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Abstract

Traditionally, optimizing compilers attempt to improve the performance of programs by applying source to
source transformations, such as loop interchange, loop skewing and loop distribution. Fach of these transforma-
tions has its own special legality checks and transformation rules which make it hard to analyze or predict the
effects of compositions of these transformations. To overcome these problems we have developed a framework for
unifying iteration reordering transformations. The framework is based on the idea that all reordering transforma-
tion can be represented as a mapping from the original iteration space to a new iteration space. The framework is
designed to provide a uniform way to represent and reason about transformations. An optimizing compiler would
use our framework by finding a mapping that both corresponds to a legal transformation and produces efficient
code. We present the mapping selection problem as a search problem by decomposing it into a sequence of smaller
choices. We then characterize the set of all legal mappings by defining an implicit search tree.

1 Introduction

Traditionally, optimizing compilers attempt to parallelize programs and improve their performance, by applying
source to source transformations, such as loop interchange, loop skewing and loop distribution [Wol89a]. Each of
these transformations has its own special legality checks and transformation rules. This makes it difficult to find
sequences of transformations that obtain some desired goal.

To overcome these problems, many researchers have proposed frameworks that unify some of these reordering
transformations [Ban90, WL91, LMQ91, LP92, Ram92, Fea92a, Fea92b, ST92, DR92]. We have developed a frame-
work that handles more reordering transformations than most existing transformation frameworks. Our framework
is based on the idea that a transformation can be represented as a mapping from the original iteration space to a new
iteration space. Our framework is more expressive than most because we allow a separate mapping to be associated
with each statement and do not require that the mappings be unimodular.

Like all other frameworks, we need to be able to perform the following three tasks:

e Determine which mappings correspond to legal transformations.
e Determine which of these legal mappings will produce efficient code.
o Generate the transformed source code from a given mapping.

Unfortunately, but not surprisingly, the extra expressiveness of our framework makes it much harder for us to perform
these tasks compared to simpler frameworks.

We will present the combination of the first two of these tasks as a search problem. The first task corresponds to
defining the search tree and the second task corresponds to selecting a path within that tree. This paper will deal
almost entirely with the first task, i.e. defining the search tree. Interested readers are referred to our previous work
[KP93b, KP93a] for more information on the second and third tasks.

In Section 2, we explain how mappings can be used to represent reordering transformations. In Section 3, we
describe tuple relations and how they are used to represent mappings and data dependences. In Section 4 we state
the legality test for a complete mapping. In Section 5, we present the process of finding legal mappings in terms of
defining a search tree. In Sections 6 and 7 give more details on how to construct the search tree. In Section 8, we
discuss related work, and finally in Section 9, we give our conclusions.



2 Mappings

2.1 Iteration spaces

do30i=1,mn Io: { [7] [1<i<n}
10 s(i) =0 . Io: { [4, 5] |[1<i<nAl<j<i—1}
do 20 j =1, i-1 Io: { [7] [1<i<n}
s(1) + a(j,i)*b(j)

20 s(i) =
30 b(i) = b(i) - s(i)

Figure 1: Program and associated iteration space
Each statement s, has associated with it an iteration space I, which is a subspace of Z™» (where my, is the number
of loops nested around sp). A statement’s iteration space is the set of iterations for which that statement will be

executed. Figure 1 shows a program and its associated iteration space.

2.2 Mappings

We represent reordering transformations as 1-1 mappings from the original iteration spaces (the I,’s), to a new
iteration space I’. In general, we associate a separate mapping with each statement. For efficiency reasons, however,
it may sometimes be advantageous to partition statements into groups and associate the same mapping with each

statement in the same group.
We use the following notation to represent each mapping:

. -1 m 1
1, [zp,...,zp P — [fp,...,fg]
where:
e The izl,, .. .,i;np are the index variables of the loops nested around statement s,.

e The fzf, ’s (called mapping components) are quasi-affine functions of the iteration variables and symbolic con-
stants. Quasi-affine expressions [AI91] are affine functions plus integer division and remainder when dividing
by a constant. Quasi-affine expressions allow us to create mappings corresponding to blocking (or strip-mining)

transformations.
This mapping represents the fact that iteration [izl,, ce z;”] in the original iteration space of statement s, is mapped
to iteration [f;, ..+, fy] in the new iteration space. For example, the mapping in Figure 2 maps iteration [5, 7] in the
original iteration space of statement 20 to iteration [1,7,0,5] in the new iteration space.
Two: {[i] — [0, i, 0, 0]} parallel do 10 i =1, n
To: {[id] =0, 4 0 i} o = =0
T30: {[l] _>[1a i_la la 0]} do 30t = 1,11—1
parallel do 20 i = t+1, n
20 s(i) = s(i) + a(t,i)*b(t)
30 b(t+1) = b(t+1) - s(t+1)

Figure 2: Mapping and associated transformed program

2.8 Code Generation

It is obviously not useful merely to be able to represent transformations as mappings. Given a section of code and
a mapping, we need to be able to produce a new section of code that results from applying the transformation
represented by that mapping. Since we are only considering reordering transformations, the transformed code will
contain the same elementary statements as the original code, but will contain different loop structures. The new loop
structures must execute all iterations in the new iteration space and no others. The transformed code also has the
important property that all of the iterations are executed in lexicographical order based on their coordinates in the
new iteration space. Note that this property specifies a total order on all iterations (even between iterations belonging
to different statements), since all iterations in the original iteration spaces are mapped to a common iteration space.

Figure 2 shows the code that is produced by applying the given mapping to the program in Figure 1. Since the
do 10 i ... and thedo 20 i ... loops carry no dependencies, they can be run in parallel. The mapping does not



specify which loops are made parallel, although given the mapping and dependences, it is easy to determine which
loops could be made parallel.

The algorithm we use to generate the transformed code is relatively complicated and is not described in this
paper. A description of the algorithm can be found in [KP93b].

2.4 Representing traditional transformations

In [KP93b] we demonstrated how mappings can be used to represent all transformations than can be obtained by
applying any sequence of the following traditional transformations:

e loop interchange e loop alignment [ACKS7]

o loop reversal ¢ loop interleaving [ST92]

e loop skewing e loop blocking?® (or tiling) [AK87]
o statement reordering e index set splitting! [Ban79]

e loop distribution e loop coalescing! [Pol8§]

¢ loop fusion e loop scaling! [LP92]

2.5 Examples

Figure 3 gives some interesting examples of mappings. In this paper we don’t give details of how to select these
particular mappings.

3 Tuple Relations and Sets

Most of the previous work on program transformations uses data dependence directions and distances to summarize
dependences between array references. For our purposes, these abstractions are too crude. We describe dependences
exactly using integer tuple relations. Integer tuple relations are also used to represent mappings.

3.1 Integer tuple relations and sets

An integer k-tuple is simply a point in Z*¥. A tuple relation is a mapping from tuples to tuples. A single tuple may
be mapped to zero, one or more tuples. The relations may involve free variables such as n in the following example:
{[{] = [+1] |1 <i<mn} These free variables correspond to symbolic constants or parameters in the source
program. We use Sym to represent the set of all symbolic constants.

Tuple relations and sets are represented using the Omega test [Pug92, PW92, PW93] which is a package for
manipulating affine constraints over integer variables. We introduce new variables corresponding to each of the input
positions and output positions. Relationships between these variables and those corresponding to symbolic constants
are represented as a disjunction of convex regions. See [Pug91] for a more thorough description.

The gist operation

We make use of the gist operation, originally developed in [PW92]. Intuitively, (gist p given ¢) is defined as the new
information contained in p, given that we already know ¢q. More formally, if p A ¢ is satisfiable then (gist p given ¢) is
a conjunction containing a minimal subset of the constraints in p such that ((gist p given ¢) Aq) = (pAq)), otherwise
it is False.

3.2 Control dependence

If conditionals exist in a program, then we require that they be converted to guarded statements via if-conversion
[AKPWS83]. Alternatively, structured if statements can be handled by treating them as atomic statements. We
also require that all loop bounds be affine functions of surrounding loop variables and symbolic constants. We can
therefore ignore control dependences, as those that do exist are implicitly contained in our description of the iteration
space.

1Our current implementation cannot handle all cases of these transformations.



Code adapted from CHOSOL in the Perfect club (SD) Code adapted from OLDA in Perfect club (TI) [B*89]
Original code Original code
do 3 i=2,n do2 p=1,n
1 sum(i) = O. do2 gq=1, p
do 2 j=1,i-1 do 2 1i=1, orb
2 sum(i) = sum(i) + a(j,i)*b{(j) 1 xrsiq(i,q)=xrsiq(i,q) + ... S1
3 b(i) = b(i) - sum(i) 2 xrsiq(i,p)=xrsiq(i,p) + ... S2
Dependences Dependences
dig :{[] —[,l] [N<I<i<n} dir :{[p,¢.7] — a1l [1<g<p<p <n}
da2 +{[,]] = [;,I'] [1<I< <i<n} diz :{[p,p,d] —[pp,i] [1<p<n}
doa : {[i,1]  —[1] [L<i<i<n} da2 +{[p,0,7] —p,¢'sd] 1 <g<q <p<n}
ds2 :{[]] =[] [2<i<d <n} do +{lp,ad] —[pipd]l N<g<p<p'<n}
Mapping (for parallelism) Schedule (for parallelism)
T {[d] - [0, 4 0, 0]} T {lp, ¢ ] =104 a »p, O}
T2 { [27 ]] - [17 Js 07 Z] } T2 {[p7 q, Z] _>[Z7 P, q, 1]}
T,: {[4] - [1, ¢—1, 1, 0]}
Transformed code Transformed code
parallel do 1 i = 2,n parallel do 12 i = 1,0rb
1 sum(i) = O. parallel do 12 t2 = 1,n
do 3 t2 =1, n-1 do 21 t3 = 1,t2-1
parallel do 2 i = t2+1,n 21 xrsiq(i,t2)=xrsiq(i,t2) + ... S2
2 sum(i) = sum(i) + a(t2,i)*b(t2) 11 xrsiq(i,t2)=xrsiq(i,t2) + ... S1
3 b(t2+1) = b(t2+1) - sum(t2+1) 22 xrsiq(i,t2)=xrsiq(i,t2) + ... 82
do 12 t3 = t2+1,n
12 xrsiq(i,t2)=xrsiq(i,t2) + ... S1
Transformations required normally Transformations required normally
e loop distribution e index set splitting
e imperfectly nested triangular loop interchange e loop distribution
e triangular loop interchange
e loop fusion

Figure 3: Example Codes, Mappings, and Resulting Transformations

3.3 Data dependence

We use tuple relations to represent dependences. If there is a (flow, output or anti) dependence from s,[i] (i.e.,
iteration ¢ of statement sp) to s, [5] then the tuple relation d,, representing the dependences from s, to s, will map
tuple 7 to tuple j.

3.4 Mappings

If the transformation maps iteration ¢ in the original iteration space of statement s, to iteration j in the new iteration
space, then the mapping 7, will map tuple 7 to tuple j.

4 Verifying the Legality of Mappings

The previous section showed how reordering transformations can be represented as mappings. Not all transformations
are legal, so it 1s important to be able to distinguish between legal and illegal transformations. In this section we
describe how to verify that a mapping corresponds to a legal transformation.

A mapping is legal if the transformation it describes preserves the semantics of the original code. This is true if
the new ordering of the iterations respects all of the dependences in the original code.

So we have the legality requirement: if ¢ is an iteration of statement s, and j an iteration of statement s, and
the dependence relation d,, indicates that there is a dependence from ¢ to j then Tp(i) must be executed before



T,(j). More formally:

Vi, j,p,q,Sym i—jed,, = T,(i)<T,j) (1)

where < is the lexicographically precedes operator. To be well formed, the mapping must also be 1-1.

5 Defining the Search Tree of Legal Mappings

So far we have described how to represent reordering transformations as mappings and how to verify the legality
of a given mapping. To make use of such a framework, optimizing compilers would need to be able to select legal
mappings that would produce efficient transformed code. In this section we show how this can be modeled as a
search problem. More precisely, for a given section of code, we will define a search tree whose leaves correspond
to all legal mappings for that section of code. A complete search tree could never actually be constructed by an
optimizing compiler as such search trees are all infinitely large. However, by having a well defined search tree, any
search algorithm can be used to find a good legal mapping. Some examples of possible search algorithms include:

e Using a heuristic to choose which branch to follow at each fork.
e An interactive tool where a human user can select some or all of the branches to follow at each fork.

e Defining a function from the nodes to the integers which satisfies the monotone property [Nil80]. This would
allow us to use admissible search algorithms such as the A* algorithm [Nil80]. In a previous paper [KP93a],
we described an approach along these lines.

Depending on the search algorithm used, parts of the search tree may actually be constructed, or may only exist
implicitly. We will not discuss search algorithms further in this paper, but will instead concentrate on defining the
search tree.

5.1 Divide and Conquer

In order to define a search tree, we must first decompose the mapping selection problem into a sequence of choices.
There are many different ways in which this problem can be decomposed. The decomposition that we have chosen
has the desirable property that all partial legal sequences of choices can be extended into a complete legal sequence
of choices (i.e., a legal mapping).

Coarse Grained Decomposition

At the highest level, we decompose the mapping selection problem into the smaller problems of choosing each of
the mapping components. The sequence in which these choices are made is very important. We require that the
mapping components for levels 1, ...k of statement s, be chosen before the mapping component for level £ 4+ 1 of
statement s,. We also prefer! that the mappings components for levels 1, ..., k of all other statements s, be chosen
before the mapping component for level & + 1 of statement s,,.

As was explained in Section 4, the legality test for complete mappings involves dependence relations and the

lexicographically precedes operator. The lexicographically precedes operator is defined as:
(1, n) < (Y1, yyn) Mff Fst. (Vi 1<i<m= 2, =y)A2m < Ym

Therefore, if we are given shorter tuples (x1,...,25) and (y1,...,y5) such that (x1,...,25) < (y1,...,yx) (Where
k < n), then we know that we can always extend them (by choosing #g41,..., %, and yr41, ..., Yn) such that

(T1y ey @l Bhg1y e s @n) < Y1y oy Ybs Ykbls - -5 Un)

So, given a partially specified mapping (where only the first £ levels of the mapping has been chosen), we know that
it can be extended into a legal complete mapping iff

Vi,j,p,q,Sym i—j€d, = TFi) <Tj) (2)

where Tzf“ 1s the mapping consisting of only the first k levels of statement s,,.

TIf this is not the case then the above desirable property is not guaranteed to hold.



When we are choosing mapping components at level £ + 1, we only need to consider dependences which haven’t
already been guaranteed to be respected by mapping components chosen at levels 1,..., k. A dependence i —j € d,,
i1s guaranteed to be respected by the mapping components chosen at levels 1,... k, iff VSym Tzf“(i) =< qu(j). So, if
Equation 2 has been maintained while selecting mapping components for levels 1, ... &, then at level £+ 1, we need
only consider dependences:

dift {i—jstoi—jed, NTI(E) =Ty (i)}

Fine Grained Decomposition

We distinguish two parts of a mapping component: the variable part and the constant part. The variable part is the
largest subexpression of the mapping component that is a linear function of the iteration variables. The rest of the
expression is called the constant part. For example in the mapping [7,j] — [2{ + j + n + 1,0, j] the first mapping
component has variable part 2¢ + j and constant part n + 1.

We further decompose the mapping selection problem by splitting the selection of each mappings component into
two parts; selecting the variable part and selecting the constant part. The performance of the resulting program
will mostly depend on the selection of the variable parts. The choice of constant parts will affect the legality of
the overall mapping, however they will usually have little affect on performance. So, it makes sense to separate the
selection of the variable parts from the selection of the constant parts, since the selection of variable parts requires
careful consideration, while any legal constant parts will usually suffice.

Although we won’t be discussing how to choose good mappings (mappings that will produce efficient code), the
techniques we use for characterizing legal mappings could also be used to assist in the selection of good mappings.
The efficiency of the produced code depends largely on which loops are parallel which in turn depends on which
levels carry dependences. Our techniques for characterizing legal mappings can be modified so as to characterize
legal mappings which don’t carry any dependences at a given level, or similarly, characterize those that carries all
remaining dependences at a given level.

In Section 6, we characterize the set of legal variable parts, and in Section 7, we characterize the set of legal
constant parts.

6 Characterizing Legal Variable Parts

In this section we will characterize the sets of legal variable parts for all statements at a given level k. As was
mentioned earlier, at level &, we need only consider those dependences d’;q, that are not carried by levels 1,..., k—1.
For the remainder of this section we will use d,, to denote d’;q. Unless we are at the last level, we don’t need to
ensure that all remaining dependences are carried at this level. Rather, we simply need to ensure that they are not
violated; that is, if there remains a dependence from iteration 7 of s, to iteration j of s, then we only require that
f;f(z) be less than or equal to ff(j)

We first describe a necessary condition for a variable part v to be legal for statement s, at level k. We will
describe a set V), for each statement s, such that if variable part v € V, then v can’t be used as a variable part
for statement s, at level k. Depending on which variable parts are chosen for the other statements at this level, a
variable part v € V), may or may not be legal; that is, inclusion in V), is necessary but not sufficient for legality.

6.1 Self dependences

A variable part is in V, only if it respects all self dependences for that statement. A self dependence is a dependence
from one iteration of a statement to a different iteration of the same statement. Self dependences come in two forms:

Direct Iteration i of statement s, 1s directly dependent on iteration j of statement s,,.

Transitive Iteration i of statement s is dependent on iteration x of statement 5, and iteration z of statement s,
is dependent (possibly transitively) on iteration j of statement Sp-

This suggests that we need to compute the transitive closure of the dependence relations (as suggested in [Pug91]).
As it turns out, this isn’t exactly what we want or need.

Firstly, exact computation of the transitive closure of an affine integer tuple relation is undecidable (see Section
6.2). We can, however, often compute closure of relations exactly, or bound them from above or below. It would be
safe to approximate transitive closure from below as this would lead to looser constraints in V. This might lead us



to select an invalid variable part v,. This will not lead to invalid mappings, however, because if v, 1s invalid we will
not be able to find mappings for the other statements such that the tests in Section 4 are satisfied. This would lead
to backtracking in the search algorithm.

Secondly, even if a variable part satisfies all self dependences for a particular statement, including transitive
dependences, it may be the case that the variable part cannot be used regardless of which variable parts are chosen for
the other statements. Figure 4 shows a contrived program and its corresponding dependence graph that demonstrates
this situation. Since there are no self dependences for statement 1, even including transitive dependences, any variable
part appears legal for statement 1. However, if —¢ is used as the variable part of the mapping for statement 1, there
is no possible affine mapping for statement 2 that would respect the dependences. This surprising situation occurs
because we have restricted our variable parts to be linear functions. If we were to relax that criterion, then a legal
variable part could be found for statement 2, even if we choose variable part —¢ for statement 1.

0 1 2
do21i=0, 2 s o
1 a(i) = b(5-2%1i)
b(i) = a(-i) + b(5-2%i)

S

Figure 4: Example program and associated dependence graph

6.2 Affine closure

Since we don’t want to consider non linear mappings, we can use this information to develop a stronger test for
inclusion in V,. Consider two iterations ¢ and j of statement s, such that there is a self dependence from i to j. We
say that statement s, has a self dependence distance of j —1i. We use Ap to refer to the set of all self dependence
distances of statement s . If v is a legal linear variable part, then for any two iterations ¢ and j' of statement 5,
separated by a distance of d € A,, we know that v(¢') < v(j’). So, even if there is no actual data dependence from
i to j/, we can “pretend” that there is; that is, adding such a dependence to our dependence set will not reduce
the set of legal linear variable parts. We call such dependences affinity dependences since they can only be added
because we are using affine mappings. The properties of affine mappings also imply that if d; € A, Ads € A, then
ardy + aads € A, provided that o and o are nonnegative rationals and ady 4 aads is integral.

For each statement s,,, we replace d,,, with the dependences {z —y | = € [s,]Ay € [s,]AId € Ap s.t. z+d = y}.
We call this the affine closure of d,,,. In Section 6.3.1, we will explain how the set of all self dependences for a given
statement can be “compressed” into a form that can be represented using a single convex set of constraints.

Figure 5 shows the modified dependence graph for the example in Figure 4. Variable part —¢ is no longer legal
for statement 1, so the situation described above no longer occurs in this example. It remains an open question
however, whether such situations could arise in other examples despite the introduction of affinity dependences as
described above.

0 1 2
S — Datadependences
~ 7 7 Affinity dependences
“““ Transitive dependences
S

Figure 5: Dependence graph with added dependences

It is important to note that we can only add these affinity dependences between iterations of the same statement.
We can’t add affinity dependences between statements because the statements will most likely have different mapping
components. This does not mean however, that dependences between different statements are not important. To
explain how these inter-statement dependences are used we need to briefly review [Pug91] how to compute the
transitive closure of an entire dependence graph. Consider the simple case where there are only two statements of



interest, s, and s,. To generate all transitive self dependences on statement s, we would compute:

(dpp U (dpg o (dgq)"™ 0 dgp))” (3)
There are two operators used in this computation, the composition operator and the closure operator. Composition
is very easy to compute, but the closure of a relation cannot always be converted to a closed form using only affine
constraints. For example, {[z,y] — [#+1,y+ z]}" is equivalent to {[z,y] — [¢',y+ z(x' — 2)] | # < &’} which cannot
be represented using only affine constraints. The interesting thing to note about this formula is that the closure
operator is only applied to self dependences. This motivates the following approach. Instead of using Equation 3 to
generate transitive dependences, we generate affine transitive dependences by computing:

(dpp U (dpg o (dqq)@ °© dqp))@
where @ is the affine closure operator. This process of computing affine transitive dependences can be extended to
the multiple statement case in the obvious way [Pug91].

The affine transitive self-dependences introduced, may produce new self dependence distances, so it might be
possible to infer more information by iterating the above process. We don’t know of any upper bound on the number
of times this process would need to be repeated before reaching a fixed point. We suspect it would be small, and
even if it wasn’t it would be safe to stop after any number of iterations.

We can efficiently compute an upper bound on the affine closure of the dependences using just direction/distance
vectors. This will be approximate only if the direction/distance vectors do not exactly describe the dependence or if
all the statements do not have the same nesting depth. This fast approximate computation can save us work in our
exact computation. Our exact computation starts with the direct dependences (a lower bound on the affine closure of
the dependences), and adds induced dependences step by step. If during the computation of the exact computation,
we discover that the exact result computed so far is the same as the approximate result then we can terminate the
computation early since no additional dependences can be induced.

P

6.3 Case I: No variable parts already known

Given all self dependences d,,, for a statement s,, we now wish to give a concise description of V. In previous work
[KP93b] we used generate and test techniques; that is, for a given variable part v we described a test that determined
whether or not v € V. The test was simply:

VdeA, v-d>0
We would prefer a more concise description of V,; that is, we would like to describe it in the form:
V,=A{d'i, + ... +a"i} | F}
where F is a set of linear constraints on {a',..., a"}.

There are various techniques we can use to generate F'. The most complete, but also most expensive method is
to apply the affine form of Farkas Lemma [Sch86, Fea92al:

Lemma 6.1 (Farkas) Let the system Az > b of affine inequalilies have al least one solution. An affine form 1
is non-negative for each x satisfying Ax > b if and only if ¥(x) > 0 is a nonnegative affine combination of the
mequalities in the system Ax > b.

The A sets are represented internally as a disjunction of convex regions. Each of these convex regions is represented
by a system of affine inequalities A§ > b. Farkas Lemma is applied to each of these convex regions, with ¢(é) =
atél + ..+ ané".

If we only want to consider variable parts that carry all remaining dependences at this level, then we require that
atél + ... 4+ a"8" > 0; that is, we use ¥(§) = a'é* + ...+ a™6" — 1. Similarly, if we only want to consider variable
parts that don’t carry any dependences at this level, then we require that a'é* + ... 4 a6 = 0. We would apply
Farkas Lemma twice, with (8) = (a6 + ...+ a™6") and ¥(8) = —(a'é* + ...+ a™8").

Each application of Farkas Lemma produces a system of linear inequalities on a’,... a” (Appendix A explains
how to apply Farkas Lemma). The set of constraints F is the intersection of each of these sets of constraints.

In practice, 1t is often the case that each of the systems of affine inequalities describing the A sets are very simple.
In these cases, we can directly produce constraints on a', ..., a” without having to resort to applying Farkas Lemma.
For example, if a system of affine inequalities describes a constant self dependence distance, then we can directly
produce the constraint (¢*a + ...+ ¢*a™) > 0 where &/ = ¢/ is known.

Figure 6 gives an example of generating constraints in case L.



do1i=1,n

do 1 j=1i+1, n
1 a(i,j) = a(i, j-1) + a(i-1, j)
dip: {[i,5]=>[7+1] |[1<i<nAi+1<j<njU
(= >li+1,j] |1<i<nAni+1<j<n}
Ay {[0,1]}U{[1, 0}

From the first clause we can directly derive: Oa; + las > 0
and from the second clause we can directly derive: la; + Oas > 0

Combining these we get: Vi = {a17; + asiz | a1 > 0 Aas > 0}

Figure 6: Example of deriving V in case |

6.3.1 Compressing self dependence relations

Except in the case where dependences are forced to be carried, all of the constraints on a',...,a” produced in
Section 6.3 are guaranteed to be linear, as opposed to just being affine (i.e., their constant terms are alway zero).
Assume for the moment that one of these constraints is: (cla® +...4¢"a™) > 0. If the original program had had an
additional dependence distance of (¢!, ..., ¢") then the set of constraints on a', ..., a™ would not be altered; that is,
the set of legal variable parts would not be altered by the addition of that dependence distance. We can therefore
“pretend” that this self dependence difference exists even if there are no dependences in the original program with
that dependence distance. Assume then, that we have added such a self dependence difference for each constraint
in the system. If at this point we removed all other self dependence distances, then the same set of constraints on
a',...,a” would still be induced. We now have a finite set of self dependence distances d1, ..., d,, which we can use
to replace the original dependence distances. Taking the affine closure of this set of dependence distances produces
a set of dependence distances which can be described using a single convex set of constraints:

{o | Jar,...,am > 0st. 2 =aydi + ...+ apmdny}

From this we can easily construct the self dependence relation which will also be described using a single convex set of
constraints. So, given any set of self dependences for a statement, we can compute an equivalent set of dependences
(i.e., a set which induces the same constraints on the mapping coefficients) that can be described using a single
convex set of constraints.

6.4 Case II: Some variable parts already known

We now consider the situation where we have already chosen variable parts for some of the statements. This
additional knowledge allows us to further constrain the set of variable parts which can be used for the other statements.
If we have already chosen variable part v_ for statement s _, then we know that iteration ¢ of statement s will be
executed no latter than iteration j of statement s, if vp(i) <y, (j). So, even if there is no actual data dependence
from ¢ to j, we can “pretend” that there is. We call such dependences mapping dependences since they can only be
added because we know something about the mappings used. These newly introduced dependences are not useful in
themselves, but they may allow us to transitively infer self dependences for other statements whose variable parts
haven’t already been chosen.

These additional dependences are useful, but we can do even better. Consider the situation shown in Figure
7(a). We have chosen variable part v, for statement s, and are currently considering variable parts for statement s,,.
There are actual data dependences from iteration i; of statement s, to iteration j; of statement s, and from iteration
j2 of statement s, to iteration iy of statement s,. We also assume for this example that v (j1) < v,(j2). By the
above reasoning we can infer a mapping dependence from iteration j; to iteration j, and a transitive dependence from
iteration 7; to iteration iz. More interesting however, we can also infer that the variable part for statement s, must be



(d,*)
' (.d) s,
|
Sq j
Rule 5
i—J € dyg i—J(o,%) € dpq 4

Variable part already chosen for s, iﬁj(vp(j—i),vp(j—i)) € dpp

(4)

(5)

i—k(q1%) € dpr Nk — jaz,«) € drg i J(d14d2,%) € dypq (6)
(7)

(8)

Z._>k(>o<,d1) € dpr A Z._>.j(d2,>~<) € dpq k_ﬁj(*,dl—dZ) € drq

A R

i—>j(*7d1) S dpq A k'—h]'(dz,*) € drq Z'_>k(>~<,d1—d2) € dpr

Figure 8: Rules for inferring d,,i, and dpq, values

chosen such that: v, (i2) —v,(i1) > v,(j2) —v,(j1). The dual of this situation is shown in Figure 7(b). In this example
we can infer that the variable part for statement s, must be chosen such that: v,(i2) — v,(i1) > v,(j2) — v, (j1)-

We generalize this line of reasoning by associating with each dependence, two quantities d,,q, and dpin. If a
dependence from iteration ¢ of statement s, to iteration j of statement 5, has associated values dy, 4 and dynin, then
the variable parts must satisfy the following inequalities

dmin S Up(i) - Uq(j) S dmax

The dpgr and dp;, values are derived according to the rules listed in Figure 8. If more than one rule is applicable,
then the largest d,;, value and smallest d,q, value is used.

These augmented self dependence relations dj, are maintained in disjunctive normal form. They involve two
additional variables d,,;, and dp,4;. For each convex region we generate two systems of affine inequalities: Amin
on new variables 81, ...,8, and d,,;, and A™% on new variables é1,...,6, and d,4,. We once again apply Farkas
Lemma or one of the simpler techniques described in Section 6.3 to each of these systems of inequalities. This time
using ¥(6) = (a6 + ...+ anbp) — dmin with A™" and ¥(8) = dyae — (@261 + ...+ anby) with A,

The characterization F' of V, is the intersection of all resulting sets of constraints.

Figure 9 gives an example of this construction process.
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do2i=1,n
1 a(i) = b(i-1) + c(3*i)
2 b(i) = a(i) + 1

Variable part 3z already chosen for statement 1.

Actual data dependences: Transitive dependences:
do: {[l—1]  |1<i<n} din: [ — [ | 1<i<i <n}
i AL —Li+1 |1<i<n} di: [ —[] [1<i<i <n}

oy {[[] =[] [1<i<id <n}
do: =[] [1<i<i <n)

Augmented dependences implied by rule 4: Augmented dependences implied by rule 5:
diy o Al — [i/](o,*) [1<i< i’ < n} diy : {l] — [i/](3i'—3i,3i'—3i) [1<i< i < n}
& i Al — o |1<i<=4 <n)

o Al —[os |1<i<i <n)
o 1] —[on |1<i<i'<n)

Augmented dependences implied by rule 6: Augmented dependences implied by rules 7 and 8:
dis o Al = [ —ain |1<i<d <n} diy 0 Al = [ = si—ary |[1<i<d <n}
A3 0 A= 1] = [Jeir—aiw [2<1i<d <n} 31 Al = [ 2i i) |1<i<d <n}
A3 0 {li=1] = [lr—aiwy [2<i<d <n} A3 0 Al = [ = a1 <i<id’ <nj

Summary of augmented self dependences for statment 2:
dso: {[:] — [i/](3i'—3i—3,3i'—3i+3) |1<i<i <n}

AT {81, dmin] | 61 > 0 Adpin = 361 — 3} AT {161, dmaz] | 61 > 0 Adpmas = 361 + 3}
Applying farkas lemma to A;’”" with ¢(8) = a141 — dpmin gives: a1 >3
Applying farkas lemma to AT with ¢(8) = dpmas — a1d1 gives: a1 < 3

After combining these constraints we get: Vo = {a141 | a1 = 3}

Figure 9: Example of deriving V in case II
7 Characterizing Legal Constant Parts

Once we have a legal variable part v, for each statement s,, we must, if possible, select constant parts that align the
variable parts.

We create a new variable ¢, for each statement s,. These new variables represent the constant offsets that must be
added to the variable parts to make them align with one another. More precisely, this can be stated as f, = v, +¢,.
We construct a set of constraints involving these constant offset variables, such that any set of constant offset values
that satisfy the constraints will properly align the variable parts.

In the usual case, we only need to satisfy all remaining dependences. However, as was explained in Section 5, we
sometimes require that the constant parts be chosen so that all remaining dependences are carried at this level or
require that no dependences are carried at this level. These requirements can be easily met by making very minor
changes to the following formulas (analogous to the corresponding changes made in Section 6.3).

We first consider the constraints on a pair of constant offset variables ¢, and ¢, that are imposed by a simple
dependence relation d C d,,,. We require that:

Vi, j, Symi—jed= f,(i) < f,(j) (9)
By substituting v, (i) + ¢, for f,(i) and removing the quantification on Sym, we get:
Vi,j st i—jed=v,(i)+ec, <v(j)+e, (10)

which is the set of constraints on c,, ¢, and the symbolic constants that are imposed by the simple dependence
relation d.
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At this point, we could apply Farkas Lemma since Equation 10 is equivalent to requiring that the affine form
vq(j) +c, — vp(i) + ¢, is nonnegative at all points in the convex region described by d. We prefer however, to use
the following methods, as we have found they are more efficient in practice. Our alternative approaches are not
guaranteed to produce exact results in all situations, however we haven’t encountered any non-contrived programs
where they don’t produce satisfactory results.

Firstly, we rewrite Equation 10 as:

A (3,5 st i—jedAv,(i)+e, >v,()) +c,) (11)

Unfortunately, the negation in Equation 11 usually produces a disjunction of several constraints. Our goal now,
is to deduce from Equation 11 a system of linear constraints for the alignment constants. The conditions, D, under
which the dependence exists are:

D: 3i,j st i—jed (12)
Since =D = A, we know that A = (D = A). We transform A as follows:

A D= A
= —(DA-4)
—(D A gist = A given D)

D = —gist = A given D

Therefore Equation 11 is equivalent to:

(Fi,j st. i—jed)= ~(gist i, j st i—jEdAv,(i)+c, >v,(j) +ec, givenTi,j st. i—jEd) (13)

q

Usually, the gist in Equation 13 will produce a single inequality constraint. If the gist produced a disjunction of
inequality constraints, we could strengthen the condition by throwing away all but one of the inequalities produced
by the gist.

Unfortunately, Equation 13 also contains an implication operator. So, rather than constructing the set of con-
straints described by Equation 13, we construct a slightly stronger set of constraints by changing the antecedent to
true:

—(gist 3i,j s.t. i—j € dAv,(i) +c, >v,(j)+ ¢, given i, j st i—j € d) (14)

If an acceptable set of constant offset values can be found that satisfy these stronger constraints, these offsets must
satisfy the weaker constraints, and therefore align the variable parts.

In practice, it is often the case that each of the dependence relations d, are very simple. In some of these cases
we can directly produce constraints on the c¢,’s without resorting to the above gist calculation. For example, if d
describes that there is a dependence between all iterations separated by a distance of x in direction ¢, then if both
statements have variable part i, we can directly produce the constraint ¢, <c, + z.

For a given pair of statements s, and s,, we form a single set of constraints A, by combining the alignment
constraints (Equation 14) resulting from all simple dependence relations between those two statements. We then
combine the A,  constraints one statement at a time, checking at each stage that the alignment constraints formed
so far are satisfiable for all values of the symbolic constants.

Having obtained a set of alignment constraints, we can either return this set of constraints for use by an external
system, or we can find a set of constant offset values that satisfy the alignment constraints. In finding this set of
satisfying values, we could consider optimality criteria such as locality or lack of loop carried dependences.

8 Related Work

The framework of Unimodular transformations [Ban90, WL91, ST92, KKB92] has the same goal as our work, in that
it attempts to provide a unified framework for describing loop transformations. It is limited by the facts that it can
only be applied to perfectly nested loops, and that all statements in the loop nest are transformed in the same way.
It can therefore not represent some important transformations such as loop fusion, loop distribution and statement
reordering. Most existing frameworks use dependence direction/distance vectors as a dependence abstraction rather
than the dependence relations that we use. This is adequate for unimodular frameworks, but i1s not adequate to test
the legality of the sorts of transformations that we can represent. Unimodular transformations are generalized in
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[LP92, Ram92] to include mappings that are invertible but not unimodular. This allows the resulting programs to
have steps in their loops, which can be useful for optimizing locality. Our mappings are not required to be unimodular
and can therefore also generate steps.

Paul Feautrier [Fea92a, Fea92b] has independently developed a framework which is very similar to our own. It is
similar in the following respects:

e He represents reordering transformations using schedules which are similar in form to our mappings.
e He generates a separate schedule for each statement.

e We both select mappings/schedules one level at a time, using the dependences that are not carried at outer
levels to test legality.

However, we differ from Feautrier in the following respects:

e Unlike our mappings, Feautrier’s schedules are not required to be 1-1. Instead, iterations that are to be executed
in parallel are scheduled at the same point in time. Therefore, Feautrier’s schedules (the time mapping) only
partially specify the transformed code. In a separate decision process (the space mapping), parallel loops are
generated to enumerate all the computations that need to be executed at each time point. This framework
only allows the generation of innermost parallel loops; outer parallel loops are often desirable.

e His methods are designed to generate a schedule that produces code with a “maximal” amount of parallelism.
He does this by generating a large set of constraints which describe all legal schedules. This set of constraints
has a variable for each coefficient and each constant term of the schedule for each statement. For example, for
the code from olda in Figure 3, the problem generated by Feautrier would have 6 variables for each statement:
3 each for the coefficients of p, ¢ and 7, 2 each for the coefficients of n and orb and 1 each for the constant term.
He then introduces two linear functions of these variables, one representing the number of iterations that will
be executed sequentially and a second representing how many dependences will be carried. These functions
and constraints are then combined and transformed into a dual programming problem that is solved using
Parametric Integer Programming (PIP). The net result of this process is that the schedule selected carries as
many dependences as possible and among all such schedules, the one selected has as few sequential iterations
as possible. These schedules will often not be optimal in practice because of issues such as granularity, data
locality and code complexity. It 1s unclear if his method could be extended to include other criteria, such as
good cache performance or parallel outer loops. We expect it would be difficult to encode such an optimization
function for a code segment containing several statements.

Our framework is designed to provide a setting in which multiple performance issues can be traded-off. To
satisfy this goal, we select mappings in a completely different way. We start by considering some statement,
and generate the constraints on choices for legal variable parts for that statement. We then choose one of these
legal variable parts by methods described in [KP93a]. We incorporate that information into the constraints for
the variable parts of the other statements. We continue this selection process until we have selected a variable
part for each statement. We then move on to making decisions about constant parts in a similar way. Once
we have selected mapping components for all statements at the current level we calculate which dependences
still remain and repeat this selection process at the next level. This process continues until we have a 1-1
mapping which satisfies all dependences. If not all of decisions made during this process are perfect then
backtracking is required if we want to find the optimal transformation. This method differs fundamentally
from Feautrier’s in that at each stage we are “trying” specific mapping components. Working with actual
mapping components, rather than with formulas describing mapping components, makes it much easier to
analyze complex performance issues such as data locality.

Feautrier’s approach runs into serious problems with large problems. Feautrier reports requiring two hours to
generate a schedule for a code fragment with 24 assignment statements. We believe that in many situations, there
will be a large number of cases where only a single choice is both legal and reasonable. Also, making a choice for the
variable part of one statement may impose strict requirements on the variable parts of other statements in the same
strongly connected component of the dependence graph. This would allow our local search approach to be quite
efficient. We hope and expect that our methods will allow us to handle large examples efficiently. But of course,
we won’t know until we complete our re-implementation and integrate it with a decision engine for guiding the local
search.
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9 Conclusions

We have presented a framework for unifying reordering transformations such as loop interchange, distribution, skew-
ing, tiling, index set splitting and statement reordering. The framework is based on the idea that a transformation
can be represented as a mapping from the original iteration space to a new iteration space. We believe that using
mappings is the purest or most fundamental way to describe arbitrary reordering transformations.

The framework is designed to provide a uniform way to represent and reason about transformations. The frame-
work does not solve the fundamental problem of deciding which transformation to apply, but it does provide a simpler
setting in which to solve this problem. We therefore believe that production systems would benefit from using our
framework, rather than an arbitrary set of unrelated traditional transformations.

We have described two basic techniques:

e Techniques that infer constraints on the legal mappings for individual statements or the relationship between
the mappings for different statements. Using these methods, we can easily produce legal mappings. Other
methods, such as those described in [KP93a], are required to determine which of the possible legal mappings
are desirable.

e Techniques that given mappings for some statements can infer constraints on the legal mappings for the other
statements. Without these techniques, we would often choose what appears to be a legal mapping for a
statement, only to find out later that we can’t find compatible mappings for the other statements.

We have described a variety of methods for deriving constraints on the sets of legal mappings. For most examples,
applying all of these methods will be overkill. We hope to learn more about which combinations of these methods
are cost effective in practice when we complete our implementation. One possibility is to vary the level of effort
dynamically, as we encounter dead-ends or situations in which we have many reasonable choices that appear legal. In
interactive environments where a user is guiding the optimization choices, a high level of effort is probably warranted.
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Appendix A - How to apply Farkas Lemma

We have a set of affine constraints:

Ancr+ ...+ Apien — by > 0

Aimz1 4+ ...+ Anm@n — b Z 0
and an affine form ¢(z) = a121 + ... + anzn.

Since we require this affine form to be nonnegative for all z’s, it must be a non-negative combination of the affine constraints:

Aoy Am 2 08t Vo, 22, ..., 20
a1z1+ ... tanzn = do+ Ao+ .ot Anize =01+ Am(Aimzr + o+ Apmon — bim)
= (Ao=—Mbi+... = Apbn)+ A+ A Am)zr + oo+ (At + o+ A Am)Tn
By equating matching coefficients of the z;’s on each side of the equality, we can derive the following linear set of constraints:
0 = do—Mbi+...— Ambm
a1 = A4 4+ AimAnm

o, ..., Am > O s.t.

an
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