Multiprocessor Priority Ceiling Based Protocols *

Chia-Mei Chen and Satish K. Tripathi
Institute for Advanced Computer Studies
Systems Design and Analysis Group
Department of Computer Science

University of Maryland, College Park, MD 20742

April 7, 1994

Abstract

We study resource synchronization in multiprocessor hard real-time systems. Specifically,
we propose a multiprocessor resource control protocol which allows a job to simultaneously
lock multiple global resources, removing a restriction from previous protocols. Allowing nested
critical sections may permit a finer granularity of synchronization, increasing parallelism and
throughput. All the protocols discussed belong to the class of priority inheritance protocols and
rely in some fashion on priority ceilings for global semaphores. We consider both static and
dynamic priorities, building upon the multiprocessor priority ceiling protocol (MPCP) proposed
by Rajkumar et al. and the dynamic priority ceiling protocol (DPCP) proposed by Chen and
Lin.

The extended protocols prevent deadlock and transitive blocking. We derive bounds for
worse case blocking time, and describe sufficient conditions to guarantee that m sets of periodic
tasks can be scheduled on an m multiprocessor system. Performance comparisons of these
protocols with MPCP shows that the proposed protocols increase schedulability.

*This work is supported in part by ARPA and Philips Labs under contract DASG-92-0055 to Department of
Computer Science, University of Maryland. The views, opinions, and/or findings contained in this report are those
of the author(s) and should not be interpreted as representing the official policies, either expressed or implied, of the
Advanced Research Projects Agency, PL, or the U.S. Government.

1 Introduction

Jobs in real-time systems are usually run periodically under time critical conditions. Failure to meet
timing constraints is often considered as undesirable as computing an incorrect (but timely) result.
Such systems are known as hard real-time systems (HRTS). The job scheduling algorithms used in
HRTS must have predictable behavior so that it is possible to determine whether timing constraints
will be met. Liu and Layland showed that Rate Monotonic (RM) scheduling is optimal among fixed
priority scheduling algorithms, while Earliest Deadline First (EDF) scheduling is optimal among
dynamic priority scheduling algorithms[LL73]. They also derived processor utilization bounds for
RM and EDF that are sufficient to guarantee that all jobs will complete within their periods.

Job scheduling becomes more complex when jobs occasionally require exclusive access to shared
resources. A resource synchronization or control protocol may be used to permit exclusive access to
shared resources, while preventing deadlocks and guaranteeing that timing constraints are satisfied.
Many such protocols have been developed for single processor systems.

One approach to synchronization involves extending priority-driven protocols. In this class
of protocols, each task has an associated priority which is used to determine access to shared
resources (including the processor). When synchronization is permitted, priority-driven protocols
are susceptible to potentially unpredictable delays due to priority inversion. Priority inversion
occurs whenever a lower priority task blocks a higher priority one. Some amount of priority inversion
is unavoidable to guarantee mutual exclusion; however, it must be bounded to allow schedulability
analysis and minimized to improve utilization bounds. Sha et al. introduced the concept of priority
inheritance protocols to solve the priority inversion problem [SRL87]. One of the more attractive
protocols they propose, the priority ceiling protocol (PCP), prevents both deadlock and transitive
blocking. They also developed sufficient schedulability conditions for a set of periodic tasks to be
scheduled via a PCP algorithm on a uniprocessor system. Rajkumar et al. subsequently developed
multiprocessor and distributed versions of PCP[RSL88].

Chen and Lin developed the dynamic priority ceiling protocol (DPCP) to enhance EDF schedul-
ing algorithm [CL90a]. Baker proposed a stack-based resource allocation policy (SRP) which can
be applied to either RM or EDF scheduling algorithms [Bak90]. Other PCP extensions have also
been developed such as PCP for multiple-instance resources [CL91]. Chen and Lin summarized the
schedulability conditions of several priority-driven control protocols, and proposed a set of sufficient
schedulability conditions for EDF-based resource control protocols [CLIO0b].

With the exception of MPCP[RSL88], most resource synchronization protocols have been de-
veloped solely for uniprocessor systems. MPCP does not allow nested accesses to global resources,
i.e., it does not allow a task to simultaneously lock more than one global resource. A global re-
source is one that may be accessed by tasks assigned to different processors. This limitation on
the use of global resources may not satisfy varying resource access requirements, and may lead

to unnecessary blocking. For example, some jobs may only need access to a small unit of global
data, while other jobs may need to lock the entire resource. With MPCP, all jobs are forced to
lock the entire global resource to guarantee consistency. The situation is analogous to using file
locking, when record locking would suffice. We know that a finer granularity of synchronization
allows a greater degree of concurrency, while coarser granularity imposes less overhead. A balanced
application of fine granularity can gain the advantages of parallelism in return for a reasonable
overhead cost. We propose a multiprocessor priority-based resource synchronization protocol that
allows a task to simultaneously lock multiple global resources. The proposed protocol can be used
to enhance RM or EDF scheduling algorithms. In addition, we extend MPCP to an EDF-based
resource synchronization protocol. We present the results of performance analysis of the proposed
protocols and MPCP that show that the proposed protocols improve schedulability compared to
the original MPCP. This improvement is due to the fact that our protocols allow a greater degree
of parallelism.

In the next section, we state the assumptions of the proposed protocols and present the notation
used throughout the balance of the paper. Section 3 presents a new version of multiprocessor
synchronization protocol, its properties, and schedulability analysis. MPCP is investigated and
extended in section 4. Section 5 compares the performance of these two extended protocols, followed
by some concluding remarks in section 6.

2 Overview and Notation

A HRTS consists of a set of processors, a set of resources and a set of tasks. Fach task is permanently
assigned to a specific processor P;, where Py, Py, ..., P, denote the processors of the system. A
resource is any object that requires serialized access. Each resource is associated with a binary
semaphore which is used to guarantee mutual exclusion. A resource may be either global or local.
Global resources can be accessed by tasks assigned to some (possibly complete) subset of the
processors, while local resources are only accessible to tasks on a single processor. A set of n;
periodic tasks is associated with each processor P;. Each task T can be described by a triple
(w, e, L), where w is the period of the task; e is the execution time of the task; and L is a list of
resources accessed by the task. Access to a shared resource may only occur within a corresponding
critical section (i.e. a sequence of instructions preceded by a lock operation of the associated
semaphore and followed by an accompanying release operation). To distinguish between critical
sections that access global resources and those that access local resources, we call the former
global critical sections and the latter local critical sections. Furthermore, semaphores that guard
global resources are called global semaphores and those that guard local resources are called local
semaphores. We use the terms resource, critical section, or semaphore interchangeablely, depending
on the context.

For each task, an instance of the task, called a job, is generated for every period of the task.
The release time of a job is the beginning of the period and the deadline of a job is the end of
the period. Py(.J) denotes the priority of the job J at time ¢ and P(.J) denotes the priority of the
job J at present. Cy(5) denotes the priority ceiling of the semaphore S at time ¢ and similarly
C(5) refers to the priority ceiling of the semaphore S at present. When priorities are static, the
subscript ¢ is dropped. The remote processors of processor P are the processors which share global
resources with P. Only jobs assigned to remote processors of processor P can interfere with the
jobs on processor P. Let J be assigned to processor . We define the remote jobs of J, or of P, as
the jobs assigned to the remote processors of processor P, and similarly the local jobs as the jobs
assigned to P. Jobs Jy, Jy, ..., J, are listed conventionally in descending order of priority with Jy
having the highest priority, i.e., P(J1) > P(J2) > ...> P(J,). The jth critical section of job J; is
denoted by z; ;.

Even though PCP is based on RM scheduling while DPCP is based on EDF, the concepts un-
derlying both protocols are similar, varying primarily in their definitions of priority. Both protocols
assign priority ceilings to semaphores which are used to defer some requests that could potentially
be granted. The purpose of deferring some requests is to reduce and bound blocking due to priority
inversion. The priority ceiling of a semaphore 5, C'(5), is defined as the maximum priority of all
jobs that are currently locking or will lock §. For a particular job J, $* denotes the semaphore
with the highest priority ceiling that is currently locked by a job other than J. Whenever a job
J wants to access a resource, it must first acquire an exclusive lock on the semaphore associated
with that resource. The lock is granted only if P(J) > C(57); otherwise job J is blocked until the
lock may be granted. The job holding semaphore 5™ inherits the priority of the highest priority job
that is blocked by 5*. When a job exits from a critical section, it releases the semaphore, and the
highest priority job waiting for the semaphore can then lock the semaphore. There are two types
of blocking'. A job J is blocked if it attempts to lock some semaphore S, while some lower priority
job Jr, has locked a semaphore S’ whose priority ceiling exceeds the priority of J, C'(5") > P(J).
The other form of blocking occurs when there is a higher priority job Jy that is already blocked due
to some lower priority job Jr. Though the concepts do not change substantially, these protocols
require careful modification to be extended to multiprocessor systems.

3 Multiprocessor Dynamic Priority Ceiling Protocol I (MDPCP I)

In this section, we present a dynamic priority multiprocessor version of the priority ceiling protocol
based upon EDF scheduling, which we call MDPCP 1. The protocol imposes a few restrictions
which we believe are often acceptable. MDPCP I only allows global (local) critical sections to be

'We use the term blocking to refer to situations when a higher priority job is temporarily denied a resource
(including the processor) due to a lower priority task.

nested within other global (local) critical sections; in other words it is not possible for a job to
simultaneously lock both a global and a local semaphores. An outermost global critical section
and its nested inner global critical sections are viewed as a unit and can be shared by a group
of processors. Any global semaphores that are ever locked simultaneously by the same job, (i.e.
that ever appear in the same nested critical section), must be shared by exactly the same set of
processors. If a global semaphore 5 is shared by processors P; and P;, we say that 5 is a global
semaphore common to P; and P;. In the following subsections, we present the fundamental concepts
behind MDPCP 1, give proofs of some of its useful properties, and analyze conditions under which
a feasible schedule may be assured.

3.1 Basic Idea Behind MDPCP 1

Rajkumar et al. defined remote blocking as the blocking caused by remote jobs, irregardless of their
priorities. They then proved that the remote blocking time of a job blocked while attempting to
enter a global critical section is a function of the access time of critical sections if and only if a job
within the global critical section cannot be preempted by jobs executing outside critical sections
[RSL88]. To ensure that blocking times are predictable, MDPCP I will not allow any job to preempt
a job executing within a global critical section. Since local critical sections may not overlap or nest
with global critical sections, we can use DPCP to synchronize access to local resources. Events
which may affect global resources such as locking or releasing a global semaphore or the arrival
of a new job require more attention as will be discussed shortly. Recall from the previous section
that the priority ceiling of a global semaphore 5, C'()5), is the priority of the highest priority job
that is currently holding or will hold the semaphore S at the current time. C'(5) may vary with
time as priorities are reassigned according to the EDF scheduling discipline. Let job J be bound
to processor P;.

1. The highest priority job eligible to execute on processor P; is assigned the processor if no
local job with lower priority is in a global critical section.

2. Before a job J enters a global critical section, it must lock the associated semaphore 5. Let
S8 denote the set of global semaphores accessible from processor P; that are currently locked
by remote jobs of J. Job J is granted the lock and may enter the critical section if it satisfies
the locking condition:

P(J) > max (C(s)).
()> max(C(s)
Otherwise, it is blocked and joins the queue for semaphore 5. The queue is priority-ordered,
i.e., the job with the highest priority waiting in the queue locks the semaphore when it is
released.

3. If a job J is blocked and it has not locked any global semaphores, then a remote job with
priority lower than J may lock a global semaphore whose priority ceiling is greater than or
equal to P(J) only if it was executing within a global critical section when J blocked. This
restriction holds even if the remote job satisfies the locking condition described in rule 2.

4. A job J uses its original priority, unless it is in a critical section and blocks higher priority
jobs. In that case, it inherits the priority of the highest priority job that it blocks. The
original priority is restored upon exiting the critical section.

MDPCP I gives rise to four distinct types of synchronization delay: indirect and direct blocking,
remote and implicit preemption. If a job Jp is in a global critical section, it will block other local
jobs with higher priorities (see rule 1). We use the term indirect blocking to refer to such blocking.
The blocking enforced by the locking condition described in rule 2 is called direct blocking or
remote preemption, especially when the blocking is caused by higher priority jobs. The blocking
enforced by rule 3 is called implicit preemption. Note that the blocking caused by synchronization
of local resources is also called direct blocking since the uniprocessor protocol uses the same locking
condition described in rule 2.

Rule 1 implies that at most one job on each processor can be within a global critical section.
Hence, each semaphore in SS; must be locked by a remote job of the blocked job. In addition, the
priority of a job that has locked a semaphore in S§7 may be either higher or lower than that of
the blocked job.

Because of rule 2, a job J may be remotely preempted by a higher priority remote job. For
example, suppose J, is a remote job of J with higher priority than J and both are waiting for the
same global semaphore 5,. J, will lock the semaphore S, before J, since its priority is higher than
that of J. J is directly blocked by J, when J, locks S,. We call this special case of direct blocking
remote preemption. In uniprocessor systems, conventionally, blocking occurs when a job is blocked
by a lower priority job. Therefore, to conform with the definition of blocking used in uniprocessor
protocols, we will in the future only use the term direct blocking when discussing blocking caused
by lower priority jobs. We will refer to blocking due to a higher priority remote job as remote
preemption.

Implicit preemption ensures that a higher priority job will not be infinitely blocked by lower
priority remote jobs. The following two examples show the need for implicit preemption.

Figure 1 shows the configuration of the system used in the next two examples. Py, P, and Ps
are the processors of the system and 57, S, and S5 are the global semaphores. (We don’t show
any local semaphores.) Sy is accessible from P; and Ps. 93 is accessible from P; and Pz, and S5 is
accessible from Py and Ps. Job Jy is assigned to processor Py, jobs Jo and J3 to Py, and jobs Jy
and Js to Ps. 57 is accessed by jobs Jy, J4, and Js, and S5 is accessed by Jy, Jo, and J3. No job
accesses S5.

T3 7
I T 7.

\

5 53 51

Figure 1: Architecture used in examples.

Figure 2 illustrates how a job can be infinitely blocked by lower priority jobs, if we do not
impose rule 3. Consider the following sequence of events. Suppose that J; attempts to lock global
semaphore 57 while J; has locked global semaphore S5. In this case, J, directly blocks J;. Before
Jo releases semaphore S5, Jy locks S, since §S% is empty. Therefore, J; is directly blocked once
again. The same scenario can happen on processor P3. Before J, releases 51, J3 locks 53, and
hence it blocks Jy. This sequence of events can repeat indefinitely, and cause Jy to be infinitely
blocked. Figure 3 shows how, under the same circumstances, job J; will not be infinitely blocked
if rule 3 is enforced.

Synchronization of global resources contributes new blocking factors that do not arise in unipro-
cessor systems. To facilitate computation of the worse case blocking time induced by this protocol,
we define two kinds of blocking sets: a and 3. We also define three sets of jobs, GP(J), LP(J)
and LLP(J), useful in computing o and 3. Each set of jobs contributes different synchronization
delays.

Let GP(J) be the set of remote jobs of job J whose priorities are higher than that of J, and
let LP(J) be the set of remote jobs of job J whose priorities are lower than that of J. Finally,
LLP(J) is defined to be the set of the local jobs of job J with priorities lower than .J.

e [3;1 denotes the set of the critical sections of the lower priority job J5 which can directly
block Ji. B; Lp(y;) denotes the set of critical sections of jobs in LP(J;) that can directly block
Ji. Birpps;y is defined similarly. Let f; be the set of critical sections of all lower priority
jObS of Jz that can directly block Jz ﬁz = ﬁivLP(Ji) U ﬁi,LLP(Ji) and ﬁivLP(Ji) N ﬁi,LLP(Ji) = @
Let P be the processor to which job J; is bound. Elements in §; rp(y;) are the local critical

7

J [N

J2 LI Ly

Ja I v

Js A [DN v

Figure 2: An example without implicit preemption.

J1] | ¥

Ja A LY

P [] v

J e 3___#
* N

PR _ne .

Figure 3: An example with implicit preemption. (IP = implicit preemption. RP = remote pre-
emption.)

sections of processor P, while elements in [3; ;p(J,) are the global critical sections of P.

e «; 1, denotes the set of all critical sections of local job Jj, which can indirectly block J;. a; is
defined similarly.

3.2 The Properties of MDPCP I

Both DPCP and PCP prevent transitive blocking and deadlock. These useful properties are pre-
served in MDPCP 1.

Lemma 1 Suppose Jyr is directly blocked by a remote job Jy, on global semaphore S. Then under

MDPCP I, Jy is not within any critical section.
Suppose Jg is within a critical section guarded by 5" when it is directly blocked by Jz on

S. 5" must be a global semaphore and 5" and S are common to the processors to which Jy and
Jr, are bound. Jy must lock S either before or after Jy, locks S. (1) First, suppose Jy, locks 9
after Jy has locked $’. Then P(Jz) > C(5'), and hence P(Jy) > P(Jr) > C(5’). However,
C(8") > P(Jg) due to the definition of priority ceiling. (2) Now, suppose Jp locks S after J, has
locked S. Thus P(Jg) > C(S5). But since Jg is blocked by 5, P(Ji) < C(5). Since both cases

lead to contradictions, the lemma follows. .

Since global critical sections can be nested within other global critical sections, a job can be
within several critical sections simultaneously. The above lemma implies that once a job enters an
outermost critical section, it will not be blocked before it exits from that critical section. Hence,
no matter how many nested critical sections are entered during the time the job is within the
outermost critical section, the job will not be blocked by any lower priority job. Note that the job
still can be preempted by a higher priority job.

Theorem 2 MDPCP I prevents transitive blocking.
Let J;3 directly or indirectly block J;2 and suppose that J;o directly or indirectly blocks J;1. If

Jis directly blocks J;o, by Lemma 1, J;5 is not within any of its critical sections. By the definition
of MDPCP 1., J;3 cannot block any jobs indirectly or directly. If J;3 indirectly blocks J;o, by the
definition of MDPCP I, J;3 has not started execution. Hence, J;3 cannot directly or indirectly block

job.
a jo -

Theorem 3 MDPCP [prevents deadlocks.
Suppose deadlock may occur and let {Jy, Jo,...,J,} be a set of jobs that cause a waiting cycle.

Since, by Theorem 2 there is no transitive blocking, at most two jobs can be in the waiting cycle.

The rest of the proof is similar to the proof of Theorem 2. .

3.3 Schedulability Analysis of MDPCP I

In this subsection, we develop a set of suflicient conditions which, when satisfied, guarantee that m
sets of periodic tasks assigned to m processors will complete execution within their periods when
scheduled using MDPCP I. Liu and Layland proved the schedulability condition for uniprocessor
EDF scheduling [LL73]. A set of n periodic tasks can be scheduled by EDF algorithm if

€n
—+ —4...+ —<1 (1)
w

If we find upper bounds for the blocking factors of MDPCP I, we can then derive sufficient schedu-
lability conditions using equation 1. The blocking factors can be better understood with the aid of
the following lemma.

Lemma 4 Whenever Jy attempts to enter an outermost global critical section, it can be directly
blocked by lower priority remote jobs for at most the duration of the global critical section with the
longest access time in By pp(y,)-

Let V' be the set of remote jobs which are currently within global critical sections in Sy rp(sy)
and that block Jp at the time Jp requests a lock on a semaphore corresponding to an outermost
global critical section. During the blocking by jobs in V', a remote job with the priority lower than
Jp cannot enter a critical section. The jobs in LP(Jy)— V are the remote jobs with priorities
lower than Jp; hence, they cannot contribute any blocking. Therefore, Ji can be directly blocked
by a remote job with lower priority for at most the duration of the longest global critical section

in By rp(y)-
O

The above lemma provides an upper bound for the direct blocking caused by remote jobs with
lower priorities, for each time that a job attempts to enter an outermost global critical section.

We now address the computation of blocking factors. First, we define additional notation. Let
LBy ; be the worse case direct blocking time of job Jj ; induced by one of its lower priority local jobs
(i.e., the local blocking time of Jy ;). Let G'Bj; be the worse case direct blocking time of job Ji ;
induced by its lower priority remote jobs (i.e., the remote blocking time of Ji ;) each time that Ji ;
attempts to enter an outermost global critical section. Let I B} ; be the worse case indirect blocking
time of job Jj ;. Finally, we define dj; as the number of times that J ; enters an outermost global
critical section.

By the definition of MDPCP I, indirect blocking can only occur once during the execution of
a job. Lemma 4 showed that each time a job Jj; attempts to enter an outermost critical section,
it can be directly blocked by its remote jobs with lower priority. Thus, the worse case blocking
time induced by indirect blocking and remote blocking is I By, ; 4 dj.; * G By ;. As for local blocking,

10

every time Jj; suspends itself when it tries to enter a global critical section, its local jobs with
lower priorities might enter local critical sections which can later cause Jj; to be blocked. Local
blocking factors contribute dj.; * LBy ; in the worse case.

In addition to the above blocking factors, remote and implicit preemption will also occur. When
a job Ji; attempts to lock a global semaphore, it might be remotely preempted by its remote jobs
with higher priorities. In the worse case, it has to wait for all its remote jobs with higher priorities
accessing the global critical sections common to processor Py. So, in the worse case the blocking
time caused by the remote preemption, RPy;, is ZJJVhGGP(JM) Chijh * Wk /w;], where cg.;p is
the total access time that job .J; 5 spends in the global critical sections common to P.

Implicit preemption occurs when a job Ji ; wants to lock a global semaphore S and finds that one
of its higher priority remote jobs, .J; 1, is directly blocked by SS7 and C'(5) > P(J;). According to
the definition of MDPCP I, Jy; is implicitly preempted by J; ;. Fach time job Jj; attempts to lock
a global semaphore whose priority ceiling is higher than or equal to the priority of one of its higher
priority remote jobs, P(J;), it is implicitly preempted. In other words, each time when Ji; wants
to lock a global semaphore 5, J;; can be implicitly preempted for at most Maxj , eGP(Jy) GBjp,
where C'(S) > P(J;4). To simplify the computation of the total implicit preemption time, we
express the worse case of implicit preemption time of job Jy;, I Py ;, as dj; *MaX], , eGP (Jy) GBj .
Hence, the worse case total blocking time of a job Jj; induced by MDPCP I, B%DPOP I can be
expressed as follows.

BYPPCP L = IBy: + dy; * (GBy, + LBr;) +

Yo crgn ok [wri/win] +
J],heGP(Jk,i)

d 5 ok GB. ;. 2
ki J],he%??)((t]m) Bh (2)

We need to know the elements of the sets LLP(Jy;), LP(Jy;), and GP(Jy,;) for each job Jy;
to compute the blocking sets and preemption factors. The set of local jobs with lower priorities,
LLP(Jy;), of job Ji; is the same as the set of the lower priority jobs of Jj ; defined in uniprocessor
systems, since both refer to the jobs on a single processor. A job Jy; in LLP(Jy;) must arrive
earlier and lock a local semaphore. It is preempted by Jj; when it is holding the semaphore such
that later Jy; will be blocked. Since J; is preempted, it must have a later deadline. Consequently,
the period of a job in LLP(Jy; must be longer than that of J ;.

However, the set of remote jobs with lower priorities, LP(Jy;), of job Ji,; does not possess
the same nice properties as LLP(Jg;). Jobs in LP(Jy;) are the jobs whose deadlines are later
than that of Ji;, but not necessarily with earlier arrival times. So, they can be any jobs on the
remote processors of processor Pi. The same theory applies to the set GP(J;;). Consequently,

11

GP(Jy;) = LP(Jyi) = GP(Jr;) = LP(Jy ;). The sufficient schedulability conditions can be stated

as follows:

Theorem 5 Given m sets of periodic tasks on a system with m processors, where a set of ny
periodic tasks is assigned to processor Py. The sets of tasks can be scheduled by EDF with MDPCP I
as the resource control protocol, if the following conditions are satisfied:

Vi, 1<k <m,

ex1+ Bra | ex2+ Broa €k, T Bhon,
’ 1y TR 2oy e TR 3
W1 Wk,2 Wk,ny, ®)

a

4 Multiprocessor Dynamic Priority Ceiling Protocol II (MD-
PCP 1I)

The multiprocessor dynamic priority ceiling protocol II (MDPCP II) is based on a previously
developed static priority multiprocessor protocol known as MPCP[RSL88]. To clearly distinguish
our dynamic protocol MDPCP 1II from the static protocol MPCP, we will subsequently use the
acronym MSPCP II to refer to the original MPCP protocol. MSPCP is short for multiprocessor
static priority ceiling protocol. The suffix II indicates that same resource control scheme is used
as in MDPCP II, and does not signify a revision to the original MPCP protocol. MDPCP II
relies upon an EDF scheduling policy, but is otherwise identical to MSPCP II. Unlike MDPCP 1,
MDPCP II does not allow nested global critical sections. It shares this restriction with its static
counterpart MSPCP II. Otherwise, the assumptions made by MDPCP II do not differ from those
required by MDPCP I. Neither protocol allows global critical sections to overlap or nest with local
critical sections. If it is necessary to simultaneously lock both a global and a local resource, then
the local semaphore can be treated as a global one. Thus this assumption does not introduce any
actual constraints.

Due to the varying restrictions concerning nested global critical sections, MDPCP I and MD-
PCP II take dramatically different approaches to controlling access to global resources. To allow
nested global critical sections, MDPCP I relies upon priority ceilings to reflect the importance of
global resources throughout the system. Thus MDPCP I requires a lock checking protocol that
is similar to that used in uniprocessor systems, but must be much more complex. By contrast,
due to its prohibition against nested global critical sections, MDPCP 1II can use simple efficient
atomic operations, such as test-and-set, to implement global locking. Both protocols may use a
uniprocessor synchronization protocol to manage local resources.

The principles underlying MDPCP II are described in the following subsections.

12

4.1 Basic Idea of MDPCP 11

We use a slightly different definition of priority ceiling that we used in MDPCP 1. The priority
ceiling of a local semaphore S, C'(S7,), is defined to be the priority of the highest priority job that
is accessing or will access the semaphore at the current time. This is the same definition used in the
(uniprocessor) DPCP. Recall from section 3.1 that, in order to easily bound remote blocking times,
it is necessary to prevent jobs executing within global critical sections from being preempted by
jobs executing outside of critical sections. Consequently, a job within a global critical section must
have a priority higher than every job executing outside of global critical sections. This is easily
handled by introducing the concept of base priority to denote the priority of the highest priority
job in the entire system. We then defined the remote priority ceiling of a global semaphore S¢
with respect to processor P;, R(Sq,P;), to be the priority of the remote job of P; with the highest
priority that is accessing or will access this semaphore at the current time, plus the base priority.

A job J; bound to P; is assigned a new priority, PJ“S, when it locks a global semaphore 5,
and reverts to its previous priority when it releases the semaphore. The extended priority PJ“S
is defined to be P(J;) if S is a local semaphore, and R(S5,P;) if S is a global semaphore. Since
the remote priority ceilings of all global semaphores have been increased by the base priority, a
job executing within a global critical section has a higher priority than any job outside of a global
critical section. This ensures that a job that has locked a global semaphore may only be preempted
by a local job that locks another global semaphore that has a higher remote priority ceiling.

The protocol can be described as follows:

1. When job J wants to access a local critical section, it uses DPCP to see if it can lock the
associated semaphore. i.e., J can seize the lock, only if P(J) > C'(5}), where S5 denotes the
semaphore with the highest priority ceiling of all local semaphores currently locked by jobs
other than J. DPCP is used to synchronize access to local resources.

2. If job J attempts to access a global critical section, it locks the associated semaphore S if
no other job has already locked 5. Otherwise, it joins the priority-ordered queue associated
with S using its original priority P(J),

3. A job J locking a global semaphore 5, inherits the extended priority]5159, and reverts to its
previous priority upon releasing .5,,.

4. A job J canlock 5, and preempt another job J' within another global critical section guarded
by 57, if P(J,5,) > P(J',5}).

5. Whenever a global semaphore is released, it will be given to the highest priority job waiting
if the associated queue is not empty.

13

While a job has locked any global semaphore, it cannot attempt to lock any other semaphore,
whether it is local or global. Thus a job cannot deadlock while holding a lock for a global semaphore.
Jobs can simultaneously lock multiple local semaphores, but since MDPCP II uses DPCP to manage
the access of local critical sections, a job cannot become deadlocked within a local critical section.

So MDPCP II is deadlock free.

4.2 Schedulability Analysis of MDPCP II

Blocking times in MDPCP II depend upon one type of blocking that does not arise in MDPCP 1.
In MDPCP II, a job within a global critical section S can preempt a local job within another global
critical section S’. Hence, it can induce another form of blocking delay to jobs that waits for .
Blocking times in MDPCP II fall into the following categories:

1. Blocking by local jobs with lower priorities within local critical sections. When a job J;
attempts to lock a global semaphore 5, it may suspend while waiting for some job to unlock
5. In the meantime, one of its local jobs might lock a local semaphore which will later cause
job Ji; to be blocked. Let LL By ; be the worse case access time of a local semaphore accessed
by a lower priority local job of job Jj ; that can block Jj ;. Let dj. ; denote the number of times
that Jj; locks a global semaphore. The worse case blocking time caused by this scenario can
be expressed as dy; ¥ LLBy ;.

2. Blocking by local jobs with lower priorities accessing global critical sections. This type of
blocking is similar to the previous one, except that, in this case, a lower priority local job can
lock or be waiting for a global semaphore that might later cause Ji; to be blocked when Jj ;
executes outside of a critical section. Let G LBy ;; be the worse case access time of a global
semaphore accessed by the lower priority job Jj; that can block J ;. For every lower priority
job Ji; of job Jy;, this form of blocking can contribute at most min(dy, dr; + 1) * GLBy
blocking delay.

3. Blocking by remote jobs with lower priorities. When job Ji; attempts to lock a global
semaphore, that semaphore might already be locked by a lower priority remote job. Let
G RBy; be the worse case access time of the global semaphore that is accessed by job Ji;
and a lower priority remote job. Then job Ji; can experience at most dj; * GRB}; blocking
delay caused by this situation.

4. Blocking by remote jobs with higher priorities. When job Jj.; tries to lock a global semaphore,
that semaphore might be locked or a higher priority remote job might be waiting for it. Let
dkc,i;m,h be the number of times that job J,, j locks the global semaphores which will be also
accessed by Ji;. Let GHDBy ;. be the worse case access time of the global semaphore

14

accessed by Ji; and J,, . We call this form of blocking remote preemption. The worse case
blocking time caused by remote preemption is dj ;.m b * [Wk /Wy 1| * GH By i 1, for each
remote job J,, ,, with higher priority, of job Jj ;.

5. Blocking by a remote job accessing a global critical section. Suppose job Jj ; is blocked by a
remote job J,, ; accessing a global semaphore 5,;. Meanwhile, suppose another remote job
Jm,» inherits a higher extended priority and preempts .J,, ;, when J,, , locks another global
semaphore S42. Not only does job Jj ; experience the blocking delay caused by the semaphore
Sg1 that it tried to lock; it also experiences a blocking delay due to S,2. The blocking by
the former semaphore is considered above; the blocking by the latter is considered here. Let

df’i;m’x be the number of times that job .J,, .. locks the global semaphores with higher remote

priority ceilings than a global semaphore that is accessed by another local job of J,, . and
that can block Ji ;. We use the notation G H By, ;. » to refer to the worse case access time
of the global semaphore as described above. This type of the blocking time can be bound by

the expression df’i;m’x * [Wg i/ Wi, 5| ¥ GH By i 5, for every remote job J,, , of job Ji ;.

The total blocking time of a job J; induced by MDPCP II, B%DPOP T is the summation of
the blocking factors described above.

BMPPCPIL g\« [LBy +
Z min(dw, dk,i + 1) * GLBk,i,l +
JkylELLP(Jk,i)
dr; * GRBy; +

> diim b * (Wi /Wi b |GH Bl i h +
Jm,heGP(Jk,i)

Z dﬁi;m,x * [wkﬂ/wmyl’-‘ * GHBka@‘ (4)
VIm,zm#k

The definitions of the set of remote jobs with lower priorities and higher priorities and the set of
local jobs with lower priorities, LP(Jy;), GP(Jy;), and LLP(Jy;), for a job Ji; are the same as
those defined in MDPCP I, since both use dynamic priorities.

5 Performance Comparisons

This section compares the performance of two static priority protocols, MSPCP I and MSPCP 11,
and two dynamic priority protocols, MDPCP I and MDPCP II. The multiprocessor static priority
ceiling protocol I, MSPCP 1is a variation of MDPCP I which uses a RM scheduling algorithm. The

15

primary differences between MSPCP I and MDPCP I are the definitions for priorities and priority
ceilings. MDPCP I defines P(J) and C(S) in exactly the same fashion as uniprocessor PCP.
MDPCP I also preserves the useful MDPCP I properties: freedom from deadlock and prevention of
transitive blocking. The proofs are analogous to those for MDPCP 1. The blocking factors induced
by MSPCP I are similar as well: indirect blocking, local and remote blocking, remote preemption,
and implicit preemption. Hence, the expression for the worse case blocking time of a job Jj;,
BMSPOP T'is the same as that in MDPCP I, B%DPOP I, The only difference is the definitions of
the sets of lower (and higher) priority remote jobs, ie., LP(Jy;) and GP(Jg;). LP(Jy,;) is the set
of remote jobs with longer periods than Jj;, and GP(Jy;) is the set of remote jobs with shorter
periods than Ji;. A set of periodic tasks can be scheduled by RM if the following condition is
satisfied[LL73]:

n

S e— < n(27 — 1) (5)

=1 w

The metric used to compare the schedulability of these protocols is the maximum estimated
consumed processor power (M ECPP). Inequality 1 shows the intuition behind this measurement.
When an EDF scheduling policy is used in a single processor system, the utilization of the processor
must be less than 1 in order to meet all the deadlines of the periodic tasks in the system. The
left-hand side of the inequality is the upper bound of the processor utilization consumed by the
tasks in the system. This upper bound, called the estimated consumed processor power (ECPP),
can be viewed as a measure of schedulability. For a multiprocessor system, each processor P, has
its associated ECPP value, FC' PP;. The deadlines of all tasks in the system will be met if all
the ECPP values are less than 1; or equivalently, if the maximum of the ECPP values is less than
1. Consequently, the maximum ECPP value (MECPP) is a natural performance metric for the
schedulability of multiprocessor hard real-time systems.

Given m sets of n tasks each assigned to an m multiprocessor system and each processor accepts
a set of n tasks. The estimated consumed processor power of processor Py (K C PPy) is defined as
S wk L 4 maxi<i<p w— if RM scheduling is used and 7 “k fj;Bk L if EDF is used, where By ;
is the worse case blockmg time of job Jj ; induced by the correspondmg resource synchronization
protocol. The computation of By ; is described in sections 3.3 and 4.2. MECPP is defined as
maxi<k<m ECPP. If a protocol can lead to a smaller value for M EC PP, we say it performs
better.

5.1 Simulation Design

The simulator models a system with m processors and shared memory. It consists of two com-
ponents, the configuration model and the task model. The configuration model produces global

16

critical sections shared with different sets of processors and local critical sections for each processor.
The task model generates m sets of tasks; each set contains n periodic tasks. The configuration
model generates nested global critical sections since MSPCP I and MDPCP I allow them. However,
for MSPCP II and MDPCP II, a job must use a coarser level of granularity for global semaphores.

The following parameters control the configuration of the simulated system:

m is the number of processors in the system.
n is the number of tasks accepted by each processor.

NumLCS is the maximum number of local semaphores for a processor. In our simulation,
NumLCS is 4.

NumGC'S is the maximum number of global semaphores for a processor. In our simulation,

NumGCS is 4.

TotalGCS is the total number of global semaphores in the whole system. In our simulation,

Total GC'S is 8.

C' S AccessTimeis the maximum access time of a critical section. In our simulation, C'S AccessTime
is 4 time units. We assume that all tasks have the same access time for executing the same
global critical section.

DegreeSharing is the probability that a global critical section is accessible from a processor.
Setting DegreeSharing to 0 means that no global critical sections are shared by different
processors (all global semaphores become local in this case), while a value of 1 indicates that
all global critical sections are accessible from every processor. The greater the degree of
sharing, the more frequently jobs interfere with each other.

The task model determines the attributes of the various tasks. The following parameters control
the task model.

MiwnPeriod and PertodIncrement defines the periods of tasks. For a task 7} ;, the period of
task T} ;, wg,; can be computed by

Wi =

)

MinPeriod + PeriodIncrement * R, ifi=1
w1 + PeriodIncrement x R,, otherwise,

where R, is a number uniformly distributed over (0,1].

17

o LbTaskConsumedPower and UbTaskConsumedPower define the lower and upper bounds
of the task consumed processor power, the rate of the execution time to the period of a task.
The execution time of a task T} ;, ey, is defined as

€hi = Wi, * Re,
where R, is uniformly distributed between LbTaskConsumedPower and UbTaskConsumedPower.

o Thelist of critical sections accessed by a task is represented as a bit map which is generated by
a random number and uniformly distributed between 0 and the maximum number of possible
bit map patterns.

5.2 Experimental Parameters

Three run-time parameters are used to simulate various system workloads: the number of pro-
cessors, the number of tasks, and the degree of sharing. Varying the number of tasks provides a
way to see how the protocol behaves as the processor workload increases, and varying the number
of processors shows how the protocol behaves as the system size scales. Changing the degree of
sharing illustrates the impact of synchronization for access to global resources. In the following
subsection, we give the results of several simulation experiments. In each experiment, we varied
only a single system parameter, and held all the others constant.

5.3 Results

In order to see the impact of increases in the processor workload on performance, we varied the
number of tasks for a fixed number of processors. The results are shown in Figure 4. We also
changed the degree of sharing when varying processor workload, and found similar results. There-
fore, we only present the results for the case when the degree of sharing was set equal to 0.5. Clearly,
resource contention and blocking time increase as the workload increases. The rate of increase of
blocking by MSPCP II and MDPCP II are greater, because blocking factors 4 and 5, described in
section 4.2, increase significantly as the number of tasks increases. The slopes of MSPCP I with m
equal to 10 and 20 are almost identical. The increased MECPP values for the case where m is 20 are
primarily due to remote preemption, and remain constant throughout the various processor loads.
A job will have more remote jobs with higher priorities when m is 20, which increases the amount
of more remote preemption for the job. The rate of increase of the number of higher priority re-
mote jobs remains stable as the processor workload increases; there is negligible difference between
the cases where m equals 10 and m equals 20. Consequently, the increase in MECPP values is
almost identical for the two cases. However, MDPCP I behaves differently since the blocking time
of each task affects the MECPP; it is unlike MSPCP I where only a single blocking time matters.

18

MECPP MECPP

MBPCP | (n¥10) 180. 00 — T WP T (mei0)
18.00 — T VBRCE 1T (e10) /| VRSP IT T (ieid)
N 2 L S
16.00 — _/ | MBPCP 1T (n¥20) 160. 00 / MOPCP 1™ (1e20)
! MBPCP 11 (m20) 140.00 |— ;T | MDPoP i1 (me20)
14.00 — / — ,
v
r . 120.00 |— J —
12.00 — / o
‘ 100. 00
10. 00
80. 00
8.00
60. 00
6.00
40. 00
4.00
20. 00
2.00
0.00
0. 00 # of tasks # of tasks
10. 00 20. 00 10. 00 20. 00

Figure 4: Varying processor workload.

As processor workload increases, the discrepancies between MSPCP I and MSPCP 1II (or between
MDPCP I and MDPCP II) become significant. MSPCP I and MDPCP I perform better under a
wide range of processor workloads.

Figure 5 and Figure 6 show the simulated performance results as the degree of sharing changes.
For MDPCP I and MSPCP I, the increased concurrency allowed by the fine granularity of resources
becomes more significant as the degree of sharing increases. Two jobs can simultaneously access
different critical sections, in cases where MDPCP II and MSPCP II would force them to be seri-
alized. In general, the MECPP increases as the degree of sharing increases. However, it increases
much faster under MSPCP II or MDPCP II than under MSPCP I or MDPCP 1. Again, we see
that MSPCP I and MDPCP I allow better performance.

To study the effect of resource contention among processors, we varied the number of proces-
sors while holding other system parameters fixed. We present the simulation results from those
experiments in Figure 7. MSPCP I and MDPCP 1 are less sensitive to changes in system size
than MSPCP II and MDPCP II, and have better performance as well. These results have one
similarity with the results from the experiments of varying processor workload. The differences of
the MECPP values for MSPCP I remain constant, while the differences of the MECPP values for
MDPCP I continue to increase. The cause of such behavior is the same in both cases.

19

MECPP

.00

.00

00

00

00

00

00

MECPP

22.

20

18.

16.

14.

12.

10.

00

00

00

00

00

00

00

00

00

00

MECPP
VEPCP T (w0 5]
______________________ 50.00 — ~ —
MBPCP 11 (10 n=5) 7N
VPGP 1T (rei0 hi0) 4500 | — e —
WSPCP 117 (=10 m=10) 40,00 | / |

MDPCP 1 (nF10 n=5)
NDPCP 11 (nF10 n=5)
NDPCP I~ (nF10 n=10)

MDPCP 11~ (me10 n=10)

—deg of sharing x 10°3 o
500. 00 500. 00

Figure 5: Varying the degree of sharing when m = 10.

MECPP

MBPCP | (n¥20 n=10)
/N~ | NBRGP 1T (20 n=10) ~7 -
/ MBPGPTI” (nF20 n=20) 200-00 — / —
MBPCP |1~ (m=20 n=20) 180.00 (— / —
160.00 |— /]
140.00 |— / —
120.00 — _
100.00 |— L
80.00 — [/ ar? 1
60.00 |— o5 _
40.00 L 7

20.00 |4 —

g of sharing x 10°3

MDPCP | (20 n=10)
NDPCP 11 (mF20 n=10)
NDPCP I~ (20 n=20)

MDPCP 11~ (me20 n=20)

g of sharing x 10°3 . g
500. 00

Figure 6: Varying the degree of sharing when m = 20.

20

g of sharing x 10°3

MECPP MECPP

L MSPCP | (n=10) 180.00 — MDPCP | (n=10)
18.00 — b e T
VBPCP 11~ (n=10) NVDPCP 11~ (n=10)
L 160.00 +— , —
16.00 |— /N7 | MBPCP I (n=20) , MDPCP |~ (n=20)
/ MSPCP I1” (n=20) 140.00 — ’ — MDPCP i1 (n=20)
/
14.00 (— - — /
/ 120.00 +— s —
/ ’
12.00 — v — 100.00 — /]
L7 B _,/
10.00 — , RO 80.00 |— / —
/, I e
8.00 — 7 =] 60.00 — / e —
P e o
-——- o - =g
‘- o / KA
6.00 |2] 40.00 — , e 1
.~ 4
. /7 -~
20. 00 ;7 2" —
4.00 .- — L
0. 00
‘ ‘ # of processors ‘ +# of processors
10. 00 20. 00 10. 00 20. 00

Figure 7: Varying system size.
6 Conclusion

We have proposed a resource synchronization protocol for use in multiprocessor hard real-time sys-
tems that allows jobs to simultaneously lock more than one global resource. The synchronization
protocol may be applied to both static and dynamic priority systems, and prevents deadlock and
transitive blocking. We also derived sufficient utilization bounds to guarantee schedulability. Our
experimental performance studies showed that the extended protocols thatallow nested global crit-
ical sections have better performance than the protocols which do not allow a job to simultanously
lock multiple global semaphores. We found this to be true for both static and dynamic priori-
ties. So, if RM static scheduling policy is used, MSPCP I is an attractive technique for resource
synchronization, while MDPCP I is a wise choice when EDF scheduling policy is in effect.

However; all of these protocols can require many context switches, resulting in significant over-
head. Further investigation is needed to find ways to reduce or estimate such overhead.

References

[Bak90] T. P. Baker. A stack-based resource allocation policy for real-time processes. In Real
Time Systems Symposium, pages 191-200, 1990.

21

[CL90a]

[CL90b]

[CL91]

[LL73]

[LSD89]

[Rajol]

[RSLSS]

[SRLST]

M. I. Chen and K. J. Lin. Dynamic Priority Ceilings: A concurrency control protocol for
real-time systems. Real Time Systems, 2:325-246, 1990.

M. I. Chen and K. J. Lin. Schedulability conditions of real-time periodic jobs using shared
resources. Technical Report UTUCDCS-R-91-1658, Dept. of Computer Science, University
of Illinois at Urbana-Champaign, 1990.

M. I. Chen and K. J. Lin. A Priority Ceiling Protocol for multiple-instance resources. In
Real Time Systems Symposium, pages 141-148, 1991.

C.L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment. Journal of the Association for Computing Machinery, 20(1):46-61,
Jan. 1973.

J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic scheduling algorithm: Exact
characterization and average case behavior. In Real Time Systems Symposium, pages
166-171, 1989.

R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheritance Approach.
Kluwer Academic Publishers, 1991.

R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols for multi-
processors. In Real Time Systems Symposium, pages 259-269, 1988.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An approach to
real-time synchronization. Technical Report CMU-CS-87-181, Dept. of Computer Science,
Carnegei-Mellon University, 1987.

22

