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1 Introduction

The research agendas of two major areas of computer science are converging: Artificial Intelli-
gence (Al) methods are moving towards more realistic domains requiring real-time responses, and
real-time systems are moving towards more complex applications requiring intelligent behavior.
Together, they meet at the crossroads of interest in “real-time intelligent control,” or “real-time
AT”!. This subfield is still being defined by the common interests of researchers from both real-
time and Al systems. As a result, the precise goals for various real-time Al systems are still in
flux [28, 31, 43]. This paper describes an organizing conceptual structure for current real-time Al
research, clarifying the different meanings this term has acquired for various researchers. Having
identified the various goals of real-time Al research, we then specify some of the necessary steps
towards reaching those goals. This in turn enables us to identify promising areas for future research

in both Al and real-time systems techniques.
1.1 Background: Real-Time Systems

In many applications, a computer control system must sense the environment and directly
influence it through action. Such control systems are subject to the real-time constraints of the
environments in which they operate. For example, an autonomous vehicle operating in the real

world needs a control system that responds quickly enough to avoid collisions with obstacles or
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!These two terms are used interchangeably by many researchers. We will use the somewhat more common “real-
time AI” for consistency and brevity.



other vehicles. This requirement for timely behavior is the defining characteristic of a class of
environments known as hard real-time domains. Hard real-time domains have deadlines by which
control responses must be produced, or catastrophic failure may occur. Other common examples
of hard real-time domains include nuclear power plant control, medical monitoring, and aircraft

control.

Because catastrophic failure may occur if deadlines are missed, control systems for agents oper-
ating in real-time environments must not only choose appropriate actions in varied situations, they
must also make those action choices at appropriate times. Research in real-time systems addresses
precisely this issue, by developing methods for guaranteeing that the reaction rate of a control
system matches the rate of change in the environment. Real-time computing is not about building
“fast” systems; it ¢s about building systems that are predictably “fast enough” to act on their

environments in well-specified ways [31, 43, 66, 69].

This understanding of what it means to be “real-time” is dramatically different from the casual,
non-technical use of the term which has become common in many fields. For example, if a database
querying system responds quickly according to human time-scales (i.e., in a few seconds or less),
it is called “real-time.” But what if we use that same database system in a critical application
requiring responses in milliseconds? Clearly, the system is no longer “fast enough.” The fact
that the inadequacy of the system in this new domain (and its “adequacy” in the slower domain)
could not be recognized or predicted in any rigorous fashion indicates that this system was never

“real-time” in the technical sense; it was never known to meet the required deadlines.

Early real-time systems operated in relatively simple, well-characterized environments. Such
“traditional” real-time systems are composed of a set of repeated tasks with known execution times
and arrival patterns. The primary challenge in building such systems is to schedule these tasks and
ensure they will meet their deadlines. Real-time systems researchers have developed a powerful
set of tools for both specifying a task’s resource requirements and deadlines and for predictably

scheduling and executing the described behaviors to guarantee that they will meet their deadlines.

With the success of these techniques, researchers have been extending real-time systems to
more complex applications. Faced with resource limitations that make it impossible to schedule
and guarantee all of the possible behaviors that might ever be needed in a particular domain, it
has become necessary for systems to adapt to the operational modes of the physical processes they
monitor and control. For example, a real-time system controlling the avionics of an aircraft has to
deal with different types of activities during the take-off, cruising, and landing stages. The control
system’s tasks and their execution characteristics will vary, depending on the particular operational
mode of the aircraft. Lack of adaptability would require that the superset of all tasks required in
all modes be active at all times. This is clearly an inefficient and infeasible approach— hence,
real-time systems have been developed with limited abilities to change their task characteristics for

different operational modes.

However, this type of simple mode-switching adaptability is insufficient for the emerging gener-

ation of complex, dynamic, and uncertain application domains. For example, consider the proposed



NASA Mars Rover, which must operate at a distance of about 15 light-minutes from Earth, and
thus cannot be tele-operated. This system must operate continuously and autonomously in an
uncertain and incompletely-specified environment. The system must detect and react in real-time
to unpredictable but dangerous situations such as navigation route blockages and non-geometric
terrain hazards (e.g., sand-pits or other potential traps that cannot be detected by sensors di-
rectly [29]). These situations require a broad range of adaptability and reasoning processes (e.g.,
route planning) that are beyond the abilities of conventional real-time systems. Fortunately, these
topics (reasoning, adaptability, general and flexible intelligent behavior) have long been the purview

of a different research area: Artificial Intelligence.
1.2 Background: AI

In general, AT research attempts to computationally model the various “intelligent” capabilities
of humans, including their abilities to solve complex reasoning problems while also operating in
and adapting to dynamic, uncertain, and incompletely-specified domains. Many of the problems
addressed by traditional Al research can be viewed as search. In its most general sense, search is
the process of finding an appropriate set of operators (actions) to lead an agent from some initial
state to some goal state. Early Al research centered on basic search methods and representations
for tasks involving the sorts of symbolic knowledge humans use, as opposed to the numeric data
processed by simple algorithms. Much traditional and current Al research revolves around building
powerful search-based planning mechanisms that can find useful plans of action in complex domains

that may include goal interactions, uncertainty, and temporal information.

Traditionally, Al systems have been developed without much attention to the resource limita-
tions that motivate real-time systems researchers. However, as these Al systems move out of the
research laboratories into real-world applications, they also become subject to the time constraints
of the environments in which they operate. For example, Al applications are now being used for
monitoring space shuttle telemetry during launches to detect problems quickly when they develop.
They are also used to assist operators of electrical power distribution centers. As the complex-
ity of the controlled processes increases, the human operators of these systems are increasingly
overloaded with data, particularly in time-critical fault recovery operations. Sorting through large
amounts of data to identify problems and evaluate solutions can result in cognitive overload. The
new generation of Al systems are being called upon to provide decision-support capabilities that

reduce the cognitive burden in these situations.

Early efforts to build real-time AI systems focused largely on ad hoc speedups for existing
AT methods, yielding systems that are only coincidently real-time [43]. That is, these systems
have been tested and shown to operate quickly enough to meet domain deadlines for the test
scenarios, and are thus considered guaranteed real-time. However, complex behavior interactions
and domain variations beyond the set of tested scenarios may still lead to failure, because there is
no rigorous proof that these systems will meet deadlines or provide logically adequate responses in

time. As Stankovic [69] points out, this type of performance is not suited to mission-critical real-



time systems?. Instead, the rigorous design techniques developed by real-time systems researchers

must be used to guarantee that a system will meet domain deadlines, even in worst-case scenarios.

Thus, the technologies of real-time system design and Al are being brought together by the
needs of real applications. We would like to combine the guaranteed performance methods of real-
time systems with Al planning, problem-solving, and adaptation mechanisms to build a flexible,
intelligent control system that can dynamically plan its own behaviors and guarantee that those be-
haviors will meet hard deadlines. Unfortunately, building such a system is not as easy as describing

its behavior.
1.3 Real-Time AI: The Problem

In the most general sense, the difficulty of building real-time Al systems stems from constraints
imposed by the agent, its tasks, and its environment. The agent itself is subject to “bounded ratio-
nality” [67], because its data processors have limited speed and memory. The agent is also subject
to “bounded reactivity” [56], because its sensors and actuators are limited in their range, field of
view, torque, accuracy, etc. Thus the agent has only a restricted capacity to sense its environment,
process the sensed data, and use that information to affect its environment. Nevertheless, this
limited agent is required to perform a wide variety of tasks ranging from mission-critical emergency
reactions to complex knowledge-based problem-solving that may involve searching for solutions
in exponentially-large search spaces. The domain itself may impose both severe real-time dead-
line constraints and complexities that result from incompletely-modeled dynamics, unpredictable
agents, and failures. Putting all of these constraints together, we see that real-time Al systems
must reliably accomplish complex and mission-critical tasks under realistic resource limitations in

dynamic domains.

More specifically, real-time Al systems are required to work continuously over extended periods
of time, interface to the external environment via sensors and actuators, deal with uncertain or
missing data, focus resources on the most critical events, handle both synchronous and asynchronous
events in a predictable fashion with guaranteed response times, and degrade gracefully. Graceful
degradation may be required to cope with both resource overloads (in which case a system must
alter its various performance goals or methods) and faults (in which case a system may have to
execute recovery actions to resume its normal operations). Realizing such system behavior not only
requires that significant research advances are made in both the real-time and AI methodologies,
but also requires that techniques from the two disciplines be combined or interfaced. This paper
outlines many of the specific research challenges that must be solved to develop future generations

of real-time Al systems.

In mission-critical systems, failure to take appropriate and timely action may lead to loss of life or unacceptably
high economic costs.



1.4 An Example Domain

Throughout this paper, we will draw examples from the medical Intensive Care Unit (ICU)
domain®. In an ICU, a patient is hooked to a number of monitoring and life support devices under
electronic control. The goals of the system are obvious: keeping the patient healthy and stable,
dealing with unexpected changes in the patient’s condition, and alerting medical personnel if the
situation becomes critical. With current technology, the individual devices connected to the patient
are each separately controlled. If the patient goes into some type of trauma (e.g., shock), a number
of alarms sound to summon medical personnel. During the time that it takes for the personnel
to arrive, the patient’s condition deteriorates. Even worse, upon entering the ICU room, medical
personnel must waste precious time trying to figure out what has happened, why, and what to do

about it.

An intelligent real-time control system could vastly improve this situation. A computer control
system that could see the whole picture (integrating the results of the many sensor readings coming
at various rates from a patient) could then initiate small actions (such as adjusting the feed rate
on a respirator) which might prevent the patient from experiencing the trauma. In addition, if the
patient does go into shock, the system can diagnose the cause and have diagnostic (and treatment)
suggestions ready by the time medical personnel arrive. In cases where immediate steps must be
taken, the system can initiate precursor actions such as reducing a particular gas in a ventilator,

which should be done if emergency surgery may be required.

From this example domain, the need for combined real-time and Al capabilities becomes clear.
Traditional real-time control systems could not handle the decision-making inherent in performing
on-line diagnosis or treatment planning (which may also require access to symbolic information
such as patient history, information about the surgery from which the patient is recovering, or the
qualitative assessments made by medical personnel). On the other hand, a traditional Al-based
medical diagnostic system could not handle the real-time needs of monitoring sensor data or of
producing action plans during critical events (such as a drop in blood pressure). Thus the ICU
domain captures the need for both intelligent, symbolic, deliberative Al techniques, and the need

for guaranteed real-time reactions.

2 Categorizing Approaches to Real-Time AI

There are three principal ways that real-time systems and Al techniques can be combined
into a single system [22, 56]: by embedding Al into a real-time system, by embedding real-time
reactions into an Al system, and by coupling Al and real-time subsystems as parallel, cooperating
components. Figure 1 illustrates these three system organizations. As we will see, these different
approaches do not aim at the same result: the desired performance of a real-time Al system has
not been clearly and uniquely defined. In the followings subsections, we provide additional details

on the three main approaches to real-time Al, describing their overall performance goals and the

®These examples are based on the Guardian real-time Al project [34] under the direction of Dr. Barbara Hayes-
Roth at Stanford University.
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Figure 1: The three main approaches to real-time Al.

difficulties to be addressed.

Note that these categories are somewhat artificial, in that many implemented systems combine
aspects from more than one approach. However, by classifying the general approach a system takes
to implementing real-time Al, we can understand more clearly the precise goals and intent of the

system, and its suitability for different types of tasks.
2.1 Embedding AI in Real-Time

The simplest approach to combining real-time and Al technologies is to embed Al methods
within a conventional real-time system, forcing the Al computations to meet deadlines just like

i

other real-time tasks. The goal, then, is to be “intelligent in real-time,” so that all of the system’s
reasoning capacity is applied to each decision before its deadline. In many ways this performance
goal is the most intuitive interpretation of “real-time AL” since the term itself seems to imply that
the intelligent methods will run in real-time. Some researchers refer to this particular approach as
“real-time problem solving,” clearly indicating that complex, traditional Al tasks such as search-

based problem-solving will be constrained to meet real-time deadlines.

The fundamental problem with this approach is that Al tasks are generally ill-suited to real-time
scheduling mechanisms, which rely on allocating the worst-case execution time for all tasks. Al
tasks such as planning and search-based problem-solving often have unknown or extremely large
worst-case execution times [58]. While conventional real-time tasks often have small execution
time variations due to data dependency, many Al tasks have additional variations due to search

and backtracking. As a result, simply applying conventional worst-case scheduling methods to Al



tasks results in systems which are either not schedulable, or have very low utilization.

There are two general methods for addressing this conflict between high-variance Al tasks and
real-time schedulers: the variance of the Al tasks may be reduced, or the Al tasks may be cast
as incremental, interruptible algorithms. Systems that address the conflict and are able to use the

embedded-Al approach include:

e Deliberative Al architectures such as PRS [30, 37], in which the AI search mechanisms may
be bounded so that the overall response-time of the system can be predicted. Approximation
techniques and multiple problem-solving methods [14, 46] may be used to provide additional

flexibility within time bounds.

e Purely reactive Al architectures like the subsumption architecture [5] and REX/Gapps [39],
in which all of the reactive elements are assumed to run in real-time. Reactivity can be seen
as the ultimate simplification or removal of Al search from planning tasks, and the variance

of the tasks is removed with the search, making real-time guarantees feasible.

e Any-time algorithms and deliberation-scheduling systems [8], in which all Al tasks are cast
as incremental methods that can be interrupted before any deadline, yielding a result that

may have reduced precision, confidence, accuracy, etc.

2.2 Embedding Real-Time in Al

Embedding real-time capabilities into an Al system is an alternative approach, which essentially
assumes that the overall system will employ typical Al search-based deliberation techniques, but
that under some circumstances these techniques might be short-circuited in favor of a real-time
reflexive action. This type of system is suited to domains in which deliberative action is the norm,
and mission-critical real-time reactions will not be common. By retaining a unified system with
a single locus of control, this embedded-real-time approach prioritizes real-time reactions without
restricting the complexity of the AI methods that may be used. These systems are designed to
operate in domains where they can rely mainly on deliberative processing for the intelligent selection

of actions, occasionally overridden or preempted by real-time reflexes.

Implemented embedded-real-time systems have used several methods to achieve this behavior,

including:

¢ Modified production systems such as Soar [45]. In Hero-Soar [44], distinguished real-time
productions bypass the normal deliberative operator selection phase; instead, the action of a

real-time production is executed as soon as the production is matched.

e Interruptible blackboard-style systems like PRS [30, 37] and RT-1 [17]. In response to a

high-priority input that requires a response before a deadline, PRS may interrupt ongoing

non-real-time Al tasks and switch to a predictable real-time task to generate the response?.

*Note that we have now seen how PRS can operate both as an embedded-Al and embedded-real-time system; the
architecture is flexible enough for either approach, and the choice is made when encoding procedural knowledge for
the system.



There are several difficulties with the embedded-real-time approach, including the problem of
effectively coordinating and mediating reflexive behaviors with the overall deliberative behavior
of the system; if the reflexive actions can bypass the normal deliberation mechanisms, it may
be difficult or impossible for the deliberation processing to reason about and affect the real-time
reactions. Furthermore, some systems using this approach can add to their repertoire of reflexive
actions based on inference or on experience (e.g., Soar’s chunking [45]). The trouble with this
approach is that the pattern-matching activity performed by the Al system against all of the
possible cognitive and reflexive actions might be hard to bound®. As a result, even if the reflexive
actions themselves have well-characterized real-time properties, they are invoked by high-variance,

unpredictable Al techniques.
2.3 Cooperating Real-Time and Al

The third approach to real-time Al attempts to keep the strengths of real-time and Al systems
undiluted by not mixing them directly, but instead allowing separate real-time and Al subsystems
to cooperate in achieving overall desirable behaviors. The Al and real-time subsystems must be
isolated, so that the Al mechanisms cannot interfere with the guaranteed operations of the real-time
subsystem, but the subsystems must also be able to communicate and judiciously influence each
other.

The performance goals of this type of cooperative system are considerably different from the
embedded-Al approach, in which all of the Al processing was required to meet real-time deadlines.
In the cooperative approach, the Al subsystem can be isolated from the real-time environment by
the concurrent control behaviors of the real-time subsystem. Thus the goal of cooperative systems
can be more broadly stated as being “intelligent about real-time,” rather than necessarily being

“intelligent in real-time.”

The tasks that are executed on the real-time subsystem of a cooperative system may contain
virtually any processing, as long as the tasks will definitely execute within their allocated time in
the task schedule. Thus cooperative systems can take advantage of any advances in embedded-Al
technology: when Al methods are built that can be embedded within real-time environments, those
methods may also be used within the real-time subsystem of a cooperative real-time Al system.
In other words, the real-time subsystem may execute complex Al methods, as long as they are
predictable and scheduled.

Cooperative real-time Al systems span a wide range of designs, varying greatly in the complex-
ity of the processing available on the respective Al and real-time subsystems, and in the precise
relationship between these subsystems. At one extreme is a modified subsumption-based model
such as DR/MARUTI [35] where a number of real-time reflexive behaviors execute concurrently,
while higher-level Al processes adjust parameters that affect how the reflexive behaviors combine
into outward action. This model essentially assumes that the system has sufficient resources to

guarantee that every real-time reaction will meet its deadline, and that intelligence is primarily

*But see [18] for recent results indicating that, in some cases, such pattern matching may be scalable.



e Scheduler Feedback.

¢ Scheduling Iterative Tasks.

¢ Communication.

e Scenario Swapping (Mode Switching).
¢ Real-time Task Languages.

¢ Non-real-time Tasks.

¢ Enhanced Task Specifications.

Figure 2: Summary of real-time systems challenges.

useful for mediating amongst these sometimes-contradictory reactions (e.g., when one ICU reaction

suggests increasing respirator flow, while a different reaction suggests the opposite).

However, as noted in Section 1.1, trying to scheduling the superset of all tasks required in all
modes of behavior can lead to very inefficient or infeasible system designs. Thus, at the other
extreme of coroutining, real-time Al systems such as CIRCA [56, 57] have an Al component that
reasons about which real-time behaviors need to be carried out at any given time, and designs a
real-time control plan appropriately. The real-time subsystem is only expected to schedule and
execute a subset of all of its possible behaviors; as circumstances change, the Al system constructs
alternative real-time reactive plans. The challenges in this approach include minimizing the real-
time subsystem’s reliance on receiving new schedules within hard deadlines, and developing rich

world models that the Al system can use to reason about the real-time characteristics of a situation.

3 Challenges for Real-Time Systems

To date, real-time systems research has focused largely on developing low-level operating system
mechanisms to support predictable execution of traditional periodic control tasks with only minor
data dependencies. As more varied types of intelligent control tasks and real-time AT architec-
tures are implemented, the role of system-level support for predictable hard real-time operations
is expanding and changing. Figure 2 summarizes several focus areas we have identified as being of
prime concern for supporting future mission-critical real-time Al systems. The following paragraphs

provide additional details.
Scheduler Feedback

As always in real-time systems, scheduling is a paramount concern. However, the unusual
nature of the tasks generated by real-time Al systems imposes special requirements and suggests
several areas for future development. Most fundamentally, the inclusion of intelligent deliberation

techniques in a real-time Al system raises the hope that Al methods based on decision theory might



be used to control performance tradeoffs in the face of resource limitations. Such tradeoff techniques
could make effective use of feedback information that an enhanced “cooperative” scheduler could
provide. In the ICU domain, for example, the scheduler of a cooperative real-time Al system
like CIRCA [56, 57] might indicate that a particular heart-monitoring task is the most severe
constraint making a particular schedule infeasible. Using that feedback information, the system’s
planner might decide to decrease the required frequency of the monitoring task (and thus ease the
scheduling constraints), if the patient is currently stable. However, if the planner deems the high-
frequency monitoring task essential, it might instead choose to omit a less-important task from the

schedule, such as a long-term data evaluation and diagnosis task.

Research on this type of advanced scheduling system could involve extending the view of
scheduling as a search process that can generate explicit feedback, and/or integrating schedul-
ing mechanisms with more traditional AI planning technologies (e.g., Miller’s work on planning
by search through simulations [54]). Search is a particularly apt metaphor for complex multi-
processor scheduling tasks, so applying the Al community’s experience with search methods may

yield significant advances in this area.
Scheduling Iterative Tasks

Scheduling techniques that can utilize task performance profiles and integrate real-time and
non-real-time tasks in a fair way are also of interest. The real-time systems counterpart to the
any-time algorithm method, known as imprecise computation [47], has led to several advances in
such scheduling technologies. Additional work will be required, however, to improve our ability
to build performance profiles automatically and to enhance schedulers to manage tasks that are
characterized by more complex representations such as conditional performance profiles [73] or

quality functions.

In the ICU domain, for example, the utility of the results from an incremental treatment-
planning task may vary greatly depending on the patient’s condition: if the patient is having
severe respiratory difliculty, even an abstract, incomplete treatment plan may have very high utility
because it would begin by increasing respirator pressure and summoning medical personnel. On
the other hand, if a patient has no emergency conditions, then taking action based on only partial
planning would be ill-advised, and of low utility. Thus the overall utility of a particular partial plan
can depend upon the context in which it is generated, and fixed performance profiles would not be
sufficient to represent these dependencies. Conditional performance profiles, which can take into
account such context dependencies, represent a first step towards addressing this representation

problem.

The introduction of AI methods in real-time tasks also raises the possibility of tasks that
provide periodic estimates of their remaining required execution time, which a scheduler could use
to make dynamic adjustments to the task’s resource allocation. These dynamic schedule changes
could allow a system to adapt more effectively to uncertain, data-dependent search methods and

changing environments. For example, a system might initially attempt to use a powerful model-

10



based diagnosis method to plan treatment. However, if the model-based task initially evaluates the
problem and indicates that it is expected to require several minutes to arrive at a treatment, the
system might choose to first quickly retrieve a relevant treatment plan via case-based methods, in

order to stabilize any emergency conditions.
Communication

The cooperative approach to real-time Al places the most stringent demands for extensions on
existing real-time systems, because it involves dramatically new types of operations. For example,
communication between real-time and non-real-time tasks is a major issue in the cooperative ap-
proach, while it is virtually nonexistent in embedded Al systems. In cooperative systems, the Al
subsystem must be able to interact with the concurrently executing real-time control plan, either
receiving feedback information (e.g., patient symptoms), downloading new plans (e.g., monitor-
ing and treatment tasks), or communicating action arbitration information (e.g., which of several
conflicting treatments should be used). The real-time support system must provide appropriate
communication channels while also ensuring that those channels cannot interfere with ongoing
guaranteed real-time tasks. For example, a system may be required to ensure that a real-time task
will definitely receive an action arbitration message from a non-real-time Al task by a particular
time, and it must be possible to provide that assurance to the system’s Al methods despite ongoing

schedule swaps and task variations.
Scenario Swapping (Mode Switching)

In the cooperative model of real-time Al, the Al subsystem generates a real-time task schedule
that must then be rapidly swapped in for execution by the real-time subsystem, without violating
any hard real-time deadlines. This capability requires the real-time system to support predictable-
latency schedule substitutions. In combination with the precomputing concept described below
for ATl systems, it may also be necessary for the real-time subsystem to provide storage space for
anticipated real-time schedules, and dynamic links between them. Thus, for example, an ICU task
schedule used for monitoring a stable patient might itself trigger the action of swapping in a special

schedule for treating shock when certain sensor readings are noted.

Support for this type of activity will require not only rapid schedule swaps, but the ability
to reason about the temporal latencies that may arise during swaps, as well as the possibility of
overlapping portions of task schedules during startup and shutdown phases of operation. In the
previous example, the tasks used to treat shock might require an initializing process that loads
data from the prior general-monitoring tasks. To accommodate that information transfer, tasks
from both the general monitoring and special treatment schedules must be interleaved during the

transition period between schedules.
Real-time Task Languages

Some cooperative real-time Al designs require the Al subsystem to download new real-time

control tasks for predictable execution. Thus a task-specification language must be developed

11



which is amenable both to manipulation by the AI subsystem (for planning) and to subsequent
rapid execution by the real-time subsystem. This type of language may form a bridge between the
knowledge and action representations common in Al planning systems and the more traditional
systems-programming languages that real-time systems researchers have developed [40]. In the ICU
domain, such a language would have to be capable of describing patient monitoring and treatment
tasks, along with their projected effects on a patient (for planning) and their resource requirements
(for scheduling). Providing both rigorous execution timing control and useful semantic flexibility
will be a significant challenge. The work by Lyons et al. on the RS representation [49, 50] exemplifies
a programming language model that combines aspects of real-time temporal specifications with Al-

like planning models.
Enhanced Task Specifications

Because the computational tasks in a real-time Al system may be generated automatically, the
planning system may be able to provide detailed information about those tasks to the scheduler.
For example, an Al planner might be able to tell the scheduler about runtime dependencies and
constraints between tasks, such as that a particular pair of tasks will never need to execute con-
currently (i.e., they are mutually exclusive), and the scheduler might use this information when it
is allocating tasks to processors. Or, the scheduler may be given timing information about a task
other than just its worst-case execution time and required period (e.g., a probability distribution
of arrival times for an event-driven task, or a maximum allowable invocation separation [55]). Ad-
vances in scheduling techniques that can take full advantage of this additional information should

be able to schedule more tasks than simpler existing methods.
Non-real-time Tasks

The inclusion of non-real-time Al tasks in the same processing environment as guaranteed real-
time tasks can introduce many complications relating to resource management, scheduling, and
communications (as above). One primary concern with non-real-time Al tasks is that they are not
usually cast as short, easily restartable computations. Instead, Al problem-solving methods may
have very large runtimes and contain vast state information. For example, a model-based diagnosis
method in the ICU domain could maintain a large open set of partially-hypothesized diagnoses as it
searches for the best solution. Such tasks must be treated as ongoing, non-terminating tasks much
like those found in traditional Unix-type operating systems. However, this capability is unusual for

real-time operating systems, which may not even provide virtual memory.

4 Challenges for Al

Nearly all of the areas of current Al research could find applications in future real-time Al
systems. However, we can pinpoint several areas of Al that may have significant impact on the
development of real-time AI systems, because they are related to the fundamental operational
constraints of these systems. Figure 3 summarizes the areas we have identified, while the following

paragraphs provide descriptions and examples for each.
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¢ Reduction of Search Variance.

¢ Incremental and Approximate Problem-solving.
¢ Customized Problem-solving.

¢ Precomputing.

¢ Representing, Planning, and Learning Reactions.
o Utility-based Modeling.

e Temporal Representation and Reasoning.

e Representation and Prediction of Processes.

e Concurrent Planning and Fxecution.

¢ Multi-agent Reasoning and Commitment.

Figure 3: Summary of Al challenges.

Reduction of Search Variance

Strosnider & Paul [70] have identified several techniques by which the variance inherent in
search-based Al problem solving can be reduced, thus making problem-solving methods amenable
to worst-case scheduling. These techniques include search-space pruning (removing portions of
the space known to not contain a solution), search ordering (adjusting the order in which the
search space is explored), and scoping (limiting the lookahead used to select operators). Other
researchers are focusing on improved search algorithms such as RTA* [41]. If these techniques
can be successfully applied to a particular domain’s Al search problems, then the embedded-Al
approach can provide real-time problem solving for the domain. In the ICU example, if we could
use these techniques to manipulate the space of possible treatment plans such that the search for a
treatment could be guaranteed to complete in a reasonably short amount of time, then the search

could be scheduled and executed each time a change of patient status occurred.
Incremental and Approximate Problem-solving

Most current Al planning and problem-solving systems attempt to generate a complete and cor-
rect solution to a problem. In resource-bounded situations, it may be more effective to quickly gen-
erate an approximately correct solution. Incremental constraint-satisfaction techniques, iterative-
deepening-style search strategies [41], dynamic programming [9], transformational planning [53],
and approximate reasoning methods [14, 46] are currently being explored as ways to generate in-
cremental and improving solutions. In the ICU system, these techniques could be used to quickly
develop an approximate treatment plan (i.e. start to administer a dose of a particular drug) at the

onset of an emergency, followed by improving this treatment as the patient stabilizes (i.e., decide
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to stop at 22.5 ccs).

Incremental improvement mechanisms allow an embedded-Al system to meet deadlines by sim-
ply interrupting the incremental algorithm when a deadline arrives. This approach, variously known
as “any-time algorithms” [8], “imprecise computations” [47], “best-so-far methods” [70], and “in-
creasing reward for increasing service” (IRIS) tasks [16], has gained even more proponents than
names. However, significant advances are still necessary in characterizing task performance to de-
velop the mappings between solution quality and service time (“performance profiles”) that are
needed to ensure that the interrupted algorithms will indeed produce results of acceptable quality
by the time a deadline arrives. In addition, the process of composing larger systems from several
incremental algorithms (“deliberation scheduling”) is a growing area of research [4, 61], closely

related to scheduling research in the real-time systems community.

Modifications to basic incremental methods may also lead to variants such as “dynamic expected
runtime” tasks, which would occasionally re-evaluate their own expected runtimes and notify the
real-time support system. Using this update information, an intelligent real-time control system
could modify its task schedules and adjust its behavior to account for its current progress and

expected future work.
Customized Problem-solving

A slightly different approach, under investigation by Garvey & Lesser [27], is to postulate a
finite set of alternative computation methods for solving each particular problem a system might
face. For example, the ICU controller might have complex causal model-based methods for ana-
lyzing sensor data and arriving at a diagnosis, as well a set of simpler rules that classify situations
less accurately, but much more quickly. Using the “design-to-time” (DTT) methodology, selections
are made from these alternative problem-solving techniques given a priori knowledge of the re-
quired resources and task deadlines. One significant weakness of this approach is the need for such
a priori information. However, the discrete set of alternative methods used in DTT may be much
more feasible to accurately characterize than the generalized incremental computations needed for
deliberation scheduling. Research in the real-time systems community on “version selection” [51]
and “load adjustment” [42] is closely related to DTT.

Precomputing

Al systems currently solve problems from scratch or use memory-based techniques to solve
current problems based on past experience. A related technique that may improve real-time per-
formance is to cache solutions for anticipated problems— that is, essentially creating a case memory
based on reasoning about hypothetical situations, rather than on past practice [6]. This approach
may include both compiling problem solutions and pre-prioritizing behavioral tradeoff decisions
that may arise in the future. In the ICU domain, for example, the system might generate and store
sample treatment plans for likely medical complications and trauma conditions, and then retrieve
them for use in an emergency. As the plans take effect, they can then be tailored to the precise

condition of the current patient.
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Representing, Planning, and Learning Reactions

Reactive Al systems that perform little or no lookahead planning are well-suited to interacting
with real-time domains because they avoid the high variance of planning and search activities.
However, in order to be applicable to hard real-time domains, existing representations of reaction
(e.g., RAPs [26], routines [1], and monitors [63]) must be extended to support predictable, provably-
correct behavior. This requires enhanced capabilities to represent both the resource requirements

of a reaction [56] and the functional behavior of a reaction [60].

In many types of real-time Al systems, intelligently adapting to dynamic environments requires
the ability to create and use reactive plans that can immediately make necessary changes while a
planner begins to determine longer-term actions. For planners that build reactive plans, significant
areas of research include reaction planning mechanisms [39, 53, 56, 65] and formalisms which can
support the proofs of guaranteed behavior that are necessary in hard real-time domains [40, 49, 50].
The inherent parallelism of reactive control systems is a particularly challenging aspect for Al

planners, which have largely focused on sequential plan execution.

In addition, using learning methods to acquire reactions could provide improved reaction speed
and coverage. Techniques that have proven useful in this area include compilation of reactive
behaviors [64], “chunking” of previous action sequences [45], reinforcement learning [38, 59], and
dynamic programming methods [3]. Such learning techniques allow a system to take necessary
actions (e.g., increasing respirator rate) in emergencies (e.g., a decrease in blood pressure), if the

action has been useful in the past.
Utility-based modeling

Given the dynamic and uncertain nature of real world domains (particularly as viewed through
sensor readings), an intelligent control system must often make decisions based on incomplete
information. To achieve optimal behavior according to some metric, the system might reason
about probabilities and expected utilities [20, 25, 36, 72]. However, traditional decision theory
often requires more information than is available in realistic domains. In these situations, a more
qualitative model of uncertainty and decision-making is needed, including the ability to represent
the growth of uncertainty as time passes. In the ICU case, such methods might lead to a decision
to take certain actions based on their immediate beneficial effects (e.g., increasing respirator flow
rate), even if the long term effects may be less clear (e.g., if left at too high a rate, this could

eventually cause a respiratory problem).
Temporal Representation and Reasoning

Particularly in systems where all AT processing is not guaranteed to meet real-time deadlines, it
becomes important for a system to have an explicit understanding of the temporal characteristics of
its behaviors. In the ICU domain, for example, if administering a particular test and analyzing the
resulting data takes several minutes, it may be important for the system to anticipate this delay and

implement intermediary treatment actions, pending the results of the test. Current AI research
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on representations of time [2, 10, 32, 52, 71] generally involves complex constraint propagation
mechanisms to maintain partial ordering relations between time intervals. In many cases, it may
be possible to use simpler, more efficient temporal representations that can still provide the types

of worst-case timing information required for real-time guarantees [57].
Representation and Prediction of Processes

In a medical diagnostic knowledge-based system, the inputs used in making the diagnosis are
typically symptoms observed at a particular time. In contrast, in the ICU example the symptoms
include a recognition of how the patient’s health is changing over time, in response to ongoing
physical processes and actions taken by the system. Being able to represent and reason about
processes is crucial to predicting the possible future states of the patient and what to do about
them. In addition, predicting how long a process should take (e.g., this IV should take about 20
minutes to drain) and comparing this to the actual behavior (e.g., after 10 minutes it is still 90%
full) can be an important aspect of intelligent behavior and fault detection (e.g., the IV is not
inserted correctly). This type of performance has been initially investigated by Cohen et al. [7, 33]
using “envelopes” describing projected plan execution. Other techniques expected to be of use
include extending planning systems to handle processes using quantitative [11, 62] and qualitative

representations [15, 19], and modifying Bayesian techniques to cope with change over time.
Concurrent Planning and Execution

In the cooperative approach to real-time Al, the ability to concurrently plan and execute actions
is crucial to successful performance [56, 65]. It is particularly useful to be able to begin executing
plans before they can be completely fleshed out. For example, if the ICU patient is starting to
enter a respiratory failure, the control system should immediately begin to increase oxygen flow,
even before completely determining what other actions will be taken later. Techniques useful in
enabling this sort of behavior include the use of iterative planning models (which can rapidly
identify promising steps towards goals) [48, 53] and decision-theoretic control techniques (which

can identify the most important steps to take).
Multi-agent Reasoning and Commitment

In many cases, deadlines and time constraints stem from commitments between agents. The
ICU, for example, makes commitments to a patient and his or her family to monitor the patient’s
signs and intervene (to the extent possible) quickly enough to prevent the patient’s condition
from degrading significantly. It is this commitment that places such severe time constraints on
automated diagnostic systems in the ICU. The same systems, if employed in a morbidity/mortality
study, would likely be able to take more time to explain the progression of symptoms and outcomes.
Even then, however, the systems must meet (possibly implicit) time commitments to provide results

in time for a hearing, or publication.

While in some domains an agent will have little flexibility over the deadlines placed on a sup-

porting knowledge-based system (e.g., the ICU patient), in other cases deadlines can be much
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more negotiable. It is important to understand how deadlines arise due to commitments between
agents [68], how different types of relationships between the tasks at different agents influence the
severity and flexibility of time commitments [12, 13], how commitments and goals can be revised,
relaxed, and reassigned as unexpected events change what can be done when [6, 21, 23], and how ab-

straction can be used to generate the right degree of commitment under various circumstances [24].

5 Summary

Extending previous work [22, 56], we have identified and described three fundamental ap-
proaches to developing real-time Al systems. This paper improves upon the previous classification
by distinguishing the various approaches according to their performance goals, in addition to their
architectural organization of real-time and Al methods. With the field of real-time Al still in flux,
choosing an appropriate system architecture for a particular application requires a clear description
of the system’s performance goals and design features. We hope that our classification of existing

approaches to real-time Al will serve as a starting point for such descriptions.

By examining the functional constraints that these different architectures place on their com-
ponents, we have pinpointed several challenging research areas that are critical to the development
of next-generation real-time Al systems. As more complex, intelligent programs are applied to
controlling systems in mission-critical domains, the need for more powerful and flexible real-time
systems support technology is growing rapidly. In Section 3 we outlined several areas in sys-
tems support that will be important for the short-term development of next-generation intelligent
real-time control systems. Likewise, we have found that the broad application of Al methods to
real-time domains will require new approaches, differing from many of the traditional search-based
techniques explored in the field. As discussed in Section 4, reactivity, incremental algorithms,
decision-theoretic tradeoff methods, and other non-traditional techniques will be required to intel-
ligently meet the demands of mission-critical environments. This paper may thus serve, in part, as

a guideline for future research aimed at advancing the state of the art.

Existing systems represent a strong initial effort, but do not yet provide the comprehensive
coordination of real-time reactivity and intelligent, deliberative behavior implied by the full sense
of “real-time AIL.” The embedded-Al and embedded-real-time approaches place strong constraints
on either the Al or real-time components, making them applicable to only limited domains. The co-
operative approach to real-time Al removes some of those constraints, but current implementations
remain largely master-slave systems in which the real-time subsystem is enslaved, simply execut-
ing plans sent from the AI subsystem. In the long term, we expect that the merging of real-time
and Al research will lead to systems in which task planning, scheduling, and execution are more
integrated, yet still retain the guaranteed performance characteristics required for mission-critical
operations. Precisely how this will be accomplished is, of course, the subject of future work. How-
ever, it is clear that advances the areas we have pinpointed will lead us closer to the overall goal
of building a flexible but predictable goal-directed mechanism capable of recognizing and adjusting

to environmental dynamics and its own resource bounds.
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