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2 � William Pugh and Dave Wonnacotting compilers, to rule out program transformations that would change the semanticsof the program [AK87, Ban88, Wol89]. If the dependence information is inexact,the compiler must act conservatively, rejecting some transformations because theyviolate a constraint that may or may not be real.Determining array data dependences is at least as hard as checking for integersolutions to linear constraints, which is an NP-complete problem. Traditionally,conservative array data dependence tests, such as Banerjee's inequalities, have beenused in practice. These algorithms never fail to predict a dependence where oneexists, but they may also predict dependences that don't exist. When a test reportsa dependence that does not actually exist, it is said to report a false dependence.The term false dependence is also used to for dependences that exist but can beeliminated through program transformations [MHL91a]. False dependences canprevent useful parallelization.Recent work [WT92, MHL91b, IJT91, Pug92] has suggested that exact integerprogrammingmethods can be made e�cient enough for use in production compilers.However, even tests that use exact integer programming methods produce falsedependences. False dependences can arise due to non-linear terms, conditionaldependences and array kills [MHL91a].One way to determine the exact data dependences for a program is to instrumentthe program so that, when run, it produces an exact list of the data dependencesthat occurred during an execution [MHL91a, Lar93, PP93]. On the basis of thesedependences, we can also calculate the critical path of the program for that execu-tion. While this approach is useful, it has several drawbacks:|the instrumented program may run substantially slower than the original,|we only get information about dependences exhibited during a particular execu-tion, and|calculating the critical path of an execution may not give su�cient informationabout how to exploit the parallelism or how to remove existing bottlenecks.Even if we have exact information about dependences, the amount of parallelismmay not be obvious. If a loop does not carry any dependences, the loop can obvi-ously be run in parallel. However, the presence of loop-carried dependences doesnot always keep us from running some iterations in parallel. All of the loops inFigure 1 carry dependences, but there is exploitable parallelism in each of them.Advanced optimization techniques may be able to expose the parallelism in someof these cases, but other cases exist that are even more di�cult. The KAP pre-processor on the KSR is able to �nd the parallelism in Example 3 and 5. It alsoasks the user questions to determine if Example 7 is parallel. If the preprocessoris given permission to reorder reductions, it can �nd the obvious parallelism inExample 8. However, if it is not allowed to reorder reductions, it is unable to �ndthe non-obvious parallelism in this example. The KAP preprocessor doesn't evensuggest to the user that parallelism might exist in Examples 1, 2, 4, or 6.When automatic techniques cannot expose the parallelism, �nding and exploit-ing it can involve large amounts of programmer e�ort. For example, substan-tial parallelism exists in all of the Perfect Club Benchmarks codes [B+89], al-though existing automatic techniques are able to �nd only a small portion of it[EHLP91, Eig92, Eig93]. Exposing this parallelism required a careful, manual ex-amination of all the dependences that appeared to prevent parallelism, and the



Static Analysis of Upper and Lower Bounds on Dependences and Parallelism � 3for i := 1 to n doa(i) := a(1) + b(i) + a(n)Example 1 for i := 1 to n doa(i) := a(n-i)Example 2for i := 1 to n dofor j := 1 to n doa(i,j) := (a(i,j-1)+a(i-1,j))/2Example 3 for i := 1 to n-1 dofor j := 2 to n doa(i,j) := (a(n-i,n)+a(i,j-1))/2Example 4for i := 1 to n dob(i) := a(i)*a(i)c(i) := b(i-1)*b(i)Example 5 for i := 1 to n dos := 0for j := 1 to i-1 dos := s + a(i,j)*b(j)b(i) := b(i) - sExample 6for i := 1 to n doa(i) := a(i-p)+b(i)Example 7 for i := 1, n dofor j := 1, i dox(j) := x(j)+val(i,j)*v(i)x(i) := x(i)+val(i,j)*v(j)Example 8Fig. 1. Examples of Non-Obvious Parallelismdevelopment and manual application of new program transformations that havenot yet been automated. It is therefore helpful to identify those parts of the pro-gram that might contain parallelism that standard techniques have not uncovered,so that we can direct our e�orts there.Unfortunately, determining which sections are provably sequential is di�cult, anddoes not follow directly from standard techniques for �nding parallelism (much asco-NP-complete problems are harder in practice to solve than NP-complete prob-lems). Standard dependence abstractions (such as distance/direction vectors) can-not be used to prove that a code segment is sequential. With existing methods, theonly way to prove that a code segment is sequential is to conduct an exhaustivesearch of transformation sequences that might transform the program into parallelform. Since the search space can be in�nite, this is not feasible.In addition to getting feedback about sections of code that might be parallel, wealso wish to get feedback about the types of additional information or transforma-tions that might be required to exploit the parallelism in these sections.1.1 Our approachThe Omega test [Pug92] has evolved into a set of routines for manipulating Pres-burger formulas. Presburger formulas are those expressions that can be built us-ing linear constraints over integer variables and the usual logical connectives andquanti�ers [KK67, Coo72]. In [Pug92], we describe how to check a conjunction ofconstraints for solution and symbolically eliminate existential quanti�ed variables.In [PW92b], we give methods to eliminate redundant constraints from a conjunc-



4 � William Pugh and Dave Wonnacotttion and verify formulas of the form 8~x; (9~y s:t: P (~x; ~y))) (9~z s:t: Q(~x; ~z)), whereP and Q are conjunctions of linear constraints. In [PW93], we give methods forsimplifying expressions of the formC0 ^ :(9V1 s:t: C1) ^ :(9V2 s:t: C2) ^ : : :where the Ci's are conjunctions of linear constraints and the Vi's are sets of vari-ables. These capabilities allow us to simplify arbitrary Presburger formulas.In this paper, we apply the techniques from our previous work to perform atwo part search for parallelism. In the �rst part, we construct several sets of con-straints that describe, for each statement, which iterations of that statement canbe executed concurrently. By constructing constraints that correspond to di�er-ent assumptions about which dependences might be eliminated through additionalanalysis, transformations and user assertions, we can determine whether we canexpose parallelism by eliminating dependences. In the second step of our search forparallelism, we try to determine how to transform the program to exploit scalableparallelism. We look for conditional parallelism, and try to identify the kinds ofiteration reordering transformations that could be used to produce parallel loops.To build the constraints describing the parallelism among statement iterations,we need accurate data dependence information. In Section 3, we describe techniquesfor calculating dependence information statically using dependence relations, a de-pendence abstraction that includes complete information about the iterations thatparticipate in the dependence and the conditions on the symbolic constants forwhich the dependence exists. The dependence relation can be thought of a de-scription of the set containing all pairs of statement iterations that are linked bya dependence. In all cases that do not include complex control 
ow or non-a�neterms, the dependence relation describes the dependence exactly. To analyze thisrelation in an e�cient manner, we use methods described in [Pug92], [PW92b], and[PW93].When calculating dependence information, we have three options:|Should we allow reductions (such as a summation) to be done in an arbitraryorder or should we enforce the original reduction order? (Section 3.4)|Should we ignore or respect dependences that arise only from the reuse of memoryand not from the 
ow of values? (Section 3.5)|Should we compute upper or lower bounds on a dependence that we cannotanalyze exactly due to circumstances such as non-linear subscripts? (Section3.6)By considering all eight combinations of these options, we can see how addi-tional analysis and/or transformations such as storage-breaking transformationsand recognition of reductions can e�ect the dependences of the program (andthereby the amount of available parallelism).We use the terms value-based dependence andmemory-based dependence to distin-guish dependences that arise from the 
ow of values from those that arise due to there-use of storage. Calculating value-based 
ow dependences is substantially moredi�cult than calculating memory-based dependences. Many algorithms for value-based dependences for arrays can be applied only to code that does not contain anycontrol 
ow constructs other than normalized for loops, and in which all subscriptsand loop bounds are linear. Even within this domain, all previous methods [Bra88,



Static Analysis of Upper and Lower Bounds on Dependences and Parallelism � 5Fea88, GS90, Ros90, Rib90, Fea91, PW92b, Li92, MAL92, May92, MAL93, DGS93]only calculate an upper bound on the value-based 
ow dependences, although oneof these methods [Fea91] fails to give exact bounds only in extremely pathologicalcases. The method we describe in Section 3.5 is exact within this limited domain,and can be applied to programs outside this domain. The technique proposed by[Mas94] utilizes much of the technology developed in [PW93], and is also exact.In this paper, we are concerned only with parallelism that grows as the size ofthe iteration space grows. Thus, we search for opportunities to execute di�erentiterations of a statement concurrently, rather than opportunities to execute di�erentstatements concurrently. We do not address the question of �nding parallelism thatrequires run-time synchronization, nor �nd parallelism that can only be obtainedby changing the calculations performed in individual statements. For example, wedo not detect the fact that a sequential sorting algorithm can be replaced by aparallel sorting algorithm.The dependence relations describe constraints on the order in which we may exe-cute the iterations of the statements. There are three basic ways to achieve parallelexecution: First, we may be able to eliminate some of these constraints, via fur-ther dependence testing, relaxing the order of associative reductions, or performingvariable expansion, privatization, or renaming. Second, we may be able to identifyconditions on the symbolic constants for which a dependence does not exist. Finally,we may transform the code so that it traverses the iteration space in a di�erentorder (via loop interchange, iteration space splitting, or other transformations).In Section 4, we show how to construct, for each statement in the program,a single relation that includes all dependences between iterations of that state-ment, taking into account chains of dependences through other statements. Wecan compare the parallelism allowed by two sets of dependences, to see if one ismore restrictive than the other. By identifying reduction operations and using onlythe lower bound on the value-based 
ow dependences, we can produce an upperbound on the parallelism between iterations of a statement. We then test this upperbound to see if it is inherently sequential. If it is, we stop and mark the statementas sequential.For statements that are not provably sequential, we can compare the parallelismavailable when dependence testing is adjusted for:|original order vs. arbitrary order reductions, and|memory-based vs. value-based dependences,|lower bounds vs. upper bounds for dependences arising from non-linear referencesThese comparisons provide information about whether privatization, re-ordering ofreductions, or further dependence testing will increase parallelism.In Section 5, we describe a number of tests to subdivide the iteration space toallow parallel execution. These tests search for a way to partition the iterationsof the statement so that either the partitions can be run in parallel threads or sothat the iterations within each partition can be run in parallel. These tests provideinsight into the types of iteration space transformations that are needed to exposeparallelism. Our tests are heuristics, and may miss some possible partitioning.However, they will �nd any partitioning that could be obtained by a combinationof loop interchange (including imperfect loop interchange), distribution, alignmentor peeling, index set splitting to handle crossing dependences or enable imperfect



6 � William Pugh and Dave Wonnacottloop interchange, statement reordering, unimodular loop transformations, and theintroduction of run-time dependence tests.We do not attempt to generate a transformation that exploits the parallelismfound. For a single statement in isolation, this code generation would not be dif-�cult. However, it is unclear how to combine the results from analyzing each ofseveral statements into a transformation that simultaneously exploits the paral-lelism in all of the statements.In Section 6, we show the results of applying our techniques to the codes inFigure 1 and a larger, more realistic example. In Section 7, we give an evaluationof the performance of our techniques for evaluating value-based dependences. Wediscuss related work in Section 8, comment on needed future work in Section 9,describe how to obtain source code for our implementation in Section 10, and o�erconcluding comments in Section 11.2. CAUSES OF FALSE DEPENDENCESIn a study [MHL91a, May92] of Perfect Club Benchmark programs QCD, MDG, ARC2Dand TRFD, Dror Maydan et. al. found that a total of 170 loop carried value-based
ow dependences were expressed during execution of the programs on the standardinput data. They also found that even a test that could solve the \a�ne memorydisambiguation" problem exactly would �nd over one thousand false loop carried
ow dependences. The major reasons for false dependences are (largely based onMaydan's analysis):Data 
ow. Although two statements refer to the same memory location, inter-vening writes always occur between the source and sink of the dependence, andtherefore there is no data 
ow along the dependence. In other words, there is amemory-based dependence, but not a value-based dependence, between the state-ments. This frequently arises when a work array is reused in each iteration of a loop.Memory-based dependences can often be eliminated via storage-dependence break-ing transformations such as renaming, expansion and privatization. We addressvalue-based 
ow dependences in Section 3.5.Conditional. The dependence may exist only under certain conditions. In somecases, advanced symbolic analysis could determine that these conditions are impos-sible. In others, the conditions depend on input data and cannot be predicted atcompile-time. It may be possible to eliminate these dependences through the useof run-time dependence tests and/or user interaction and assertions. We addressconditional dependencies in Section 3.3.Non-linear. The dependence may involve subscripts or loop bounds containingnon-linear expressions such as i*c+j, p(i), or a variable that cannot be expressedas an a�ne function of the loop indices and constants. It may be possible to elim-inate some of these false dependences by using methods such as [McK90, Mas92].However, these methods generally require user interaction and assertions. We de-scribe methods for computing upper and lower bounds for dependences involvingnon-linear references in Section 3.6.Reduction. We normally recognize a 
ow dependence between two successiveupdates to an array. If these updates use an associative and commutative operationsuch as addition, we may wish to allow them to be reordered or even done inparallel. To do so, we recognize the dependence between these two references as a



Static Analysis of Upper and Lower Bounds on Dependences and Parallelism � 7reduction dependence, which does not impose an ordering constraint. In a reviewof Maydan's experimental data, we found that most of the 170 loop-carried value-based 
ow dependences could be classi�ed as reduction dependences. We discussreduction dependences in Section 3.4.Dependence Abstractions. Traditional abstractions of data dependence, such asdependence di�erence summaries1, do not include information about which loopiterations participate in the dependence. Systems using these abstractions mustbehave as though a dependence exists between all pairs of iterations separatedby that di�erence, even if the dependence exists only on a subset of the iterationspace. For example, the dependence di�erences for Example 2 are 1 : : :bn=2c, butthis information does not re
ect the fact that all dependences are from the �rsthalf of the iteration space to the second half. We address more precise dependenceabstractions in Section 3.2.Reductions and dependence abstractions were not cited as a cause of false depen-dences in [MHL91a], since that study only examined whether or not dependencesoccurred, not whether they actually prevented parallelism.3. DEPENDENCE ANALYSISFor the methods we describe to apply, we must be able to determine which loopsand conditionals control the execution of each statement. This can be done in astraightforward manner for code that uses only structured if's and loops for control
ow. Our techniques can be applied to any single procedure written this way. Wedo not address the issue of inter-procedural analysis and transformation.We recognize a�ne induction variables and use this information and forwardsubstitution to try to recognize each subscript and loop bound as a a�ne func-tion of the loop indices and loop-independent variables. If the expressions in thesubscripts, loop bounds, and branching conditions are a�ne functions of the loopindices and loop-independent variables, and the loop steps are known constants, wecan represent the dependence exactly.The requirement that if conditionals be a�ne functions of the loop indices andloop-independent variables is overly restrictive, and additional work is needed tohandle realistic conditionals (see Section 9).We can handle min, max, div and mod operations in subscripts and loop bounds.Some of these, such as a max(n,m) as the upper bound of a loop, can only berepresented by a disjunction. In such cases, dependence testing is more complicatedbut still exact.3.1 Dependence Di�erence SummariesWith traditional data dependence analysis, each possible dependence is describedby a summary of the possible dependence di�erence between the two references.These summaries give a constant value for the dependence di�erence when it isconstant, and otherwise summarize the possible signs of the dependence di�erence.1A dependence di�erence is equivalent to the more traditional \dependence distance" when loopsare normalized, as they are in all examples in this paper. The term \dependence distance" is notuniquely de�ned for unnormalized loops { see [Pug93] for details.



8 � William Pugh and Dave Wonnacott3.2 Dependence RelationsThe �rst step we take to improving the accuracy of our data dependence informa-tion is to represent dependences with an abstraction that is more accurate thana dependence di�erence summary. Dependence di�erence summaries do not de-scribe which iterations of the statement are involved in the dependence, and do notdescribe the e�ect of the values of symbolic constants. We therefore represent de-pendences with dependence relations [Pug91]. A dependence relation is a mappingfrom one iteration space to another, and is represented by a set of linear constraintson variables that represent the values of the loop indices at the source and sink ofthe dependence and the values of the symbolic constants (e.g., n in Examples 1�8).The notation we use in the constraints is adapted from [ZC91]:A;B; : : : Refers to a speci�c array reference in a programI; I0; I00; : : : An iteration vector that represents a speci�c set of valuesof the loop variables for a loop nest.[A] The set of iteration vectors for which A is executedA(I) The iteration of reference A when the loop variables havethe values speci�ed by IA(I) sub= B(I 0) The references A and B refer to the same array and thesubscripts of A(I) and B(I 0) are equal.A(I)� B(I 0) A(I) is executed before B(I 0)Sym The set of symbolic constants (e.g., loop-invariant scalarvariables)The dependence relation below describes exactly the iterations and values ofsymbolic constants for which A(I) and B(I 0) refer to the same element of the array,and A(I) is executed before B(I 0) (i.e., it describes the memory-based dependencefrom A to B).f I ! I 0 j I 2 [A] ^ I 0 2 [B]^ A(I) � B(I 0) ^A(I) sub= B(I 0) gFor example, the 
ow dependence involving the array b in Example 6 is describedby the direction vector (+), and the dependence relation:f [i] ! [i0; j0] j I2[A]z }| {1 � i � n^ 1 � j0 < i0 � n| {z }I02[B] ^ A(I)�B(I0)z }| {i < i0 ^ i = j0| {z }A(I)sub= B(I0) gThis can be simpli�ed to f [i]! [i0; j0] j 1 � i = j0 < i0 � ng.3.3 Conditional DependencesIt may be the case that two array accesses can refer to the same memory locationonly if certain conditions hold on the symbolic constants. For example, the 
owdependence in Example 7 is described by the dependence relation:f[i]! [i0] j 1 � i < i0 = i + p � ng



Static Analysis of Upper and Lower Bounds on Dependences and Parallelism � 9If p is less than 1 or greater than n � 1, the dependence does not exist. Thisinformation is accurately captured by the dependence relation.3.4 Reduction DependencesConsider the code fragment in Example 8. Traditional data dependence analysiswill detect 
ow, output, and anti-dependences between these two statements. Wecan easily recognize these statements as update statements. If we are willing totreat machine arithmetic as if it were associative and commutative, we can changethe order in which the updates are done. There are even a number of ways in whichupdate operations can be done in parallel (e.g., each processor computes a localsum, and then the local sum's are combined in a short sequential (or even logp)step).We can either automatically recognize update operations constructed with tra-ditional operators, or let the programmer use special operators or directives toindicate a commutative and associative update. A dependence between two com-patible updates is termed a reduction dependence, and does not impose an orderingconstraint. If we do not recognize reduction dependences, we treat an update as aread followed by a write.3.5 Value-based DependencesWe can calculate value-based 
ow, output, and anti-dependences, but in this paperwe are not concerned with the latter two. There is a value-based 
ow dependencebetween an iteration of a write A(I) and an iteration of a read C(I 00) if and onlyif C(I 00) reads the value that was written by A(I). For this to occur, A(I) andC(I 00) must access the same element of the array, and that element must not beoverwritten between A(I) and C(I 00). If the element is overwritten by B(I0), wesay B(I 0) kills the dependence from A(I) to C(I 00). Let B1, B2, ..., Bp be thearray writes that might overwrite the element (note that A might be included inthe list of Bq 's). The value-based 
ow dependence from A to C is described by therelation:f I ! I00 j I 2 [A] ^ I 00 2 [C]^A(I)� C(I 00) ^A(I) sub= C(I 00)^ 8q; 1 � q � p;:9I0 s:t: I 0 2 [Bq] ^A(I)� Bq(I0)� C(I 00)^ Bq(I 0) sub= C(I 00) gThe conditions under which Bq kills the dependence imply that there must bememory-based dependences from A(I) to Bq(I0), from A(I) to C(I 00), and fromBq(I 0) to C(I 00). We can therefore simplify our relation by leaving out any q forwhich we can show this is not the case.For example, consider the 
ow dependence from the write at line 2 to the readat line 7 in Example 9. The dependence di�erence summaries that will be used toconstruct the relation for this dependence are shown to the right of the code.We build the dependence relation by expanding the outer quanti�cation of 8q : : :(since we can determine all possible Bq 's statically). The relation will have two\kill" terms (Bq 's): the writes at lines 4 and 5 (there is no kill term for the write online 2 because there is no self output dependence for this write). The unsimpli�edversion of the relation is:



10 � William Pugh and Dave Wonnacott1: for i := 1 to 2*n do2: a(i) := ...3: for j := 1 to n-1 do4: a(2*j) := ...5: a(2*j+1) := ...6: endfor7: ... := a(i)8: endforExample 9 flow 2: a(i) --> 7: a(i) (0)output 2: a(i) --> 4: a(2*j) (0+)flow 4: a(2*j) --> 7: a(i) (0+)output 2: a(i) --> 5: a(2*j+1) (0+)flow 5: a(2*j+1) --> 7: a(i) (0+)Some dependence di�erence summaries for Example 9f [i]! [i00] j I2[A]z }| {1 � i � 2n ^ I002[C]z }| {1 � i00 � 2n^A(I)�C(I00)z }| {i = i00 ^A(I)sub= C(I00)z }| {i = i00^ :( 9[i0; j0] s:t: (1 � i0 � 2n^ 1 � j0 � n�1) ^ (i � i0 ^ i0 � i00)^ (2j0 = i00) )^ :( 9[i0; j0] s:t: (1 � i0 � 2n^ 1 � j0 � n�1) ^ (i � i0 ^ i0 � i00)^(2j0+1 = i00) ) g| {z }8q;1�q�p;:9I0 s:t: I02[Bq ]^A(I)�Bq(I0)�C(I00)^Bq(I0)sub= C(I00)Simplifying such expressions are di�cult. Some of the problems are described inSection 3.5.1. By using techniques described in [PW93], we simplify the aboveexpression to:f [i]! [i00] j (1 = i = i00 � n) _ (1 � i = i00 = 2n) _ (1 � i = i00 � 2n ^ n = 1) gThus, we have discovered that there is a dependence from the �rst write of Example9 to the read only during the �rst iteration and last iteration (if n = 1, there areonly 2 iterations). With our current implementation, this simpli�cation requires 5milliseconds on a Sun SparcStation 10-51.The above equation for value-based dependence analysis is best thought of asa denotational speci�cation of what we compute. Using the techniques for value-base dependence analysis described in [PW92a, PW94] as a prepass, followed bythe techniques described here, decreases the total cost of value-based dependenceanalysis by a factor of 0:9� 1:75 while not changing what is computed. In [PW93],we describe a number of techniques that decrease the cost of value-based dependenceanalysis by a factor of 1:1� 2:9 and eliminate the need to perform a prepass usingthe techniques described in [PW92a, PW94].3.5.1 Simplifying formulas containing negation. When performing array kill anal-ysis, we have to simplify formulas of the form:: : :_ (C0 ^ :(9V1 s:t: C1) ^ : : :^ :(9Vn s:t: Cn)) _ : : :Here, the Ci's are conjunctions of linear constraints, and the Vi's are (possiblyempty) sets of variables. Techniques described in our previous papers [Pug92,PW92b] allow us to eliminate existentially quanti�ed variables, check for the feasi-bility of a conjunction of constraints, and perform other simpli�cations, but thesetechniques do not address negation. There are two problems involved in simplifying



Static Analysis of Upper and Lower Bounds on Dependences and Parallelism � 11formulas containing negations:|We must transform a formula into disjunctive normal form in order to verify theexistence of solutions. A straightforward transformation of a formula containingnegation into disjunctive normal formmay lead to a huge explosion in the numberof terms.|If a negated term 9Vi s:t: Ci represents non-convex constraints (e.g., 9� s:t: x =5�), we cannot directly evaluate the negation. When standard Fourier-Motzkinvariable elimination cannot eliminate an integer variable exactly, we can some-times eliminate the variable exactly by introducing quasi-linear constraints (con-straints containing 
oor and ceiling operators) [AI91]. For example, (9� s:t: x =5�) � dx=5e � bx=5c. In these cases, negation is easy to apply (e.g., :(dx=5e �bx=5c) � (dx=5e > bx=5c)).Although we can always eliminate one variable this way, we may not be able toeliminate multiple variables this way, since we may not be able to apply Fourier-Motzkin variable elimination to a set of constraints containing 
oor and ceilingoperators.In [PW93], we give a partial (but e�ective) solution to the �rst problem and acomplete and exact solution to the second.3.6 Non-linear DependencesIf a structured routine does not meet the conditions under which we can produce anexact dependence relation, we can create relations that give lower and upper boundson the dependence. We do so by using linear approximations for the nonlinearconditions. If a nonlinear constraint appears positively, replacing it with Falsegives a lower bound and replacing it with True gives an upper bound. However, wewould like to obtain tighter bounds than that. We describe methods for obtainingtighter lower bounds for non-linear equality constraints.Given a non-linear equality constant, we attempt to transform it into somethingof the form Pp fp(ap) = Pp fp(bp), where the ap's and bp's are a�ne expressions.In Example 10, we can transform i � c + j = (i0� 1) � c + j0 into ff1(x) = x; f2(x) =c � x; a1 = j; a2 = i; b1 = j0; b2 = i0 � 1g and ff1(x) = x; f2(x) = c � x; a1 = j; a2 =i; b1 = j0 � c; b2 = i0g. For each such transformation found, let L be 8p; ap = bp.Since the fp's are functions, we know that L)Pp fp(ap) =Pp fp(bp).For a non-linear equality constraint E, let L1; L2; : : :Lq be the constraints arisingfrom the transformations found for E (typically q will be 1 or 2). If E appearspositively in a dependence relation, we can replace E with L1 _ L2 _ � � � _ Lq andobtain a lower bound on the dependence relation. For the memory-based 
owdependence in Example 10, this leads to the a lower bound of:f[i; j; k]! [i0; j0; k0] j i0 = i + 1 ^ 1 � i < n ^ 1 � j = j0 � m ^ 1 � k = k0 � 10g[ f[i; j; k]! [i0; j0; k0] j j0 = j+ c ^ 1 � i = i0 � n^ 1 � j < j0 � m^ 1 � k = k0 � 10gfor i := 1 to n dofor j := 1 to m dofor k := 1 to 10 do... := a((i-1)*c+j, k)a(i*c+j, k) := ...Example 10 for i := 1 to n dofor j := 1 to m doa(p(j)) := ...... := a(p(j))Example 11



12 � William Pugh and Dave WonnacottTo build the upper bound for this dependence, we replace the nonlinear constraintwith True, yielding:f[i; j; k]! [i0; j0; k0] j 1 � i � i0 � n ^ 1 � j; j0 � m ^ 1 � k = k0 � 10g[ f[i; j; k]! [i0; j0; k0] j 1 � i = i0 � n ^ 1 � j < j0 � m ^ 1 � k = k0 � 10gWhen E appears negatively, as it might when computing value-based 
ow depen-dences, we substitute L1_L2_� � �_Lq to obtain an upper bound on the dependencerelation. Thus, this technique can be used to improve the accuracy of upper boundson value based dependences, as well as the accuracy of lower bounds on memorybased dependences. In Example 11, this allows us to determine that there is noloop-carried value-based 
ow dependence between the two array references.3.7 InteractionsIf a program contains only linear terms and we do not recognize reduction depen-dences, we can eliminate all dependences other than value-base 
ow dependences bya sequence of storage-dependence breaking transformations (e.g., expansion, priva-tization, and renaming) [Fea88, Fea91]. That is, we can completely separate value
ow and memory usage issues for these programs.However, parallel reductions and/or non-linear terms may prevent us eliminatingall storage-based dependences.3.7.1 Non-linear terms. If a program contains non-linear terms, the upper boundon the value-based 
ow dependences is not always su�cient to ensure that the orig-inal semantics can be preserved. Speci�cally, when we cannot determine staticallywhich of several writes provides a value that is read, we must still rely on the over-writing of memory to ensure that the correct value is received by the read. To dothis, we ensure that any pair of writes that could both supply a value to a single readare executed in their original order, and we do not allow any storage-dependencebreaking transformations that would prevent them from overwriting each other.More formally, we �nd the we must respect an memory-based output dependencefrom A(I) to B(I 0) (where A and B may be the same statement) if there existsa read C(I 00) such that the value read in C(I 00) may be provided by both A(I)and B(I 0). This is only possible if our dependence information is an inexact upperbound on the value-based 
ow dependences.We must respect a memory-based anti-dependence from B(I 0) to C(I 00) if thereexists a write A(I) such that there is a value-based 
ow dependence from A(I) toB(I 0) and we must respect the output dependence from A(I) to C(I 00).For example, consider the code in Example 12. Even if we were to performall possible privatization, expansion, and renaming, we would still be required toexecute all of the iterations of S1 sequentially, allowing them to potentially overwriteeach other, before allowing any iterations of S3 to execute.



Static Analysis of Upper and Lower Bounds on Dependences and Parallelism � 13for i := 1 to n doa(p(i)) := ... /* S1 */for j := 1 to n dob(j) := ... /* S2 */c(j) := a(j) + b(p(j)) /* S3 */endforendforExample 12: Nonlinear terms a�ecting value-based dependence analysisThe dependences in Example 12 are:From To Type Dependence RelationS1 S3 Value� Flow f[i]! [i0; j0] j 1 � i � i0 � n ^ 1 � j0 � ngS1 S1 Memory� Output f[i]! [i0] j 1 � i < i0 � ngS2 S1 Memory� Anti f[i; j]! [i0] j 1 � i < i0 � n ^ 1 � j � ngS2 S3 Value� Flow f[i; j]! [i; j0] j 1 � i � n ^ 1 � j � j0 � ng[f[i; j]! [i + 1; j0] j 1 � i < n ^ 1 � j0; j � ngS2 S2 Memory� Output f[i; j]! [i0; j] j 1 � i < i0 � n ^ 1 � j � ngS3 S2 Memory� Anti f[i; j]! [i; j0] j 1 � i � n ^ 1 � j < j0 � ng[f[i; j]! [i0; j0] j 1 � i < i0 � n ^ 1 � j0; j � ngUsing the calculations above, we see that we will need to enforce all of the outputand anti dependences involving statement S1, but none of the output and antidependences involving S2. In this case, we need to respect all dependences in thememory-based dependence relations, but in general, we may only need to respecta subset of the dependence pairs.3.7.2 Reductions. We may also need to enforce some anti-dependences when weperform value-based analysis in the presence of reorderable reductions. Considera value-based reduction dependence from A(I) to C(I 00) for which there is also avalue-based 
ow dependence fromA(I) to B(I 0) and a value-based anti-dependencefrom B(I 0) to C(I 00). Since A(I) and C(I 00) must update the same memory lo-cation, we cannot eliminate the anti-dependence. If we wish to �nd the set ofdependences that cannot be eliminated with expansion and renaming, we must in-clude the value-based 
ow dependences, the dependences listed in Section 3.7.1,and these anti-dependences.This is similar to the situation for non-linear dependences, so we do not give adetailed example here.3.8 Full Analysis of Only Some DependencesOur methods for �nding parallelism examine dependences from one iteration ofa statement to another iteration of the same statement. We therefore considercycles in the statement graph, where the statements are nodes and each feasibledependence relation is treated as a directed edge. Dependences that are not part ofa cycle can be ignored, and we need not use expensive techniques to analyze them.Given our initial, upper bound on dependences (calculated using standard tech-niques such as [Pug92]), we calculate the strongly connected components (scc's)of the statement graph. A dependence is in a cycle if and only if its endpoints arein the same scc.



14 � William Pugh and Dave WonnacottWhen determining which 
ow dependences to perform value-based analysis on,we can base the scc on the 
ow dependences only. If we use a method such as[PW92b] that eliminates some dependences that are not value-based, we can basethe scc on only the 
ow dependences that might be value-based. In the case wherenon-linear terms may prevent us from calculating value-based 
ow dependencesexactly, we may also need to consider some output and anti dependences (see Section3.7).4. COMPUTING SELF-DEPENDENCE INFORMATIONThe dependence relation between array accesses A and B gives conditions underwhich A(I) must precede B(I 0). Conversely, if A(I) and B(I 0) are not connectedin the transitive closure of the graph of a set of control and data dependencerelations, those dependences do not prevent us from executing them concurrently.Thus, dependence relations provide exact information about which iterations ofwhich statements can be executed concurrently. In this paper, we only considerparallelism that grows as the size of the iteration space grows. Thus, we will lookonly for parallelism between the iterations of each statement.We start by calculating the transitive self-dependence relation, or TSDR, for eachstatement. This relation will contain all the ordering constraints between iterationsof the statement, including constraints arising from transitive dependences throughother statements. A TSDR D for a statement describes the parallelism amongthe iterations of the statement, as it gives the conditions under which any pair ofiterations I and I0 can be executed concurrently: ([I]! [I 0]) 62 D.4.1 Computing the Self-Dependences of a StatementIn previous work, we described methods for computing the transitive self-dependencesof a statement [Pug91]. Unfortunately, no complete method is possible for com-puting an exact, closed form for the transitive closure of an arbitrary dependencerelation (it is equivalent to adding multiplication to Presburger, which makes thetheory undecidable). As described in [Pug91], it is possible to complete an ex-act transitive closure for dependences in certain special forms. For example, wecan compute the exact transitive closure of any dependence relation that can berepresented exactly by a direction/distance vector.In [Pug91], we were only concerned with computing a lower bound on the tran-sitive closure. Here, we discuss how to compute both an upper and lower boundon the transitive closure. To compute D+ (the transitive closure of D), we �ndrelations DL and DU such that DL � D � DU and DL and DU are in specialforms that can be closed exactly. We use these to obtain lower and upper boundson D+: (DL)+ � D+ � (DU )+If these lower and upper bounds are identical, we know we have computed D+exactly. In other cases, we treat our bounds on the transitive closure as if they hadarisen from a nonlinear term during dependence analysis.In the abstract, computing a transitive closure appears to be very hard and/orexpensive in the worst-case. When we analyze even large programs, we �nd thatif we allow reductions to be reordered and consider only value-based 
ow depen-dences, the strongly connected components are typically very small, and computing



Static Analysis of Upper and Lower Bounds on Dependences and Parallelism � 15a(1) = b(1)for i := 2 to n doa(i) := a(i-1) + b(i)Example 13: Sequential Codethe transitive closure is easy and fast (less than 0.5 seconds on a Sun Sparc 10-51).However, when we analyze large programs using memory-based dependences andoriginal order for reductions, we �nd that strongly connected components contain-ing 20-30 statements are not unusual, and scc's of over 100 statements can arise inpractice. In these cases, many of the dependences derive from scalar variables andare typically \to all future iterations". Our current implementation does not utilizefast, special case methods to handle these cases. As we gain more experience withanalyzing large programs, we expect to re�ne our techniques to allow us to handlethese cases e�ciently.4.2 Comparing Transitive Self-Dependence RelationsIn Section 3, we discussed several choices that can be made during the calculationof a single dependence relation: we can use upper or lower bounds for nonlinearconstraints, we can calculate value or memory-based dependence relations, andwe may wish to recognize reduction dependences. We can use the di�erent kindsof individual data dependence relations to calculate several di�erent TSDRs for agiven statement. We can de�ne a partial ordering on TSDRs, based on the sets ofordering constraints they describe:D0 � D i� 8Sym; I; I0; (I ! I0 2 D0)) (I ! I 0 2 D)Note that, ifD0 � D, and D allows two iterations of the statement to be executedin parallel, D0 also allows them to be executed in parallel.We have some a priori knowledge of the ordering of di�erent TSDRs for a state-ment: We will not add to the set of ordering constraints by (a) using value-based
ow dependences rather than all memory-based dependences, (b) recognizing re-ductions, or (c) using a lower bound rather than an upper bound on an individualdependence.For any statement S, we can calculate D�S , a TSDR based on the upper bound onmemory-based 
ow, output, and anti-dependences we compute without recognizingreductions, and D!S , a TSDR based on our lower bound on the value-based 
owdependences we �nd after recognizing reductions.We say that D�S is a lower bound on the parallelism of the iterations of statementS, since it gives conditions under which we must be able to execute a pair ofiterations concurrently: if ([I] ! [I0]) 62 D�S , no dependence prevents us fromexecuting I and I 0 concurrently. Note that it may still be quite di�cult to transformthe program into a form that makes use of this parallelism; we will address thispoint in Section 5.If ([I]! [I 0]) 2 D!S , we cannot reorder I and I 0 without disrupting the 
ow ofinformation in the program. Thus, we say that D!S gives an upper bound on theparallelism of the iterations of S. We can use D!S to prove that the iterations of Smust execute sequentially, by checking:



16 � William Pugh and Dave Wonnacott:9I;I 0; Sym s:t: I;I 0 2 [S] ^ S[I]� S[I 0] ^ (I ! I 0) 62 D!SIf this is true, as it is for Example 13, and for the third assignment in Example6, then there are no values for the symbolic constants such that there exist twostatement iterations that can be run in parallel. In such cases, we classify thestatement as \inherently sequential" and stop analyzing it.4.3 Parallelism through Dependence BreakingIf a statement is not inherently sequential, we test to see whether we can increaseparallelism between its iterations by breaking dependences with variable privati-zation, reduction re-ordering, or gathering additional information about nonlineardependences. If D!S = D�S , we know the aforementioned changes do not e�ectthe transitive dependences, and are therefore not needed to expose the parallelism.Otherwise, we can calculate six other TSDRs for S, using various combinations ofvalue or memory-based dependence testing, recognizing or not recognizing reduc-tions, or �nding upper or lower bounds on the basic dependence relations. We canthen determine which dependence-breaking transformations have an e�ect on thetransitive dependences.It would be possible to attempt to produce a scalar quanti�cation the amount ofparallelism we �nd (for example, by �nding the length of a critical path throughthe dependence relation). However, we do not address that issue in this paper.5. IDENTIFYING USEFUL REORDERING TRANSFORMATIONSATSDR contains information about which iterations of a statement can be executedin parallel. To make use of the parallelism, we must identify conditions under whichlarge groups of iterations can be run in parallel. We therefore attempt to partitionthe iterations of the statement such that|the partitions can be executed in parallel, or|the iterations within each partition can be executed in parallel.The nature of the partitions often provides information about the kinds of reorder-ing transformations needed to exploit the parallelism.In this paper, we only consider partitions that provide parallelism that grows asthe size of the iteration space grows. For example, if all dependence di�erences ina loop are multiples of 2, we could partition the iterations of the statement into theeven and odd iterations (which can be executed in parallel). We would not considerthis partitioning since it gives only a factor of 2 parallelism. Additional techniquesto search for such parallelism could be added to our scheme.All of our tests have the property that the amount of parallelism they detect isa nondecreasing function of the self-dependences of the statement being analyzed.We can therefore use them to investigate the amount of scalable parallelism that isexposed by the di�erent dependence breaking techniques of Section 4.2. If D0S �DS , but the tests in this section give the same results forD0S and DS , the additionalparallelism in D0S either does not grow with the iteration space or is extremelydi�cult to exploit.



Static Analysis of Upper and Lower Bounds on Dependences and Parallelism � 17We analyze the parallelism in a statement S by applying the following steps toeach unique TSDR for S that contains parallelism:(1) First, we compute the dependence di�erences represented by the TSDR, andsee if unimodular loop transformation methods can expose parallelism (Section5.1).(2) Next, we try peeling the iteration space to simplify the dependences (Section5.2).(3) We then search for parallelism in the core iterations of the peeled statementusing unimodular loop transformation methods (Section 5.1).(4) Finally, for each possible loop permutation, we can check for conditional par-allelism (Section 5.3). If desired, directional peeling can be applied (Section5.3.1).5.1 Using Unimodular Loop Transformation TechniquesWe can hand the self-dependences o� to a module that looks for a unimodular looptransformation that will expose the most parallelism [Ban90, WL90, KKB92]. Thismodule can report whether the self-dependences allow for coarse-grain parallelism,and if not, whether the self-dependences allow for �ne-grain parallelism.Standard unimodular techniques will �nd any parallelism that can be exposedusing loop interchange, loop skewing and loop reversal. Since we consider eachstatement separately (using transitive self-dependences), we will also �nd paral-lelism that can be only exposed using loop distribution, statement reordering, andloop alignment [Pug91]. This check will �nd the parallelism when applied to D�for the statement in Example 3. It will also �nd parallelism when applied to thetransitive closure of the value-based 
ow dependences for the statements that assignto s in Example 6.5.2 Dependence PeelingUnimodular loop transformation techniques do not include transformations thatsplit or peel the iteration space. We can determine that such transformations arenecessary by examining the e�ects of removing, from a TSDR DS , the iterationsthat do not have both incoming and outgoing dependences. This can be calculatedas D̂S = f I0 ! I 00 j (I ! I 0) 2 DS ^ (I 0 ! I00) 2 DS ^ (I 00! I 000) 2 DS gThe iterations that have no incoming dependences can be executed in parallel beforethe \core" iterations, and those without any outgoing dependences can be executedafter the core iterations. If the number of core iterations is small (or zero), thismay be su�cient. Also, it may be easier to exploit the dependences among the coreiterations than the dependences across the entire set of iterations (i.e., it may beeasier to �nd parallelism in D̂S than DS ).The dependence relation for Example 1 is:f[i]! [i0] j (i = 1 ^ 2 � i0 � n) _ (1 � i < n ^ i0 = n) gThe peeled version of this dependence relation is empty, so we know that parallelismcan be exposed in this example by loop peeling or splitting.



18 � William Pugh and Dave WonnacottThe dependence relation for Example 2 is:f[i]! [i0] j 1 � i < i0 � n ^ i0 = n� igOnce again, the peeled version of this dependence relation is empty, so we know thatparallelism can be exposed in this example by loop peeling or splitting (splitting inthis example).We could peel the core iterations again, although we do not believe this is likelyto be useful.5.3 Directional/Conditional ParallelismThe conditions under which a dependence DS exists are:9I; I0 s:t: I ! I 0 2 DSUnfortunately, any self-dependence of a statement in a loop with symbolic boundsis conditional, since the statement will not execute (and the dependence not exist)if the bounds are empty. Asking the user about all such conditional dependencesis not likely to be useful.We could determine the conditions under which a dependence exists despite thepresence of multiple iterations of each enclosing loop. Given a vector �I of thenumber of required iterations of each enclosing loop, we �nd conditions under which(9I; I0 s:t: I; I 0 2 [S] ^ I +�I � I0)) (9I; I0 s:t: I ! I0 2 DS)While this test avoids the \false alarm" for loops with symbolic bounds (such asExample 13), it shares one other problem with the formulation above: it only �ndsconditions under which we can completely eliminate all dependences inDS . We alsoneed to �nd conditions that allow one or more parallel loops despite the existenceof some dependences.Therefore, we look for conditional parallelism in one direction at a time. Let d bea vector indicating the direction we are testing for parallelism (i.e., let d be (0; 1) tosearch for parallelism in the inner of two loops). This would correspond to a loopover the possible values of d>I. Values of d such as (1; 1) correspond to skewedloops. We calculate DdS , the dependences that would be carried by an outer loopover d>I, as: DS \ f I ! I0 j d>I < d>I 0 g:Select W to be the minimum number of iterations a loop must have in order forrunning it in parallel to be pro�table. The conditions under which the loop wouldcarry dependences whenever it contains enough iterations to be pro�table to runin parallel are:(9I; I0 s:t: I; I 0 2 [S] ^ I +Wd � I0)) (9I; I 0 s:t: I ! I 0 2 DdS)If we can verify that these conditions are false (by user assertion or a run-timecheck), then we can execute the iterations in a parallel loop over d>I whenever itis pro�table to do so.5.3.1 Directional Peeling. For statements with multidimensional iteration spacesand complex self-dependences, it may be useful to perform directional peeling. Toperform directional peeling in direction d, we separate the statement iterations into



Static Analysis of Upper and Lower Bounds on Dependences and Parallelism � 19initial, core and �nal iterations by applying the techniques of Section 5.2 to DdS .The initial and �nial sections can be executed by a parallel loop over d>I.This method appears to be of limited utility. The only example we have foundwhere it would be useful is Example 4, and variations on it. For Example 4, we�nd the i loop can be divided into initial (1 � i � b(n� 1)=2c), core (i = (n� 1)=2;if i is odd), and �nal (d(n� 1)=2e � i � n� 1) sections.5.3.2 Buried Directional Parallelism. In searching for directional parallelism, weare simply checking if d can be used as an outer parallel loop. If an outer sequentialloop was placed around the statement, the outer loop might carry enough depen-dences so that parallelism can be found in inner loops. Given a sequential outerloop, we can easily calculate which self-dependences are not carried by the outerloop.There are two problems with searching for directional parallelism:|We do not know what d's to use. We would not be able to consider all possiblecombinations of loops that include loop skewing (e.g., using d = (1;�1) or d =(3; 2)).|If we wish to search for inner loop parallelism, we not only have to considerall possible parallel loops, we have to consider all sequential loops that mightsurround it.These problems pose limitations on the usefulness of this technique. However, thistechnique should be usable for considering all permutations of loops and searchingfor both inner and outer parallelism (there are only 6 permutations to try if thestatement is nested 3 deep).5.4 Transforming Scalar CalculationsAlthough our techniques do not, in general, detect cases in which code can beparallelized by performing a di�erent set of operations, we can test to see if moreadvanced scalar induction variable detection might expose parallelism. Stronglyconnected components of the statement graph that consist entirely of assignmentsto scalar variables often re
ect either a reduction or an induction variable andfurther scalar analysis may suggest a way of computing the values in parallel.5.5 Additional TestsThe list above is not a complete list of tests that might be applied. The only caseswe know of not checked by the above tests are when the GCD of the dependencedistances is greater than 1 (e.g., if all dependence distances are even, we can executethe odd and even iterations in separate, parallel threads) and when all dependencedistances are large (e.g., if all dependence distances are greater than 20, we canstrip mine the loop by a factor of 20 and run the inner loop in parallel). Checks forthese cases could be easily added to the above tests; we have omitted them sincethey rarely o�er a signi�cant amount of parallelism.6. EXAMPLESFigure 1 gave eight examples which contain parallelism that would be overlookedby a simple test for loops that do not carry any dependences. In this section weshow that our techniques expose the parallelism in all of these examples. Unless



20 � William Pugh and Dave Wonnacottotherwise noted, we found the parallelism in D� (i.e., the upper bound on thememory-based dependences, without recognizing reductions).In Examples 1 and 2, we �nd that the dependence peeling test from Section 5.2splits each statement's iterations into two groups, each of which can be executedin parallel. The parallelism in Example 3 can be found with unimodular looptransformation techniques (Section 5.1).Example 4 was contrived to foil our initial set of parallelism tests, and it doesso: despite the fact that the iterations of this single statement are not provablysequential, the tests in Sections 5.1 and 5.2 fail to detect any parallelism, evenwhen applied to D! . The directional peeling test of Section 5.3.1 does, however,indicate that we can expose parallelism by peeling iterations of the i loop.The two statements in Example 5 can be trivially parallelized after the loop isdistributed. Neither statement in this example is involved in a dependence cycle,so the parallelism is evident at the �rst step of our procedure. No additionaldependence testing is done, and none of the parallelism tests are performed.Example 6 demonstrates the importance of applying the tests to the di�erentsets of dependences. When we apply the tests to D�, we do not �nd parallelism.When we recognize reduction dependences and omit them from the dependencespassed to the parallelism tests, we �nd that the statement updating s can be run inparallel (the test from Section 5.1 or a simple test of which loops carry dependenceswill detect this parallelism). Parallel reductions would be required to exploit this.If we instead use value-based 
ow dependences, the test from Section 5.1 will �ndthat the iterations of the statement that initializes s, and those of the statementthat update s, can be run in parallel. Scalar expansion, loop distribution, andimperfect loop interchange would be required to exploit this parallelism. Sincewe have not made any attempt to quantify the amount of parallelism, we cannotautomatically choose between these alternatives, and present both possibilities tothe user. Note that this would be necessary even if we did have a measure of theamount of parallelism, as the choice should also depend on other factors, such asthe cost of allocating memory to expand the scalar s.Assume we instruct the test for directional parallelism that a loop must have 10iterations in order for it to be worthwhile to run the loop in parallel. In Example7, the test for directional/conditional parallelism �nds that the loop can be run inparallel if n � 10 ) (p � �n _ p = 0 _ n � p). If we use only value-based 
owdependences, we �nd that the loop can be run in parallel if n � 10) (p � 0_n � p).The n � 10 ) � � � part of the formula is not particularly useful here; its mainpurpose is to prevent false alarms. It would also be possible to partition this codeinto p di�erent loops, which could be executed in parallel threads, giving p-foldparallelism. Our current set of parallelism tests do not catch this.For Example 8, if we recognize reduction dependences, then there are no otherdependences in this code and both loops can be run in parallel. Even if we donot recognize reduction dependences, parallelism can be found in both statementsby the unimodular parallelism test. This seems surprising, as it is di�cult to seehow this parallelism can be achieved, but Figure 2 shows code that achieves it.This transformation can be identi�ed and generated automatically by the systemdescribed in [KP93].



Static Analysis of Upper and Lower Bounds on Dependences and Parallelism � 21forall i := 1 to n dofor j := 1 to i-1 dox(i) := x(i)+val(i,j)*v(j) /* s2 */endforx(i) := x(i)+val(i,i)*v(i) /* s1 */x(i) := x(i)+val(i,i)*v(i) /* s2 */for j := i+1 to n dox(i) := x(i)+val(j,i)*v(j) /* s1 */endforendfor Fig. 2. A transformed version of Example 8Can you verify that* there is no loop-carried value-based flow dependencefrom 37:RL(K+4) to 43:RL(K-5)?If so, it is possible to parallelize all of the statements in the1:do I and 2:do J loops. The following steps must be performed:* Privatize/Expand scalars: KC, ...* Privatize/Expand arrays: XL, RS, RL* Perform parallel reductions on scalar: VIR* Perform parallel reductions on array: FXFig. 3. Example dialog generated for INTERF extract6.1 Extended Example: INTERFWe now describe an application of our techniques to the routine INTERF from thePerfect Club benchmark MDG. This routine contains substantial parallelism that isnot exploited by current compilers [EHLP91]. Figure 4 shows a condensed versionof this code after structuring by VAST-90 (from Paci�c-Sierra Research) and auto-matic induction variable recognition. We have omitted statements that are easilyparallelizable or equivalent to other statements that were left in. As our techniquesdo not address inter-procedural analysis, we have performed two inter-proceduraloptimizations by hand: First, we performed inline substitution of a call to thesubroutine CSHIFT, which de�nes XL(1:14) (lines 3-16 of Figure 4). Second, wechanged the variable NATOMS to the constant 3 (NATOMS is always 3, but this is onlyevident with inter-procedural analysis).The techniques described in this paper can be used to produce a dialog such as theone in Figure 3. This dialogue immediately focuses attention on the one dependencethat requires analysis by the programmer, and summarizes the transformations thatmust be applied to exploit the parallelism if this dependence is indeed false. Thecomputations that go into this dialog are described here:The lower bound and upper bound on value-based 
ow dependences for XL andRS are identical: none are loop-carried. For the array RL, the upper bound givesa loop carried value-based 
ow dependence from 37:RL(K+4) to 43:RL(K-5). Thenon-linear terms make it impossible to determine which (I, J) iteration of the writeprovides the value, and thus we must execute the writes in their original order, andpreserve the relative ordering of these writes and reads (as per Section 3.7). Theseconstraints force completely sequentially execution of the (I, J) iterations of lines



22 � William Pugh and Dave WonnacottSUBROUTINE INTERF(X, Y, Z, FX, FY, FZ, XM, YM, ZM, VIR)1: DO I = 1, NMOL12: DO J = I + 1, NMOL3: XL(1) = ...4: XL(2) = ...5: XL(3) = ......16: XL(14) = ...17: DO CI = 1,1418: IF ( D_ABS(XL(CI))>BOXH ) THEN19: XL(CI) = XL(CI)-D_SIGN(BOXL,XL(CI))20: ENDIF21: END DO22:23: KC = 024: DO K = 1, 925: RS(K) = XL(K)*XL(K) + ...26: IF (RS(K) .GT. CUT2) KC = KC + 127: END DO28: IF (KC .NE. 9) THEN29: IF (RS(1) .LT. CUT2) THEN30: VIR = VIR + RS(1)*...31: ENDIF32: DO K = 2, 533: IF (RS(K) .LT. CUT2) THEN34: VIR = VIR + RS(K)*...35: ENDIF36: IF (RS(K+4) .LE. CUT2) THEN37: RL(K+4) = SQRT(RS(K+4))38: VIR = VIR + RS(K+4)*...39: ENDIF40: END DO41: IF (KC .EQ. 0) THEN42: DO K = 11, 1443: FTEMP = AB2*EXP((-B2*RL(K-5)))/RL(K-5)44: VIR = VIR + FTEMP*RS(K-5)45: RS(K) = XL(K)*XL(K) + ...46: RL(K) = SQRT(RS(K))47: VIR = VIR + RS(K)*...48: END DO49: ENDIF50:51: FX(3*I-1) = FX(3*I-1) + ...52: FX(3*J-1) = FX(3*J-1) - ...53: FX(3*I-2) = FX(3*I-2) + ...54: FX(3*I) = FX(3*I) + ...55: FX(3*J-2) = FX(3*J-2) - ...56: FX(3*J) = FX(3*J) - ...57: ENDIF58: END DO59: END DOFig. 4. Excerpts from SUBROUTINE INTERF of MDG benchmark



Static Analysis of Upper and Lower Bounds on Dependences and Parallelism � 23Sun SPARCstation 10-51 Execution time (millisecs)Dependence AnalysisMemory-based Value-basedFrom Code f77 -c -O2 All dependences In Cycles[Fea91] across 300 1.5 2.7 2.1burg 400 5.5 31 26relax 200 1.6 8.7 5.2gosser 400 2.3 23 14choles 300 2.7 11 9.3lanczos 1000 11 41 35jacobi 900 150 300 250[MAL93] extract from ocean 200 4.5 6.8 5.1Perfect TFRD: olda; simpli�ed 1700 26 320 180NASA btrix 4100 170 310 240NAS c�t2d1 800 16 150 130Kernels cholsky 1400 31 73 40emit 1500 17 79 38gmtry 1900 13 58 38vpenta 1800 96 98 64Table I. Timed Programs37 and 43. However, the lower bound on the value-based 
ow dependences allowsparallel execution of both the I and J loops. Therefore, we need to ask the userto verify the lower bound. Determining that this lower bound is accurate is rathersubtle, and we do not expect automatic techniques to be able to verify this in theforeseeable future.If we do not recognize the reduction operations applied to VIR and FX, thelower bound on value-based 
ow dependences indicates parallelism inhibiting de-pendences. Thus, we must recognize these reductions to parallelize this routine.When we calculate a lower bound on the memory-based dependences, we �nd thatthey force completely sequential execution. To �nd parallelism, we must applytechniques that allow us to eliminate these dependences.7. TIME REQUIRED FOR VALUE-BASED DEPENDENCE ANALYSISPaul Feautrier's prototype implementation of his method for exact value-baseddependence analysis is very slow (one program (jacobi) of 50 lines he examinedtook 82 seconds to analyze on a \low-end SPARC station"). An e�ort is underwayto build an e�cient implementation Feautrier's method; it is unclear how muchimprovement will be obtained. If Feautrier's initial results were indicative of thecost of exact value-based dependence analysis, the methods described in this papermay not be practical. Fortunately, we have reason to believe the cost is much lessthan Feautrier's initial results suggested.While we do not have a complete implementation of the methods described in thispaper at this time, we are able to measure the time required to compute value-baseddependences for Feautrier's examples and some other benchmark codes. Table I liststhe benchmarks that we used, and compares these analysis times with the timeneeded to compile and optimize the routine for a Sun SPARCstation 10-51. Thetable shows the time required to analyze all the memory-based dependences and thevalue-based 
ow dependences. The time shown for value-based dependence anal-



24 � William Pugh and Dave Wonnacottysis does not include the memory-based analysis time, though the memory-baseddependences were used during value-based analysis. The value-based dependenceanalysis was done using the optimizations described in [PW93]. The times shownin this table include analysis of both arrays and scalars, because we need to have adependence relation for each possible dependence when we construct the transitiveself-dependence relations (as described in Section 4.1). For value-based depen-dences, we also show the time required to analyze just the dependences that mightbe in cycles.These results reassure us that it will be practical to apply these techniques tomany signi�cant, real world problems. We have not yet fully implemented in tech-niques in [PW93], so we have been unable to evaluate our performance on codesthat stress our methods for handling negation.8. RELATED WORKIn our �rst paper on array data dependence analysis [Pug92], we describe a set ofalgorithms (the Omega test) that can be used to check for the existence of integersolutions to sets of linear constraints and calculate the \shadow" of a set of linearconstraints (i.e., eliminate existential quanti�ed variables). For example, by creat-ing a set of constraints for a data dependence, adding variables for the dependencedi�erences, and �nding the shadow of these constraints on the dependence di�er-ence, we �nd the possible values for the dependence di�erence. We then show howthese techniques can be used to perform e�cient analysis of memory-based arraydata dependences.In our second paper on dependence analysis [PW92b], we extend the Omega testwith e�cient techniques for removing redundant constraints and checking whenone set of constraints implies another. We give techniques that can identify somedependences as being not value based. However, these techniques do not identify allnon-value based dependences and work on dependence di�erences, not dependencerelations.In [PW93], we give full descriptions of our techniques for simplifying formulascontaining negation (as mentioned in Section 3.5.1). We also compare the perfor-mance of the technique described in this paper for analysis of array kills with thatof [Fea91, MAL93].In other papers [Pug91, KP93], we describe a uni�ed framework for reorderingtransformations. Within this framework, we discuss methods for checking the le-gality of a transformation, generating transformations, and producing transformedcode corresponding to a reordering transformation. As part of this work [Pug91], wedescribe dependence relations and techniques for computing their transitive closure.There have been a number of papers on improving the accuracy of memory-basedarray data dependence analysis [KKP90, LC90, WT92, GKT91, MHL91b]. Someof these methods provide ways of recognizing when their results are exact, but donot describe any methods for computing lower bounds on dependences when theyare not exact.There are a number of papers on techniques to analyze array kills and value-basedarray data dependence [Bra88, Fea88, GS90, Ros90, Rib90, Fea91, Li92, MAL92,May92, MAL93, DGS93, Mas94]. Of these, only the technique we describe hereand that of Feautrier [Fea88, Fea91] and of Maslov [Mas94] are complete over thedomain of a�ne expressions and no control 
ow other than loops. The techniques



Static Analysis of Upper and Lower Bounds on Dependences and Parallelism � 25described by Feautrier have only been implemented in a prototype form, and ourtechniques appear to be 40-75 times faster than Feautrier's prototype. Maslov'stechniques are formulated using the lexigraphical maximum idea of Feautrier, butoperate in a lazy manner and so are more e�cient. Maslov's techniques achievespeed comparable to ours, and utilize our algorithms for manipulating and analyz-ing Presburger formulas. Both our methods and Maslov's methods handle morecomplicated control 
ow than Feautrier, such as if's with non-a�ne guards, al-though inexactly.The methods described by [MAL93] improve on the e�ciency of [Fea91] but donot work for certain cases handled by [Fea91] and this paper.The quast's(Quasi-A�ne Search Trees)/Last-Write-Trees constructed by [Fea91,MAL93] may contain infeasible paths. To enable compile-time transformationssuch as privatization, it is necessary to determine which of these paths are feasible.Determining which of the paths are feasible requires checking the feasibility of aproblem such as: P1 ^ P2 ^ � � � ^ Pn ^ :N1 ^ :N2 ^ � � � ^ :Nmwhere the Pi's are the conditions for the nodes where we take the true branch andthe Ni's are the conditions for the nodes where we take the false branch. Eachof these conditions is a conjunction of linear constraints, and may include non-convex constraints (e.g., constraints such as \i is even" speci�ed using wildcards orquasi-linear constraints). Converting these expressions into disjunctive normal formwould be infeasible for many real problems. The methods we describe in [PW93]should control this blow-up. In addition to the blow-up problem, the methodsdescribed by [Fea91] and [MAL93] fail when forced to negate certain pathologicalcases of non-convex constraints. Our methods can handle these (although some ofthe pathological cases will create performance problems).Our methods for array data-
ow analysis, like those of [Bra88, Rib90, Fea91,MAL92, Voe92a, Voe92b, MAL93], are based on extending standard array depen-dence analysis methods to analysis the 
ow of values rather than the reuse of mem-ory. Array data-
ow dependence analysis methods such as [GS90, Ros90, Li92,DGS93] are based on extending scalar data-
ow analysis methods to arrays. Ingeneral, the later approach deals better with control 
ow but the former approachgives more information about which iteration is dependent on which iteration (asopposed to simply summarizing which loops carry the dependence).Both Feautrier [Fea88, Fea91] and Maydan, Amarasinghe and Lam [MAL93]describe how to use value-based dependence information for array expansion orprivatization. Amarasinghe and Lam [AL93] describe ways to use value-based de-pendence analysis in analyzing and generating code for distributed memory multi-computers.There have been a number of recent papers [Lar93, PP93, MHL91a] describing theresults of instrumenting programs so that during a run on sample data, informationabout the actual dependences and available parallelism are collected. However, wedo not know of any other work on static analysis of upper bounds on parallelism.9. FUTURE WORKThere are two substantial obstacles to using these techniques in industrial strengthenvironments: our inability to handle arbitrary control 
ow and procedure calls.



26 � William Pugh and Dave WonnacottIn these cases, we will likely have to resort to computing upper and lower bounds.In order for the techniques described here to be applicable, we need to be ableto identify well-de�ned loops so that the dependence relations can be well de�ned.If the loops are well de�ned, it is relatively easily to calculate upper and lowerbounds on memory-based dependences. Calculating upper and lower bounds onvalue-based 
ow dependences appears more di�cult.For procedure calls, we can either e�ectively inline the procedure call, or we cancalculate dependences based on summary information of what the call kills anduses. Since this summary information will probably not be exact, we will need tocalculate appropriate upper and lower bounds (and the summary information willneed to contain both may and must information for both kills and uses).10. IMPLEMENTATION STATUS AND BENCHMARK AVAILABILITYThe techniques described here are being implemented in our extended version ofMichael Wolfe's tiny tool [Wol91], which is available for anonymous ftp fromftp.cs.umd.edu:pub/omega. The programs analyzed in Section 7 come from aset of benchmark programs for comparing the performance and coverage of algo-rithms for analyzing value-based 
ow dependences between array references. Sendemail to omega@cs.umd.edu to receive a copy of the benchmarks and be added tothe data
ow benchmarks mailing list.11. CONCLUSIONSIf a routine's array subscripts, loop bounds, and branching conditions are a�nefunctions of the loop indices and constants, we can compute a dependence relationthat describes the dependence between any two array accesses exactly. Otherwise,we can compute both a lower and an upper bound on each dependence. Thetraditional upper bound can be used to conclude that code can be run in parallel(that is, to put a lower bound on the parallelism). The lower bound on value-based
ow dependences can be combined with our tests for parallelism to provide an upperbound on the parallelism in a given algorithm. By comparing the parallelism foundin the upper and lower bounds, we can determine whether more exact dependenceinformation about non-linear terms would be useful in exposing parallelism.The method we describe for value-based dependence analysis is complete and ex-act within the domain of programs with a�ne subscripts, loop bounds, and branch-ing conditions, and works outside that domain. All other techniques had been in-complete over this domain, although Feautrier's is incomplete only for pathologicalcases. Value-based dependence analysis is essential for enabling array privatiza-tion/expansion and is very useful in analyzing and generating code for distributedmemory multicomputers.Our tests for parallelism, when applied to various classes of dependences, willdetect any (possibly conditional) parallelism that can be exposed by any combina-tion of the following transformations: scalar or array privatization, expansion, andrenaming, parallel reduction, (possibly imperfect) loop interchange, distribution,alignment or peeling, index set splitting, statement reordering, unimodular looptransformations, introduction of run-time dependence tests, and scalar inductionvariable replacement. When conditional parallelism is detected and the conditionsare a�ne functions of the symbolic constants, the conditions are provided in thedependence relation.
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