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Abstract

Existing compilers often fail to parallelize sequential code, even when a program can be man-
ually transformed into parallel form by a sequence of well-understood transformations (as is the
case for many of the Perfect Club Benchmark programs). These failures can occur for several
reasons: the code transformations implemented in the compiler may not be sufficient to produce
parallel code, the compiler may not find the proper sequence of transformations, or the compiler
may not be able to prove that one of the necessary transformations is legal.

When a compiler extract sufficient parallelism from a program, the programmer extract addi-
tional parallelism. Unfortunately, the programmer is typically left to search for parallelism without
significant assistance. The compiler generally does not give feedback about which parts of the pro-
gram might contain additional parallelism, or about the types of transformations that might be
needed to realize this parallelism. Standard program transformations and dependence abstractions
cannot be used to provide this feedback.

In this paper, we propose a two step approach for the search for parallelism in sequential
programs: We first construct several sets of constraints that describe, for each statement, which
iterations of that statement can be executed concurrently. By constructing constraints that corre-
spond to different assumptions about which dependences might be eliminated through additional
analysis, transformations and user assertions, we can determine whether we can expose parallelism
by eliminating dependences. In the second step of our search for parallelism, we examine these
constraint sets to identify the kinds of transformations that are needed to exploit scalable par-
allelism. Our tests will identify conditional parallelism and parallelism that can be exposed by
combinations of transformations that reorder the iteration space (such as loop interchange and
loop peeling).

This approach lets us distinguish inherently sequential code from code that contains unexploited
parallelism. It also produces information about the kinds of transformations that will be needed
to parallelize the code, without worrying about the order of application of the transformations.
Furthermore, when our dependence test is inexact, we can identify which unresolved dependences
inhibit parallelism by comparing the effects of assuming dependence or independence. We are
currently exploring the use of this information in programmer-assisted parallelization.
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Categories and Subject Descriptors: D.3.4 [Software]: Compilers/Optimization
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Additional Key Words and Phrases: Omega test, Dependence Relation

1. INTRODUCTION

Array data dependence testing algorithms detect ordering constraints among refer-
ences to an array. These ordering constraints are used in parallelizing and vectoriz-
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ing compilers, to rule out program transformations that would change the semantics
of the program [AK87, Ban88, Wol89]. If the dependence information is inexact,
the compiler must act conservatively, rejecting some transformations because they
violate a constraint that may or may not be real.

Determining array data dependences is at least as hard as checking for integer
solutions to linear constraints, which is an NP-complete problem. Traditionally,
conservative array data dependence tests, such as Banerjee’s inequalities, have been
used in practice. These algorithms never fail to predict a dependence where one
exists, but they may also predict dependences that don’t exist. When a test reports
a dependence that does not actually exist, it is said to report a false dependence.
The term false dependence 1s also used to for dependences that exist but can be
eliminated through program transformations [MHL91a]. False dependences can
prevent useful parallelization.

Recent work [WT92, MHLI91b, TIJT91, Pug92] has suggested that exact integer
programming methods can be made efficient enough for use in production compilers.
However, even tests that use exact integer programming methods produce false
dependences. False dependences can arise due to non-linear terms, conditional
dependences and array kills [MHL91a].

One way to determine the exact data dependences for a program is to instrument
the program so that, when run, it produces an exact list of the data dependences
that occurred during an execution [MHL91a, Lar93, PP93]. On the basis of these
dependences, we can also calculate the critical path of the program for that execu-
tion. While this approach is useful, it has several drawbacks:

—the instrumented program may run substantially slower than the original,

—we only get information about dependences exhibited during a particular execu-
tion, and

—calculating the critical path of an execution may not give sufficient information
about how to exploit the parallelism or how to remove existing bottlenecks.

Even if we have exact information about dependences, the amount of parallelism
may not be obvious. If a loop does not carry any dependences, the loop can obvi-
ously be run in parallel. However, the presence of loop-carried dependences does
not always keep us from running some iterations in parallel. All of the loops in
Figure 1 carry dependences, but there is exploitable parallelism in each of them.
Advanced optimization techniques may be able to expose the parallelism in some
of these cases, but other cases exist that are even more difficult. The KAP pre-
processor on the KSR is able to find the parallelism in Example 3 and 5. It also
asks the user questions to determine if Example 7 is parallel. If the preprocessor
is given permission to reorder reductions, it can find the obvious parallelism in
Example 8. However, if it is not allowed to reorder reductions, it is unable to find
the non-obvious parallelism in this example. The KAP preprocessor doesn’t even
suggest to the user that parallelism might exist in Examples 1, 2, 4, or 6.

When automatic techniques cannot expose the parallelism, finding and exploit-
ing it can involve large amounts of programmer effort. For example, substan-
tial parallelism exists in all of the Perfect Club Benchmarks codes [B*89], al-
though existing automatic techniques are able to find only a small portion of it
[EHLPY1, Eig92, Eig93]. Exposing this parallelism required a careful, manual ex-
amination of all the dependences that appeared to prevent parallelism, and the
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for i :=1 to n do for i := 1 to n do
a(i) := a(1) + b(i) + a(n) a(i) := a(n-1)
Example 1 Example 2
for i :=1 to n do for i := 1 to n-1 do
for j := 1 to n do for j := 2 to n do

a(i,j) := (a(i,j-1)+a(i-1,j))/2

a(i,j) := (a(n-i,n)+a(i,j-1))/2

Example 3 Example 4
for i :=1 to n do for i := 1 to n do
b(i) := a(i)*a(i) s =0

c(i) := b(i-1)*b(i) for j :=1 to i-1 do
s := s + a(i,j)*b(j)

b(i) := b(i) - s

Example 5 Example 6
for i := 1, n do
for j := 1, i do
for i := 1 to n do x(3) := x(j)+val(i,j)*v(i)
a(i) := a(i-p)+b(i) x(i) := x(i)+val(i,j)*v(j)
Example 7 Example 8

Fig. 1. Examples of Non-Obvious Parallelism

development and manual application of new program transformations that have
not yet been automated. It is therefore helpful to identify those parts of the pro-
gram that might contain parallelism that standard techniques have not uncovered,
so that we can direct our efforts there.

Unfortunately, determining which sections are provably sequential is difficult, and
does not follow directly from standard techniques for finding parallelism (much as
co-NP-complete problems are harder in practice to solve than NP-complete prob-
lems). Standard dependence abstractions (such as distance/direction vectors) can-
not be used to prove that a code segment is sequential. With existing methods, the
only way to prove that a code segment is sequential is to conduct an exhaustive
search of transformation sequences that might transform the program into parallel
form. Since the search space can be infinite, this is not feasible.

In addition to getting feedback about sections of code that might be parallel, we
also wish to get feedback about the types of additional information or transforma-
tions that might be required to exploit the parallelism in these sections.

1.1 OQur approach

The Omega test [Pug92] has evolved into a set of routines for manipulating Pres-
burger formulas. Presburger formulas are those expressions that can be built us-
ing linear constraints over integer variables and the usual logical connectives and
quantifiers [KK67, Coo72]. In [Pug92], we describe how to check a conjunction of
constraints for solution and symbolically eliminate existential quantified variables.
In [PWO92b], we give methods to eliminate redundant constraints from a conjunc-
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tion and verify formulas of the form VZ, (37 s.t. P(Z, 7)) = (37 s.t. Q(¥, 7)), where
P and @ are conjunctions of linear constraints. In [PW93], we give methods for
simplifying expressions of the form

Co A —|(E|V1 s.t. 01) A —|(E|V2 s.t. Cz) AL

where the C;’s are conjunctions of linear constraints and the V;’s are sets of vari-
ables. These capabilities allow us to simplify arbitrary Presburger formulas.

In this paper, we apply the techniques from our previous work to perform a
two part search for parallelism. In the first part, we construct several sets of con-
straints that describe, for each statement, which iterations of that statement can
be executed concurrently. By constructing constraints that correspond to differ-
ent assumptions about which dependences might be eliminated through additional
analysis, transformations and user assertions, we can determine whether we can
expose parallelism by eliminating dependences. In the second step of our search for
parallelism, we try to determine how to transform the program to exploit scalable
parallelism. We look for conditional parallelism, and try to identify the kinds of
iteration reordering transformations that could be used to produce parallel loops.

To build the constraints describing the parallelism among statement iterations,
we need accurate data dependence information. In Section 3, we describe techniques
for calculating dependence information statically using dependence relations, a de-
pendence abstraction that includes complete information about the iterations that
participate in the dependence and the conditions on the symbolic constants for
which the dependence exists. The dependence relation can be thought of a de-
scription of the set containing all pairs of statement iterations that are linked by
a dependence. In all cases that do not include complex control flow or non-affine
terms, the dependence relation describes the dependence exactly. To analyze this
relation in an efficient manner, we use methods described in [Pug92], [PW92b], and
[PW93].

When calculating dependence information, we have three options:

—Should we allow reductions (such as a summation) to be done in an arbitrary
order or should we enforce the original reduction order? (Section 3.4)

—Should we ignore or respect dependences that arise only from the reuse of memory
and not from the flow of values? (Section 3.5)

—Should we compute upper or lower bounds on a dependence that we cannot
analyze exactly due to circumstances such as non-linear subscripts? (Section

3.6)

By considering all eight combinations of these options, we can see how addi-
tional analysis and/or transformations such as storage-breaking transformations
and recognition of reductions can effect the dependences of the program (and
thereby the amount of available parallelism).

We use the terms value-based dependence and memory-based dependence to distin-
guish dependences that arise from the flow of values from those that arise due to the
re-use of storage. Calculating value-based flow dependences is substantially more
difficult than calculating memory-based dependences. Many algorithms for value-
based dependences for arrays can be applied only to code that does not contain any
control flow constructs other than normalized for loops, and in which all subscripts
and loop bounds are linear. Even within this domain, all previous methods [Bra88,
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Fea88, GS90, Ros90, Rib90, Feadl, PW92b, Li92, MAL92, May92, MAL93, DGS93]
only calculate an upper bound on the value-based flow dependences; although one
of these methods [Fea91] fails to give exact bounds only in extremely pathological
cases. The method we describe in Section 3.5 is exact within this limited domain,
and can be applied to programs outside this domain. The technique proposed by
[Mas94] utilizes much of the technology developed in [PW93], and is also exact.

In this paper, we are concerned only with parallelism that grows as the size of
the iteration space grows. Thus, we search for opportunities to execute different
iterations of a statement concurrently, rather than opportunities to execute different
statements concurrently. We do not address the question of finding parallelism that
requires run-time synchronization, nor find parallelism that can only be obtained
by changing the calculations performed in individual statements. For example, we
do not detect the fact that a sequential sorting algorithm can be replaced by a
parallel sorting algorithm.

The dependence relations describe constraints on the order in which we may exe-
cute the 1terations of the statements. There are three basic ways to achieve parallel
execution: First, we may be able to eliminate some of these constraints, via fur-
ther dependence testing, relaxing the order of associative reductions, or performing
variable expansion, privatization, or renaming. Second, we may be able to identify
conditions on the symbolic constants for which a dependence does not exist. Finally,
we may transform the code so that it traverses the iteration space in a different
order (via loop interchange, iteration space splitting, or other transformations).

In Section 4, we show how to construct, for each statement in the program,
a single relation that includes all dependences between iterations of that state-
ment, taking into account chains of dependences through other statements. We
can compare the parallelism allowed by two sets of dependences, to see if one 1s
more restrictive than the other. By identifying reduction operations and using only
the lower bound on the value-based flow dependences, we can produce an upper
bound on the parallelism between iterations of a statement. We then test this upper
bound to see if it is inherently sequential. If it is, we stop and mark the statement
as sequential.

For statements that are not provably sequential, we can compare the parallelism
available when dependence testing is adjusted for:

—original order vs. arbitrary order reductions, and
—memory-based vs. value-based dependences,

—Ilower bounds vs. upper bounds for dependences arising from non-linear references

These comparisons provide information about whether privatization, re-ordering of
reductions, or further dependence testing will increase parallelism.

In Section 5, we describe a number of tests to subdivide the iteration space to
allow parallel execution. These tests search for a way to partition the iterations
of the statement so that either the partitions can be run in parallel threads or so
that the iterations within each partition can be run in parallel. These tests provide
insight into the types of iteration space transformations that are needed to expose
parallelism. Our tests are heuristics, and may miss some possible partitioning.
However, they will find any partitioning that could be obtained by a combination
of loop interchange (including imperfect loop interchange), distribution, alignment
or peeling, index set splitting to handle crossing dependences or enable imperfect
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loop interchange, statement reordering, unimodular loop transformations, and the
introduction of run-time dependence tests.

We do not attempt to generate a transformation that exploits the parallelism
found. For a single statement in isolation, this code generation would not be dif-
ficult. However, it is unclear how to combine the results from analyzing each of
several statements into a transformation that simultaneously exploits the paral-
lelism in all of the statements.

In Section 6, we show the results of applying our techniques to the codes in
Figure 1 and a larger, more realistic example. In Section 7, we give an evaluation
of the performance of our techniques for evaluating value-based dependences. We
discuss related work in Section 8, comment on needed future work in Section 9,
describe how to obtain source code for our implementation in Section 10, and offer
concluding comments in Section 11.

2. CAUSES OF FALSE DEPENDENCES

In a study [MHL91a, May92] of Perfect Club Benchmark programs QCD, MDG, ARC2D
and TRFD, Dror Maydan et. al. found that a total of 170 loop carried value-based
flow dependences were expressed during execution of the programs on the standard
input data. They also found that even a test that could solve the “affine memory
disambiguation” problem exactly would find over one thousand false loop carried
flow dependences. The major reasons for false dependences are (largely based on
Maydan’s analysis):

Data flow. Although two statements refer to the same memory location, inter-
vening writes always occur between the source and sink of the dependence, and
therefore there is no data flow along the dependence. In other words, there is a
memory-based dependence, but not a value-based dependence, between the state-
ments. This frequently arises when a work array is reused in each iteration of a loop.
Memory-based dependences can often be eliminated via storage-dependence break-
ing transformations such as renaming, expansion and privatization. We address
value-based flow dependences in Section 3.5.

Conditional. The dependence may exist only under certain conditions. In some
cases, advanced symbolic analysis could determine that these conditions are impos-
sible. In others, the conditions depend on input data and cannot be predicted at
compile-time. It may be possible to eliminate these dependences through the use
of run-time dependence tests and/or user interaction and assertions. We address
conditional dependencies in Section 3.3.

Non-linear. The dependence may involve subscripts or loop bounds containing
non-linear expressions such as i*c+j, p(i), or a variable that cannot be expressed
as an affine function of the loop indices and constants. It may be possible to elim-
inate some of these false dependences by using methods such as [McK90, Mas92].
However, these methods generally require user interaction and assertions. We de-
scribe methods for computing upper and lower bounds for dependences involving
non-linear references in Section 3.6.

Reduction. We normally recognize a flow dependence between two successive
updates to an array. If these updates use an associative and commutative operation
such as addition, we may wish to allow them to be reordered or even done in
parallel. To do so, we recognize the dependence between these two references as a
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reduction dependence, which does not impose an ordering constraint. In a review
of Maydan’s experimental data, we found that most of the 170 loop-carried value-
based flow dependences could be classified as reduction dependences. We discuss
reduction dependences in Section 3.4.

Dependence Abstractions. Traditional abstractions of data dependence, such as
dependence difference summaries', do not include information about which loop
iterations participate in the dependence. Systems using these abstractions must
behave as though a dependence exists between all pairs of iterations separated
by that difference, even if the dependence exists only on a subset of the iteration
space. For example, the dependence differences for Example 2 are 1...|n/2], but
this information does not reflect the fact that all dependences are from the first
half of the iteration space to the second half. We address more precise dependence
abstractions in Section 3.2.

Reductions and dependence abstractions were not cited as a cause of false depen-
dences in [MHL91a], since that study only examined whether or not dependences
occurred, not whether they actually prevented parallelism.

3. DEPENDENCE ANALYSIS

For the methods we describe to apply, we must be able to determine which loops
and conditionals control the execution of each statement. This can be done in a
straightforward manner for code that uses only structured if’s and loops for control
flow. Our techniques can be applied to any single procedure written this way. We
do not address the issue of inter-procedural analysis and transformation.

We recognize affine induction variables and use this information and forward
substitution to try to recognize each subscript and loop bound as a affine func-
tion of the loop indices and loop-independent variables. If the expressions in the
subscripts, loop bounds, and branching conditions are affine functions of the loop
indices and loop-independent variables, and the loop steps are known constants, we
can represent the dependence exactly.

The requirement that if conditionals be affine functions of the loop indices and
loop-independent variables is overly restrictive, and additional work is needed to
handle realistic conditionals (see Section 9).

We can handle min, max, div and mod operations in subscripts and loop bounds.
Some of these, such as a max(n,m) as the upper bound of a loop, can only be
represented by a disjunction. In such cases, dependence testing is more complicated
but still exact.

3.1 Dependence Difference Summaries

With traditional data dependence analysis, each possible dependence is described
by a summary of the possible dependence difference between the two references.
These summaries give a constant value for the dependence difference when it is
constant, and otherwise summarize the possible signs of the dependence difference.

1A dependence difference is equivalent to the more traditional “dependence distance” when loops
are normalized, as they are in all examples in this paper. The term “dependence distance” is not
uniquely defined for unnormalized loops — see [Pug93] for details.
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3.2 Dependence Relations

The first step we take to improving the accuracy of our data dependence informa-
tion is to represent dependences with an abstraction that is more accurate than
a dependence difference summary. Dependence difference summaries do not de-
scribe which iterations of the statement are involved in the dependence, and do not
describe the effect of the values of symbolic constants. We therefore represent de-
pendences with dependence relations [Pug91]. A dependence relation is a mapping
from one iteration space to another, and is represented by a set of linear constraints
on variables that represent the values of the loop indices at the source and sink of
the dependence and the values of the symbolic constants (e.g., n in Examples 1—38).
The notation we use in the constraints is adapted from [ZC91]:

AB, ... Refers to a specific array reference in a program
7,7, 1",... An iteration vector that represents a specific set of values
of the loop variables for a loop nest.
[4] The set of iteration vectors for which A is executed
A(T) The iteration of reference A when the loop variables have

the values specified by 7

A(T) b B(Z') The references A and B refer to the same array and the
subscripts of A(Z) and B(Z') are equal.
A(T) < B(Z') A(Z) is executed before B(Z')
Sym The set of symbolic constants (e.g., loop-invariant scalar
variables)

The dependence relation below describes exactly the iterations and values of
symbolic constants for which A(Z) and B(Z') refer to the same element of the array,
and A(7) is executed before B(Z') (i.e., it describes the memory-based dependence
from A to B).

{(I—-T|Tc[AJAT €[BAAT) < BIT)NAI) Y BT}

For example, the flow dependence involving the array b in Example 6 is described

by the direction vector (4), and the dependence relation:

TelA] A(I)<B(1')
—_——~— ——
([ —=[.i111<i<anl <j<i<nn i<i A i=j }
il A B(17)

This can be simplified to { [i] — [\,j'] |1 <i=j <1 <n}.

3.3 Conditional Dependences

It may be the case that two array accesses can refer to the same memory location
only if certain conditions hold on the symbolic constants. For example, the flow
dependence in Example 7 is described by the dependence relation:

(] —[]]1<i<i=i+p<n}
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If p is less than 1 or greater than n — 1, the dependence does not exist. This
information is accurately captured by the dependence relation.

3.4 Reduction Dependences

Consider the code fragment in Example 8. Traditional data dependence analysis
will detect flow, output, and anti-dependences between these two statements. We
can easily recognize these statements as update statements. If we are willing to
treat machine arithmetic as if it were associative and commutative, we can change
the order in which the updates are done. There are even a number of ways in which
update operations can be done in parallel (e.g., each processor computes a local
sum, and then the local sum’s are combined in a short sequential (or even logp)
step).

We can either automatically recognize update operations constructed with tra-
ditional operators, or let the programmer use special operators or directives to
indicate a commutative and associative update. A dependence between two com-
patible updates is termed a reduction dependence, and does not impose an ordering
constraint. If we do not recognize reduction dependences, we treat an update as a
read followed by a write.

3.5 Value-based Dependences

We can calculate value-based flow, output, and anti-dependences, but in this paper
we are not concerned with the latter two. There 1s a value-based flow dependence
between an iteration of a write A(Z) and an iteration of a read C(Z”) if and only
if C'(7") reads the value that was written by A(Z). For this to occur, A(Z) and
C(Z") must access the same element of the array, and that element must not be
overwritten between A(Z) and C(Z"). If the element is overwritten by B(Z'), we
say B(Z') kills the dependence from A(Z) to C(Z"). Let By, B, ..., By, be the
array writes that might overwrite the element (note that A might be included in
the list of B,’s). The value-based flow dependence from A to C'is described by the
relation:

{T—1" | Te[AAT" €[CIAA(T) < C(T") A A(T) E C(2")
A¥g 1< q<p, T st T € [BIAAZ) < By(T') < C(Z")

A By(T') 2 O(1") }

The conditions under which B, kills the dependence imply that there must be
memory-based dependences from A(Z) to B,(Z'), from A(Z) to C(Z"), and from
By(Z') to C(Z"). We can therefore simplify our relation by leaving out any ¢ for
which we can show this is not the case.

For example, consider the flow dependence from the write at line 2 to the read
at line 7 in Example 9. The dependence difference summaries that will be used to
construct the relation for this dependence are shown to the right of the code.

We build the dependence relation by expanding the outer quantification of Vq. ..
(since we can determine all possible B,’s statically). The relation will have two
“kill” terms (B,’s): the writes at lines 4 and 5 (there is no kill term for the write on
line 2 because there is no self output dependence for this write). The unsimplified
version of the relation is:
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1: for i := 1 to 2*n do

2: a(i) := ...

3: for j := 1 to n-1 do flow 2: a(i) -=> 7: a(i) 0)

4: a(2+*3) = output 2: a(i) -=> 4: a(2%j) (0+)

5: a(2%j+1) := flow 4: a(2%j) -->7: a(i) (0+)

6: endfor output 2: a(i) -=> 5: a(2*j+1) (0+)

7: = a(di) flow 5: a(2xj+1) --> 7: a(i) (0+)

8: endfor

Example 9 Some dependence difference summaries for Example 9

b
Te[A] I¢[C] AD<cE"y  A@E e
{0 = 0" I<i<2n A l1<i”"<2nA i=1" A i=i”
A (31, ]st. (1< <A1 <) <n—-1)AGL<T AT <)

A (2 =1"))
A=) st (1< <2nA1 <) <n—1) A< AT <HY)
A2+1=1")) }

¥4,1<9<p, 3T st TE[B,INA(T) B, (TN C(TAB(T) Y c(27)

Simplifying such expressions are difficult. Some of the problems are described in
Section 3.5.1. By using techniques described in [PW93], we simplify the above
expression to:

{]—=01"] A=1i="<n)v(1<i=i"=2n)v(1<i=i"<2nAn=1)}

Thus, we have discovered that there is a dependence from the first write of Example
9 to the read only during the first iteration and last iteration (if n = 1, there are
only 2 iterations). With our current implementation, this simplification requires 5
milliseconds on a Sun SparcStation 10-51.

The above equation for value-based dependence analysis is best thought of as
a denotational specification of what we compute. Using the techniques for value-
base dependence analysis described in [PW92a, PW94] as a prepass, followed by
the techniques described here, decreases the total cost of value-based dependence
analysis by a factor of 0.9 — 1.75 while not changing what is computed. In [PW93],
we describe a number of techniques that decrease the cost of value-based dependence
analysis by a factor of 1.1 — 2.9 and eliminate the need to perform a prepass using

the techniques described in [PW92a, PW94].

3.5.1 Simplifying formulas containing negation. When performing array kill anal-
ysis, we have to simplify formulas of the form:

LV (CO A _|(E|V1 s.t. Cl) AN _|(E|Vn s.t. Cn)) V...

Here, the C;’s are conjunctions of linear constraints, and the V;’s are (possibly
empty) sets of variables. Techniques described in our previous papers [Pug92,
PW92b] allow us to eliminate existentially quantified variables, check for the feasi-
bility of a conjunction of constraints, and perform other simplifications, but these
techniques do not address negation. There are two problems involved in simplifying
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formulas containing negations:

—We must transform a formula into disjunctive normal form in order to verify the
existence of solutions. A straightforward transformation of a formula containing
negation into disjunctive normal form may lead to a huge explosion in the number
of terms.

—If a negated term 3V; s.t. C; represents non-convex constraints (e.g., Jo s.t. & =

ba), we cannot directly evaluate the negation. When standard Fourier-Motzkin
variable elimination cannot eliminate an integer variable exactly, we can some-
times eliminate the variable exactly by introducing quasi-linear constraints (con-
straints containing floor and ceiling operators) [AI91]. For example, (Ja s.t. « =
ba) = [2/5] < |#/5]. In these cases, negation is easy to apply (e.g., =([z/5] <
(2/5) = ([2/5] > [/5))).
Although we can always eliminate one variable this way, we may not be able to
eliminate multiple variables this way, since we may not be able to apply Fourier-
Motzkin variable elimination to a set of constraints containing floor and ceiling
operators.

In [PW93], we give a partial (but effective) solution to the first problem and a
complete and exact solution to the second.

3.6 Non-linear Dependences

If a structured routine does not meet the conditions under which we can produce an
exact dependence relation, we can create relations that give lower and upper bounds
on the dependence. We do so by using linear approximations for the nonlinear
conditions. If a nonlinear constraint appears positively, replacing it with False
gives a lower bound and replacing it with True gives an upper bound. However, we
would like to obtain tighter bounds than that. We describe methods for obtaining
tighter lower bounds for non-linear equality constraints.

Given a non-linear equality constant, we attempt to transform it into something
of the form Zp fplay) = Zp f»(by), where the a,’s and b,’s are affine expressions.
In Example 10, we can transformi*xc+j= (i’ = 1)*c+] into {fi(z) =, f2(x) =
ckx,a; =j,a2 = 1,0 =) bo =1 =1} and {fi(x) = 2, fa(x) = cxx,a1 =], a9 =
i,00 = j' — ¢, by = 1'}. For each such transformation found, let L be Vp,a, = b,.
Since the f,’s are functions, we know that L = >~ f,(ay) =3, fp(bp).

For a non-linear equality constraint £/, let L1, Lo, ... L, be the constraints arising
from the transformations found for E (typically ¢ will be 1 or 2). If E appears
positively in a dependence relation, we can replace £ with L1 V LoV ---V L, and
obtain a lower bound on the dependence relation. For the memory-based flow
dependence in Example 10, this leads to the a lower bound of:

(LK —["j K] |¥=i+lal<i<nAl<j=j<mAl<k=k <10}

Ui K — [ K] [f =j+enl<i=i<nAal<j<j<mAl<k=K <10}

for i := 1 to n do
for j := 1 tom do for i := 1 to n do
for k := 1 to 10 do for j := 1 tom do
... = al(i-1)*c+j, k) a(p(j)) := ...
a(ikxc+j, k) := ... ... = alp())

Example 10 Example 11
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To build the upper bound for this dependence, we replace the nonlinear constraint
with True, yielding:

(g, K= [ K] 1<i<i<aAl<jj<mAl<k=K <10}

U{lij k= [ K] 1<i={<nAl<j<j<mAl<k=K <10}

When E appears negatively, as it might when computing value-based flow depen-
dences, we substitute L; VL,V -V L, to obtain an upper bound on the dependence
relation. Thus, this technique can be used to improve the accuracy of upper bounds
on value based dependences, as well as the accuracy of lower bounds on memory
based dependences. In Example 11, this allows us to determine that there is no
loop-carried value-based flow dependence between the two array references.

3.7 Interactions

If a program contains only linear terms and we do not recognize reduction depen-
dences, we can eliminate all dependences other than value-base flow dependences by
a sequence of storage-dependence breaking transformations (e.g., expansion, priva-
tization, and renaming) [Fea88, Fea91]. That is, we can completely separate value
flow and memory usage issues for these programs.

However, parallel reductions and/or non-linear terms may prevent us eliminating
all storage-based dependences.

3.7.1 Non-linear terms. If a program contains non-linear terms, the upper bound
on the value-based flow dependences is not always sufficient to ensure that the orig-
inal semantics can be preserved. Specifically, when we cannot determine statically
which of several writes provides a value that is read, we must still rely on the over-
writing of memory to ensure that the correct value is received by the read. To do
this, we ensure that any pair of writes that could both supply a value to a single read
are executed in their original order, and we do not allow any storage-dependence
breaking transformations that would prevent them from overwriting each other.

More formally, we find the we must respect an memory-based output dependence
from A(Z) to B(Z') (where A and B may be the same statement) if there exists
a read C'(Z") such that the value read in C(Z") may be provided by both A(Z)
and B(Z'). This is only possible if our dependence information is an inexact upper
bound on the value-based flow dependences.

We must respect a memory-based anti-dependence from B(Z') to C'(Z") if there
exists a write A(Z) such that there is a value-based flow dependence from A(Z) to
B(Z') and we must respect the output dependence from A(Z) to C(Z").

For example, consider the code in Example 12. Even if we were to perform
all possible privatization, expansion, and renaming, we would still be required to
execute all of the iterations of S1 sequentially, allowing them to potentially overwrite
each other, before allowing any iterations of S3 to execute.
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for i := 1 to n do
a(p(i)) := ... /* S1 */
for j := 1 ton do
b(j) :
c(j) :
endfor

/* 82 */
a(j) + b(p(j)) /* 83 */

endfor

Example 12: Nonlinear terms affecting value-based dependence analysis

The dependences in Example 12 are:

From To Type Dependence Relation

Sy S3 Value—Flow {[i] = [",7]|1<i<i<nAl <) <n}

S1 81 Memory — Output {[i] =[] |1 <i<i <n}

Sy 81 Memory — Anti {[i,j]—[]|1<i<i <nAl<j<n}

Sy S3 Value—Flow  {[i,j]—[i,j]]1<i<aAl<j<) <n}
U{i,i] =+ 1Lj][1<i<nAl<j,j<n}

Sy 83 Memory — Output {[i,j]—[,j]| 1 <i<i <aAl<j<n}

Ss Sy Memory — Anti  {[,j]—=[1,J]|1<i<nAl<]j<j <n}
Ui — I 1<i<i <mnl<ij<n)

—
—

Using the calculations above, we see that we will need to enforce all of the output
and ant1 dependences involving statement S7, but none of the output and anti
dependences involving S5. In this case, we need to respect all dependences in the
memory-based dependence relations, but in general, we may only need to respect
a subset of the dependence pairs.

3.7.2 Reductions. We may also need to enforce some anti-dependences when we
perform value-based analysis in the presence of reorderable reductions. Consider
a value-based reduction dependence from A(Z) to C'(Z") for which there is also a
value-based flow dependence from A(Z) to B(Z') and a value-based anti-dependence
from B(Z') to C(Z"). Since A(Z) and C(Z") must update the same memory lo-
cation, we cannot eliminate the anti-dependence. If we wish to find the set of
dependences that cannot be eliminated with expansion and renaming, we must in-
clude the value-based flow dependences, the dependences listed in Section 3.7.1,
and these anti-dependences.

This is similar to the situation for non-linear dependences, so we do not give a
detailed example here.

3.8 Full Analysis of Only Some Dependences

Our methods for finding parallelism examine dependences from one iteration of
a statement to another iteration of the same statement. We therefore consider
cycles in the statement graph, where the statements are nodes and each feasible
dependence relation is treated as a directed edge. Dependences that are not part of
a cycle can be ignored, and we need not use expensive techniques to analyze them.

Given our initial, upper bound on dependences (calculated using standard tech-
niques such as [Pug92]), we calculate the strongly connected components (scc’s)
of the statement graph. A dependence is in a cycle if and only if its endpoints are
in the same scc.
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When determining which flow dependences to perform value-based analysis on,
we can base the scc on the flow dependences only. If we use a method such as
[PW92b] that eliminates some dependences that are not value-based, we can base
the scc¢ on only the flow dependences that might be value-based. In the case where
non-linear terms may prevent us from calculating value-based flow dependences
exactly, we may also need to consider some output and anti dependences (see Section

3.7).

4. COMPUTING SELF-DEPENDENCE INFORMATION

The dependence relation between array accesses A and B gives conditions under
which A(Z) must precede B(Z'). Conversely, if A(Z) and B(Z’) are not connected
in the transitive closure of the graph of a set of control and data dependence
relations, those dependences do not prevent us from executing them concurrently.
Thus, dependence relations provide exact information about which iterations of
which statements can be executed concurrently. In this paper, we only consider
parallelism that grows as the size of the iteration space grows. Thus, we will look
only for parallelism between the iterations of each statement.

We start by calculating the transitive self-dependence relation, or TSDR, for each
statement. This relation will contain all the ordering constraints between iterations
of the statement, including constraints arising from transitive dependences through
other statements. A TSDR D for a statement describes the parallelism among
the iterations of the statement, as it gives the conditions under which any pair of
iterations 7 and Z' can be executed concurrently: ([Z] — [Z']) ¢ D.

4.1 Computing the Self-Dependences of a Statement

In previous work, we described methods for computing the transitive self-dependences
of a statement [Pug91]. Unfortunately, no complete method is possible for com-
puting an exact, closed form for the transitive closure of an arbitrary dependence
relation (it is equivalent to adding multiplication to Presburger, which makes the
theory undecidable). As described in [Pug91], it is possible to complete an ex-
act transitive closure for dependences in certain special forms. For example, we
can compute the exact transitive closure of any dependence relation that can be
represented exactly by a direction/distance vector.

In [Pug91], we were only concerned with computing a lower bound on the tran-
sitive closure. Here, we discuss how to compute both an upper and lower bound
on the transitive closure. To compute DT (the transitive closure of D), we find
relations D¥ and DY such that DY € D C DY and D¥ and DV are in special
forms that can be closed exactly. We use these to obtain lower and upper bounds
on Dt:

(DFyr ¢ DT C(DY)*

If these lower and upper bounds are identical, we know we have computed DT
exactly. In other cases, we treat our bounds on the transitive closure as if they had
arisen from a nonlinear term during dependence analysis.

In the abstract, computing a transitive closure appears to be very hard and/or
expensive in the worst-case. When we analyze even large programs, we find that
if we allow reductions to be reordered and consider only value-based flow depen-
dences, the strongly connected components are typically very small, and computing
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a(1) = b(1)
for i := 2 to n do
a(i) := a(i-1) + b(i)

Example 13: Sequential Code

the transitive closure is easy and fast (less than 0.5 seconds on a Sun Sparc 10-51).
However, when we analyze large programs using memory-based dependences and
original order for reductions, we find that strongly connected components contain-
ing 20-30 statements are not unusual, and sc¢’s of over 100 statements can arise in
practice. In these cases, many of the dependences derive from scalar variables and
are typically “to all future iterations”. Our current implementation does not utilize
fast, special case methods to handle these cases. As we gain more experience with
analyzing large programs, we expect to refine our techniques to allow us to handle
these cases efficiently.

4.2 Comparing Transitive Self-Dependence Relations

In Section 3, we discussed several choices that can be made during the calculation
of a single dependence relation: we can use upper or lower bounds for nonlinear
constraints, we can calculate value or memory-based dependence relations, and
we may wish to recognize reduction dependences. We can use the different kinds
of individual data dependence relations to calculate several different TSDRs for a
given statement. We can define a partial ordering on TSDRs, based on the sets of
ordering constraints they describe:

D' CDiff vsymZ,7,(I —TI' € D)= (I —1' € D)

Note that, if D’ C D, and D allows two iterations of the statement to be executed
in parallel, D' also allows them to be executed in parallel.

We have some a priori knowledge of the ordering of different TSDRs for a state-
ment: We will not add to the set of ordering constraints by (a) using value-based
flow dependences rather than all memory-based dependences, (b) recognizing re-
ductions, or (c¢) using a lower bound rather than an upper bound on an individual
dependence.

For any statement S, we can calculate D, a TSDR based on the upper bound on
memory-based flow, output, and anti-dependences we compute without recognizing
reductions, and D¢, a TSDR based on our lower bound on the value-based flow
dependences we find after recognizing reductions.

We say that Dg is a lower bound on the parallelism of the iterations of statement
S, since it gives conditions under which we must be able to execute a pair of
iterations concurrently: if ([Z] — [Z']) € DgZ, no dependence prevents us from
executing Z and Z’ concurrently. Note that it may still be quite difficult to transform
the program into a form that makes use of this parallelism; we will address this
point in Section 5.

If ([Z] — [Z']) € D%, we cannot reorder Z and Z' without disrupting the flow of
information in the program. Thus, we say that D% gives an upper bound on the
parallelism of the iterations of S. We can use D% to prove that the iterations of S
must execute sequentially, by checking:
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=37, 7", Syms.t. Z,T' € [SAS[Z] < S[I'| AN (T — T') & DS

If this is true, as it is for Example 13, and for the third assignment in Example
6, then there are no values for the symbolic constants such that there exist two
statement iterations that can be run in parallel. In such cases, we classify the
statement as “inherently sequential” and stop analyzing it.

4.3 Parallelism through Dependence Breaking

If a statement is not inherently sequential, we test to see whether we can increase
parallelism between its iterations by breaking dependences with variable privati-
zation, reduction re-ordering, or gathering additional information about nonlinear
dependences. If DY = D%, we know the aforementioned changes do not effect
the transitive dependences, and are therefore not needed to expose the parallelism.
Otherwise, we can calculate six other TSDRs for S, using various combinations of
value or memory-based dependence testing, recognizing or not recognizing reduc-
tions, or finding upper or lower bounds on the basic dependence relations. We can
then determine which dependence-breaking transformations have an effect on the
transitive dependences.

It would be possible to attempt to produce a scalar quantification the amount of
parallelism we find (for example, by finding the length of a critical path through
the dependence relation). However, we do not address that issue in this paper.

5. IDENTIFYING USEFUL REORDERING TRANSFORMATIONS

A TSDR contains information about which iterations of a statement can be executed
in parallel. To make use of the parallelism, we must identify conditions under which
large groups of iterations can be run in parallel. We therefore attempt to partition
the iterations of the statement such that

—the partitions can be executed in parallel, or

—the iterations within each partition can be executed in parallel.

The nature of the partitions often provides information about the kinds of reorder-
ing transformations needed to exploit the parallelism.

In this paper, we only consider partitions that provide parallelism that grows as
the size of the iteration space grows. For example, if all dependence differences in
a loop are multiples of 2, we could partition the iterations of the statement into the
even and odd iterations (which can be executed in parallel). We would not consider
this partitioning since it gives only a factor of 2 parallelism. Additional techniques
to search for such parallelism could be added to our scheme.

All of our tests have the property that the amount of parallelism they detect is
a nondecreasing function of the self-dependences of the statement being analyzed.
We can therefore use them to investigate the amount of scalable parallelism that is
exposed by the different dependence breaking techniques of Section 4.2. If Dy C
Dg, but the tests in this section give the same results for D and Dg, the additional
parallelism in DY either does not grow with the iteration space or is extremely
difficult to exploit.
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We analyze the parallelism in a statement S by applying the following steps to
each unique TSDR for S that contains parallelism:

(1) First, we compute the dependence differences represented by the TSDR, and
see if unimodular loop transformation methods can expose parallelism (Section

5.1).

(2) Next, we try peeling the iteration space to simplify the dependences (Section
5.2).

(3) We then search for parallelism in the core iterations of the peeled statement
using unimodular loop transformation methods (Section 5.1).

(4) Finally, for each possible loop permutation, we can check for conditional par-
allelism (Section 5.3). If desired, directional peeling can be applied (Section
5.3.1).

5.1 Using Unimodular Loop Transformation Techniques

We can hand the self-dependences off to a module that looks for a unimodular loop
transformation that will expose the most parallelism [Ban90, WL90, KKB92]. This
module can report whether the self-dependences allow for coarse-grain parallelism,
and if not, whether the self-dependences allow for fine-grain parallelism.

Standard unimodular techniques will find any parallelism that can be exposed
using loop interchange, loop skewing and loop reversal. Since we consider each
statement separately (using transitive self-dependences), we will also find paral-
lelism that can be only exposed using loop distribution, statement reordering, and
loop alignment [Pug91]. This check will find the parallelism when applied to D?
for the statement in Example 3. It will also find parallelism when applied to the
transitive closure of the value-based flow dependences for the statements that assign
to s in Example 6.

5.2 Dependence Peeling

Unimodular loop transformation techniques do not include transformations that
split or peel the iteration space. We can determine that such transformations are
necessary by examining the effects of removing, from a TSDR, Dg, the iterations
that do not have both incoming and outgoing dependences. This can be calculated
as

ljSI{I/—>Iu|(I—>I/)EDs/\(I/—>I//)EDs/\(I//—>I/H)EDS}

The iterations that have no incoming dependences can be executed in parallel before
the “core” iterations, and those without any outgoing dependences can be executed
after the core iterations. If the number of core iterations is small (or zero), this
may be sufficient. Also, it may be easier to exploit the dependences among the core
iterations than the dependences across the entire set of iterations (i.e., it may be
easier to find parallelism in ljg than Dg).

The dependence relation for Example 1 1s:

([—[]]G=1A2<i<n) V (1<i<nAi=n)}

The peeled version of this dependence relation is empty, so we know that parallelism
can be exposed in this example by loop peeling or splitting.
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The dependence relation for Example 2 1s:
{[i]—=[]11<i<i <nAi=n-1i}

Once again, the peeled version of this dependence relation is empty, so we know that
parallelism can be exposed in this example by loop peeling or splitting (splitting in
this example).

We could peel the core iterations again, although we do not believe this is likely
to be useful.

5.3 Directional/Conditional Parallelism

The conditions under which a dependence Dg exists are:
A7,7'st. T —1I' € Dg

Unfortunately, any self-dependence of a statement in a loop with symbolic bounds
is conditional, since the statement will not execute (and the dependence not exist)
if the bounds are empty. Asking the user about all such conditional dependences
is not likely to be useful.

We could determine the conditions under which a dependence exists despite the
presence of multiple iterations of each enclosing loop. Given a vector AZ of the
number of required iterations of each enclosing loop, we find conditions under which

(37,7’ st.I,7 € [S)AT+ AT <T')= (31,7’ s.t. T — I' € Ds)

While this test avoids the “false alarm” for loops with symbolic bounds (such as
Example 13), it shares one other problem with the formulation above: it only finds
conditions under which we can completely eliminate all dependences in Dg. We also
need to find conditions that allow one or more parallel loops despite the existence
of some dependences.

Therefore, we look for conditional parallelism in one direction at a time. Let d be
a vector indicating the direction we are testing for parallelism (i.e., let d be (0,1) to
search for parallelism in the inner of two loops). This would correspond to a loop
over the possible values of dTZ. Values of d such as (1,1) correspond to skewed
loops. We calculate Dg, the dependences that would be carried by an outer loop
over d'Z, as:

DsnN{ZI—T|d'IT<dT'}.

Select W to be the minimum number of iterations a loop must have in order for
running it in parallel to be profitable. The conditions under which the loop would
carry dependences whenever it contains enough iterations to be profitable to run
in parallel are:

(3T,7' 4. Z,7' € [SIANT + Wd <T') = (IL,T' s.t. T — I’ € DE)

If we can verify that these conditions are false (by user assertion or a run-time
check), then we can execute the iterations in a parallel loop over d'Z whenever it
is profitable to do so.

5.3.1 Directional Peeling. For statements with multidimensional iteration spaces
and complex self-dependences, 1t may be useful to perform directional peeling. To
perform directional peeling in direction d, we separate the statement iterations into
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initial, core and final iterations by applying the techniques of Section 5.2 to DZ.
The initial and finial sections can be executed by a parallel loop over d'Z.

This method appears to be of limited utility. The only example we have found
where it would be useful is Example 4, and variations on it. For Example 4, we
find the i loop can be divided into initial (1 <i< [(n—1)/2]), core (i= (n—1)/2,
if i is odd), and final ([(n — 1)/2] <i < n—1) sections.

5.3.2 Buried Directional Parallelism. In searching for directional parallelism, we
are simply checking if d can be used as an outer parallel loop. If an outer sequential
loop was placed around the statement, the outer loop might carry enough depen-
dences so that parallelism can be found in inner loops. Given a sequential outer
loop, we can easily calculate which self-dependences are not carried by the outer
loop.

There are two problems with searching for directional parallelism:

—We do not know what d’s to use. We would not be able to consider all possible
combinations of loops that include loop skewing (e.g., using d = (1,—1) or d =
(3,2)).

—If we wish to search for inner loop parallelism, we not only have to consider
all possible parallel loops, we have to consider all sequential loops that might
surround it.

These problems pose limitations on the usefulness of this technique. However, this
technique should be usable for considering all permutations of loops and searching
for both inner and outer parallelism (there are only 6 permutations to try if the
statement is nested 3 deep).

5.4 Transforming Scalar Calculations

Although our techniques do not, in general, detect cases in which code can be
parallelized by performing a different set of operations, we can test to see if more
advanced scalar induction variable detection might expose parallelism. Strongly
connected components of the statement graph that consist entirely of assignments
to scalar variables often reflect either a reduction or an induction variable and
further scalar analysis may suggest a way of computing the values in parallel.

5.5 Additional Tests

The list above is not a complete list of tests that might be applied. The only cases
we know of not checked by the above tests are when the GCD of the dependence
distances is greater than 1 (e.g., if all dependence distances are even, we can execute
the odd and even iterations in separate, parallel threads) and when all dependence
distances are large (e.g., if all dependence distances are greater than 20, we can
strip mine the loop by a factor of 20 and run the inner loop in parallel). Checks for
these cases could be easily added to the above tests; we have omitted them since
they rarely offer a significant amount of parallelism.

6. EXAMPLES

Figure 1 gave eight examples which contain parallelism that would be overlooked
by a simple test for loops that do not carry any dependences. In this section we
show that our techniques expose the parallelism in all of these examples. Unless
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otherwise noted, we found the parallelism in D% (i.e., the upper bound on the
memory-based dependences, without recognizing reductions).

In Examples 1 and 2, we find that the dependence peeling test from Section 5.2
splits each statement’s iterations into two groups, each of which can be executed
in parallel. The parallelism in Example 3 can be found with unimodular loop
transformation techniques (Section 5.1).

Example 4 was contrived to foil our initial set of parallelism tests, and it does
so: despite the fact that the iterations of this single statement are not provably
sequential, the tests in Sections 5.1 and 5.2 fail to detect any parallelism, even
when applied to D¥. The directional peeling test of Section 5.3.1 does, however,
indicate that we can expose parallelism by peeling iterations of the i loop.

The two statements in Example 5 can be trivially parallelized after the loop is
distributed. Neither statement in this example is involved in a dependence cycle,
so the parallelism is evident at the first step of our procedure. No additional
dependence testing is done, and none of the parallelism tests are performed.

Example 6 demonstrates the importance of applying the tests to the different
sets of dependences. When we apply the tests to D%, we do not find parallelism.
When we recognize reduction dependences and omit them from the dependences
passed to the parallelism tests, we find that the statement updating s can be run in
parallel (the test from Section 5.1 or a simple test of which loops carry dependences
will detect this parallelism). Parallel reductions would be required to exploit this.
If we instead use value-based flow dependences, the test from Section 5.1 will find
that the iterations of the statement that initializes s, and those of the statement
that update s, can be run in parallel. Scalar expansion, loop distribution, and
imperfect loop interchange would be required to exploit this parallelism. Since
we have not made any attempt to quantify the amount of parallelism, we cannot
automatically choose between these alternatives, and present both possibilities to
the user. Note that this would be necessary even if we did have a measure of the
amount of parallelism, as the choice should also depend on other factors, such as
the cost of allocating memory to expand the scalar s.

Assume we instruct the test for directional parallelism that a loop must have 10
iterations in order for it to be worthwhile to run the loop in parallel. In Example
7, the test for directional/conditional parallelism finds that the loop can be run in
parallel ifn > 10 = (p < —nVp = 0V n < p). If we use only value-based flow
dependences, we find that the loop can be run in parallelif n > 10 = (p < 0vn < p).
The n > 10 = ... part of the formula is not particularly useful here; its main
purpose 1s to prevent false alarms. It would also be possible to partition this code
into p different loops, which could be executed in parallel threads, giving p-fold
parallelism. Our current set of parallelism tests do not catch this.

For Example 8, if we recognize reduction dependences, then there are no other
dependences in this code and both loops can be run in parallel. Even if we do
not recognize reduction dependences, parallelism can be found in both statements
by the unimodular parallelism test. This seems surprising, as it 1s difficult to see
how this parallelism can be achieved, but Figure 2 shows code that achieves it.
This transformation can be identified and generated automatically by the system

described in [KP93].
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forall i := 1 to n do
for j := 1 to i-1 do
x(1) := x(i)+val(i,jr*v(j) /* s2 */

endfor
x(i) := x(i)+val(i,i)*v(i) /* s1 %/
x(i) := x(i)+val(i,i)*v(i) /* 82 */
for j := i+l to n do
x(i) := x(i)+val(j,i)*v(j) /* s1 */
endfor
endfor

Fig. 2. A transformed version of Example 8

Can you verify that
* there is no loop-carried value-based flow dependence
from 37:RL(K+4) to 43:RL(K-5)7

If so, it is possible to parallelize all of the statements in the
1:do I and 2:do J loops. The following steps must be performed:

* Privatize/Expand scalars: KC, ...

* Privatize/Expand arrays: XL, RS, RL

* Perform parallel reductions on scalar: VIR

* Perform parallel reductions on array: FX

Fig. 3. Example dialog generated for INTERF extract

6.1 Extended Example: INTERF

We now describe an application of our techniques to the routine INTERF from the
Perfect Club benchmark MDG. This routine contains substantial parallelism that is
not exploited by current compilers [EHLP91]. Figure 4 shows a condensed version
of this code after structuring by VAST-90 (from Pacific-Sierra Research) and auto-
matic induction variable recognition. We have omitted statements that are easily
parallelizable or equivalent to other statements that were left in. As our techniques
do not address inter-procedural analysis, we have performed two inter-procedural
optimizations by hand: First, we performed inline substitution of a call to the
subroutine CSHIFT, which defines XL(1:14) (lines 3-16 of Figure 4). Second, we
changed the variable NATOMS to the constant 3 (NATOMS is always 3, but this is only
evident with inter-procedural analysis).

The techniques described in this paper can be used to produce a dialog such as the
one in Figure 3. This dialogue immediately focuses attention on the one dependence
that requires analysis by the programmer, and summarizes the transformations that
must be applied to exploit the parallelism if this dependence is indeed false. The
computations that go into this dialog are described here:

The lower bound and upper bound on value-based flow dependences for XL and
RS are identical: none are loop-carried. For the array RL, the upper bound gives
a loop carried value-based flow dependence from 37:RL(K+4) to 43:RL(K-5). The
non-linear terms make it impossible to determine which (I, J) iteration of the write
provides the value, and thus we must execute the writes in their original order, and
preserve the relative ordering of these writes and reads (as per Section 3.7). These
constraints force completely sequentially execution of the (I, J) iterations of lines
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SUBROUTINE INTERF(X, Y, Z, FX, FY, FZ,

DO I =1,
DO J =
XL(

XL(

XL(

XL(
DO

IF ( D_ABS(XL(CI))>BOXH ) THEN

E
END

KC
DO

END

NMOL1
I+ 1, NMOL
1)
2)
3)

14) = ...
CI = 1,14

XM, YM, ZM, VIR)

XL(CI) = XL(CI)-D_SIGN(BOXL,XL(CI))

NDIF
DO

=0
K=1,9
RS(K) = XL(K

)*XL(K) +

IF (RS(K) .GT. CUT2) KC = KC + 1

DO

IF (KC .NE. 9) THEN

END

END DO
END DO

Fig. 4.

IF (RS(1) .LT. CUT2) THEN
VIR = VIR + RS(1)*...

ENDIF
DOK =2, 5
IF (RS(K)

ENDIF
IF (RS(K+

ENDIF
END DO
IF (KC .EQ.
DO K = 11
FTEMP
VIR =
RS (K)
RL(X)
VIR =
END DO
ENDIF

FX(3*I-1) =
FX(3%J-1) =
FX(3%I-2) =
FX(3*I) =
FX(3%J-2) =
FX(3%J) =
IF

Excerpts from SUBROUTINE INTERF of MDG benchmark

.LT. CUT2) THEN
VIR = VIR + RS(K)*...

4) .LE. CUT2) THEN
RL(K+4) = SQRT(RS(K+4))
VIR = VIR + RS(K+4)*...

0) THEN
, 14

AB2*EXP ((-B2#RL(K-5))) /RL(K-5)

VIR + FTEMP*RS(K-5)

FX(3*I-1)
FX(3%J-1)
FX(3*I-2)
FX(3*I)
FX(3%J-2)
FX(3%J)

XL(K)*XL(K) +
SQRT (RS (K))
VIR + RS(K)*...

+

+ +
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Sun SPARCstation 10-51 Execution time (millisecs)
Dependence Analysis
Memory-based | Value-based

From Code 77 -c -02 All dependences In Cycles
[Fea91] across 300 1.5 | 2.7 2.1
burg 400 5.5 31 26

relax 200 1.6 8.7 5.2

gosser 400 2.3 23 14

choles 300 2.7 11 9.3

lanczos 1000 11 41 35

jacobi 900 150 | 300 250

[MAL93]  extract from ocean 200 4.5 | 6.8 5.1
Perfect TFRD: olda; simplified 1700 26 | 320 180
NASA btrix 4100 170 | 310 240
NAS cfft2d1 800 16 | 150 130
Kernels cholsky 1400 31 73 40
emit 1500 17 79 38

gmtry 1900 13 58 38

vpenta 1800 96 98 64

Table I. Timed Programs

37 and 43. However, the lower bound on the value-based flow dependences allows
parallel execution of both the I and J loops. Therefore, we need to ask the user
to verify the lower bound. Determining that this lower bound is accurate is rather
subtle, and we do not expect automatic techniques to be able to verify this in the
foreseeable future.

If we do not recognize the reduction operations applied to VIR and FX, the
lower bound on value-based flow dependences indicates parallelism inhibiting de-
pendences. Thus, we must recognize these reductions to parallelize this routine.
When we calculate a lower bound on the memory-based dependences, we find that
they force completely sequential execution. To find parallelism, we must apply
techniques that allow us to eliminate these dependences.

7. TIME REQUIRED FOR VALUE-BASED DEPENDENCE ANALYSIS

Paul Feautrier’s prototype implementation of his method for exact value-based
dependence analysis is very slow (one program (jacobi) of 50 lines he examined
took 82 seconds to analyze on a “low-end SPARC station”). An effort is underway
to build an efficient implementation Feautrier’s method; it is unclear how much
improvement will be obtained. If Feautrier’s initial results were indicative of the
cost of exact value-based dependence analysis, the methods described in this paper
may not be practical. Fortunately, we have reason to believe the cost is much less
than Feautrier’s initial results suggested.

While we do not have a complete implementation of the methods described in this
paper at this time, we are able to measure the time required to compute value-based
dependences for Feautrier’s examples and some other benchmark codes. Table I lists
the benchmarks that we used, and compares these analysis times with the time
needed to compile and optimize the routine for a Sun SPARCstation 10-51. The
table shows the time required to analyze all the memory-based dependences and the
value-based flow dependences. The time shown for value-based dependence anal-



24 . William Pugh and Dave Wonnacott

ysis does not include the memory-based analysis time, though the memory-based
dependences were used during value-based analysis. The value-based dependence
analysis was done using the optimizations described in [PW93]. The times shown
in this table include analysis of both arrays and scalars, because we need to have a
dependence relation for each possible dependence when we construct the transitive
self-dependence relations (as described in Section 4.1). For value-based depen-
dences, we also show the time required to analyze just the dependences that might
be in cycles.

These results reassure us that it will be practical to apply these techniques to
many significant, real world problems. We have not yet fully implemented in tech-
niques in [PW93], so we have been unable to evaluate our performance on codes
that stress our methods for handling negation.

8. RELATED WORK

In our first paper on array data dependence analysis [Pug92], we describe a set of
algorithms (the Omega test) that can be used to check for the existence of integer
solutions to sets of linear constraints and calculate the “shadow” of a set of linear
constraints (i.e., eliminate existential quantified variables). For example, by creat-
ing a set of constraints for a data dependence, adding variables for the dependence
differences, and finding the shadow of these constraints on the dependence differ-
ence, we find the possible values for the dependence difference. We then show how
these techniques can be used to perform efficient analysis of memory-based array
data dependences.

In our second paper on dependence analysis [PW92b], we extend the Omega test
with efficient techniques for removing redundant constraints and checking when
one set of constraints implies another. We give techniques that can identify some
dependences as being not value based. However, these techniques do not identify all
non-value based dependences and work on dependence differences, not dependence
relations.

In [PW93], we give full descriptions of our techniques for simplifying formulas
containing negation (as mentioned in Section 3.5.1). We also compare the perfor-
mance of the technique described in this paper for analysis of array kills with that
of [Fea9l, MAL93].

In other papers [Pug91, KP93], we describe a unified framework for reordering
transformations. Within this framework, we discuss methods for checking the le-
gality of a transformation, generating transformations, and producing transformed
code corresponding to a reordering transformation. As part of this work [Pug91], we
describe dependence relations and techniques for computing their transitive closure.

There have been a number of papers on improving the accuracy of memory-based
array data dependence analysis [KKP90, LC90, WT92, GKT91, MHL91b]. Some
of these methods provide ways of recognizing when their results are exact, but do
not describe any methods for computing lower bounds on dependences when they
are not exact.

There are a number of papers on techniques to analyze array kills and value-based
array data dependence [Bra88, Fea88, GS90, Ros90, Rib90, Feadl, Li92, MALI2,
May92, MAL93, DGS93, Mas94]. Of these, only the technique we describe here
and that of Feautrier [Fea88, Fea9l] and of Maslov [Mas94] are complete over the
domain of affine expressions and no control flow other than loops. The techniques
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described by Feautrier have only been implemented in a prototype form, and our
techniques appear to be 40-75 times faster than Feautrier’s prototype. Maslov’s
techniques are formulated using the lexigraphical maximum idea of Feautrier, but
operate in a lazy manner and so are more efficient. Maslov’s techniques achieve
speed comparable to ours, and utilize our algorithms for manipulating and analyz-
ing Presburger formulas. Both our methods and Maslov’s methods handle more
complicated control flow than Feautrier, such as if’s with non-affine guards, al-
though inexactly.

The methods described by [MAL93] improve on the efficiency of [Fea91] but do
not work for certain cases handled by [Fea91] and this paper.

The quast’s(Quasi-Affine Search Trees)/Last-Write-Trees constructed by [Fea9l,
MAL93] may contain infeasible paths. To enable compile-time transformations
such as privatization, i1t is necessary to determine which of these paths are feasible.
Determining which of the paths are feasible requires checking the feasibility of a
problem such as:

PIAPyA-- - AP, ANy A=aNa A - ANy,

where the P;’s are the conditions for the nodes where we take the true branch and
the N;’s are the conditions for the nodes where we take the false branch. Each
of these conditions is a conjunction of linear constraints, and may include non-
convex constraints (e.g., constraints such as “i is even” specified using wildcards or
quasi-linear constraints). Converting these expressions into disjunctive normal form
would be infeasible for many real problems. The methods we describe in [PW93]
should control this blow-up. In addition to the blow-up problem, the methods
described by [Fea91] and [MAL93] fail when forced to negate certain pathological
cases of non-convex constraints. Our methods can handle these (although some of
the pathological cases will create performance problems).

Our methods for array data-flow analysis, like those of [Bra88, Rib90, Feadl,
MAL92, Voe92a, Voe92b, MAL93], are based on extending standard array depen-
dence analysis methods to analysis the flow of values rather than the reuse of mem-
ory. Array data-flow dependence analysis methods such as [GS90, Ros90, Li92,
DGS93] are based on extending scalar data-flow analysis methods to arrays. In
general, the later approach deals better with control flow but the former approach
gives more information about which iteration is dependent on which iteration (as
opposed to simply summarizing which loops carry the dependence).

Both Feautrier [Fea88, Fea9l] and Maydan, Amarasinghe and Lam [MAL93]
describe how to use value-based dependence information for array expansion or
privatization. Amarasinghe and Lam [AL93] describe ways to use value-based de-
pendence analysis in analyzing and generating code for distributed memory multi-
computers.

There have been a number of recent papers [Lar93, PP93, MHL91a] describing the
results of instrumenting programs so that during a run on sample data, information
about the actual dependences and available parallelism are collected. However, we
do not know of any other work on static analysis of upper bounds on parallelism.

9. FUTURE WORK

There are two substantial obstacles to using these techniques in industrial strength
environments: our inability to handle arbitrary control flow and procedure calls.
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In these cases, we will likely have to resort to computing upper and lower bounds.

In order for the techniques described here to be applicable, we need to be able
to identify well-defined loops so that the dependence relations can be well defined.
If the loops are well defined, it is relatively easily to calculate upper and lower
bounds on memory-based dependences. Calculating upper and lower bounds on
value-based flow dependences appears more difficult.

For procedure calls, we can either effectively inline the procedure call, or we can
calculate dependences based on summary information of what the call kills and
uses. Since this summary information will probably not be exact, we will need to
calculate appropriate upper and lower bounds (and the summary information will
need to contain both may and must information for both kills and uses).

10. IMPLEMENTATION STATUS AND BENCHMARK AVAILABILITY

The techniques described here are being implemented in our extended version of
Michael Wolfe’s tiny tool [Wol91], which is available for anonymous ftp from
ftp.cs.umd.edu:pub/omega. The programs analyzed in Section 7 come from a
set of benchmark programs for comparing the performance and coverage of algo-
rithms for analyzing value-based flow dependences between array references. Send
email to omega@cs.umd.edu to receive a copy of the benchmarks and be added to
the dataflow benchmarks mailing list.

11. CONCLUSIONS

If a routine’s array subscripts, loop bounds, and branching conditions are affine
functions of the loop indices and constants, we can compute a dependence relation
that describes the dependence between any two array accesses exactly. Otherwise,
we can compute both a lower and an upper bound on each dependence. The
traditional upper bound can be used to conclude that code can be run in parallel
(that is, to put a lower bound on the parallelism). The lower bound on value-based
flow dependences can be combined with our tests for parallelism to provide an upper
bound on the parallelism in a given algorithm. By comparing the parallelism found
in the upper and lower bounds, we can determine whether more exact dependence
information about non-linear terms would be useful in exposing parallelism.

The method we describe for value-based dependence analysis is complete and ex-
act within the domain of programs with affine subscripts, loop bounds, and branch-
ing conditions, and works outside that domain. All other techniques had been in-
complete over this domain, although Feautrier’s is incomplete only for pathological
cases. Value-based dependence analysis is essential for enabling array privatiza-
tion/expansion and is very useful in analyzing and generating code for distributed
memory multicomputers.

Our tests for parallelism, when applied to various classes of dependences, will
detect any (possibly conditional) parallelism that can be exposed by any combina-
tion of the following transformations: scalar or array privatization, expansion, and
renaming, parallel reduction, (possibly imperfect) loop interchange, distribution,
alignment or peeling, index set splitting, statement reordering, unimodular loop
transformations, introduction of run-time dependence tests, and scalar induction
variable replacement. When conditional parallelism is detected and the conditions
are affine functions of the symbolic constants, the conditions are provided in the
dependence relation.
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The parallelism tests often provide insight into which transformations are nec-
essary to exploit the parallelism in the code. In cases where automatic techniques
cannot parallelize a program, the techniques described here will allow a user or com-
piler to concentrate effort on those sections of code where there is hope of exposing
parallelism.
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