
Finding Legal Reordering Transformations using MappingsWayne Kelly William Pughwak@cs.umd.edu, (301)-405-2726 pugh@cs.umd.edu, (301)-405-2705Dept. of Computer ScienceUniv. of Maryland, College Park, MD 20742April 29, 1994AbstractTraditionally, optimizing compilers attempt to improve the performance of programs by applying source tosource transformations, such as loop interchange, loop skewing and loop distribution. Each of these transforma-tions has its own special legality checks and transformation rules which make it hard to analyze or predict thee�ects of compositions of these transformations. To overcome these problems we have developed a framework forunifying iteration reordering transformations. The framework is based on the idea that all reordering transforma-tion can be represented as a mapping from the original iteration space to a new iteration space. The framework isdesigned to provide a uniform way to represent and reason about transformations. An optimizing compiler woulduse our framework by �nding a mapping that both corresponds to a legal transformation and produces e�cientcode. We present the mapping selection problem as a search problem by decomposing it into a sequence of smallerchoices. We then characterize the set of all legal mappings by de�ning an implicit search tree.1 IntroductionTraditionally, optimizing compilers attempt to parallelize programs and improve their performance, by applyingsource to source transformations, such as loop interchange, loop skewing and loop distribution [Wol89a]. Each ofthese transformations has its own special legality checks and transformation rules. This makes it di�cult to �ndsequences of transformations that obtain some desired goal.To overcome these problems, many researchers have proposed frameworks that unify some of these reorderingtransformations [Ban90, WL91, LMQ91, LP92, Ram92, Fea92a, Fea92b, ST92, DR92]. We have developed a frame-work that handles more reordering transformations than most existing transformation frameworks. Our frameworkis based on the idea that a transformation can be represented as a mapping from the original iteration space to a newiteration space. Our framework is more expressive than most because we allow a separate mapping to be associatedwith each statement and do not require that the mappings be unimodular.Like all other frameworks, we need to be able to perform the following three tasks:� Determine which mappings correspond to legal transformations.� Determine which of these legal mappings will produce e�cient code.� Generate the transformed source code from a given mapping.Unfortunately, but not surprisingly, the extra expressiveness of our framework makes it much harder for us to performthese tasks compared to simpler frameworks.We will present the combination of the �rst two of these tasks as a search problem. The �rst task corresponds tode�ning the search tree and the second task corresponds to selecting a path within that tree. This paper will dealalmost entirely with the �rst task, i.e. de�ning the search tree. Interested readers are referred to our previous work[KP93b, KP93a] for more information on the second and third tasks.In Section 2, we explain how mappings can be used to represent reordering transformations. In Section 3, wedescribe tuple relations and how they are used to represent mappings and data dependences. In Section 4 we statethe legality test for a complete mapping. In Section 5, we present the process of �nding legal mappings in terms ofde�ning a search tree. In Sections 6 and 7 give more details on how to construct the search tree. In Section 8, wediscuss related work, and �nally in Section 9, we give our conclusions.1



2 Mappings2.1 Iteration spacesdo 30 i = 1, n10 s(i) = 0do 20 j = 1, i-120 s(i) = s(i) + a(j,i)*b(j)30 b(i) = b(i) - s(i) I10 : f [ i ] j 1 � i � n gI20 : f [ i; j ] j 1 � i � n ^ 1 � j � i� 1 gI30 : f [ i ] j 1 � i � n gFigure 1: Program and associated iteration spaceEach statement sp has associated with it an iteration space Ip, which is a subspace of Zmp (where mp is the numberof loops nested around sp). A statement's iteration space is the set of iterations for which that statement will beexecuted. Figure 1 shows a program and its associated iteration space.2.2 MappingsWe represent reordering transformations as 1-1 mappings from the original iteration spaces (the Ip's), to a newiteration space I0. In general, we associate a separate mapping with each statement. For e�ciency reasons, however,it may sometimes be advantageous to partition statements into groups and associate the same mapping with eachstatement in the same group.We use the following notation to represent each mapping:Tp : [i1p; : : : ; impp ]! [f1p ; : : : ; fnp ]where:� The i1p; : : : ; impp are the index variables of the loops nested around statement sp.� The fjp 's (called mapping components) are quasi-a�ne functions of the iteration variables and symbolic con-stants. Quasi-a�ne expressions [AI91] are a�ne functions plus integer division and remainder when dividingby a constant. Quasi-a�ne expressions allow us to create mappings corresponding to blocking (or strip-mining)transformations.This mapping represents the fact that iteration [i1p; : : : ; imp ] in the original iteration space of statement sp is mappedto iteration [f1p ; : : : ; fnp ] in the new iteration space. For example, the mapping in Figure 2 maps iteration [5; 7] in theoriginal iteration space of statement 20 to iteration [1; 7; 0; 5] in the new iteration space.T10 : f[ i ] ! [0; i; 0; 0] gT20 : f[ i; j ] ! [1; j; 0; i] gT30 : f[ i ] ! [1; i � 1; 1; 0] g parallel do 10 i = 1, n10 s(i) = 0do 30 t = 1, n-1parallel do 20 i = t+1, n20 s(i) = s(i) + a(t,i)*b(t)30 b(t+1) = b(t+1) - s(t+1)Figure 2: Mapping and associated transformed program2.3 Code GenerationIt is obviously not useful merely to be able to represent transformations as mappings. Given a section of code anda mapping, we need to be able to produce a new section of code that results from applying the transformationrepresented by that mapping. Since we are only considering reordering transformations, the transformed code willcontain the same elementary statements as the original code, but will contain di�erent loop structures. The new loopstructures must execute all iterations in the new iteration space and no others. The transformed code also has theimportant property that all of the iterations are executed in lexicographical order based on their coordinates in thenew iteration space. Note that this property speci�es a total order on all iterations (even between iterations belongingto di�erent statements), since all iterations in the original iteration spaces are mapped to a common iteration space.Figure 2 shows the code that is produced by applying the given mapping to the program in Figure 1. Since thedo 10 i ... and the do 20 i ... loops carry no dependencies, they can be run in parallel. The mapping does not2



specify which loops are made parallel, although given the mapping and dependences, it is easy to determine whichloops could be made parallel.The algorithm we use to generate the transformed code is relatively complicated and is not described in thispaper. A description of the algorithm can be found in [KP93b].2.4 Representing traditional transformationsIn [KP93b] we demonstrated how mappings can be used to represent all transformations than can be obtained byapplying any sequence of the following traditional transformations:� loop interchange� loop reversal� loop skewing� statement reordering� loop distribution� loop fusion � loop alignment [ACK87]� loop interleaving [ST92]� loop blocking1 (or tiling) [AK87]� index set splitting1 [Ban79]� loop coalescing1 [Pol88]� loop scaling1 [LP92]2.5 ExamplesFigure 3 gives some interesting examples of mappings. In this paper we don't give details of how to select theseparticular mappings.3 Tuple Relations and SetsMost of the previous work on program transformations uses data dependence directions and distances to summarizedependences between array references. For our purposes, these abstractions are too crude. We describe dependencesexactly using integer tuple relations. Integer tuple relations are also used to represent mappings.3.1 Integer tuple relations and setsAn integer k-tuple is simply a point in Zk. A tuple relation is a mapping from tuples to tuples. A single tuple maybe mapped to zero, one or more tuples. The relations may involve free variables such as n in the following example:f [i] ! [i + 1] j 1 � i < n g. These free variables correspond to symbolic constants or parameters in the sourceprogram. We use Sym to represent the set of all symbolic constants.Tuple relations and sets are represented using the Omega test [Pug92, PW92, PW93] which is a package formanipulating a�ne constraints over integer variables. We introduce new variables corresponding to each of the inputpositions and output positions. Relationships between these variables and those corresponding to symbolic constantsare represented as a disjunction of convex regions. See [Pug91] for a more thorough description.The gist operationWe make use of the gist operation, originally developed in [PW92]. Intuitively, (gist p given q) is de�ned as the newinformation contained in p, given that we already know q. More formally, if p^ q is satis�able then (gist p given q) isa conjunction containing a minimal subset of the constraints in p such that ((gist p given q)^ q) = (p^ q)), otherwiseit is False.3.2 Control dependenceIf conditionals exist in a program, then we require that they be converted to guarded statements via if-conversion[AKPW83]. Alternatively, structured if statements can be handled by treating them as atomic statements. Wealso require that all loop bounds be a�ne functions of surrounding loop variables and symbolic constants. We cantherefore ignore control dependences, as those that do exist are implicitly contained in our description of the iterationspace.1Our current implementation cannot handle all cases of these transformations.3



Code adapted from CHOSOL in the Perfect club (SD) Code adapted from OLDA in Perfect club (TI) [B+89]Original codedo 3 i=2,n1 sum(i) = 0.do 2 j=1,i-12 sum(i) = sum(i) + a(j,i)*b(j)3 b(i) = b(i) - sum(i) Original codedo 2 p = 1, ndo 2 q = 1, pdo 2 i = 1, orb1 xrsiq(i,q)=xrsiq(i,q) + ... S12 xrsiq(i,p)=xrsiq(i,p) + ... S2Dependencesd12 : f[i] ! [i; l] j1 � l < i � ngd22 : f[i; l] ! [i; l0] j1 � l < l0 < i � ngd23 : f[i; l] ! [i] j1 � l < i � ngd32 : f[i] ! [i0; i] j2 � i < i0 � ng Dependencesd11 : f[p; q; i] ! [p0; q; i] j1 � q � p < p0 � ngd12 : f[p; p; i] ! [p; p; i] j1 � p � ngd22 : f[p; q; i] ! [p; q0; i] j1 � q < q0 � p � ngd21 : f[p; q; i] ! [p0; p; i] j1 � q � p � p0 � ngMapping (for parallelism)T1 : f [ i ] ! [ 0; i; 0; 0 ] gT2 : f [ i; j ] ! [ 1; j; 0; i ] gT3 : f [ i ] ! [ 1; i� 1; 1; 0 ] g Schedule (for parallelism)T1 : f [ p; q; i ] ! [ i; q; p; 0]gT2 : f [ p; q; i ] ! [ i; p; q; 1]gTransformed codeparallel do 1 i = 2,n1 sum(i) = 0.do 3 t2 = 1, n-1parallel do 2 i = t2+1,n2 sum(i) = sum(i) + a(t2,i)*b(t2)3 b(t2+1) = b(t2+1) - sum(t2+1) Transformed codeparallel do 12 i = 1,orbparallel do 12 t2 = 1,ndo 21 t3 = 1,t2-121 xrsiq(i,t2)=xrsiq(i,t2) + ... S211 xrsiq(i,t2)=xrsiq(i,t2) + ... S122 xrsiq(i,t2)=xrsiq(i,t2) + ... S2do 12 t3 = t2+1,n12 xrsiq(i,t2)=xrsiq(i,t2) + ... S1Transformations required normally� loop distribution� imperfectly nested triangular loop interchange Transformations required normally� index set splitting� loop distribution� triangular loop interchange� loop fusionFigure 3: Example Codes, Mappings, and Resulting Transformations3.3 Data dependenceWe use tuple relations to represent dependences. If there is a (ow, output or anti) dependence from sp[i] (i.e.,iteration i of statement sp) to sq [j] then the tuple relation dpq representing the dependences from sp to sq will maptuple i to tuple j.3.4 MappingsIf the transformation maps iteration i in the original iteration space of statement sp to iteration j in the new iterationspace, then the mapping Tp will map tuple i to tuple j.4 Verifying the Legality of MappingsThe previous section showed how reordering transformations can be represented as mappings. Not all transformationsare legal, so it is important to be able to distinguish between legal and illegal transformations. In this section wedescribe how to verify that a mapping corresponds to a legal transformation.A mapping is legal if the transformation it describes preserves the semantics of the original code. This is true ifthe new ordering of the iterations respects all of the dependences in the original code.So we have the legality requirement: if i is an iteration of statement sp and j an iteration of statement sq, andthe dependence relation dpq indicates that there is a dependence from i to j then Tp(i) must be executed before4



Tq(j). More formally: 8i; j; p; q; Sym i!j 2 dpq ) Tp(i) � Tq(j) (1)where � is the lexicographically precedes operator. To be well formed, the mapping must also be 1-1.5 De�ning the Search Tree of Legal MappingsSo far we have described how to represent reordering transformations as mappings and how to verify the legalityof a given mapping. To make use of such a framework, optimizing compilers would need to be able to select legalmappings that would produce e�cient transformed code. In this section we show how this can be modeled as asearch problem. More precisely, for a given section of code, we will de�ne a search tree whose leaves correspondto all legal mappings for that section of code. A complete search tree could never actually be constructed by anoptimizing compiler as such search trees are all in�nitely large. However, by having a well de�ned search tree, anysearch algorithm can be used to �nd a good legal mapping. Some examples of possible search algorithms include:� Using a heuristic to choose which branch to follow at each fork.� An interactive tool where a human user can select some or all of the branches to follow at each fork.� De�ning a function from the nodes to the integers which satis�es the monotone property [Nil80]. This wouldallow us to use admissible search algorithms such as the A� algorithm [Nil80]. In a previous paper [KP93a],we described an approach along these lines.Depending on the search algorithm used, parts of the search tree may actually be constructed, or may only existimplicitly. We will not discuss search algorithms further in this paper, but will instead concentrate on de�ning thesearch tree.5.1 Divide and ConquerIn order to de�ne a search tree, we must �rst decompose the mapping selection problem into a sequence of choices.There are many di�erent ways in which this problem can be decomposed. The decomposition that we have chosenhas the desirable property that all partial legal sequences of choices can be extended into a complete legal sequenceof choices (i.e., a legal mapping).Coarse Grained DecompositionAt the highest level, we decompose the mapping selection problem into the smaller problems of choosing each ofthe mapping components. The sequence in which these choices are made is very important. We require that themapping components for levels 1; : : : ; k of statement sp be chosen before the mapping component for level k + 1 ofstatement sp. We also prefer1 that the mappings components for levels 1; : : : ; k of all other statements sq be chosenbefore the mapping component for level k + 1 of statement sp.As was explained in Section 4, the legality test for complete mappings involves dependence relations and thelexicographically precedes operator. The lexicographically precedes operator is de�ned as:(x1; : : : ; xn) � (y1; : : : ; yn) i� 9m s:t: (8i 1 � i < m) xi = yi) ^ xm < ymTherefore, if we are given shorter tuples (x1; : : : ; xk) and (y1; : : : ; yk) such that (x1; : : : ; xk) � (y1; : : : ; yk) (wherek < n), then we know that we can always extend them (by choosing xk+1; : : : ; xn and yk+1; : : : ; yn) such that(x1; : : : ; xk; xk+1; : : : ; xn) � (y1; : : : ; yk; yk+1; : : : ; yn)So, given a partially speci�ed mapping (where only the �rst k levels of the mapping has been chosen), we know thatit can be extended into a legal complete mapping i�8i; j; p; q; Sym i!j 2 dpq ) T kp (i) � T kq (j) (2)where T kp is the mapping consisting of only the �rst k levels of statement sp.1If this is not the case then the above desirable property is not guaranteed to hold.5



When we are choosing mapping components at level k + 1, we only need to consider dependences which haven'talready been guaranteed to be respected by mapping components chosen at levels 1; : : : ; k. A dependence i!j 2 dpqis guaranteed to be respected by the mapping components chosen at levels 1; : : : ; k, i� 8Sym T kp (i) � T kq (j). So, ifEquation 2 has been maintained while selecting mapping components for levels 1; : : : ; k, then at level k+ 1, we needonly consider dependences: dk+1pq : fi!j s:t: i!j 2 dpq ^ T kp (i) = T kq (j)gFine Grained DecompositionWe distinguish two parts of a mapping component: the variable part and the constant part. The variable part is thelargest subexpression of the mapping component that is a linear function of the iteration variables. The rest of theexpression is called the constant part. For example in the mapping [i; j] ! [2i + j + n + 1; 0; j] the �rst mappingcomponent has variable part 2i+ j and constant part n+ 1.We further decompose the mapping selection problem by splitting the selection of each mappings component intotwo parts; selecting the variable part and selecting the constant part. The performance of the resulting programwill mostly depend on the selection of the variable parts. The choice of constant parts will a�ect the legality ofthe overall mapping, however they will usually have little a�ect on performance. So, it makes sense to separate theselection of the variable parts from the selection of the constant parts, since the selection of variable parts requirescareful consideration, while any legal constant parts will usually su�ce.Although we won't be discussing how to choose good mappings (mappings that will produce e�cient code), thetechniques we use for characterizing legal mappings could also be used to assist in the selection of good mappings.The e�ciency of the produced code depends largely on which loops are parallel which in turn depends on whichlevels carry dependences. Our techniques for characterizing legal mappings can be modi�ed so as to characterizelegal mappings which don't carry any dependences at a given level, or similarly, characterize those that carries allremaining dependences at a given level.In Section 6, we characterize the set of legal variable parts, and in Section 7, we characterize the set of legalconstant parts.6 Characterizing Legal Variable PartsIn this section we will characterize the sets of legal variable parts for all statements at a given level k. As wasmentioned earlier, at level k, we need only consider those dependences dkpq, that are not carried by levels 1; : : : ; k�1.For the remainder of this section we will use dpq to denote dkpq. Unless we are at the last level, we don't need toensure that all remaining dependences are carried at this level. Rather, we simply need to ensure that they are notviolated; that is, if there remains a dependence from iteration i of sp to iteration j of sq then we only require thatfkp (i) be less than or equal to fkq (j).We �rst describe a necessary condition for a variable part v to be legal for statement sp at level k. We willdescribe a set Vp for each statement sp such that if variable part v 62 Vp then v can't be used as a variable partfor statement sp at level k. Depending on which variable parts are chosen for the other statements at this level, avariable part v 2 Vp may or may not be legal; that is, inclusion in Vp is necessary but not su�cient for legality.6.1 Self dependencesA variable part is in Vp only if it respects all self dependences for that statement. A self dependence is a dependencefrom one iteration of a statement to a di�erent iteration of the same statement. Self dependences come in two forms:Direct Iteration i of statement sp is directly dependent on iteration j of statement sp.Transitive Iteration i of statement sp is dependent on iteration x of statement sq and iteration x of statement sqis dependent (possibly transitively) on iteration j of statement sp.This suggests that we need to compute the transitive closure of the dependence relations (as suggested in [Pug91]).As it turns out, this isn't exactly what we want or need.Firstly, exact computation of the transitive closure of an a�ne integer tuple relation is undecidable (see Section6.2). We can, however, often compute closure of relations exactly, or bound them from above or below. It would besafe to approximate transitive closure from below as this would lead to looser constraints in Vp. This might lead us6



to select an invalid variable part vp. This will not lead to invalid mappings, however, because if vp is invalid we willnot be able to �nd mappings for the other statements such that the tests in Section 4 are satis�ed. This would leadto backtracking in the search algorithm.Secondly, even if a variable part satis�es all self dependences for a particular statement, including transitivedependences, it may be the case that the variable part cannot be used regardless of which variable parts are chosen forthe other statements. Figure 4 shows a contrived program and its corresponding dependence graph that demonstratesthis situation. Since there are no self dependences for statement 1, even including transitive dependences, any variablepart appears legal for statement 1. However, if �i is used as the variable part of the mapping for statement 1, thereis no possible a�ne mapping for statement 2 that would respect the dependences. This surprising situation occursbecause we have restricted our variable parts to be linear functions. If we were to relax that criterion, then a legalvariable part could be found for statement 2, even if we choose variable part �i for statement 1.do 2 i = 0, 21 a(i) = b(5-2*i)2 b(i) = a(-i) + b(5-2*i) s :
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0 1 2Figure 4: Example program and associated dependence graph6.2 A�ne closureSince we don't want to consider non linear mappings, we can use this information to develop a stronger test forinclusion in Vp. Consider two iterations i and j of statement sp such that there is a self dependence from i to j. Wesay that statement sp has a self dependence distance of j � i. We use �p to refer to the set of all self dependencedistances of statement sp. If v is a legal linear variable part, then for any two iterations i0 and j0 of statement spseparated by a distance of d 2 �p, we know that v(i0) � v(j0). So, even if there is no actual data dependence fromi0 to j0, we can \pretend" that there is; that is, adding such a dependence to our dependence set will not reducethe set of legal linear variable parts. We call such dependences a�nity dependences since they can only be addedbecause we are using a�ne mappings. The properties of a�ne mappings also imply that if d1 2 �p ^ d2 2 �p then�1d1 + �2d2 2 �p provided that �1 and �2 are nonnegative rationals and �1d1 + �2d2 is integral.For each statement sp, we replace dpp with the dependences fx!y j x 2 [sp]^ y 2 [sp]^9d 2 �p s:t: x+ d = yg.We call this the a�ne closure of dpp. In Section 6.3.1, we will explain how the set of all self dependences for a givenstatement can be \compressed" into a form that can be represented using a single convex set of constraints.Figure 5 shows the modi�ed dependence graph for the example in Figure 4. Variable part �i is no longer legalfor statement 1, so the situation described above no longer occurs in this example. It remains an open questionhowever, whether such situations could arise in other examples despite the introduction of a�nity dependences asdescribed above.
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0 1 2Figure 5: Dependence graph with added dependencesIt is important to note that we can only add these a�nity dependences between iterations of the same statement.We can't add a�nity dependences between statements because the statements will most likely have di�erent mappingcomponents. This does not mean however, that dependences between di�erent statements are not important. Toexplain how these inter-statement dependences are used we need to briey review [Pug91] how to compute thetransitive closure of an entire dependence graph. Consider the simple case where there are only two statements of7



interest, sp and sq . To generate all transitive self dependences on statement sp we would compute:(dpp [ (dpq � (dqq)� � dqp))� (3)There are two operators used in this computation, the composition operator and the closure operator. Compositionis very easy to compute, but the closure of a relation cannot always be converted to a closed form using only a�neconstraints. For example, f[x; y]! [x+1; y+ z]g� is equivalent to f[x; y]! [x0; y+ z(x0�x)] j x � x0g which cannotbe represented using only a�ne constraints. The interesting thing to note about this formula is that the closureoperator is only applied to self dependences. This motivates the following approach. Instead of using Equation 3 togenerate transitive dependences, we generate a�ne transitive dependences by computing:(dpp [ (dpq � (dqq)@ � dqp))@where @ is the a�ne closure operator. This process of computing a�ne transitive dependences can be extended tothe multiple statement case in the obvious way [Pug91].The a�ne transitive self-dependences introduced, may produce new self dependence distances, so it might bepossible to infer more information by iterating the above process. We don't know of any upper bound on the numberof times this process would need to be repeated before reaching a �xed point. We suspect it would be small, andeven if it wasn't it would be safe to stop after any number of iterations.We can e�ciently compute an upper bound on the a�ne closure of the dependences using just direction/distancevectors. This will be approximate only if the direction/distance vectors do not exactly describe the dependence or ifall the statements do not have the same nesting depth. This fast approximate computation can save us work in ourexact computation. Our exact computation starts with the direct dependences (a lower bound on the a�ne closure ofthe dependences), and adds induced dependences step by step. If during the computation of the exact computation,we discover that the exact result computed so far is the same as the approximate result then we can terminate thecomputation early since no additional dependences can be induced.6.3 Case I: No variable parts already knownGiven all self dependences dpp for a statement sp, we now wish to give a concise description of Vp. In previous work[KP93b] we used generate and test techniques; that is, for a given variable part v we described a test that determinedwhether or not v 2 Vp. The test was simply: 8d 2 �p v � d � 0We would prefer a more concise description of Vp; that is, we would like to describe it in the form:Vp = fa1i1p + : : :+ aninp j F gwhere F is a set of linear constraints on fa1; : : : ; ang.There are various techniques we can use to generate F . The most complete, but also most expensive method isto apply the a�ne form of Farkas Lemma [Sch86, Fea92a]:Lemma 6.1 (Farkas) Let the system Ax � b of a�ne inequalities have at least one solution. An a�ne form  is non-negative for each x satisfying Ax � b if and only if  (x) � 0 is a nonnegative a�ne combination of theinequalities in the system Ax � b.The � sets are represented internally as a disjunction of convex regions. Each of these convex regions is representedby a system of a�ne inequalities A� � b. Farkas Lemma is applied to each of these convex regions, with  (�) �a1�1 + : : :+ an�n.If we only want to consider variable parts that carry all remaining dependences at this level, then we require thata1�1 + : : :+ an�n > 0; that is, we use  (�) � a1�1 + : : :+ an�n � 1. Similarly, if we only want to consider variableparts that don't carry any dependences at this level, then we require that a1�1 + : : :+ an�n = 0. We would applyFarkas Lemma twice, with  (�) � (a1�1 + : : :+ an�n) and  (�) � �(a1�1 + : : :+ an�n).Each application of Farkas Lemma produces a system of linear inequalities on a1; : : : ; an (Appendix A explainshow to apply Farkas Lemma). The set of constraints F is the intersection of each of these sets of constraints.In practice, it is often the case that each of the systems of a�ne inequalities describing the � sets are very simple.In these cases, we can directly produce constraints on a1; : : : ; an without having to resort to applying Farkas Lemma.For example, if a system of a�ne inequalities describes a constant self dependence distance, then we can directlyproduce the constraint (c1a1 + : : :+ cnan) � 0 where �j = cj is known.Figure 6 gives an example of generating constraints in case I.8



do 1 i = 1, ndo 1 j = i+1, n1 a(i,j) = a(i, j-1) + a(i-1, j)d11 : f[i; j]� > [i; j + 1] j 1 � i � n ^ i + 1 � j < ng[f[i; j]� > [i+ 1; j] j 1 � i < n ^ i + 1 � j � ng�1 : f[0; 1]g[ f[1; 0gFrom the �rst clause we can directly derive: 0a1 + 1a2 � 0and from the second clause we can directly derive: 1a1 + 0a2 � 0Combining these we get: V1 = fa1i1 + a2i2 j a1 � 0 ^ a2 � 0gFigure 6: Example of deriving V in case I6.3.1 Compressing self dependence relationsExcept in the case where dependences are forced to be carried, all of the constraints on a1; : : : ; an produced inSection 6.3 are guaranteed to be linear, as opposed to just being a�ne (i.e., their constant terms are alway zero).Assume for the moment that one of these constraints is: (c1a1+ : : :+ cnan) � 0. If the original program had had anadditional dependence distance of (c1; : : : ; cn) then the set of constraints on a1; : : : ; an would not be altered; that is,the set of legal variable parts would not be altered by the addition of that dependence distance. We can therefore\pretend" that this self dependence di�erence exists even if there are no dependences in the original program withthat dependence distance. Assume then, that we have added such a self dependence di�erence for each constraintin the system. If at this point we removed all other self dependence distances, then the same set of constraints ona1; : : : ; an would still be induced. We now have a �nite set of self dependence distances d1; : : : ; dm which we can useto replace the original dependence distances. Taking the a�ne closure of this set of dependence distances producesa set of dependence distances which can be described using a single convex set of constraints:fx j 9�1; : : : ; �m � 0 s:t: x = �1d1 + : : :+ �mdmgFrom this we can easily construct the self dependence relation which will also be described using a single convex set ofconstraints. So, given any set of self dependences for a statement, we can compute an equivalent set of dependences(i.e., a set which induces the same constraints on the mapping coe�cients) that can be described using a singleconvex set of constraints.6.4 Case II: Some variable parts already knownWe now consider the situation where we have already chosen variable parts for some of the statements. Thisadditional knowledge allows us to further constrain the set of variable parts which can be used for the other statements.If we have already chosen variable part vp for statement sp, then we know that iteration i of statement sp will beexecuted no latter than iteration j of statement sp if vp(i) � vq(j). So, even if there is no actual data dependencefrom i to j, we can \pretend" that there is. We call such dependences mapping dependences since they can only beadded because we know something about the mappings used. These newly introduced dependences are not useful inthemselves, but they may allow us to transitively infer self dependences for other statements whose variable partshaven't already been chosen.These additional dependences are useful, but we can do even better. Consider the situation shown in Figure7(a). We have chosen variable part vq for statement sq and are currently considering variable parts for statement sp.There are actual data dependences from iteration i1 of statement sp to iteration j1 of statement sq and from iterationj2 of statement sq to iteration i2 of statement sp. We also assume for this example that vq(j1) � vq(j2). By theabove reasoning we can infer a mapping dependence from iteration j1 to iteration j2 and a transitive dependence fromiteration i1 to iteration i2. More interesting however, we can also infer that the variable part for statement sp must be9
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1i!j 2 dpq ) i!j(0;�) 2 dpq (4)Variable part already chosen for sp ) i!j(vp(j�i);vp(j�i)) 2 dpp (5)i!k(d1;�) 2 dpr ^ k!j(d2;�) 2 drq ) i!j(d1+d2;�) 2 dpq (6)i!k(�;d1) 2 dpr ^ i!j(d2;�) 2 dpq ) k!j(�;d1�d2) 2 drq (7)i!j(�;d1) 2 dpq ^ k!j(d2;�) 2 drq ) i!k(�;d1�d2) 2 dpr (8)Figure 8: Rules for inferring dmin and dmax valueschosen such that: vp(i2)�vp(i1) � vq(j2)�vq(j1). The dual of this situation is shown in Figure 7(b). In this examplewe can infer that the variable part for statement sq must be chosen such that: vp(i2)� vp(i1) � vq(j2)� vq(j1).We generalize this line of reasoning by associating with each dependence, two quantities dmax and dmin. If adependence from iteration i of statement sp to iteration j of statement sq has associated values dmax and dmin, thenthe variable parts must satisfy the following inequalitiesdmin � vp(i)� vq(j) � dmaxThe dmax and dmin values are derived according to the rules listed in Figure 8. If more than one rule is applicable,then the largest dmin value and smallest dmax value is used.These augmented self dependence relations d�pp are maintained in disjunctive normal form. They involve twoadditional variables dmin and dmax. For each convex region we generate two systems of a�ne inequalities: �minon new variables �1; : : : ; �n and dmin and �max on new variables �1; : : : ; �n and dmax. We once again apply FarkasLemma or one of the simpler techniques described in Section 6.3 to each of these systems of inequalities. This timeusing  (�) � (a1�1 + : : :+ an�n)� dmin with �min, and  (�) � dmax � (a1�1 + : : :+ an�n) with �max.The characterization F of Vp is the intersection of all resulting sets of constraints.Figure 9 gives an example of this construction process.10



do 2 i = 1, n1 a(i) = b(i-1) + c(3*i)2 b(i) = a(i) + 1Variable part 3i already chosen for statement 1.Actual data dependences:d12 : f[i]! [i] j 1 � i � ngd21 : f[i]! [i + 1] j 1 � i < ng Transitive dependences:d11 : f[i]! [i0] j 1 � i < i0 � ngd12 : f[i]! [i0] j 1 � i � i0 � ngd21 : f[i]! [i0] j 1 � i < i0 � ngd22 : f[i]! [i0] j 1 � i < i0 � ngAugmented dependences implied by rule 4:d�11 : f[i]! [i0](0;�) j 1 � i < i0 � ngd�12 : f[i]! [i0](0;�) j 1 � i <= i0 � ngd�21 : f[i]! [i0](0;�) j 1 � i < i0 � ngd�22 : f[i]! [i0](0;�) j 1 � i < i0 � ng Augmented dependences implied by rule 5:d�11 : f[i]! [i0](3i0�3i;3i0�3i) j 1 � i < i0 � ngAugmented dependences implied by rule 6:d�12 : f[i]! [i0](3i0�3i;�) j 1 � i < i0 � ngd�21 : f[i� 1]! [i0](3i0�3i;�) j 2 � i < i0 � ngd�22 : f[i� 1]! [i0](3i0�3i;�) j 2 � i < i0 � ng Augmented dependences implied by rules 7 and 8:d�12 : f[i]! [i0 � 1](�;3i0�3i) j 1 � i < i0 � ngd�21 : f[i]! [i0](�;3i0�3i) j 1 � i < i0 � ngd�22 : f[i]! [i0 � 1](�;3i0�3i) j 1 � i < i0 � ngSummary of augmented self dependences for statment 2:d�22 : f[i]! [i0](3i0�3i�3;3i0�3i+3) j 1 � i < i0 � ng�min2 : f[�1; dmin] j �1 > 0 ^ dmin = 3�1 � 3g �max2 : f[�1; dmax] j �1 > 0 ^ dmax = 3�1 + 3gApplying farkas lemma to �min2 with  (�) � a1i1 � dmin gives: a1 � 3Applying farkas lemma to �max2 with  (�) � dmax � a1i1 gives: a1 � 3After combining these constraints we get: V2 = fa1i1 j a1 = 3gFigure 9: Example of deriving V in case II7 Characterizing Legal Constant PartsOnce we have a legal variable part vp for each statement sp, we must, if possible, select constant parts that align thevariable parts.We create a new variable cp for each statement sp. These new variables represent the constant o�sets that must beadded to the variable parts to make them align with one another. More precisely, this can be stated as fp = vp + cp.We construct a set of constraints involving these constant o�set variables, such that any set of constant o�set valuesthat satisfy the constraints will properly align the variable parts.In the usual case, we only need to satisfy all remaining dependences. However, as was explained in Section 5, wesometimes require that the constant parts be chosen so that all remaining dependences are carried at this level orrequire that no dependences are carried at this level. These requirements can be easily met by making very minorchanges to the following formulas (analogous to the corresponding changes made in Section 6.3).We �rst consider the constraints on a pair of constant o�set variables cp and cq, that are imposed by a simpledependence relation d � dpq. We require that:8i; j; Sym i!j 2 d) fp(i) � fq(j) (9)By substituting vp(i) + cp for fp(i) and removing the quanti�cation on Sym, we get:8i; j s:t: i!j 2 d) vp(i) + cp � vq(j) + cq (10)which is the set of constraints on cp, cq and the symbolic constants that are imposed by the simple dependencerelation d. 11



At this point, we could apply Farkas Lemma since Equation 10 is equivalent to requiring that the a�ne formvq(j) + cq � vp(i) + cp is nonnegative at all points in the convex region described by d. We prefer however, to usethe following methods, as we have found they are more e�cient in practice. Our alternative approaches are notguaranteed to produce exact results in all situations, however we haven't encountered any non-contrived programswhere they don't produce satisfactory results.Firstly, we rewrite Equation 10 as:A : :(9i; j s:t: i!j 2 d ^ vp(i) + cp > vq(j) + cq) (11)Unfortunately, the negation in Equation 11 usually produces a disjunction of several constraints. Our goal now,is to deduce from Equation 11 a system of linear constraints for the alignment constants. The conditions, D, underwhich the dependence exists are: D : 9i; j s:t: i!j 2 d (12)Since :D) A, we know that A � (D ) A). We transform A as follows:A � D ) A� :(D ^ :A)� :(D ^ gist :A given D)� D ) :gist :A given DTherefore Equation 11 is equivalent to:(9i; j s:t: i!j 2 d)) :(gist 9i; j s:t: i!j 2 d ^ vp(i) + cp > vq(j) + cq given 9i; j s:t: i!j 2 d) (13)Usually, the gist in Equation 13 will produce a single inequality constraint. If the gist produced a disjunction ofinequality constraints, we could strengthen the condition by throwing away all but one of the inequalities producedby the gist.Unfortunately, Equation 13 also contains an implication operator. So, rather than constructing the set of con-straints described by Equation 13, we construct a slightly stronger set of constraints by changing the antecedent totrue: :(gist 9i; j s:t: i!j 2 d ^ vp(i) + cp > vq(j) + cq given 9i; j s:t: i!j 2 d) (14)If an acceptable set of constant o�set values can be found that satisfy these stronger constraints, these o�sets mustsatisfy the weaker constraints, and therefore align the variable parts.In practice, it is often the case that each of the dependence relations d, are very simple. In some of these caseswe can directly produce constraints on the cp's without resorting to the above gist calculation. For example, if ddescribes that there is a dependence between all iterations separated by a distance of x in direction im, then if bothstatements have variable part im, we can directly produce the constraint cp � cq + x.For a given pair of statements sp and sq , we form a single set of constraints Apq by combining the alignmentconstraints (Equation 14) resulting from all simple dependence relations between those two statements. We thencombine the Apq constraints one statement at a time, checking at each stage that the alignment constraints formedso far are satis�able for all values of the symbolic constants.Having obtained a set of alignment constraints, we can either return this set of constraints for use by an externalsystem, or we can �nd a set of constant o�set values that satisfy the alignment constraints. In �nding this set ofsatisfying values, we could consider optimality criteria such as locality or lack of loop carried dependences.8 Related WorkThe framework of Unimodular transformations [Ban90, WL91, ST92, KKB92] has the same goal as our work, in thatit attempts to provide a uni�ed framework for describing loop transformations. It is limited by the facts that it canonly be applied to perfectly nested loops, and that all statements in the loop nest are transformed in the same way.It can therefore not represent some important transformations such as loop fusion, loop distribution and statementreordering. Most existing frameworks use dependence direction/distance vectors as a dependence abstraction ratherthan the dependence relations that we use. This is adequate for unimodular frameworks, but is not adequate to testthe legality of the sorts of transformations that we can represent. Unimodular transformations are generalized in12



[LP92, Ram92] to include mappings that are invertible but not unimodular. This allows the resulting programs tohave steps in their loops, which can be useful for optimizing locality. Our mappings are not required to be unimodularand can therefore also generate steps.Paul Feautrier [Fea92a, Fea92b] has independently developed a framework which is very similar to our own. It issimilar in the following respects:� He represents reordering transformations using schedules which are similar in form to our mappings.� He generates a separate schedule for each statement.� We both select mappings/schedules one level at a time, using the dependences that are not carried at outerlevels to test legality.However, we di�er from Feautrier in the following respects:� Unlike our mappings, Feautrier's schedules are not required to be 1-1. Instead, iterations that are to be executedin parallel are scheduled at the same point in time. Therefore, Feautrier's schedules (the time mapping) onlypartially specify the transformed code. In a separate decision process (the space mapping), parallel loops aregenerated to enumerate all the computations that need to be executed at each time point. This frameworkonly allows the generation of innermost parallel loops; outer parallel loops are often desirable.� His methods are designed to generate a schedule that produces code with a \maximal" amount of parallelism.He does this by generating a large set of constraints which describe all legal schedules. This set of constraintshas a variable for each coe�cient and each constant term of the schedule for each statement. For example, forthe code from olda in Figure 3, the problem generated by Feautrier would have 6 variables for each statement:3 each for the coe�cients of p, q and i, 2 each for the coe�cients of n and orb and 1 each for the constant term.He then introduces two linear functions of these variables, one representing the number of iterations that willbe executed sequentially and a second representing how many dependences will be carried. These functionsand constraints are then combined and transformed into a dual programming problem that is solved usingParametric Integer Programming (PIP). The net result of this process is that the schedule selected carries asmany dependences as possible and among all such schedules, the one selected has as few sequential iterationsas possible. These schedules will often not be optimal in practice because of issues such as granularity, datalocality and code complexity. It is unclear if his method could be extended to include other criteria, such asgood cache performance or parallel outer loops. We expect it would be di�cult to encode such an optimizationfunction for a code segment containing several statements.Our framework is designed to provide a setting in which multiple performance issues can be traded-o�. Tosatisfy this goal, we select mappings in a completely di�erent way. We start by considering some statement,and generate the constraints on choices for legal variable parts for that statement. We then choose one of theselegal variable parts by methods described in [KP93a]. We incorporate that information into the constraints forthe variable parts of the other statements. We continue this selection process until we have selected a variablepart for each statement. We then move on to making decisions about constant parts in a similar way. Oncewe have selected mapping components for all statements at the current level we calculate which dependencesstill remain and repeat this selection process at the next level. This process continues until we have a 1-1mapping which satis�es all dependences. If not all of decisions made during this process are perfect thenbacktracking is required if we want to �nd the optimal transformation. This method di�ers fundamentallyfrom Feautrier's in that at each stage we are \trying" speci�c mapping components. Working with actualmapping components, rather than with formulas describing mapping components, makes it much easier toanalyze complex performance issues such as data locality.Feautrier's approach runs into serious problems with large problems. Feautrier reports requiring two hours togenerate a schedule for a code fragment with 24 assignment statements. We believe that in many situations, therewill be a large number of cases where only a single choice is both legal and reasonable. Also, making a choice for thevariable part of one statement may impose strict requirements on the variable parts of other statements in the samestrongly connected component of the dependence graph. This would allow our local search approach to be quitee�cient. We hope and expect that our methods will allow us to handle large examples e�ciently. But of course,we won't know until we complete our re-implementation and integrate it with a decision engine for guiding the localsearch. 13
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