to answer (1) above); we will say that the interaction between

them is unknown if it is not detectable from the high-level design and is not signaled by the

designers (they provide an answer similar to answer (1) above).

The set of known interactions of a software part sp will be denoted by K(sp), and

the set of unknown interactions by U(sp). In general, |M(sp)| ≥ |K(sp)| +  |U(sp)|, since

some interactions are not detectable from the high-level design and the designers explicitly

exclude their existence.
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Metric 9: Neutral Ratio of Cohesive Interactions (NRCI).

Unknown CIs are not taken into account

NRCI(sp)=
|K(sp)|

|M(sp)|-|U(sp)|

Metric 10: Pessimistic Ratio of Cohesive Interactions (PRCI).

Unknown CIs are considered as if they were known not to be actual interactions.

PRCI(sp) = 
|K(sp)|
|M(sp)|

(This is equivalent to RCI(sp).)

Metric 11: Optimistic Ratio of Cohesive Interactions (ORCI).

Unknown CIs are considered as if they where known to be actual interactions

ORCI(sp)=
|K(sp)| + |U(sp)|

|M(sp)|

The above three metrics satisfy Properties 1-3, where CI(sp) is replaced by K(sp) ∪
U(sp).

If PRCI(sp), NRCI(sp), and ORCI(sp) are all not undefined, it can be shown that,

for all software parts sp,

0≤PRCI(sp) ≤ NRCI(sp) ≤ ORCI(sp)≤1

ORCI(sp) and PRCI(sp) provide the bounds of the admissible range for cohesion, and

NRCI(sp) takes a value in between. It can also be shown that the smaller the number of

unknown interactions, the smaller the interval [PRCI, ORCI], i.e., the more complete the

information, the narrower the uncertainty interval. It should be noted that, once the low-
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level design is completed, accurate and complete information about cohesive interactions

should be available.

Remark.

NRCI(sp) is undefined if and only if all interactions are unknown, i.e., no information is

available on cohesive interactions. It is interesting to notice that in this case, and only in this

case, PRCI(sp) = 0 and ORCI(sp) = 1, i.e., PRCI(sp) and ORCI(sp) do not provide

stricter bounds than the ones provided by the interval for cohesion. The fact that NRCI(sp)

is undefined can be interpreted as the possibility that NRCI(sp) can take any value in the

interval [0,1].

2 . 2 . 4 . 2 Coupling

In this section, we first give general definitions and assumptions on coupling, then, we

present a set of metrics, and discuss the issue of genericity in the context of coupling. To

address the particular issue of coupling, we will refer to the import interactions of a module

m as all interactions going from a declaration outside m to a declaration inside m. Similarly,

we define export interactions as going from a declaration located inside m to a declaration

outside m.

Assumption A-IC:

The more dependent a software part on external data declarations, the more external

information needs to be known in order to make the software part consistent with the rest

of the system. In other words, the larger the amount of external data declarations, the more

incomplete the local description of the software part interface, the more spread the

information necessary to integrate a software part in a system. Thus, the software part

becomes more error-prone.

◊

Definition 6: Import Coupling of a software part (IC).

Import Coupling is the extent to which a software part depends on imported external data

declarations.

◊
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Assumption A-EC:

Export coupling is related to how a software part is used in the system. The more often the

software part is used, the larger the number of services it has to provide, the more flexible

it needs to be, e.g., generic module. This may lead to errors.

◊

Definition 7: Export Coupling of a software part (EC).

Export coupling is the extent to which the data declarations of a software part affect the data

declarations of the other software parts in the system.

◊

Import and export coupling of a software part will be expressed in terms of the actual DD-

interactions involving imported external data declarations and the internal data declarations

of the software part. We now provide properties that must be satisfied by both import and

export coupling metrics.

Property 4:  Non negativity

Given a software part sp, the metric import_coupling(sp) ≥ 0 (resp. export_coupling(sp) ≥
0). import_coupling(sp) = 0 (resp. export_coupling(sp) = 0) if and only if sp does not have

import (resp. export) interactions with other software parts.

◊

Property 5:  Monotonicity

Let m1 be a module and II(m1) (resp. EI(m1)) its set of import (resp. export) interactions.

If m2 is a modified version of m1 with the same sets of data and subroutine declarations

and one more import (resp. export) interaction so that II(m2) (resp. EI(m2)) includes

II(m2) (resp. EI(m2)), then import_coupling(m2) ≥ import_coupling(m1) (resp.

export_coupling(m2) ≥ export_coupling(m1)).

◊

Adding import (resp. export) interactions to a module cannot decrease its import (resp.

export) coupling.

Property 6: Merging of Modules

The sum of the couplings of two modules is no less than the coupling of the module which

is composed of the data declarations of the two modules.

◊



University of Maryland - CS-TR-3301 - 19

This stems from the fact that two modules may contain interactions between each other's

declarations, which are no longer import or export interactions for the module resulting

from merging the original modules.

It should be noted that, as opposed to cohesion, coupling is not a normalized

metric. This comes from assumptions A-CH, A-IC, and A-EC (see Sections 2.2.4.1 and

2.2.4.2), where we state that cohesion is a degree of interdependence within a software

part, whereas coupling is a quantity of dependencies between a software part and the rest of

the system.

We will now introduce interaction-based coupling metrics. The issue will be first

addressed by ignoring generic modules for the sake of simplification. Generic modules and

their impact on the defined metrics will be treated later in this section.

Metric 12: Import Coupling

Given a software part sp, Import Coupling of sp (denoted by IC(sp)) is the number of DD-

interactions between data declarations external to sp and the data declarations within sp.

Metric 13: Export Coupling

Given a software part sp, Export Coupling of sp (denoted by EC(sp)) is the number of DD-

interactions between the data declarations within sp and the data declarations external to sp.

It is straightforward to prove that IC(sp) and EC(sp) satisfy the above properties 4-6, and

that, based on properties 4-6, these metrics are defined on a ratio scale [F91].

Each box in Figure 4 represents a module interface. Module interfaces m2 and m3

are located in their parent's interface m1. m2 is assumed to be declared before m3 and

therefore visible to m3. Tij and OBJECTij data declarations represent respectively types and

objects in module mi. FP3 represents a subroutine formal parameter. The IC and EC values

for the modules in Figure 4 are computed as follows.

IC(m1) = 0 EC(m1) = 10
IC(m2) = 4 EC(m2) = 1
IC(m3) = 5 EC(m3) = 0
IC(m4) = 2 EC(m4) = 0

In the example of Figure 4, we see that m1 expectedly shows the largest export coupling.
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m1

 T11 

OBJECT21

 T21 

 T12 

m2

OBJECT31

 T31 

m3

FP3
SR3

m4

OBJECT41

OBJECT42

Figure 4. Calculation of IC and EC with non-generic modules only

Based on the definitions of IC(sp) and EC(sp), we derive four related metrics, DIC(sp)

(Direct Import Coupling), TIC(sp) (Transitive Import Coupling), DEC(sp) (Direct Export

Coupling), TEC(sp) (Transitive Export Coupling). DIC(sp) and DEC(sp) only take into

account direct interactions, whereas TIC(sp) and TEC(sp) only take into account transitive

interactions. By their definitions, IC(sp) =  DIC(sp) +  TIC(sp), and EC(sp) =  DEC(sp) +

TEC(sp). This allows us to separately evaluate the impact of direct and transitive

interactions on error-proneness, as we show in the experimental validation. In practice, the

number of transitive interactions turns out to be much bigger than that of direct interactions,

so IC(sp) ≈ TIC(sp) and EC(sp) ≈ TEC(sp).

The Treatment of Generic Modules

There are two possible ways of taking into account generics when calculating coupling.

Either each instance can be seen as a different module or a generic can be seen as any other

module whose scope/global data declarations is/are the union of the scope/global data

declarations of its instances. The second solution does not consider instances as

independent modules and appears to be more suitable to our specific perspective, since

errors are to be found in generics and, only as a consequence, in instances.

The import coupling of a generic module is the cardinality of the union of the sets of

DD-interactions between the data declarations in the software system and those of each of

its instances. When calculating export coupling, we take into account the DD-interactions

between the data declarations of each of its instances and those of the software system.

Consistent with the definition of DD-interaction, generic formal parameters DD-interact
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with their particular generic actual parameters (i.e. type, object) when the generic module is

instantiated, since a change in the former may imply a change in the latter.

This is what the example in Figure 5 illustrates. Gen_m is the interface of a generic

module, with a generic formal parameter GenFP and a generic type GenT. The export

coupling of module Gen_m is given by the sum of three parts

. two interactions from Gen_m to m1, due to the two instantiations, Gen_m(1) and

Gen_m(2), of Gen_m in m1,

. the interaction from the instantiation Gen_m(1)

. the two interactions from the instantiation Gen_m(2).

IC(m1) = 2 EC(m1) = 4
IC(m2) = 3 EC(m2) = 0
IC(m3) = 4 EC(m3) = 0
IC(Gen_m) = 0 EC(Gen_m) = 5

m1

 T11 

OBJECT21 T21 

m2

OBJECT31 T31 

m3

FP3
SR3

Gen_m

GenFP

GenT

FP21
SR2

OBJECT32

GenT

Gen_m(1)

GenT

Gen_m(2)

Figure 5. Generics when calculating coupling
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3 Experimental Validation

The experimental validation has two main goals.

Goal 1

We want to find out which of the metrics defined above have a significant impact on the

error-proneness of software parts. This allows us to

a. prove that high-level design information can be used to build significant indicators

of software error-proneness

b. determine which of our assumptions about the development process (Section 2) are

experimentally supported

c. compare the four strategies for defining high-level design metrics

d. identify the most promising research directions.

◊

Goal 2

We need to investigate dependencies between metrics, in order to determine which ones are

complementary, and can be used in combination, and which ones capture similar

phenomena.

◊

Section 3.1 presents the experimental design of the analysis, the project data sets used and

the tool built to capture the discussed design metrics. Section 3.2 provides and discusses

the results of a univariate analysis of the metrics. The significance of the metrics as

predictors of error-prone software parts is assessed and the differences between systems

are investigated. Section 3.3 investigates the results obtained when building multivariate

classification models for detecting error-prone LMHs based on significant design metrics.

The model results are assessed and the model functional structure is investigated.

3 . 1 Experiment Design

Experiment Layout

In order to validate software measurement assumptions experimentally, one can adopt two

main strategies: (1) small-scale controlled experiments, (2) real-scale industrial case

studies. In this research project, we chose the second alternative since we thought the
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phenomena we are studying would be even more visible and significant on software

systems of realistic size and complexity. Also, we thought that (2) should be a more

relevant and convincing validation for the software industry practitioners.

However, the problem in such studies is that it becomes difficult to study the

phenomena of interest in isolation, without having to deal with other sources of variation.

In our case, we thought that, if these metrics were to be interesting, they should explain a

significant percentage of the variation individually or in combination, despite other sources

of variation. However, we expect some degree of variation across projects.

Environment

The first system studied is an attitude ground support software for satellites (GOADA)

developed at the NASA Goddard Space Flight Center. The second one (GOESIM) is a

dynamic simulator for a geostationary environmental satellite. These systems are composed

of 525 and 676 Ada units, 90 Klocs and 170 Klocs, respectively, and have a fairly small

reuse rate (around 5% of source code lines). The third system we studied (TONS) is an

onboard navigation system for satellite that has been developed in the same environment

and is about 180 Ada units and 50 Klocs large, with an extremely small rate of reuse (2%

of source code lines). We selected projects with lower rates of reuse in order to make our

analysis of design factors more straightforward by removing what we think is a major

source of noise in this context.

Tool

A tool analyzing the interface parts of Ada source code has been developed in order to

capture the design characteristics of these systems. This tool is based on LEX&YACC

[LY92] and extracts generic high-level design information about the visibility and

interactions of the system declarations. This information is consequently used to compute

the metrics presented in Section 2.2, and others that might be defined.

Analytical Model

The response variable we use to validate the design metrics is binary, i.e., Did an error not

occur in an LMH? In order to analyze the impact of software metrics on the error-proneness

of software parts, we used logistic regression, a classification technique [HL89] used in

many experimental sciences, based on maximum likelihood estimation, and presented

below. In this case, a careful outlier analysis must be performed in order to make sure that
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the observed trend is not the result of few observations [DG84]2. In particular, we first

used univariate logistic regression, to evaluate the impact of each of the metrics in isolation

on error-proneness. Then, we performed multivariate logistic regression, to evaluate the

relative impact of those metrics that had been assessed sufficiently significant in the

univariate analysis (e.g., α < 0.20 is a reasonable heuristic). This modeling process is

further described in [HL89].

A multivariate logistic regression model is based on the following relationship

equation (the univariate logistic regression model is a special case of this, where only one

variable appears):

log(
p

1  -  p) = C0 + C1X1 + C2X2 + … + CnXn

where p is the probability that no errors were found in a software part during the validation

phase, and the Xi 's are the design metrics included as predictors in the model (called

covariates of the logistic regression equation). In the two extreme cases, i.e., when a

variable is either non-significant or entirely differentiates error-prone software parts, the
curve (between p and any single Xi , i.e., assuming that all other Xj 's are constant)

approximates a horizontal line and a vertical line respectively. In between, the curve takes a
flexible S shape. However, since p is unknown, the coefficients Ci will be estimated

through a likelihood function optimization. This procedure assumes that all observations

are statistically independent. When building the regression equations, each observation was

weighted according to the number of errors detected in each software part. The rationale is

that each (non) detection of error is considered as an independent event. As a consequence,

software parts where no errors were detected were weighted 1.

Goodness-of-fit for such a model is assessed via a statistic called R2 (because

similar in concept to the least-square regression coefficient of determination), belonging to

the interval [0,1]. The higher R2, the more accurate the model. However, as opposed to the

R2 of least-square regression, high R2s are rare for logistic regression, for reasons whose

explanation is well beyond the scope of this text. The interested reader may refer to [HL89]

for a detailed introduction to logistic regression.

Tables 1 and 2 contain the results we obtained through, respectively, univariate and

multivariate logistic regression on the three systems. We report those related to the metrics

2In addition, in order to confirm the obtained results, we used non-parametric tests for rank distributions
such as the Mann-Whitney U test [CAP88]. Results appeared to be consistent across techniques and, in
order to limit the amount of statistics provided to the reader and preserve the clarity of the text, we only
show the results obtained with logistic regression.
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that turned out to be the most significant ones across all three projects. For each metric, we

provide the following statistics:

. C (appearing in both tables), the estimated regression coefficient. The larger the

coefficient, the stronger the impact of the explanatory variable on the probability p.

. ∆ψ (appearing in Table 1 only), which is based on the notion of odd ratio [HL89],

and provides an evaluation of the impact of the metric on the dependent variable.

More specifically, the odd ratio ψ(X) represents the ratio between the probability of

not having an error and the probability of having an error when the value of the

metric is X. As an example, if, for a given value X, ψ(X) is 2, then it is twice more

likely that the software part does not contain errors than that it does contain errors.

The value of ∆ψ is computed by means of the following formula

∆ψ= 
ψ(X+1)

ψ(X)

Therefore, ∆ψ represents the reduction/increase in the odd ratio when the value X

increases by 1 unit. This provides a more intuitive insight than regression

coefficients into the impact of explanatory variables. (Since the whole range of RCI

is [0,1], we used one-tenth as the quantum for RCI increase with respect to which

∆ψ is computed.)

. α (appearing in both tables), the level of significance, which provides an insight

into the accuracy of the coefficient estimates. The significance (α) of the logistic

regression coefficients tells the reader about the probability for the coefficient to be

different from zero by chance. Also, the larger the level of significance, the larger

the standard deviation of the estimated coefficients, the less believable the calculated

impact of the coefficient. The significance test is based on a likelihood ratio test

[HL89] commonly used in the framework of logistic regression.
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3 . 2 Univariate Analysis

Results

As Table 1 shows, all strategies presented in Section 2.2 provide significant metrics, but

the strategy based on declaration counts. Therefore, these metrics, although based on

simple and appealing concepts, do not appear to be significant predictors.

All the metrics based on exported declarations, i.e., Local(sp), ESP(sp), EC(sp),

DEC(sp), and TEC(sp), are not significant. Our explanation is that when an inconsistency

exists between an exporting module E and an importing module I, I is more likely to be

corrected, since E may export to other modules. Changing E is likely to require changing

those other modules. Alternatively, a large amount of exports sometimes translates into a

need for genericity but, for many declarations, just results into additional fields and

dimensions. Therefore, the assumption underlying the export interactions metric appears

somewhat questionable.

All the metrics based on the IS_COMPONENT_OF relation appear significant in

the univariate analysis. However, they show a strong multicolinearity (i.e., the linear

correlations are strong between metrics). Since Avg_depth is the best predictor in its

category and in order to minimize the size of Table 1, only the Avg_depth results are

shown.

A close analysis of the correlation matrix of the studied metrics shows that these

results are not due to strong correlations between factors, e.g., when all factors are size

predictors. Therefore, all the metrics in Table 1 seem to capture not only significant but

different trends. This shows that most of the strategies are likely to be complementary and

useful. This is confirmed by the multivariate results presented in Section 3.3.

Project
s

GOADA GOESIM TONS

Metrics C ∆ψ α C ∆ψ α C ∆ψ α

ISP -0.8 45% 0.000 -0.717 49% 0.002 -0.96 38% 0.000

Avg_Depth -2.27 11% 0.000 -2.4 9% 0.000 -3.9 2% 0.000

RCI 0.63 188% 0.000 0.215 124% 0.047 0.34 141% 0.001

TIC -0.016 98.5% 0.001 -0.017 98.3% 0.002 -0.02 98% 0.15

DIC -0.23 79% 0.000 -0.19 83% 0.001 -0.04 96% 0.19

USES

I_C_O

Inter.

Inter.

Inter.

Strategy

Table 1. Univariate Analysis
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Detailed Discussion

TIC and DIC do not appear to be significant in TONS (α = 0.19 and 0.15, respectively),

whereas they are very significant in the two other systems. The analysis of the distribution

of these factors in all three systems, respectively, shows that their standard deviation (σ)

and median (m) are much smaller in TONS, i.e., with respect to TIC, σ = 10, m = 2.5 for

TONS versus σ = 32.74, m = 15.5 for GOADA, σ = 32.18, m = 59 for GOESIM. As a

consequence, any trend related to either DIC or TIC is very likely not to be visible in the

TONS dataset. When considering that TONS is a significantly smaller system than the two

other ones, results may be interpreted as follows: the distribution of import interactions is

strongly dependent on the size of the system and input interaction metrics are likely to be

mediocre predictors for small systems.

Comparing Models

From a more general perspective, variations across models (i.e., univariate regression

equations) should be expected due to differences in project characteristics, i.e., size,

application domain. However, it is worth noticing that, despite the fact that these projects

belong to different application domains (within the context of satellite support systems) and

have been developed at different times, most of the models are surprisingly stable across

projects. Because of the functional shape of logistic models, coefficients that may appear

significantly different actually generate very similar models, e.g., In Table 1, coefficients

-2.27 and -3.9 yield ∆ψ's of 11% and 2%, respectively. As a consequence, to evaluate the

stability of the models, the reader should rather look at the ∆ψ column in Table 1. When

doing so, only RCI appears to have a noticeable model instability even though the trends

are consistent.

3 . 3 Multivariate Models

In this section, we present the results obtained by performing a stepwise multivariate

logistic regression. Table 2 provides the estimated regression coefficients (C) and their

significance (α) based on a Wald test [HL89], which is obtained by comparing the

maximum likelihood estimate of a parameter to its estimated standard deviation. Regression

coefficients are not shown when their level of significance is above 0.2 (substituted by a

*).
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Projects GOADA GOESIM TONS

Metrics C α C α C α

ISP -0.9 0.04 * * -1.18 0.000

Avg_Depth -1.8 0.003 -3.12 0.000 -5.62 0.000

RCI 0.4 0.006 0.3 0.07 0.2 0.16

TIC -0.023 0.000 -0.02 0.005 * *

DIC 0.23 0.04 -0.13 0.04 -0.11 0.002

USES

I_C_O

Inter.

Inter.

Inter.

Strategy

Table 2. Coefficients of Multivariate Models

Results

The very low levels of significance in Table 2 suggest that these metrics may be used in

combination as indicators of error-prone LMHs. Indeed, when used in a multivariate

model, many of these metrics are still significant and produce models that are more accurate

than univariate models (Table 2). The best univariate R2s are 0.115, 0.20 and 0.16 for

GOADA, GOESIM, and TONS, respectively. In the same order, the multivariate R2s are

0.21, 0.24, and 0.43. We can see that the results improved very significantly for GOADA

and TONS.

Interaction-based metrics are more complex but worth collecting, since they are the

only metrics defined at the declaration level that appeared significant. In addition, the

average LMH depth was consistently selected as a very good indicator. This is likely to be

an early measure of "size" of the LMH and is expectedly significant. Also, ISP, a metric

similar to the notion of fan-in shows to be significant across projects (except in the

multivariate GOESIM model for reasons explained below), while ESP, the equivalent

measure for exports (based on the fan-out of LMHs) is not significant. As a consequence, a

metric of the form (fan_in · fan_out)2, suggested in numerous occasions in the literature

[HK84, IS88, S90, Z91], does not appear to be significant. From a more general

perspective, metrics based on imports, regardless of the associated concepts, appear to

predict more accurately the error-proneness of software parts.

Comparing Models

Some variability in the estimated regression coefficients can be observed across

projects in Table 2 and requires some discussion. In multivariate models, coefficients have
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a tendency to adjust, statistically, for other variables [HL89]. Sometimes, variables are

weak predictors of the response variable when taken individually, and become more

significant when integrated in a multivariate model. In Table 1, DIC showed, for TONS, a

mediocre level of significance, whereas it appears to be a significant predictor in Table 2.

Moreover, its coefficient is very unstable across projects and the trend is reversed (positive)

for GOADA and TONS. When looking more carefully at the associations (not only the

narrower concept of linear correlation) between metrics, it can be determined that this is the

results of strong association between DIC and ISP in GOADA and TONS. These

associations are a typical source of coefficient instability [DG84], e.g., the coefficient of

ISP in GOADA varies from -0.9 to -0.39 when DIC is removed from the equation.

TIC remains non-significant because of its strong linear correlation (R2 = 0.76)

with DIC in the TONS dataset. Similarly, ISP does not appear significant in the GOESIM

dataset because of a strong correlation with DIC (R2 = 0.50). RCI in TONS shows a

weaker significance (α = 0.16) than in the univariate results and no strong linear correlation

can be observed with the other metrics included in the multivariate equation. However,

LMHs with large numbers of imported interactions are all located in the low part of the

cohesion range. Such an association (likely to be spurious since it is not the case in the

other datasets) with DIC is likely to affect the significance of RCI in a multivariate

equation.

It is important to note that a different set of systems showing different distributions

might show very different trends. This points out a need for large scale investigation across

various development environments and application domains.

4 Conclusion

This study has shown that statistical models of extremely good significance can be built

based on high-level design information. In particular, we have determined accurate early

predictors for error-prone software. Moreover, the results suggested that, at this stage of

understanding, several strategies were worth investigating because none of them showed

dominant trends, while most of them appeared to be complementary. In order to provide

the practitioner with usable, well understood and validated models, software engineering

researchers will have to keep refining and validating the existing metrics. There is still

substantial room for improvement.

The stability of the impact of these metrics across projects allows us to draw

optimistic conclusions about the use of such quality indicators. Using early quality
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indicators based on objective empirical evidence appears possible. However, it is very

likely that this kind of indicators will behave differently across various domains of

application and development environments.

Therefore, the use of such indicators should always be preceded by a careful

empirical analysis of local error patterns and a thorough comparison across projects.

Our future work will be three-fold:

. Analyze more systems

. Validate further and refine the metrics we defined in this paper. The variations

across environments and the study/comparison of different architectures is likely to

give us interesting insights.

. Consistent with our current objectives, we will address the issues related to

building metric based empirical models earlier in the life cycle. In particular, the

next stage of this research will focus on defining and validating metrics for formal

specifications.
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