
Multiprocessor Priority Ceiling Based Protocols �Chia-Mei Chen and Satish K. TripathiInstitute for Advanced Computer StudiesSystems Design and Analysis GroupDepartment of Computer ScienceUniversity of Maryland, College Park, MD 20742April 7, 1994AbstractWe study resource synchronization in multiprocessor hard real-time systems. Speci�cally,we propose a multiprocessor resource control protocol which allows a job to simultaneouslylock multiple global resources, removing a restriction from previous protocols. Allowing nestedcritical sections may permit a �ner granularity of synchronization, increasing parallelism andthroughput. All the protocols discussed belong to the class of priority inheritance protocols andrely in some fashion on priority ceilings for global semaphores. We consider both static anddynamic priorities, building upon the multiprocessor priority ceiling protocol (MPCP) proposedby Rajkumar et al. and the dynamic priority ceiling protocol (DPCP) proposed by Chen andLin.The extended protocols prevent deadlock and transitive blocking. We derive bounds forworse case blocking time, and describe su�cient conditions to guarantee that m sets of periodictasks can be scheduled on an m multiprocessor system. Performance comparisons of theseprotocols with MPCP shows that the proposed protocols increase schedulability.�This work is supported in part by ARPA and Philips Labs under contract DASG-92-0055 to Department ofComputer Science, University of Maryland. The views, opinions, and/or �ndings contained in this report are thoseof the author(s) and should not be interpreted as representing the o�cial policies, either expressed or implied, of theAdvanced Research Projects Agency, PL, or the U.S. Government.1

1 IntroductionJobs in real-time systems are usually run periodically under time critical conditions. Failure to meettiming constraints is often considered as undesirable as computing an incorrect (but timely) result.Such systems are known as hard real-time systems (HRTS). The job scheduling algorithms used inHRTS must have predictable behavior so that it is possible to determine whether timing constraintswill be met. Liu and Layland showed that Rate Monotonic (RM) scheduling is optimal among �xedpriority scheduling algorithms, while Earliest Deadline First (EDF) scheduling is optimal amongdynamic priority scheduling algorithms[LL73]. They also derived processor utilization bounds forRM and EDF that are su�cient to guarantee that all jobs will complete within their periods.Job scheduling becomes more complex when jobs occasionally require exclusive access to sharedresources. A resource synchronization or control protocol may be used to permit exclusive access toshared resources, while preventing deadlocks and guaranteeing that timing constraints are satis�ed.Many such protocols have been developed for single processor systems.One approach to synchronization involves extending priority-driven protocols. In this classof protocols, each task has an associated priority which is used to determine access to sharedresources (including the processor). When synchronization is permitted, priority-driven protocolsare susceptible to potentially unpredictable delays due to priority inversion. Priority inversionoccurs whenever a lower priority task blocks a higher priority one. Some amount of priority inversionis unavoidable to guarantee mutual exclusion; however, it must be bounded to allow schedulabilityanalysis and minimized to improve utilization bounds. Sha et al. introduced the concept of priorityinheritance protocols to solve the priority inversion problem [SRL87]. One of the more attractiveprotocols they propose, the priority ceiling protocol (PCP), prevents both deadlock and transitiveblocking. They also developed su�cient schedulability conditions for a set of periodic tasks to bescheduled via a PCP algorithm on a uniprocessor system. Rajkumar et al. subsequently developedmultiprocessor and distributed versions of PCP[RSL88].Chen and Lin developed the dynamic priority ceiling protocol (DPCP) to enhance EDF schedul-ing algorithm [CL90a]. Baker proposed a stack-based resource allocation policy (SRP) which canbe applied to either RM or EDF scheduling algorithms [Bak90]. Other PCP extensions have alsobeen developed such as PCP for multiple-instance resources [CL91]. Chen and Lin summarized theschedulability conditions of several priority-driven control protocols, and proposed a set of su�cientschedulability conditions for EDF-based resource control protocols [CL90b].With the exception of MPCP[RSL88], most resource synchronization protocols have been de-veloped solely for uniprocessor systems. MPCP does not allow nested accesses to global resources,i.e., it does not allow a task to simultaneously lock more than one global resource. A global re-source is one that may be accessed by tasks assigned to di�erent processors. This limitation onthe use of global resources may not satisfy varying resource access requirements, and may lead2

to unnecessary blocking. For example, some jobs may only need access to a small unit of globaldata, while other jobs may need to lock the entire resource. With MPCP, all jobs are forced tolock the entire global resource to guarantee consistency. The situation is analogous to using �lelocking, when record locking would su�ce. We know that a �ner granularity of synchronizationallows a greater degree of concurrency, while coarser granularity imposes less overhead. A balancedapplication of �ne granularity can gain the advantages of parallelism in return for a reasonableoverhead cost. We propose a multiprocessor priority-based resource synchronization protocol thatallows a task to simultaneously lock multiple global resources. The proposed protocol can be usedto enhance RM or EDF scheduling algorithms. In addition, we extend MPCP to an EDF-basedresource synchronization protocol. We present the results of performance analysis of the proposedprotocols and MPCP that show that the proposed protocols improve schedulability compared tothe original MPCP. This improvement is due to the fact that our protocols allow a greater degreeof parallelism.In the next section, we state the assumptions of the proposed protocols and present the notationused throughout the balance of the paper. Section 3 presents a new version of multiprocessorsynchronization protocol, its properties, and schedulability analysis. MPCP is investigated andextended in section 4. Section 5 compares the performance of these two extended protocols, followedby some concluding remarks in section 6.2 Overview and NotationA HRTS consists of a set of processors, a set of resources and a set of tasks. Each task is permanentlyassigned to a speci�c processor Pi, where P1,P2, : : :,Pm denote the processors of the system. Aresource is any object that requires serialized access. Each resource is associated with a binarysemaphore which is used to guarantee mutual exclusion. A resource may be either global or local.Global resources can be accessed by tasks assigned to some (possibly complete) subset of theprocessors, while local resources are only accessible to tasks on a single processor. A set of niperiodic tasks is associated with each processor Pi. Each task T can be described by a triple(w; e; L), where w is the period of the task; e is the execution time of the task; and L is a list ofresources accessed by the task. Access to a shared resource may only occur within a correspondingcritical section (i.e. a sequence of instructions preceded by a lock operation of the associatedsemaphore and followed by an accompanying release operation). To distinguish between criticalsections that access global resources and those that access local resources, we call the formerglobal critical sections and the latter local critical sections. Furthermore, semaphores that guardglobal resources are called global semaphores and those that guard local resources are called localsemaphores. We use the terms resource, critical section, or semaphore interchangeablely, dependingon the context. 3

For each task, an instance of the task, called a job, is generated for every period of the task.The release time of a job is the beginning of the period and the deadline of a job is the end ofthe period. Pt(J) denotes the priority of the job J at time t and P (J) denotes the priority of thejob J at present. Ct(S) denotes the priority ceiling of the semaphore S at time t and similarlyC(S) refers to the priority ceiling of the semaphore S at present. When priorities are static, thesubscript t is dropped. The remote processors of processor P are the processors which share globalresources with P . Only jobs assigned to remote processors of processor P can interfere with thejobs on processor P . Let J be assigned to processor P . We de�ne the remote jobs of J , or of P , asthe jobs assigned to the remote processors of processor P , and similarly the local jobs as the jobsassigned to P . Jobs J1; J2; : : : ; Jn are listed conventionally in descending order of priority with J1having the highest priority, i.e., P (J1) > P (J2) > : : : > P (Jn). The jth critical section of job Ji isdenoted by zi;j .Even though PCP is based on RM scheduling while DPCP is based on EDF, the concepts un-derlying both protocols are similar, varying primarily in their de�nitions of priority. Both protocolsassign priority ceilings to semaphores which are used to defer some requests that could potentiallybe granted. The purpose of deferring some requests is to reduce and bound blocking due to priorityinversion. The priority ceiling of a semaphore S, C(S), is de�ned as the maximum priority of alljobs that are currently locking or will lock S. For a particular job J , S� denotes the semaphorewith the highest priority ceiling that is currently locked by a job other than J . Whenever a jobJ wants to access a resource, it must �rst acquire an exclusive lock on the semaphore associatedwith that resource. The lock is granted only if P (J) > C(S�); otherwise job J is blocked until thelock may be granted. The job holding semaphore S� inherits the priority of the highest priority jobthat is blocked by S�. When a job exits from a critical section, it releases the semaphore, and thehighest priority job waiting for the semaphore can then lock the semaphore. There are two typesof blocking1. A job J is blocked if it attempts to lock some semaphore S, while some lower priorityjob JL has locked a semaphore S 0 whose priority ceiling exceeds the priority of J , C(S 0) � P (J).The other form of blocking occurs when there is a higher priority job JH that is already blocked dueto some lower priority job JL. Though the concepts do not change substantially, these protocolsrequire careful modi�cation to be extended to multiprocessor systems.3 Multiprocessor Dynamic Priority Ceiling Protocol I (MDPCP I)In this section, we present a dynamic priority multiprocessor version of the priority ceiling protocolbased upon EDF scheduling, which we call MDPCP I. The protocol imposes a few restrictionswhich we believe are often acceptable. MDPCP I only allows global (local) critical sections to be1We use the term blocking to refer to situations when a higher priority job is temporarily denied a resource(including the processor) due to a lower priority task. 4

nested within other global (local) critical sections; in other words it is not possible for a job tosimultaneously lock both a global and a local semaphores. An outermost global critical sectionand its nested inner global critical sections are viewed as a unit and can be shared by a groupof processors. Any global semaphores that are ever locked simultaneously by the same job, (i.e.that ever appear in the same nested critical section), must be shared by exactly the same set ofprocessors. If a global semaphore S is shared by processors Pi and Pj , we say that S is a globalsemaphore common to Pi and Pj . In the following subsections, we present the fundamental conceptsbehind MDPCP I, give proofs of some of its useful properties, and analyze conditions under whicha feasible schedule may be assured.3.1 Basic Idea Behind MDPCP IRajkumar et al. de�ned remote blocking as the blocking caused by remote jobs, irregardless of theirpriorities. They then proved that the remote blocking time of a job blocked while attempting toenter a global critical section is a function of the access time of critical sections if and only if a jobwithin the global critical section cannot be preempted by jobs executing outside critical sections[RSL88]. To ensure that blocking times are predictable, MDPCP I will not allow any job to preempta job executing within a global critical section. Since local critical sections may not overlap or nestwith global critical sections, we can use DPCP to synchronize access to local resources. Eventswhich may a�ect global resources such as locking or releasing a global semaphore or the arrivalof a new job require more attention as will be discussed shortly. Recall from the previous sectionthat the priority ceiling of a global semaphore S, C(S), is the priority of the highest priority jobthat is currently holding or will hold the semaphore S at the current time. C(S) may vary withtime as priorities are reassigned according to the EDF scheduling discipline. Let job J be boundto processor Pj.1. The highest priority job eligible to execute on processor Pj is assigned the processor if nolocal job with lower priority is in a global critical section.2. Before a job J enters a global critical section, it must lock the associated semaphore S. LetSS�j denote the set of global semaphores accessible from processor Pj that are currently lockedby remote jobs of J . Job J is granted the lock and may enter the critical section if it satis�esthe locking condition: P (J) > maxs2SS�j(C(s)):Otherwise, it is blocked and joins the queue for semaphore S. The queue is priority-ordered,i.e., the job with the highest priority waiting in the queue locks the semaphore when it isreleased. 5

3. If a job J is blocked and it has not locked any global semaphores, then a remote job withpriority lower than J may lock a global semaphore whose priority ceiling is greater than orequal to P(J) only if it was executing within a global critical section when J blocked. Thisrestriction holds even if the remote job satis�es the locking condition described in rule 2.4. A job J uses its original priority, unless it is in a critical section and blocks higher priorityjobs. In that case, it inherits the priority of the highest priority job that it blocks. Theoriginal priority is restored upon exiting the critical section.MDPCP I gives rise to four distinct types of synchronization delay: indirect and direct blocking,remote and implicit preemption. If a job JL is in a global critical section, it will block other localjobs with higher priorities (see rule 1). We use the term indirect blocking to refer to such blocking.The blocking enforced by the locking condition described in rule 2 is called direct blocking orremote preemption, especially when the blocking is caused by higher priority jobs. The blockingenforced by rule 3 is called implicit preemption. Note that the blocking caused by synchronizationof local resources is also called direct blocking since the uniprocessor protocol uses the same lockingcondition described in rule 2.Rule 1 implies that at most one job on each processor can be within a global critical section.Hence, each semaphore in SS�j must be locked by a remote job of the blocked job. In addition, thepriority of a job that has locked a semaphore in SS�j may be either higher or lower than that ofthe blocked job.Because of rule 2, a job J may be remotely preempted by a higher priority remote job. Forexample, suppose Jr is a remote job of J with higher priority than J and both are waiting for thesame global semaphore Sg. Jr will lock the semaphore Sg before J , since its priority is higher thanthat of J . J is directly blocked by Jr when Jr locks Sg. We call this special case of direct blockingremote preemption. In uniprocessor systems, conventionally, blocking occurs when a job is blockedby a lower priority job. Therefore, to conform with the de�nition of blocking used in uniprocessorprotocols, we will in the future only use the term direct blocking when discussing blocking causedby lower priority jobs. We will refer to blocking due to a higher priority remote job as remotepreemption.Implicit preemption ensures that a higher priority job will not be in�nitely blocked by lowerpriority remote jobs. The following two examples show the need for implicit preemption.Figure 1 shows the con�guration of the system used in the next two examples. P1, P2, and P3are the processors of the system and S1, S2, and S3 are the global semaphores. (We don't showany local semaphores.) S1 is accessible from P1 and P3. S2 is accessible from P1 and P2, and S3 isaccessible from P2 and P3. Job J1 is assigned to processor P1, jobs J2 and J3 to P2, and jobs J4and J5 to P3. S1 is accessed by jobs J1, J4, and J5, and S2 is accessed by J1, J2, and J3. No jobaccesses S3. 6

P1 P2 P3S2 S3 S1
J1 J2J3 J4J5

Figure 1: Architecture used in examples.Figure 2 illustrates how a job can be in�nitely blocked by lower priority jobs, if we do notimpose rule 3. Consider the following sequence of events. Suppose that J1 attempts to lock globalsemaphore S1 while J2 has locked global semaphore S2. In this case, J2 directly blocks J1. BeforeJ2 releases semaphore S2, J4 locks S1, since SS�3 is empty. Therefore, J1 is directly blocked onceagain. The same scenario can happen on processor P2. Before J4 releases S1, J3 locks S2, andhence it blocks J1. This sequence of events can repeat inde�nitely, and cause J1 to be in�nitelyblocked. Figure 3 shows how, under the same circumstances, job J1 will not be in�nitely blockedif rule 3 is enforced.Synchronization of global resources contributes new blocking factors that do not arise in unipro-cessor systems. To facilitate computation of the worse case blocking time induced by this protocol,we de�ne two kinds of blocking sets: � and �. We also de�ne three sets of jobs, GP (J), LP (J)and LLP (J), useful in computing � and �. Each set of jobs contributes di�erent synchronizationdelays.Let GP (J) be the set of remote jobs of job J whose priorities are higher than that of J , andlet LP (J) be the set of remote jobs of job J whose priorities are lower than that of J . Finally,LLP (J) is de�ned to be the set of the local jobs of job J with priorities lower than J .� �i;L denotes the set of the critical sections of the lower priority job JL which can directlyblock Ji. �i;LP (Ji) denotes the set of critical sections of jobs in LP (Ji) that can directly blockJi. �i;LLP (Ji) is de�ned similarly. Let �i be the set of critical sections of all lower priorityjobs of Ji that can directly block Ji. �i = �i;LP (Ji) [�i;LLP (Ji) and �i;LP (Ji) \ �i;LLP (Ji) = ;:Let P be the processor to which job Ji is bound. Elements in �i;LLP (Ji) are the local critical7

J1J2J3J4J5 Figure 2: An example without implicit preemption.J1J2J3J4J5 I.P. R.P.R.P.Figure 3: An example with implicit preemption. (IP = implicit preemption. RP = remote pre-emption.) 8

sections of processor P , while elements in �i;LP (Ji) are the global critical sections of P .� �i;L denotes the set of all critical sections of local job JL which can indirectly block Ji. �i isde�ned similarly.3.2 The Properties of MDPCP IBoth DPCP and PCP prevent transitive blocking and deadlock. These useful properties are pre-served in MDPCP I.Lemma 1 Suppose JH is directly blocked by a remote job JL on global semaphore S. Then underMDPCP I, JH is not within any critical section.Suppose JH is within a critical section guarded by S0 when it is directly blocked by JL onS. S 0 must be a global semaphore and S0 and S are common to the processors to which JH andJL are bound. JH must lock S0 either before or after JL locks S. (1) First, suppose JL locks Safter JH has locked S 0. Then P (JL) > C(S 0), and hence P (JH) > P (JL) > C(S 0). However,C(S 0) � P (JH) due to the de�nition of priority ceiling. (2) Now, suppose JH locks S0 after JL haslocked S. Thus P (JH) > C(S). But since JH is blocked by S, P (JH) � C(S). Since both caseslead to contradictions, the lemma follows. 2Since global critical sections can be nested within other global critical sections, a job can bewithin several critical sections simultaneously. The above lemma implies that once a job enters anoutermost critical section, it will not be blocked before it exits from that critical section. Hence,no matter how many nested critical sections are entered during the time the job is within theoutermost critical section, the job will not be blocked by any lower priority job. Note that the jobstill can be preempted by a higher priority job.Theorem 2 MDPCP I prevents transitive blocking.Let Ji3 directly or indirectly block Ji2 and suppose that Ji2 directly or indirectly blocks Ji1. IfJi3 directly blocks Ji2, by Lemma 1, Ji2 is not within any of its critical sections. By the de�nitionof MDPCP I, Ji2 cannot block any jobs indirectly or directly. If Ji3 indirectly blocks Ji2, by thede�nition of MDPCP I, Ji2 has not started execution. Hence, Ji2 cannot directly or indirectly blocka job. 2Theorem 3 MDPCP I prevents deadlocks.Suppose deadlock may occur and let fJ1; J2; : : : ; Jng be a set of jobs that cause a waiting cycle.Since, by Theorem 2 there is no transitive blocking, at most two jobs can be in the waiting cycle.The rest of the proof is similar to the proof of Theorem 2. 29

3.3 Schedulability Analysis of MDPCP IIn this subsection, we develop a set of su�cient conditions which, when satis�ed, guarantee that msets of periodic tasks assigned to m processors will complete execution within their periods whenscheduled using MDPCP I. Liu and Layland proved the schedulability condition for uniprocessorEDF scheduling [LL73]. A set of n periodic tasks can be scheduled by EDF algorithm ife1w1 + e2w2 + : : :+ enwn � 1: (1)If we �nd upper bounds for the blocking factors of MDPCP I, we can then derive su�cient schedu-lability conditions using equation 1. The blocking factors can be better understood with the aid ofthe following lemma.Lemma 4 Whenever JH attempts to enter an outermost global critical section, it can be directlyblocked by lower priority remote jobs for at most the duration of the global critical section with thelongest access time in �H;LP (JH).Let V be the set of remote jobs which are currently within global critical sections in �H;LP (JH)and that block JH at the time JH requests a lock on a semaphore corresponding to an outermostglobal critical section. During the blocking by jobs in V , a remote job with the priority lower thanJH cannot enter a critical section. The jobs in LP (JH) � V are the remote jobs with prioritieslower than JH ; hence, they cannot contribute any blocking. Therefore, JH can be directly blockedby a remote job with lower priority for at most the duration of the longest global critical sectionin �H;LP (JH). 2The above lemma provides an upper bound for the direct blocking caused by remote jobs withlower priorities, for each time that a job attempts to enter an outermost global critical section.We now address the computation of blocking factors. First, we de�ne additional notation. LetLBk;i be the worse case direct blocking time of job Jk;i induced by one of its lower priority local jobs(i.e., the local blocking time of Jk;i). Let GBk;i be the worse case direct blocking time of job Jk;iinduced by its lower priority remote jobs (i.e., the remote blocking time of Jk;i) each time that Jk;iattempts to enter an outermost global critical section. Let IBk;i be the worse case indirect blockingtime of job Jk;i. Finally, we de�ne dk;i as the number of times that Jk;i enters an outermost globalcritical section.By the de�nition of MDPCP I, indirect blocking can only occur once during the execution ofa job. Lemma 4 showed that each time a job Jk;i attempts to enter an outermost critical section,it can be directly blocked by its remote jobs with lower priority. Thus, the worse case blockingtime induced by indirect blocking and remote blocking is IBk;i+dk;i �GBk;i. As for local blocking,10

every time Jk;i suspends itself when it tries to enter a global critical section, its local jobs withlower priorities might enter local critical sections which can later cause Jk;i to be blocked. Localblocking factors contribute dk;i � LBk;i in the worse case.In addition to the above blocking factors, remote and implicit preemption will also occur. Whena job Jk;i attempts to lock a global semaphore, it might be remotely preempted by its remote jobswith higher priorities. In the worse case, it has to wait for all its remote jobs with higher prioritiesaccessing the global critical sections common to processor Pk. So, in the worse case the blockingtime caused by the remote preemption, RPk;i, is PJj;h2GP (Jk;i) ck;j;h � dwk;i=wj;he, where ck;j;h isthe total access time that job Jj;h spends in the global critical sections common to Pk.Implicit preemption occurs when a job Jk;i wants to lock a global semaphore S and �nds that oneof its higher priority remote jobs, Jj;h, is directly blocked by SS�j and C(S) � P (Jj;h). According tothe de�nition of MDPCP I, Jk;i is implicitly preempted by Jj;h. Each time job Jk;i attempts to locka global semaphore whose priority ceiling is higher than or equal to the priority of one of its higherpriority remote jobs, P (Jj;h), it is implicitly preempted. In other words, each time when Jk;i wantsto lock a global semaphore S, Jk;i can be implicitly preempted for at most maxJj;h2GP (Jk;i)GBj;h,where C(S) � P (Jj;h). To simplify the computation of the total implicit preemption time, weexpress the worse case of implicit preemption time of job Jk;i, IPk;i, as dk;i �maxJj;h2GP (Jk;i)GBj;h.Hence, the worse case total blocking time of a job Jk;i induced by MDPCP I, BMDPCP Ik;i , can beexpressed as follows. BMDPCP Ik;i = IBk;i + dk;i � (GBk;i + LBk;i) +XJj;h2GP (Jk;i) ck;j;h � dwk;i=wj;he+dk;i � maxJj;h2GP (Jk;i)GBj;h: (2)We need to know the elements of the sets LLP (Jk;i), LP (Jk;i), and GP (Jk;i) for each job Jk;ito compute the blocking sets and preemption factors. The set of local jobs with lower priorities,LLP (Jk;i), of job Jk;i is the same as the set of the lower priority jobs of Jk;i de�ned in uniprocessorsystems, since both refer to the jobs on a single processor. A job Jk;l in LLP (Jk;i) must arriveearlier and lock a local semaphore. It is preempted by Jk;i when it is holding the semaphore suchthat later Jk;i will be blocked. Since Jk;l is preempted, it must have a later deadline. Consequently,the period of a job in LLP (Jk;i must be longer than that of Jk;i.However, the set of remote jobs with lower priorities, LP (Jk;i), of job Jk;i does not possessthe same nice properties as LLP (Jk;i). Jobs in LP (Jk;i) are the jobs whose deadlines are laterthan that of Jk;i, but not necessarily with earlier arrival times. So, they can be any jobs on theremote processors of processor Pk. The same theory applies to the set GP (Jk;i). Consequently,11

GP (Jk;i) = LP (Jk;i) = GP (Jk;j) = LP (Jk;j). The su�cient schedulability conditions can be statedas follows:Theorem 5 Given m sets of periodic tasks on a system with m processors, where a set of nkperiodic tasks is assigned to processor Pk. The sets of tasks can be scheduled by EDF with MDPCP Ias the resource control protocol, if the following conditions are satis�ed:8k; 1 � k � m;ek;1 +Bk;1wk;1 + ek;2 + Bk;2wk;2 + : : :+ ek;nk +Bk;nkwk;nk � 1: (3)24 Multiprocessor Dynamic Priority Ceiling Protocol II (MD-PCP II)The multiprocessor dynamic priority ceiling protocol II (MDPCP II) is based on a previouslydeveloped static priority multiprocessor protocol known as MPCP[RSL88]. To clearly distinguishour dynamic protocol MDPCP II from the static protocol MPCP, we will subsequently use theacronym MSPCP II to refer to the original MPCP protocol. MSPCP is short for multiprocessorstatic priority ceiling protocol. The su�x II indicates that same resource control scheme is usedas in MDPCP II, and does not signify a revision to the original MPCP protocol. MDPCP IIrelies upon an EDF scheduling policy, but is otherwise identical to MSPCP II. Unlike MDPCP I,MDPCP II does not allow nested global critical sections. It shares this restriction with its staticcounterpart MSPCP II. Otherwise, the assumptions made by MDPCP II do not di�er from thoserequired by MDPCP I. Neither protocol allows global critical sections to overlap or nest with localcritical sections. If it is necessary to simultaneously lock both a global and a local resource, thenthe local semaphore can be treated as a global one. Thus this assumption does not introduce anyactual constraints.Due to the varying restrictions concerning nested global critical sections, MDPCP I and MD-PCP II take dramatically di�erent approaches to controlling access to global resources. To allownested global critical sections, MDPCP I relies upon priority ceilings to reect the importance ofglobal resources throughout the system. Thus MDPCP I requires a lock checking protocol thatis similar to that used in uniprocessor systems, but must be much more complex. By contrast,due to its prohibition against nested global critical sections, MDPCP II can use simple e�cientatomic operations, such as test-and-set, to implement global locking. Both protocols may use auniprocessor synchronization protocol to manage local resources.The principles underlying MDPCP II are described in the following subsections.12

4.1 Basic Idea of MDPCP IIWe use a slightly di�erent de�nition of priority ceiling that we used in MDPCP I. The priorityceiling of a local semaphore SL, C(SL), is de�ned to be the priority of the highest priority job thatis accessing or will access the semaphore at the current time. This is the same de�nition used in the(uniprocessor) DPCP. Recall from section 3.1 that, in order to easily bound remote blocking times,it is necessary to prevent jobs executing within global critical sections from being preempted byjobs executing outside of critical sections. Consequently, a job within a global critical section musthave a priority higher than every job executing outside of global critical sections. This is easilyhandled by introducing the concept of base priority to denote the priority of the highest priorityjob in the entire system. We then de�ned the remote priority ceiling of a global semaphore SGwith respect to processor Pj , R(SG;Pj), to be the priority of the remote job of Pj with the highestpriority that is accessing or will access this semaphore at the current time, plus the base priority.A job Ji bound to Pj is assigned a new priority, ~PJi;S , when it locks a global semaphore S,and reverts to its previous priority when it releases the semaphore. The extended priority ~PJi ;Sis de�ned to be P (Ji) if S is a local semaphore, and R(S;Pj) if S is a global semaphore. Sincethe remote priority ceilings of all global semaphores have been increased by the base priority, ajob executing within a global critical section has a higher priority than any job outside of a globalcritical section. This ensures that a job that has locked a global semaphore may only be preemptedby a local job that locks another global semaphore that has a higher remote priority ceiling.The protocol can be described as follows:1. When job J wants to access a local critical section, it uses DPCP to see if it can lock theassociated semaphore. i.e., J can seize the lock, only if P (J) > C(S�L), where S�L denotes thesemaphore with the highest priority ceiling of all local semaphores currently locked by jobsother than J . DPCP is used to synchronize access to local resources.2. If job J attempts to access a global critical section, it locks the associated semaphore S ifno other job has already locked S. Otherwise, it joins the priority-ordered queue associatedwith S using its original priority P (J),3. A job J locking a global semaphore Sg inherits the extended priority ~PJ;Sg , and reverts to itsprevious priority upon releasing Sg.4. A job J can lock Sg and preempt another job J 0 within another global critical section guardedby S0, if ~P (J; Sg) > ~P (J 0; S 0g).5. Whenever a global semaphore is released, it will be given to the highest priority job waitingif the associated queue is not empty. 13

While a job has locked any global semaphore, it cannot attempt to lock any other semaphore,whether it is local or global. Thus a job cannot deadlock while holding a lock for a global semaphore.Jobs can simultaneously lock multiple local semaphores, but since MDPCP II uses DPCP to managethe access of local critical sections, a job cannot become deadlocked within a local critical section.So MDPCP II is deadlock free.4.2 Schedulability Analysis of MDPCP IIBlocking times in MDPCP II depend upon one type of blocking that does not arise in MDPCP I.In MDPCP II, a job within a global critical section S can preempt a local job within another globalcritical section S0. Hence, it can induce another form of blocking delay to jobs that waits for S 0.Blocking times in MDPCP II fall into the following categories:1. Blocking by local jobs with lower priorities within local critical sections. When a job Jk;iattempts to lock a global semaphore S, it may suspend while waiting for some job to unlockS. In the meantime, one of its local jobs might lock a local semaphore which will later causejob Jk;i to be blocked. Let LLBk;i be the worse case access time of a local semaphore accessedby a lower priority local job of job Jk;i that can block Jk;i. Let dk;i denote the number of timesthat Jk;i locks a global semaphore. The worse case blocking time caused by this scenario canbe expressed as dk;i � LLBk;i.2. Blocking by local jobs with lower priorities accessing global critical sections. This type ofblocking is similar to the previous one, except that, in this case, a lower priority local job canlock or be waiting for a global semaphore that might later cause Jk;i to be blocked when Jk;iexecutes outside of a critical section. Let GLBk;i;l be the worse case access time of a globalsemaphore accessed by the lower priority job Jk;l that can block Jk;i. For every lower priorityjob Jk;l of job Jk;i, this form of blocking can contribute at most min(dk;l; dk;i + 1) �GLBk;i;lblocking delay.3. Blocking by remote jobs with lower priorities. When job Jk;i attempts to lock a globalsemaphore, that semaphore might already be locked by a lower priority remote job. LetGRBk;i be the worse case access time of the global semaphore that is accessed by job Jk;iand a lower priority remote job. Then job Jk;i can experience at most dk;i �GRBk;i blockingdelay caused by this situation.4. Blocking by remote jobs with higher priorities. When job Jk;i tries to lock a global semaphore,that semaphore might be locked or a higher priority remote job might be waiting for it. LetdCk;i;m;h be the number of times that job Jm;h locks the global semaphores which will be alsoaccessed by Jk;i. Let GHBk;i;m;h be the worse case access time of the global semaphore14

accessed by Jk;i and Jm;h. We call this form of blocking remote preemption. The worse caseblocking time caused by remote preemption is dk;i;m;h � dwk;i=wm;he � GHBk;i;m;h, for eachremote job Jm;h, with higher priority, of job Jk;i.5. Blocking by a remote job accessing a global critical section. Suppose job Jk;i is blocked by aremote job Jm;j accessing a global semaphore Sg1. Meanwhile, suppose another remote jobJm;x inherits a higher extended priority and preempts Jm;j , when Jm;x locks another globalsemaphore Sg2. Not only does job Jk;i experience the blocking delay caused by the semaphoreSg1 that it tried to lock; it also experiences a blocking delay due to Sg2. The blocking bythe former semaphore is considered above; the blocking by the latter is considered here. LetdHk;i;m;x be the number of times that job Jm;x locks the global semaphores with higher remotepriority ceilings than a global semaphore that is accessed by another local job of Jm;x andthat can block Jk;i. We use the notation GHBk;i;m;x to refer to the worse case access timeof the global semaphore as described above. This type of the blocking time can be bound bythe expression dHk;i;m;x � dwk;i=wm;xe �GHBk;i;m;x, for every remote job Jm;x of job Jk;i.The total blocking time of a job Jk;i induced by MDPCP II, BMDPCP IIk;i , is the summation ofthe blocking factors described above.BMDPCP IIk;i = di;k � LLBk;i +XJk;l2LLP (Jk;i)min(dk;l; dk;i + 1) �GLBk;i;l +dk;i �GRBk;i +XJm;h2GP (Jk;i)dk;i;m;h � dwk;i=wm;heGHBk;i;m;h +X8Jm;xm6=k dHk;i;m;x � dwk;i=wm;xe �GHBk;i;m;x: (4)The de�nitions of the set of remote jobs with lower priorities and higher priorities and the set oflocal jobs with lower priorities, LP (Jk;i), GP (Jk;i), and LLP (Jk;i), for a job Jk;i are the same asthose de�ned in MDPCP I, since both use dynamic priorities.5 Performance ComparisonsThis section compares the performance of two static priority protocols, MSPCP I and MSPCP II,and two dynamic priority protocols, MDPCP I and MDPCP II. The multiprocessor static priorityceiling protocol I, MSPCP I is a variation of MDPCP I which uses a RM scheduling algorithm. The15

primary di�erences between MSPCP I and MDPCP I are the de�nitions for priorities and priorityceilings. MDPCP I de�nes P (J) and C(S) in exactly the same fashion as uniprocessor PCP.MDPCP I also preserves the useful MDPCP I properties: freedom from deadlock and prevention oftransitive blocking. The proofs are analogous to those for MDPCP I. The blocking factors inducedby MSPCP I are similar as well: indirect blocking, local and remote blocking, remote preemption,and implicit preemption. Hence, the expression for the worse case blocking time of a job Jk;i,BMSPCP Ik;i is the same as that in MDPCP I, BMDPCP Ik;i . The only di�erence is the de�nitions ofthe sets of lower (and higher) priority remote jobs, i.e., LP (Jk;i) and GP (Jk;i). LP (Jk;i) is the setof remote jobs with longer periods than Jk;i, and GP (Jk;i) is the set of remote jobs with shorterperiods than Jk;i. A set of periodic tasks can be scheduled by RM if the following condition issatis�ed[LL73]: nXi=1 eiwi � n(2 1n � 1): (5)The metric used to compare the schedulability of these protocols is the maximum estimatedconsumed processor power (MECPP). Inequality 1 shows the intuition behind this measurement.When an EDF scheduling policy is used in a single processor system, the utilization of the processormust be less than 1 in order to meet all the deadlines of the periodic tasks in the system. Theleft-hand side of the inequality is the upper bound of the processor utilization consumed by thetasks in the system. This upper bound, called the estimated consumed processor power (ECPP),can be viewed as a measure of schedulability. For a multiprocessor system, each processor Pk hasits associated ECPP value, ECPPk. The deadlines of all tasks in the system will be met if allthe ECPP values are less than 1; or equivalently, if the maximum of the ECPP values is less than1. Consequently, the maximum ECPP value (MECPP) is a natural performance metric for theschedulability of multiprocessor hard real-time systems.Given m sets of n tasks each assigned to anm multiprocessor system and each processor acceptsa set of n tasks. The estimated consumed processor power of processor Pk (ECPPk) is de�ned asPni=0 ek;jwk;j +max1�i�n Bk;iwk;i , if RM scheduling is used and Pnj=0 ek;j+Bk;jwk;j , if EDF is used, where Bk;jis the worse case blocking time of job Jk:j induced by the corresponding resource synchronizationprotocol. The computation of Bk;j is described in sections 3.3 and 4.2. MECPP is de�ned asmax1�k�mECPPk. If a protocol can lead to a smaller value for MECPP , we say it performsbetter.5.1 Simulation DesignThe simulator models a system with m processors and shared memory. It consists of two com-ponents, the con�guration model and the task model. The con�guration model produces global16

critical sections shared with di�erent sets of processors and local critical sections for each processor.The task model generates m sets of tasks; each set contains n periodic tasks. The con�gurationmodel generates nested global critical sections since MSPCP I and MDPCP I allow them. However,for MSPCP II and MDPCP II, a job must use a coarser level of granularity for global semaphores.The following parameters control the con�guration of the simulated system:� m is the number of processors in the system.� n is the number of tasks accepted by each processor.� NumLCS is the maximum number of local semaphores for a processor. In our simulation,NumLCS is 4.� NumGCS is the maximum number of global semaphores for a processor. In our simulation,NumGCS is 4.� TotalGCS is the total number of global semaphores in the whole system. In our simulation,TotalGCS is 8.� CSAccessTime is the maximum access time of a critical section. In our simulation, CSAccessTimeis 4 time units. We assume that all tasks have the same access time for executing the sameglobal critical section.� DegreeSharing is the probability that a global critical section is accessible from a processor.Setting DegreeSharing to 0 means that no global critical sections are shared by di�erentprocessors (all global semaphores become local in this case), while a value of 1 indicates thatall global critical sections are accessible from every processor. The greater the degree ofsharing, the more frequently jobs interfere with each other.The task model determines the attributes of the various tasks. The following parameters controlthe task model.� MinPeriod and PeriodIncrement de�nes the periods of tasks. For a task Tk;i, the period oftask Tk;i, wk;i can be computed bywk;i = (MinPeriod+ PeriodIncrement �Rw if i = 1wk;i�1 + PeriodIncrement �Rw otherwise,where Rw is a number uniformly distributed over (0,1].17

� LbTaskConsumedPower and UbTaskConsumedPower de�ne the lower and upper boundsof the task consumed processor power, the rate of the execution time to the period of a task.The execution time of a task Tk;i, ek;i, is de�ned asek;i = wk;i �Re;whereRe is uniformly distributed between LbTaskConsumedPower and UbTaskConsumedPower.� The list of critical sections accessed by a task is represented as a bit map which is generated bya random number and uniformly distributed between 0 and the maximum number of possiblebit map patterns.5.2 Experimental ParametersThree run-time parameters are used to simulate various system workloads: the number of pro-cessors, the number of tasks, and the degree of sharing. Varying the number of tasks provides away to see how the protocol behaves as the processor workload increases, and varying the numberof processors shows how the protocol behaves as the system size scales. Changing the degree ofsharing illustrates the impact of synchronization for access to global resources. In the followingsubsection, we give the results of several simulation experiments. In each experiment, we variedonly a single system parameter, and held all the others constant.5.3 ResultsIn order to see the impact of increases in the processor workload on performance, we varied thenumber of tasks for a �xed number of processors. The results are shown in Figure 4. We alsochanged the degree of sharing when varying processor workload, and found similar results. There-fore, we only present the results for the case when the degree of sharing was set equal to 0.5. Clearly,resource contention and blocking time increase as the workload increases. The rate of increase ofblocking by MSPCP II and MDPCP II are greater, because blocking factors 4 and 5, described insection 4.2, increase signi�cantly as the number of tasks increases. The slopes of MSPCP I with mequal to 10 and 20 are almost identical. The increased MECPP values for the case where m is 20 areprimarily due to remote preemption, and remain constant throughout the various processor loads.A job will have more remote jobs with higher priorities when m is 20, which increases the amountof more remote preemption for the job. The rate of increase of the number of higher priority re-mote jobs remains stable as the processor workload increases; there is negligible di�erence betweenthe cases where m equals 10 and m equals 20. Consequently, the increase in MECPP values isalmost identical for the two cases. However, MDPCP I behaves di�erently since the blocking timeof each task a�ects the MECPP; it is unlike MSPCP I where only a single blocking time matters.18

MSPCP I (m=10)

MSPCP II (m=10)

MSPCP I (m=20)

MSPCP II (m=20)

MECPP

of tasks0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

10.00 20.00

MDPCP I (m=10)

MDPCP II (m=10)

MDPCP I (m=20)

MDPCP II (m=20)

MECPP

of tasks
0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

10.00 20.00Figure 4: Varying processor workload.As processor workload increases, the discrepancies between MSPCP I and MSPCP II (or betweenMDPCP I and MDPCP II) become signi�cant. MSPCP I and MDPCP I perform better under awide range of processor workloads.Figure 5 and Figure 6 show the simulated performance results as the degree of sharing changes.For MDPCP I and MSPCP I, the increased concurrency allowed by the �ne granularity of resourcesbecomes more signi�cant as the degree of sharing increases. Two jobs can simultaneously accessdi�erent critical sections, in cases where MDPCP II and MSPCP II would force them to be seri-alized. In general, the MECPP increases as the degree of sharing increases. However, it increasesmuch faster under MSPCP II or MDPCP II than under MSPCP I or MDPCP I. Again, we seethat MSPCP I and MDPCP I allow better performance.To study the e�ect of resource contention among processors, we varied the number of proces-sors while holding other system parameters �xed. We present the simulation results from thoseexperiments in Figure 7. MSPCP I and MDPCP I are less sensitive to changes in system sizethan MSPCP II and MDPCP II, and have better performance as well. These results have onesimilarity with the results from the experiments of varying processor workload. The di�erences ofthe MECPP values for MSPCP I remain constant, while the di�erences of the MECPP values forMDPCP I continue to increase. The cause of such behavior is the same in both cases.19

MSPCP I (m=10 n=5)

MSPCP II (m=10 n=5)

MSPCP I (m=10 n=10)

MSPCP II (m=10 n=10)

MECPP

-3deg of sharing x 10
2.00

3.00

4.00

5.00

6.00

7.00

8.00

500.00

MDPCP I (m=10 n=5)

MDPCP II (m=10 n=5)

MDPCP I (m=10 n=10)

MDPCP II (m=10 n=10)

MECPP

-3deg of sharing x 10

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

500.00Figure 5: Varying the degree of sharing when m = 10.

MSPCP I (m=20 n=10)

MSPCP II (m=20 n=10)

MSPCP I (m=20 n=20)

MSPCP II (m=20 n=20)

MECPP

-3deg of sharing x 10

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

500.00

MDPCP I (m=20 n=10)

MDPCP II (m=20 n=10)

MDPCP I (m=20 n=20)

MDPCP II (m=20 n=20)

MECPP

-3deg of sharing x 100.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

500.00Figure 6: Varying the degree of sharing when m = 20.20

MSPCP I (n=10)

MSPCP II (n=10)

MSPCP I (n=20)

MSPCP II (n=20)

MECPP

of processors

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

10.00 20.00

MDPCP I (n=10)

MDPCP II (n=10)

MDPCP I (n=20)

MDPCP II (n=20)

MECPP

of processors
0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

10.00 20.00Figure 7: Varying system size.6 ConclusionWe have proposed a resource synchronization protocol for use in multiprocessor hard real-time sys-tems that allows jobs to simultaneously lock more than one global resource. The synchronizationprotocol may be applied to both static and dynamic priority systems, and prevents deadlock andtransitive blocking. We also derived su�cient utilization bounds to guarantee schedulability. Ourexperimental performance studies showed that the extended protocols thatallow nested global crit-ical sections have better performance than the protocols which do not allow a job to simultanouslylock multiple global semaphores. We found this to be true for both static and dynamic priori-ties. So, if RM static scheduling policy is used, MSPCP I is an attractive technique for resourcesynchronization, while MDPCP I is a wise choice when EDF scheduling policy is in e�ect.However; all of these protocols can require many context switches, resulting in signi�cant over-head. Further investigation is needed to �nd ways to reduce or estimate such overhead.References[Bak90] T. P. Baker. A stack-based resource allocation policy for real-time processes. In RealTime Systems Symposium, pages 191{200, 1990.21

[CL90a] M. I. Chen and K. J. Lin. Dynamic Priority Ceilings: A concurrency control protocol forreal-time systems. Real Time Systems, 2:325{246, 1990.[CL90b] M. I. Chen and K. J. Lin. Schedulability conditions of real-time periodic jobs using sharedresources. Technical Report UIUCDCS-R-91-1658, Dept. of Computer Science, Universityof Illinois at Urbana-Champaign, 1990.[CL91] M. I. Chen and K. J. Lin. A Priority Ceiling Protocol for multiple-instance resources. InReal Time Systems Symposium, pages 141{148, 1991.[LL73] C.L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the Association for Computing Machinery, 20(1):46{61,Jan. 1973.[LSD89] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic scheduling algorithm: Exactcharacterization and average case behavior. In Real Time Systems Symposium, pages166{171, 1989.[Raj91] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheritance Approach.Kluwer Academic Publishers, 1991.[RSL88] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols for multi-processors. In Real Time Systems Symposium, pages 259{269, 1988.[SRL87] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An approach toreal-time synchronization. Technical Report CMU-CS-87-181, Dept. of Computer Science,Carnegei-Mellon University, 1987.
22

