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1 Introduction

All agents, whether human or automated, that function in the real-world are
subject to the fact that time is spent as their reasoning progresses. Most
common sense reasoning formalisms do not account for the passage of time
as the reasoning occurs, and hence are inadequate from the point of view
of modeling an agent’s ongoing process of reasoning. There are numerous
problems in Al-planning and common sense reasoning where the capacity
to reason and act in time is of paramount importance. Below is a list of
few sample problems in which the passage of time (as the agent reasons) is
crucial:
1. Nell & Dudley and the railroad tracks : Nell is tied to the railroad tracks
and the agent Dudley must figure out and enact a plan to save her in time
before an oncoming train approaches.
2. Examination problem : A student who is taking an examination must
figure out a strategy to decide which problems to work on, how much time to
allocate to each, etc. And yet, every second spent in such decision making is
a second less to actually solve the problems. Deliberation time is a significant
chunk of the total time available which the agent must factor in the reasoning.
3. The three wise men problem : The well known puzzle [McC78, ED88, K1.88]
where three wise men, each wearing a cap from a pool of one white and two
black caps, are lined up and each is asked to announce the color of the cap
on his own head as soon as he knows what it is. The agents must be able to
keep track of the time spent in reasoning to solve this problem realistically.
Most formal approaches do not have an appropriate representational
framework to tackle time-situated reasoning problems such as the above.
They assume that an agent is able to reason forever in a timeless present as
if the world had stopped for the agent’s benefit. Resource limitations have
been of some concern in formal work. In particular, the problem of logi-
cal omniscience has received attention in the epistemic logic literature. It
concerns the difficulty with the classical Hintikka possible world semantics
[Hin62] that the agent always knows the logical consequences of her beliefs.
However, no existing works provide a semantics addressing the issue of how
the reasoning progresses vis a vis the passage of time. Although work in
temporal logic involves reasoning about time (e.g., [All84, McD82, ER87]),
time is not treated as a crucial resource that must be carefully rationed by
the agent, as it is spent in every step of reasoning.



Step-logics [EDP90, PEDM] were introduced as a formal apparatus to
model an agent’s ongoing process of reasoning. They have since been ex-
tended and renamed as active logics. In [KNP90, NKP91, NKP93] the step-
logic framework is used to create an active logic based fully deadline-coupled
planning and reasoning mechanism which is a combination of declarative
and procedural approaches that is capable of solving the above mentioned
problems®. Although active logics have been characterized and implemented,
only limited attempts have been made to give a formal semantics for the step-
like reasoning process.

This paper is intended to bridge the gap between previous modal ap-
proaches to knowledge and belief and time-situated frameworks such as step-
logics which have a means for attributing time to the reasoning process. We
discuss the various aspects of logical omniscience and their treatment in sec-
tion 2. We briefly describe the step-logic approach to reasoning in section
3. In section 4 we present a modal active-logic that is step-like in spirit and
motivated by the work on step-logics, but for which, unlike the former, we
can provide a sound and complete modal semantics in section 4.2. In section
5 we examine how our approach addresses the logical omniscience problem
and summarize our contribution.

2 The various aspects of omniscience and its
treatment

Fagin and Halpern [FH88] have analyzed what is meant by the notion of
logical omniscience. They define an agent to be logically omniscient if when-
ever he believes formulas in a set ¥, and ¥ logically implies the formula ¢,
then the agent also believes ¢. They further identify three cases of special
interest: (a) closure under implication, namely, whenever both ¢ and ¢ — ¢
are believed then v is believed, (b) closure under valid implication, namely,

if ¢ — 1 is valid and ¢ is believed then v is believed and (c) belief of valid

! An active logic for fully deadline-coupled planning has several inference rules for plan-
ning with deadlines that are domain independent. These include inference rules for tem-
poral projection and book-keeping, checking deadline feasibility, and plan formulation and
execution. Domain specific axioms describe the particular instance of the planning prob-
lem. A limited-memory model that addresses two other resources of value: space and
parallelism has been integrated into the deadline-coupled reasoning.



formulas, namely, if ¢ is valid, then ¢ is believed.

The agent in the classical model of knowledge [Hin62] has all the unde-
sirable properties (a), (b) and (c) above. Several improvements have been
suggested, and they have been broadly classified as “syntactic” and “seman-
tic” approaches. In the syntactic approach e.g. [Ebe74, MH79], what the
agent knows is represented by a set of formulas and hence is not constrained
under consequence. But such approaches are difficult to analyze, since they
are not guided by knowledge-based principles. A commendable syntactic ap-
proach is presented by Konolige in his deduction model [Kon83] which gives
a formal characterization of explicit beliefs and captures how agents syntac-
tically derive new beliefs, possibly with an incomplete set of inference rules.

In contrast, semantic approaches attempt to give semantics similar in
most cases to the possible world semantics, but with “fixes”. Levesque
[Lev84] gives a semantic account of émplicit and explicit belief where im-
plicit beliefs are the logical consequences of explicit belief. A solution to
(a) and the possibility of having contradictory beliefs is achieved by intro-
ducing an artificial notion of incoherent or impossible worlds. Levesque’s
approach was subject to the criticism that an agent in the logic is a per-
fect reasoner in relevance logic. Levesque’s ideas have been extended in
[PS85] and [Lak86]. Montague has given a possible world semantics that
gets around problem (a) of logical consequence. We use the main idea in this
model, namely, to define knowledge as a relation between a world and a set of
sets of possible worlds. However, we provide the distinction of incorporating
time-situatedness. Vardi [Var86] provides a co-relation between restrictions
on models in the Montague semantics and the corresponding agent properties
that they characterize.

Fagin and Halpern [FH88] have presented a series of interesting approaches
to limited reasoning that marry the syntactic and semantic approaches. They
provide an extension to Levesque’s approach for the multi-agent case, and
introduce a notion of awareness. They also provide an approach to local
reasoning that they call a society of minds approach. Fagin and Halpern’s
awareness notion, in their logic of general awareness acts like a filter on se-
mantic formulations. It has been evaluated and criticized in [Kon86]. One
of the criticisms is that the model is unintuitive, since it is unlikely that an
agent can compute all logical consequences, discarding the one’s that it is not
aware of, say, because of memory limitations, because in fact, agents are also
affected by time limitations. There are a number of works that have consid-
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Figure 1: Step-logic studies

ered logics of knowledge and time e.g. [Sat77, Leh84, KL88, LR86, Ash88].
Fagin and Halpern discuss the possibility of capturing bounded and situated
reasoning by letting the awareness set vary over time. However, no attempt
has been made to systematically study and model situations where the pas-
sage of time is a critical issue.

3 The step-logic approach to reasoning

Step-logics [EDP90] were introduced to model a common sense agent’s on-
going process of reasoning in a changing world. A step-logic is characterized
by a language, observations and inference rules. A step is defined as a fun-
damental unit of inference time. Beliefs are parameterized by the time taken
for their inference, and these time parameters can themselves play a role in
the specification of the inference rules and axioms. The most obvious way
time parameters can enter is via the expression Now(¢), indicating the time
is now ¢. Observations are inputs from the external world, and may arise
at any step . When an observation appears, it is considered a belief in the
same time-step. Each step of reasoning advances ¢ by 1. At each new step
t, the only information available to the agent upon which to base his further
reasoning is a snap-shot of his deduction process completed up to and in-
cluding step ¢ — 1. Figure 1, adapted from [ED88] illustrates three steps in a
step-logic with Modus Ponens as one of its inference rules.

Elgot-Drapkin also characterized an array of eight step-logics in increasing
order of sophistication with respect to three mechanisms : self-knowledge
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Figure 2: Inference rules for an SL; logic

(S), time (T) and retraction (R)?. According to this classification, SLs is the
simplest dynamic deductive logic with time and self-knowledge capability,
but no retraction mechanism (no ability to handle contradictions). An SL;
logic is a triple (£,OBS,INF) where L consists of propositions (with the
addition of time), OBS is an observation function describing inputs from the
world at each step, and I NF'is a set of inference rules. We describe an SLj
step-logic to which we provide a modal active-logic analog. The set I N F for
it is shown in in figure 2.

We have chosen the simplest S Ly since our main interest is in the treat-
ment of time and in modeling agents with nested beliefs. We will impose an
additional constraint on models that does not allow for contradictions in the
agent’s beliefs?.

4 A modal active-logic for reasoning in time

With SLs as the motivation, we provide a time-situated modal logic. This
modal logic is based on Montague’s intensional logic of belief [Mon70], that
uses structures referred to in the literature as neighborhood structures or
minimal structures [Che80]. They were first used in [Mon68] and in [Sco70].

2SLymone; SLy1:S; SLy:T; SL3:R; SLy:S,R; SLs:S,T; SLg: R, T; and SL7:S,T,R.

3However, this condition may be relaxed if for example, we desire to model an agent
with default reasoning capability. Step-logics are inherently nonmonotonic and allow for
implicit and explicit contradictions in the agent’s reasoning. The modal logic approach
which is motivated by the step-logic work is powerful enough to deal with contradictions.



Montague gives a possible world semantics to epistemic logic where, unlike
in the classical model?, knowledge is defined as a relation between a world
and a set of sets of worlds. An intension of a formula ¢ denoted by ||¢|| is
the set of worlds w such that w = ¢.

We prefer to use timelines instead of possible worlds, since this gives
us a way to naturally incorporate time into our framework. L denotes the
set of timelines [TSSK91]. We consider time lines that are restricted to be
finite from one side and infinite from the other (i.e., are rays). At every
time point in each timeline some propositions are true and the rest are false.
In particular, there is one timeline of most interest, that captures the real
history of occurrences in the world. We call this line [, € L the history
timeline.

4.1 Syntax and semantics

In the logic proposed, the agent reasons in a propositional language with
time. The interest is in sentences such as:

p: Nell is tied to the railroad tracks at 3 pm.

q: Dudley is at home at 3:30 pm.

Formally, we assume that there is a set P of propositions and a set T'C’
of time point constants. We define PT' = P x T'C' as the set of propositions
extended to include time arguments. The formulas in PT are the basic
elements of our language, and we will denote them as p(r) where p € P
and 7 € T'C'. The language G is the smallest set that contains PT', and is
closed under the =, A, V, — connectives, and contains B,¢ whenever ¢ is in
the language and 7 € T'C®. This language can easily be extended to include
multiple agents, by the use of an additional parameter 7, so that B:a denotes
“at time 7 agent ¢ believes in o”, where o may include beliefs of other agents.

4The classical possible-worlds model is based on the idea that besides the true world,
there are other possible worlds, some of which may be indistinguishable to the agent
from the true world. An agent is said to believe a fact ¢ if ¢ is true in all the worlds
that she thinks possible. A semantics based on Kripke structures for this classical model
suffers from the well known drawback from the point of view of logical omniscience that
K¢ AK(¢ — ¢) — K¢ is an inherent axiom.

°In this language one can express formulas such as p and ¢ above, belief formulas such as
B:, p(r2) to mean “at time 71 the agent believes that p is true at time 77, or nested beliefs
formulas such as B;, (B, +2p(72)V Br, 42¢(73)) to mean “at time 7 the agent believes that
two time points later she will believe p(72) or she will believe ¢(73)”.



Time is a pair (T, <) where < is a total order on 7. A structure in the
proposed time-embedded active logic is: M = (L,T,v,<,x,B,0BS) where

e [ is the set of timelines, (T, <) is a time structure.
e v:71C — T is the interpretation function for time point constants®.

o 7: P xT — 2% is a truth assignment to the formula p € P for each
timeline [, € L and time point ¢ € T'. Thus 7 defines the intensions of
the base formulas of our language.

e B: L xT — 2% is a belief accessibility relation, defined for each
timeline, time point pair ([,t),l € L.t € T.

e OBS: L xT — @ is the observation function.

We will use B;(l) to denote B(l,1), which is the set of sets of time lines
related to [ at time ¢ through the B relation. Note the use of the pair (/,1).
We are interested in epistemic behavior over time, and this is depicted by
the evolution of beliefs (and the corresponding accessibility relations) from
(In,t) to (I, + 1) in the real timeline.

Analogous to the Montague intensional logic, we define B¢ to denote
that an agent “believes a formula ¢ at time 7”7 and define a satisfiability
relation for timelines based on intensions. An intension of a formula ¢ in a
structure M denoted by ||¢||is {{ |l € L, M,l = ¢}.

Figure 3 illustrates the neighborhood structures for our modal logic”.

We impose restrictions on models to reflect the step-like reasoning be-
havior between successive time instances. These restrictions make certain
axioms sound in our system. We further characterize the modal active-logic

SFor all 7,7/ € T'C if v(7) < v(7') and there is no ¢ € T such that v(r) < < v(r') we
will use 7 + 1 to denote 7/. Similarly, for ¢,#' € T" where ¢ < ¢/ and there is no such ¢, we
use t + 1 to denote #'.

"We comment here that is is possible to extend the modal active-logics to multiple
agents reasoning in time. A structure for an active logic with multiple agents is M =
(L, T v, 7, A, B, ... B"). L is the set of time lines and = is the truth assignments to base
formulas as before. A is the set of agents {1,...,n}, and each of B!, i = 1, ..., n associates
with a timeline, time point pair ([, 1), a set of set of timelines that are belief-accessible from
[ at time ¢ from the perspective of agent i € A. In problems such as the three wise men
problem mentioned in the introduction, a multi-agent logic where the time of all agents
increments synchronously can provide an elegant solution to the problem.
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Figure 3: Neighborhood structures for the belief operator

by a sound and complete set of axioms and inference rules. Time is an es-
sential resource in this framework and is consumed in the reasoning process.
This logic captures the reasoning process of a non-omniscient resource-limited
agent.

We formally define |= for the structure M = (L,T,v,<,x,B) described

above as follows:

1. This defines satisfiability of the base formulas of our language.
M, 1= p(r) if L € m(p,o(7))

2. This defines satisfiability of negated formulas
M, 1= 0 iff M, 1 6

3. This defines satisfiability of formulas formed with the A connective.
M, 1= (6 A ) il M,1 |= 6 and M, 1 = ¢



4. This defines the satisfiability of the belief formulas.

The satistability of V and — is defined accordingly. We impose the following

restrictions on our models to describe an agent who reasons in a step-like
fashion like its motivating step-logic agent described by S'Ls.

1.

Vie LVteT {} & By(l) and if sy, 52 € By(l) then sy N sy # {}.

This says that the agent’s belief set will be consistent at every time
point. As explained before, we introduce this restriction to model a
simple agent without contradictory beliefs and without any mechanisms
for retraction®.

. \V/l - L,\V/t - T if 81,52 - Bt(l), then S1 N S9 € Bt—l—l(l)

This restriction constrains models at successive time points to be one
step richer than their predecessors, in the sense that the agent has
added all possible pairwise conjunctions of previous beliefs to the cur-

rent step, but each pair participates just once?.

Vle LVt e T if sy € By(l), and s2 D 31 then sy € Byya(l)

This restriction says that detachments of beliefs from a time step ago
are added to the current set.

If € OBS(1,t) then ||8|| € B(1).

An agent situated in the real world must have the ability to acquire
new information through observation. This restriction allows for that
capability.

-V ||truel| = L € By, (1).

Since the set T is ordered under <, and timelines are defined as rays,
we can define a start point #y. This restriction says that the agent
believes in true at the beginning of time.

8This restriction can be relaxed if the intent is to model a fallible agent who does default
reasoning and may be permitted to have contradictory beliefs at any given time. Without
the above restriction the neighborhood structures possibly allow for both Ml = B, ¢ and
M,l = B:=¢, since both [[¢]| and [|=¢]| could belong to By(;)(l).

°For example, if M,l = Bya, M,l = B;3 and M,l | B,y then M,l = Bry1(a A B),
M,l = Brpi(aAy) and Ml |= Bry1(BAy) but Ml = Byyi(a A S A7) does not follow
from this restriction, however M, [ = Bria(a A B A7y) does.
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4.2 Soundness and completeness

Theorem : The set of axioms (A1-A4) and inference rules (R1-R5) in Fig-

ure 4 provide a sound and complete axiomatization of the modal active-logic

for reasoning in time.

Proof (sketch) : Soundness follows in a straightforward fashion from the

interpretation of A and — in the definition of |= and from the restrictions

on the models described in section 4. The proof of completeness hinges on

the definition of a canonical model M® in which every consistent!® formula

is satisfiable. In M° we have a timeline corresponding to every mazimal

consistent set V. For definition and properties of maximal consistent sets we

refer to [HY92]. We let M = (L,T,v,<,x,B) where

L={1ly : Vis amaximal consistent set },

lv € m(p,v(7)) iff p(7) € V, and

Bt(lv) = { ]¢7V | Bt@/) eV } U { S | S D S/,Sl - Bt—l(lv) }

where t =0 and lyv ={lw | e W },and Bo(lv) ={ Iyv | B € V }.
We then prove using induction that M¢ [ | ¢ iff ¢ € V, which proves

that all consistent formulas are satisfiable in this structure. For space con-

servation, we do not provide the details of the proof here.

5 Conclusion

Active logics capture the process of reasoning of a resource-limited agent as
it goes on in time. As time progresses, the agent draws more inferences (new
beliefs) at each time step. Thus, an agent does not draw all the consequences
of its current set of beliefs ¥ all at once, but continues to add conclusions to
this set in accordance with a set of inference rules. This is reflected by the
increasing size of B(l, 1), where [, denotes the real history of occurrences in
the world, and B(l, 1) reflects what the agent believes in time ¢. The agent
is certainly not guilty of omniscience under (a) logical consequence'!
it is trivial to provide a counter-model to B.a B;(a — ), —B.3. By
virtue of a description that is based on intensions of formulas, it is difficult

since

10A formula ¢ is provable if ¢ is one of the axioms or follows from provable formulas by
application of one or more inference rules. A formula ¢ 1s consistent if =¢ 1s not provable.

1 The agent may eventually compute all logical consequences of its belief set if it has a
set of complete agent inference rules.

11



Azioms :
(A1) All tautologies of propositional logic.

(A2) =B, false. Consistency
(A3) B;¢ A B:p — Brya(o A). Conjunction
(A4) B;(¢ NY) — Bri19. Detachment®
Inference Rules :

(R1) From F ¢ and F ¢ — ¢ infer - ¢ Modus Ponens
(R2) From - ¢ — ¢ infer - B;¢ — B,11¢p  Weak closure under valid consequence
(R3) From - ¢ < ¢ infer - B¢ < B¢ Belief in equivalent formulas
(R4) From ¢ infer - B, ¢ Belief in tautologies
(R5) If ¢ is observed at time 7 infer - B.¢ Observation

®Inheritance follows from either (A3) or (A4) when ¢ = ¢.

Figure 4: Characterization of the modal active-logic

to distinguish between semantically equivalent beliefs. As such, (c) belief of
valid formulas and a weak version of (b) closure under valid consequence!?
follows.

However, it is possible to modify our logic by providing a syntactic way to
curtail the size of the belief set by introducing an additional element G to the
structure M. G C G is defined as the agent’s language and is closed under
subformulas. An agent believes in ¢ (i.e., B;¢) only if v € (. For this
new structure, the set of axioms and inference rules are suitably modified
to capture this change (e.g., in (A3) ¢ A¢p € GG and in (R4) ¢ € G is
added) and appropriate restrictions are placed on M. In essence, B;(]) sets
are filtered by G for all ¢t and [. It can be proven that the modified set of
axioms and inferences are sound and complete with respect to the modified
structure. If the model includes more than one agent, each of them may
have a different language (G. This restricts an agent who believes in ¢, to
only that subset of [¢] (the equivalence class of ¢) which is in the agent’s
language. The agent also believes only those tautologies that are in G. Hence
the scope of (b) and (c) is reduced in the modified structure. The agent’s
language G has similarities to the awareness set concept of [FH88]. If one

2In our logic, by (R2), it takes an agent one period of time to deduce the consequence.

12



considers multiagent belief operators B’ without a time parameter then a
modified version of Axioms (A2), (A4) and (R4) from figure 4 are true in the
model of local reasoning of [FH88], (without modalities for implicit belief).
Note, that we have only explicit beliefs, and there is no notion of implicit
beliefs. In [FFH88] the models are still static, in that even though they suggest
incorporating reasoning about time, and changing awareness functions, there
is no way to account for inference time in their models.

Parallels to more advanced step-logics for planning and default reasoning
have also been developed. These logics have two additional modal operators
D and P for default beliefs and temporal projections respectively. Both
operators are defined using the Montague style semantics similar to that used
to define B but with a different set of restrictions to allow for contradictions
arising due to defaults and to reflect the notion of persistence. A future
paper will describe these logics.

13
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