
Technical report CS-TR-3240, UMIACS-TR-94-32, ISR-TR-95-10, March, 1994To appear in Annals of Mathematics and Arti�cial Intelligence, 1995Complexity Results for HTN Planning�Kutluhan Erol James Hendler Dana S. Naukutluhan@cs.umd.edu hendler@cs.umd.edu nau@cs.umd.eduInstitute for Advanced Computer StudiesInstitute for Systems Research, andComputer Science Department,University of Maryland, College Park, MD 20742AbstractMost practical work on AI planning systems during the last �fteen years has beenbased on hierarchical task network (HTN) decomposition, but until now, there has beenvery little analytical work on the properties of HTN planners. This paper describes howthe complexity of HTN planning varies with various conditions on the task networks,and how it compares to STRIPS-style planning.1 IntroductionIn AI planning research, planning practice (as embodied in implemented planning systems)tends to run far ahead of the theories that explain the behavior of those systems. Thereis much recent analysis of the properties of total- and partial-order planning systems usingSTRIPS-style planning operators. STRIPS-style planning systems, however, were developedmore than twenty years ago, and most of the practical work on AI planning systems duringthe last �fteen years has been based on hierarchical task network (HTN) decomposition (e.g.,�This work was supported in part by NSF Grants IRI-9306580 and NSF EEC 94-02384, AFOSR (F49620-93-1-0065), the ARPA/Rome Laboratory Planning Initiative (F30602-93-C-0039), and ONR grant N00014-91-J-1451. Any opinions, �ndings, and conclusions or recommendations expressed in this material are thoseof the authors and do not necessarily re
ect the views of the National Science Foundation or ONR.1

noah(Sacerdoti, 1975), nonlin (Tate, 1977), deviser (Vere, 1983), and sipe (Wilkins,1988)).Until now, there has been very little analytical work on the properties of HTN planners.One of the primary obstacles impeding such work has been the lack of a clear theoreticalframework explaining what a HTN planning system is, although two recent papers (Yang,1990; Kambhampati et al., 1992) have provided important �rst steps in that direction. Aprimary goal of our current work is to de�ne, analyze, and explicate features of the designof HTN planning systems.Our work has progressed far enough to do complexity analyses of HTN planning similar toanalyses which Bylander(1991), Erol et al. (1992) performed for planning with STRIPS-styleoperators. In particular, we have examined how the complexity of determining whether aplan exists depends on the following factors: (1) restrictions on the existence and/or orderingof non-primitive tasks in task networks, (2) whether the tasks in task networks are requiredto be totally ordered, and (3) whether variables are allowed.The paper is organized as follows. Section 2 contains an overview of htn planning andour formalization of htn planning. Section 3 contains the complexity results, and Section 3.3investigates the relation between htn planning and strips-style planning.2 Basics of HTN Planning2.1 OverviewThis section contains an informal description of htn planning, intended to provide anintuitive feel for htn planning. The precise description is presented in the Sections 2.2through 2.4.htn planning can be described best by contrasting it with its predecessor, strips-styleplanning.1 The representations of the world and the actions in htn planning are very similarto those of strips-style planning. Each state of the world is represented by the set of atomstrue in that state. Actions correspond to state transitions, that is, each action is a partialmapping from the set of states to set of states. However, actions in htn planning are usuallycalled primitive tasks.The di�erence between htn planners and strips-style planners is in what they plan for,and how they plan for it. strips-style planners search for a sequence of actions that would1We use the term \strips-style" planning to refer to any planner (either total- or partial-order) inwhich the planning operators are strips-style operators (i.e., operators consisting of three lists of atoms: aprecondition list, an add list, and a delete list). These atoms are normally assumed to contain no functionsymbols. 2

See a showGo(D.C., Las Vegas) %& &% Go(Las Vegas, D.C.)Get richFigure 1: A task networkbring the world to a state that satis�es certain conditions, i.e. attainment goals. Planningproceeds by �nding operators that has the desired e�ects, and by asserting the preconditionsof those operators as subgoals. On the other hand, one of the motivations for htn planningwas to close the gap between AI planning techniques and operations-research techniquesfor project management and scheduling (Tate, 1977). htn planners search for plans thataccomplish task networks, and they plan via task decomposition and con
ict resolution,which we shall explain shortly.A task network is a collection of tasks that need to be carried out, together with con-straints on the order in which the tasks are carried out, the way variables are instantiated,and what literals must be true before or after each task is performed. For example, Figure 1contains a task network for a trip to Las Vegas. Constraints allow the user to specify how hedesires the tasks to be performed. For instance, in the Las Vegas example, the user mightdesire to get rich before seeing a show, which can be represented as an ordering constraint.Unlike strips-style planning, the constraints may or may not contain conditions on whatmust be true in the �nal state.A task network that contains only primitive tasks is called a primitive task network.Such a network might occur, for example, in a scheduling problem. In this case, an htnplanner would try to �nd a schedule (task ordering and variable bindings) that satis�es allthe constraints.In the more general case, a task network can contain non-primitive tasks. Non-primitivetasks are those that cannot be executed directly, and the planner needs to �gure out howto accomplish them. They represent activities that involve performing multiple tasks. Forexample, consider the task of travelling to New York. There are several ways to accomplishit, such as
ying, driving or taking the train. Flying would involve tasks like making reserva-tions, going to the airport, buying ticket, boarding the plane, and it would only work undercertain conditions such as availability of tickets, being at the airport on time, having enoughmoney for the ticket etc.Ways of accomplishing non-primitive tasks are represented using constructs called meth-ods. A method is of the form (�; d) where � is a non-primitive task, and d is a task network.It states that one way to accomplish the task � is to achieve all the tasks in the task net-3

Go(X,Y)+Rent-a-car! Drive(X,Y)Figure 2: A (simpli�ed) method for going from X to Y.See a showRent-a-car! drive(D.C., Las Vegas) %& &% Go(L.V., D.C.)Get richFigure 3: A decomposition of the the task network in Fig. 1work d without violating the constraints in d. Figure 2 presents a (simpli�ed) method foraccomplishing Go(X,Y).Planning proceeds by starting with the the initial task network d, and doing the followingsteps repeatedly, until no non-primitive tasks are left: pick a non-primitive task � in d and amethod (�; d0). Then modify d by \decomposing" � (i.e., replace � with the tasks in d0, andincorporate the constraints of d0 into d). Figure 3 demonstrates how to do a decompositionon the task network presented in Figure 1 using the method displayed in Figure 2. Onceno non-primitive tasks are left in d, the next problem is to �nd a totally-ordered groundinstantiation � of d that satis�es all of the constraints. If this can be done, then � is asuccessful plan for the original problem.In practice, htn planning also has several other aspects. In particular, functions areoften provided which can \debug" partially reduced task networks to eliminate potentialproblems. These \critic" functions are used to handle constraints, resource limitations, andto provide domain-speci�c guidance. The formalization described in (Erol et al., 1994a)explains critics and the relationship between these and the constraints described above. Forthe purposes of this paper, the critics do not a�ect worst-case behavior, and thus we willomit this detail.Here are some examples to further clarify the distinctions between di�erent types of tasksand strips-style goals. Building a house requires many other tasks to be performed (layingthe foundation, building the walls, etc.), thus it is a compound task. It is di�erent from thegoal task of \having a house," since buying a house would achieve this goal task, but not thecompound task of building a house (the agent must build it himself). As another example,4

the compound task of making a round trip to New York cannot easily be expressed as asingle goal task, because the initial and �nal states would be the same. Goal tasks are verysimilar to strips-style goals. However, in strips-style planning, any sequence of actionsthat make the goal expression true is a valid plan, where as in htn planning, only thoseplans that can be derived via decompositions are considered as valid. This allows the user torule out certain undesirable sequences of actions that nonetheless make the goal expressiontrue. For example, consider the goal task of \being in New York", and suppose the planneris investigating the possibility of driving to accomplish this goal, and suppose that the agentdoes not have a driver's licence. Even though learning how to drive and getting a driver'slicence might remedy the situation, the user can consider this solution unacceptable, andwhile writing down the methods for be-in(New York), she can put the constraint that themethod of driving succeeds only when the agent already has a driver's licence.2.1.1 Alternative Views of Non-Primitive TasksThere appears to be some general confusion about the nature and role of tasks in htn plan-ning. This appears largely due to the fact that htn planning emerged, without a formaldescription, in implemented planning systems (Sacerdoti, 1975; Tate, 1977). Many ideas in-troduced in htn planning (such as nonlinearity, partial order planning, etc.) were formalizedonly as they were adapted to strips-style planning, and only within that context. Thoseideas not adapted to strips-style planning (such as compound tasks and task decomposi-tion) have been dismissed as mere e�ciency hacks. In our formalism, we have tried to �llthe gaps, and replace informal descriptions with precise de�nitions, without omitting htnplanning constructs.Our formalism is mostly shaped after nonlin (Tate, 1977) and the works of Yang andKambhampati (Yang, 1990; Kambhampati et al., 1992) on hierarchical planning. However,our terminology for referring to non-primitive tasks is slightly di�erent from theirs, whichinstead uses the term \high level actions" (Sacerdoti, 1975; Yang, 1990). Although this termhas some intuitive appeal, we prefer not to use it, in order to avoid any possible confusionwith strips-style actions. strips-style actions are atomic, and they always have the samee�ect on the world; non-primitive tasks can be decomposed into a number of primitive tasks,and the e�ect of accomplishing a non-primitive task depends not only on the methods chosenfor doing decompositions, but also on the interleavings with other tasks.Compound tasks are also di�erent from strips-style goals. As we have discussed earlier,compound tasks represent activities for which the �nal state might be totally irrelevant, orin the case of round-trip example, the �nal state might be the same as the initial state.Yet another view of htn planning totally discards compound tasks, and views methodsfor goal tasks as heuristic information on how to go about achieving the goals (i.e., which5

operator to use, in which order achieve the preconditions of that operator etc.). Althoughthis is a perfectly coherent view, we �nd it restrictive, and we believe there is more to htnplanning, as we try to demonstrate in our formalism and in the section on expressive power.2.2 Syntax for HTN PlanningOur language L for htn planning is a �rst-order language with some extensions, and itis fairly similar to the syntax of nonlin (Tate, 1977). The vocabulary of L is a tuplehV;C; P; F; T;Ni, where V is an in�nite set of variable symbols, C is a �nite set of constantsymbols, P is a �nite set of predicate symbols, F is a �nite set of primitive-task symbols(denoting actions), T is a �nite set of compound-task symbols, and N is an in�nite set ofsymbols used for labeling tasks. All these sets of symbols are mutually disjoint.A state is a list of ground atoms. The atoms appearing in that list are said to be true inthat state and those that do not appear are false in that state.A primitive task is a syntactic construct of the form do[f(x1; : : : ; xk)], where f 2 F andx1; : : : ; xk are terms. A goal task is a syntactic construct of the form achieve[l], where l is aliteral. A compound task is a syntactic construct of the form perform[t(x1; : : : ; xk)], wheret 2 T and x1; : : : ; xk are terms. We sometimes refer to goal tasks and compound tasks asnon-primitive tasks.A task network is a syntactic construct of the form [(n1 : �1) : : : (nm : �m); �]; where� each �i is a task;� ni 2 N is a label for �i (to distinguish it from any other occurrences of �i in thenetwork);� � is a boolean formula constructed from variable binding constraints such as (v = v0)and (v = c), ordering constraints such as (n � n0), and state constraints such as (n; l),(l; n), and (n; l; n0), where v; v0 2 V , l is a literal, c 2 C, and n; n0 2 N .2 Intuitively(this will be formalized in the \Operational Semantics" section), (n � n0) means thatthe task labeled with n must precede the one labeled with n0; (n; l), (l; n) and (n; l; n0)mean that l must be true in the state immediately after n, immediately before n, andin all states between n and n0, respectively. Both negation and disjunction are allowedin the constraint formula.A task network containing only primitive tasks is called a primitive task network.2We also allow n; n0 to be of the form first[ni; nj; : : :] or last[ni; nj; : : :] so that we can refer to the taskthat starts �rst and to the task that ends last among a set of tasks, respectively.6

[(n1 : achieve[clear(v1)])(n2 : achieve[clear(v2)])(n3 : do[move(v1; v3; v2)])(n1 � n3) ^ (n2 � n3) ^ (n1; clear(v1); n3) ^ (n2; clear(v2); n3) ^ (on(v1; v3); n3)^ :(v1 = v2) ^ :(v1 = v3) ^ :(v2 = v3)]n1:achieve[clear(v1)]n2:achieve[clear(v2)] n3:do[move(v1; v3; v2)]@@@R����clear(v1)clear(v2):on(v1; v3)Figure 4: A task network, and its graphical representation.As an example, Fig. 4 shows a blocks-world task network and its graphical representation.In this task network there are three tasks: clearing v1, clearing v2, and moving v1 to v2. Thetask network also includes the constraints that moving v1 must be done last, that v1 and v2must remain clear until we move v1, that v1; v2; v3 are di�erent blocks, and that on(v1; v3)be true immediately before v1 is moved. Note that on(v1; v3) appears as a constraint, notas a goal task. The purpose of the constraint (on(v1; v3); n3) is to ensure that v3 is boundto the block under v1 immediately before the move. Representing on(v1; v3) as a goal taskwould mean moving v1 onto some block v3 before we move it onto v2, which is not what isintended.A plan is a sequence � of ground primitive tasks.An operator is of the form [operator f(v1; : : : ; vk)(pre : l1; : : : ; lm)(post : l01; : : : ; l0n)],where f is a primitive task symbol, and l1; : : : ; lm are literals describing when f is executable,l01; : : : ; l0n are literals describing the e�ects of f , and v1; : : : ; vk are the variable symbolsappearing in the literals.A method is a construct of the form (�; d) where � is a non-primitive task, and d is a tasknetwork. As we will de�ne formally in the \Operational Semantics" section, this constructmeans that one way of accomplishing the task � is to accomplish the task network d, i.e. toaccomplish all the subtasks in the task network without violating the constraint formula ofthe task network. For example, a blocks-world method for achieving on(v1; v2) would looklike (achieve(on(v1; v2)); d), where d is the task network in Fig. 4. To accomplish a goal task(achieve[l]), l needs to be true in the end, and this is an implicit constraint in all methods forgoal tasks. If a goal is already true, then an empty plan can be used to achieve it. Thus, for7

each goal task, we (implicitly) have a method (achieve[l]; [(n : do[f]); (l; n)]) which containsonly one dummy primitive task f with no e�ects, and the constraint that the goal l is trueimmediately before do[f].Each primitive task has exactly one operator for it, where as a non-primitive task canhave an arbitrary number of methods.2.3 Planning Domains and ProblemsA planning domain is a pair D = hOp;Mei, where Op is a set of operators, and Me is a setof methods.A planning problem instance is a triple P = hd; I;Di, where D is a planning domain, I isthe initial state, and d is the task network we need to plan for. The language of P is the htnlanguage L generated by the constant, predicate, and task symbols appearing in P, alongwith an in�nite set of variables and an in�nite set of node labels. Thus, the set of constants,predicates and tasks are all part of the input.Next, we de�ne some restrictions on htn-planning problems. P is primitive if the tasknetwork d contains only primitive tasks. This corresponds to the case where the planner isused only for scheduling. P is regular if all the task networks in the methods and d containat most one non-primitive task, and that non-primitive task is ordered with respect to allthe other tasks in the network. Surprisingly, this class of htn-planning problems is closelyrelated to strips-style planning, as we shall see in Section 3.3. P is propositional if novariables are allowed. P is totally ordered if all the tasks in any task network are totallyordered.plan existence is the following problem: given P = hd; I;Di, is there a plan thatsolves P?2.4 Operational SemanticsIn this section, we give a �xed point de�nition for the set of solutions for a given htn-planning problem. Description of an equivalent model-theoretic semantics appear in (Erolet al., 1994a).First, we de�ne how primitive tasks change the world when executed. Similar to theway it is done in strips-style planning, we verify that the primitive task is executable andthen update the input state based on the e�ects of the primitive task. More precisely,Let s be a state, and f 2 F be a primitive task symbol with the corresponding operator[f(v1; : : : ; vk)(pre : l1; : : : ; lm)(post : l01; : : : ; l0n)]. We de�ne the resulting state from executingf with ground parameters c1; : : : ; ck as 8

apply(s; f; c1; : : : ; ck) = 8><>: Unde�ned if li� is false in s for some i in 1::m(s� En�) [Ep� otherwise, where � is the substitution fci=vi j i = 1::kg, and En; Ep are the sets of negative andpositive literals in l01; : : : ; l0n, respectively.Next, we de�ne the set of plans for a ground primitive task network. Let d be a primitivetask network (one containing only primitive tasks), and let I be the initial state. A plan� is a completion of d at I, denoted by � 2 comp(d; I;D), if � is a total ordering of theprimitive tasks in a ground instance of d that satis�es the constraint formula of d. Moreprecisely, Let � = (f1(c11; : : : ; c1k1); : : : ; fm(cm1; : : : ; cmkm)) be a plan, s0 be the initial state,and si = apply(si�1; fi; ci1; : : : ; ciki) for i = 1 : : :m be the intermediate states, which are allde�ned (i.e. the preconditions of each fi are satis�ed in si�1 and thus actions in the planare executable). Let d = [(n1 : �1) � � � (nm : �m); �] be a ground primitive task network,and � be a permutation such that whenever �(i) = j, �i = do[fj(cj1; : : : ; cjkj)]. Then� 2 comp(d; s0;D), if the constraint formula � of d is satis�ed. The constraint formula isevaluated as follows:� (ci = cj) is true, if ci; cj are the same constant symbols;� first[ni; nj; : : :] evaluates to minf�(i); �(j); : : :g;� last[ni; nj; : : :] evaluates to maxf�(i); �(j); : : :g;� (ni � nj) is true if �(i) < �(j);� (l; ni) is true if l holds in s�(i)�1;� (ni; l) is true if l holds in s�(i);� (ni; l; nj) is true if l holds for all se, �(i) � e < �(j);� logical connectives :;^;_ are evaluated as in propositional logic.If d is a primitive task network containing variables, thencomp(d; s0;D) = f� j � 2 comp(d0; s0;D); d0 is a ground instance of dgIf d contains non-primitive tasks, then the set of completions for d is the empty set.9

Now, we de�ne how to do task decompositions. Let d = [(n : �)(n1 : �1) : : : (nm : �m); �]be a task network containing a non-primitive task �. Let me = (�0; [(n01 : �01) : : : (n0k : �0k); �0]be a method,3 and � be the most general uni�er of � and �0. Then we de�ne reduce(d; n;me)to be the task network obtained from d� by replacing (n : �)� with the task nodes of themethod, and incorporating the constraint formula of the method into the constraint formulaof d�. More precisely,reduce(d; n;me) = [(n01 : �01)� : : : (n0k : �0k)� (n1 : �1)� : : : (nm : �m)�; �0� ^];where is obtained from �� with the following modi�cations:� replace (n < nj) with (last[n01; : : : ; n0k] < nj), as nj must come after every task in thedecomposition of n;� replace (nj < n) with (nj < first[n01; : : : ; n0k]);� replace (l; n) with (l; first[n01; : : : ; n0k]), as l must be true immediately before the �rsttask in the docomposition of n;� replace (n; l) with (last[n01; : : : ; n0k]; l), as l must be true immediately after the last taskin the docomposition of n;� replace (n; l; nj) with (last[n01; : : : ; n0k]; l; nj]);� replace (nj ; l; n) with (nj ; l; first[n01; : : : ; n0k]);� everywhere that n appears in � in a first[] or a last[] expression, replace it withn01; : : : ; n0k.We de�ne red(d; I;D), the set of reductions of d asred(d; I;D) = fd0j d0 2 reduce(d; n;me); n is the label for a non-primitive task in d,and me is a method in D for that task.gThus, a plan � solves a primitive task network d at initial state I, i� � 2 comp(d; I;D);a plan � solves a non-primitive task network d at initial state I, i� � solves some reductiond0 2 red(d; I;D) at initial state I .3All variables and node labels in the method must be renamed with variables and node labels that donot appear anywhere else. 10

Table 1: Complexity of HTN PlanningMust everyRestrictions on HTN be total- Are variables allowed?non-primitive tasks ly ordered? no yesno Undecidable� Undecidable��none yes in EXPTIME; in DEXPTIME;PSPACE-hard EXPSPACE-hard\regularity" (� 1non-primitive task, doesn't PSPACE- EXPSPACE-which must follow matter complete complete
all primitive tasks)no non-primitive no NP-complete NP-completetasks yes Polynomial time NP-complete�Decidable with acyclicity restrictions.�Undecidable even when the planning domain is �xed in advance.
In pspace when the planning domain is �xed in advance, and pspace-completefor some �xed planning domains.Now, we can de�ne the set of plans sol(d; I;D) that solves a planning problem instanceP =< d; I;D >:sol1(d; I;D) = comp(d; I;D)soln+1(d; I;D) = soln(d; I;D) [Sd02red(d;I;D) soln(d0; I;D)sol(d; I;D) = [n<!soln(d; I;D)Intuitively, soln(d; I;D) is the set of plans that can be derived in n steps, and sol(d; I;D)is the set of plans that can be derived in any �nite number of steps. In (Erol et al., 1994a),we prove that the set of solutions according to the model-theoretic semantics coincide withsol(d; I;D).3 ResultsOur complexity results are summarized in Table 1. In the following sections, we state thetheorems and discuss their implications. 11

3.1 Undecidability ResultsIt is easy to show that we can simulate context-free grammars within htn planning by us-ing primitive tasks to emulate terminal symbols, compound tasks to emulate non-terminalsymbols, and methods to encode grammar rules. More interesting is the fact that we cansimulate any two context-free grammars, and with the help of task interleavings and con-straints, we can check whether these two grammars have a common string in the languagesthey generate. Whether the intersection of the languages of two context-free grammars isnon-empty is a semi-decidable problem (Hopcroft et al., 1979). Thus:Theorem 1 plan existence is strictly semi-decidable, even if P is restricted to be propo-sitional, to have at most two tasks in any task network, and to have only totally orderedmethods.This result might seem surprising at �rst, since the state space (i.e., the number and sizeof states) is �nite. If the planning problem were that of �nding a path from the initial stateto a goal state (as in strips-style planning), indeed it would be decidable, because, for thatproblem, whenever there is a plan, there is also a plan that does not go through any statetwice, and thus we need to examine only a �nite number of plans. On the other hand, htnplanning can represent compound tasks accomplishing which might require going throughthe same state many times, and thus we have the undecidability result.Instead of encoding each context-free grammar rule as a separate method, it is possibleto encode these rules with predicates in the initial state, and to have a method containingvariables and constraints such that only those decompositions corresponding to the grammarrules encoded in the initial state are allowed. Hence, even when the domain description (i.e.,the set of operators and methods) is �xed in advance, it is possible to �nd planning domainsfor which planning is undecidable, as stated in the following theorem:Theorem 2 There are htn planning domains that contain only totally ordered methods eachwith at most two tasks, for which plan existence is strictly semi-decidable.3.2 Decidability and Complexity ResultsOne way to make plan existence decidable is to restrict the methods to be acyclic. Inthat case, any task can be expanded up to only a �nite depth, and thus the problem becomesdecidable. To this end, we de�ne a k-level-mapping to be a function level() from groundinstances of tasks to the set f0; : : : ; kg, such that whenever we have a method that canexpand a ground task � to a task network containing a ground task �0, level(�) > level(�0).Furthermore, level(�) must be 0 for every primitive task �.12

Intuitively, level() assigns levels to each ground task, and makes sure that tasks can beexpanded into only lower level tasks, establishing an acyclic hierarchy. In this case, any taskcan be expanded to a depth of at most k. Therefore,Theorem 3 plan existence is decidable if P has a k-level-mapping for some integer k.Examples of such planning domains can be found in manufacturing, where the productis constructed by �rst constructing the components and then combining them together.Another way to make plan existence decidable is to restrict the interactions amongthe tasks. Restricting the task networks to be totally ordered limits the interactions thatcan occur between tasks. Tasks need to be achieved serially, one after the other; interleavingsubtasks for di�erent tasks is not possible. Thus interactions between the tasks are limitedto the input and output state of the tasks, and the \protection intervals", i.e the literalsthat need to be preserved, which are represented by state constraints of the form (n; l; n0).Under the above conditions, we can create a table with an entry for each task, in-put/output state pair, and set of protected literals, that tells whether it is possible to achievethat task under those conditions. Using dynamic programming techniques we can computethe entries in the table in double-exptime, or in exptime if the problem is further re-stricted to be propositional. As shown in the next section, strips-style planning can bemodeled using HTNs that satisfy these conditions, so we can use the complexity results onstrips-style planning in (Bylander, 1991; Erol et al., 1992) to establish a lower bound onthe complexity of HTN planning. Thus:Theorem 4 plan existence is expspace-hard and in double-exptime if P is restrictedto be totally ordered. plan existence is pspace-hard and in exptime if P is furtherrestricted to be propositional.If we restrict our planning problem to be regular, then there will be at most one non-primitive task in any task network (both the initial input task network, and those we obtainby expansions). Thus, subtasks in the expansions of di�erent tasks cannot be interleaved,which is similar to what happens in Theorem 4. But in Theorem 4, there could be severalnon-primitive tasks in a task network, and we needed to keep track of all of them (which iswhy we used the table). If the planning problem is regular, we only need to keep track of asingle non-primitive task, its input/�nal states, and the protected literals. Since the size of astate is at most exponential, the problem can be solved in exponential space. But even withregularity and several other restrictions, it is still possible to reduce an expspace-completeSTRIPS-style planning problem (described in (Erol et al., 1992)) to the htn framework.Thus: 13

Theorem 5 plan existence is expspace-complete if P is restricted to be regular. Itis still expspace-complete if P is further restricted to be totally ordered, with at most onenon-primitive task symbol in the planning language, and all task networks containing at mosttwo tasks.When we further restrict our problem to be propositional,it is still possible to de�ne a re-duction from propositional strips-style planning, which is proven to be pspace-complete (By-lander, 1991). Thus the complexity goes down one level:Theorem 6 plan existence is pspace-complete if P is restricted to be regular and propo-sitional. It is still pspace-complete if P is further restricted to be totally ordered, with atmost one non-primitive task symbol in the planning language, and all task networks contain-ing at most two tasks.If we allow variables but instead �x the planning domain D(i.e. the set of methods andoperators) in advance, then the number of ground atoms and ground tasks is polynomialin the length of the input to the planner. Hence the complexity of regular htn planningwith a �xed planning domain with variables is no harder than the complexity of regularpropositional htn planning, which is shown to be pspace-complete in Theorem 6.4In the proof of Theorem 5.17 in (Erol et al., 1992) a set of three strips operators withvariables for which planning is pspace-complete is presented. The reduction described inthe proof of Theorem 5 transforms this set of operators into a regular htn planning domain(with variables) for which planning is pspace-complete. Hence:Theorem 7 If P is restricted to be regular and D is �xed in advance, then plan existenceis in pspace. Furthermore, there exists �xed regular htn planning domains D for whichplan existence is pspace-complete.Suppose a planning problem is primitive, and either propositional or totally ordered.Then the problem's membership in NP is easy to see: once we nondeterministically guessa total ordering and variable binding, we can check whether the constraint formula on thetask network is satis�ed in polynomial time. Furthermore, unless we require the planningproblem to be both totally ordered and propositional, our constraint language enables us torepresent the satis�ability problem, and thus we get np-hardness. Hence:Theorem 8 plan existence is np-complete if P is restricted to be primitive, or primitiveand totally ordered, or primitive and propositional. However, plan existence can be solvedin polynomial time if P is restricted to be primitive, totally ordered, and propositional.4In a related result, (Bylander, 1991) shows that propositional strips-style planning is also pspace-complete. We investigate the relation between regular htn planning and strips-style planning in Section 3.3.14

3.3 Expressivity: HTNs versus STRIPS RepresentationThere has not been a clear consensus on what htns can and cannot represent. It wasgenerally believed that although htns are more
exible compared to strips-style planning,anything that can be done in htn planning can be also done in strips-style planning. Dueto the lack of a formalism for htn planning, such claims could not be proved or disproved.We address this question using the formalism in this paper.When we compare htns and strips, we observe that the htn approach provides all theconcepts (states, actions, goals) that strips has. In fact, given a domain encoded as a set ofstrips operators, we can transform it to an htn planning domain, in low-order polynomialtime. A straightforward transformation would be to declare one primitive task symbol foreach strips operator, and for every e�ect of each operator, to declare a method similar tothe one in Fig. 4. Each such method contains the preconditions of the operator as goal tasks,and also the primitive task corresponding to the operator itself.Below is a more instructive transformation, which demonstrates that the relationshipbetween strips-style planning and htn planning is analogous to the relationship betweenright linear (regular) grammars and context-free grammars. We summarize the transforma-tion below; for details see the proof of Theorem 5.In this transformation, the htn representation uses the same constants and predicatesused in the strips representation. For each strips operator o, we declare a primitive taskf with the same e�ects and preconditions as o. We also use a dummy primitive task fd withno e�ects or preconditions. We declare a single compound task symbol t. For each primitivetask f , we construct a method of the formperform[t] =) do[f] �! perform[t]We declare one last method perform[t]) do[fd] . Note that t can be expanded to anysequence of actions ending with fd, provided that the preconditions of each action are satis-�ed. The input task network has the form [(n : perform[t]); (n;G1) ^ : : : ^ (n;Gm)] whereG1; : : : ; Gm are the strips-style goals we want to achieve. Note that the transformationproduces regular htn problems, which has exactly the same complexity as strips-styleplanning. Thus, just as restricting context-free grammars to be right linear produces regularsets, restricting htn methods to be regular produces strips-style planning.The next question is whether there exists a transformation in the other direction, that iswhether it is possible to encode htn planning problems as strips-style planning problems.Intuitively, such a transformation cannot exist, because strips-style planning lacks theconcept of compound tasks, and its notion of goals is more restrictive than in htn planning.15

For example, it does not provide means for declaring goals/constraints on the intermediatestates as htns do. A more formal argument can be made as follows.>From Theorem 1, htn planning with no function symbols (and thus only �nitely manyground terms) is semi-decidable. Even if we require the domain description D to be �xedin advance (i.e., not part of the input), Theorem 2 tells us that there are htn planningdomains for which planning is semi-decidable. However, with no function symbols, strips-style planning is decidable, regardless of whether or not the planning domain5 is �xed inadvance (Erol et al., 1992). Thus:Theorem 9 There does not exist a computable function from the set of htn planningproblem instances to the set of strips-style planning problem instances such that for anyhtn-planning problem instance P, and any plan �, � solves P i� (�) solves (P).6Showing whether a polynomial or computable transformation exists is one way of com-paring the expressivity of two languages. The lack of a computable transformation fromhtn planning to strips-style planning means that for some planning problems, the prob-lem representation in strips-style planning will be exponentially (or in some cases, evenin�nitely!) larger than in htn planning. However, there are also some other ways in whichone might want to compare expressivity. For example, for comparing the expressive powerof knowledge representation languages, Baader (Baader, 1990) has developed an approachbased on model-theoretic semantics.According to Baader's de�nition, a knowledge-representation language L2 is as expressiveas L1 i� there exists a function (which does not have to be computable) that maps eachset of sentences from L1 to a set of sentences from L2, such that the following property issatis�ed whenever (�1) = �2:for any model of �1, there is an equivalent (modulo renaming of symbols) modelof �2, and vice versa.L2 can express L1 if and only if such a transformation exists. If L2 can express L1, but L1cannot express L2, then L2 is strictly more expressive than L1.To adapt Baader's de�nition to planning languages, there are two possible approaches:develop a model-theoretic semantics for planning, or use the operational semantics presentedin Section 2.4. As we discuss in (Erol et al., 1994a), these two approaches yield di�erent (non-equivalent) de�nitions of the expressivity of planning languages. However, htn planning is5Since strips-style planning does not include methods, a strips-style planning domain is simply a setof operators.6In proving this theorem, we use the standard assumption that the strips operators do not containfunction symbols, nor do the htn operators. 16

more expressive than strips-style planning according to both of these de�nitions. In (Erolet al., 1994a) we prove this for the model-theoretic de�nition; below we present a de�nitionof expressivity based on operational semantics, and we use this de�nition to prove that htnplanning is more expressive than strips-style planning.We de�ne a planning language L1 to be as expressive as a planning language L2 i� thereexists a function from the set of planning problem instances in L2 to the set of planningproblem instances in L1 such that for any planning problem instance P in L2, P and (P)have the same set of solutions (plans) modulo symbol renaming. need not be computable.In the proofs of the undecidability theorems, we have shown that the set of solutions foran htn-planning problem instance can be any context-free set, or even the intersection ofany two context-free sets. In general, such a set cannot be expressed as the set of solutionsto a strips-style planning problem, because the set of solutions to a strips-style planningproblem correspond to a regular set (where the states in the planning domain correspondto the states of a �nite automata, and the actions correspond to state transitions). Hencethere does not exist a function from the set of htn-planning problem instances to the setof strips-style planning problem instances that preserves the set of solutions. On the otherhand, we have presented a transformation that maps each strips-style planning probleminstance to an htn-planning problem instance with the same set of solutions. Thus we canconcludeTheorem 10 htn planning is strictly more expressive than strips-style planning.The power of htn planning comes from two things: (1) allowing multiple tasks andarbitrary constraint formulas in task networks, (2) compound tasks. Allowing multiple tasksand arbitrary formulae provides
exibility|but if all tasks were either primitive or goal(strips-style) tasks, these could probably be expressed with strips-stye operators (albeitclumsily and using an exponential number of operators/predicates). Compound tasks providean abstract representation for sets of primitive task networks, similar to the way non-terminalsymbols provide an abstract representation for sets of strings in context-free grammars.4 ConclusionWe have presented a formal description of htn planning, and we have done a complexityanalysis based on this formalism. >From our results we can draw the following conclusions:1. htn planners can represent a broader set of planning domains than strips-style plan-ners. The transformations from htn planning problems to strips-style planning prob-lems have revealed that strips-style planning is a special case of htn planning, and17

that the relation between them is analogous to the relation between context-free lan-guages and regular languages. This contradicts the idea, held by some researchers,that HTNs are just an \e�ciency hack."2. Handling interactions among non-primitive tasks is the most di�cult part of htn plan-ning. In particular, if subtasks in the expansions for di�erent tasks can be interleaved,then planning is undecidable, under even a very severe set of restrictions. However re-stricting the planning problems to be totally-ordered or regular reduced the complexitysigni�cantly, because that limited the interactions among tasks.3. In general, what restrictions we put on the non-primitive tasks has a bigger e�ecton complexity than whether or not we allow variables, or require tasks to be totallyordered.4. If there are no restrictions on non-primitive tasks, then whether or not we require tasksto be totally ordered has a bigger e�ect (namely, decidability vs. undecidability) thanwhether or not we allow variables. But in the presence of restrictions on non-primitivetasks, whether or not we allow variables has a bigger e�ect than whether or not werequire tasks to be totally ordered.Currently, we are investigating how to use constraint satisfaction techniques such as treesearch versus repair, value ordering and variable ordering heuristics to increase the e�ciencyof htn planning. We are also investigating how to extend the action representation of htnsto allow conditional, probabilistic and future e�ects.5 AcknowledgementWe thank A. Barrett, W. Gasarch, R. Kambhampati, B. Kettler, and anonymous reviewersfor their insightful comments.References(Baader, 1990) Baader, F. A formal de�nition for expressive power of knowledge represen-tation languages. In Proceedings of the 9th European Conference on Arti�cial Intelligence,Stockholm, Sweden, Aug. 1990. Pitman.(Bylander, 1991) Bylander, Tom 1991. Complexity results for planning. In IJCAI-91.18

(Chapman, 1987) Chapman, D. Planning for conjunctive goals. Arti�cial Intelligence,32:333{378, 1987.(Drummond, 1985) Drummond, M. Re�ning and Extending the Procedural Net. In Proc.IJCAI-85, 1985.(Erol et al., 1992) Erol, K.; Nau, D.; and Subrahmanian, V. S. Complexity, decidability andundecidability results for domain-independent planning. Arti�cial Intelligence to appear.A more detailed version is available as Tech. Report CS-TR-2797, UMIACS-TR-91-154,SRC-TR-91-96, University of Maryland, College Park, MD, 1992.(Erol et al., 1994a) Erol, K.; Hendler, J.; and Nau, D. Semantics for Hierarchical Task Net-work Planning. Technical report CS-TR-3239, UMIACS-TR-94-31, ISR-TR-95-9, Com-puter Science Dept., University of Maryland, March 1994.(Fikes et al., 1971) Fikes, R. E. and Nilsson, N. J. strips: a new approach to the applicationof theorem proving to problem solving. Arti�cial Intelligence, 2(3/4) 1971.(Hopcroft et al., 1979) Hopcroft and Ullman. Introduction to Automata Theory, Languagesand Computation. Addison-Wesley Publishing Company Inc., California, 1979.(Kambhampati et al., 1992) Kambhampati, S. and Hendler, J. \A Validation StructureBased Theory of Plan Modi�cation and Reuse" Arti�cial Intelligence, May, 1992.(Lansky, 1988) Lansky, A.L. Localized Event-Based Reasoning for Multiagent Domains.Computational Intelligence Journal, 1988.(Sacerdoti, 1975) Sacerdoti, E. D. The nonlinear Nature of Plans In Proceedings of IJCAI,1975. pp 206|214.(Tate, 1977) Tate, A. Generating Project Networks In Proceedings of IJCAI, 1977. pp888|889.(Vere, 1983) Vere, S. A. Planning in Time: Windows and Durations for Activities and Goals.IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-5(3):246{247,1983.(Wilkins, 1988) Wilkins, D. Practical Planning: Extending the Classical AI PlanningParadigm, Morgan-Kaufmann 1988.(Yang, 1990) Yang, Q. Formalizing planning knowledge for hierarchical planning Computa-tional Intelligence Vol.6., 12{24, 1990. 19

AppendixTheorem 1 plan existence is strictly semi-decidable, even if P is restricted to bepropositional, to have at most two tasks in any task network, and to have only totallyordered methods.Proof.Membership: We can restate plan existence as 9k solk(d; I;D) 6= ;. Thus the problemis in �1.Hardness: Given two context-free grammars G1 and G2, whether L(G1) \ L(G2) is non-empty is an undecidable problem(Hopcroft et al., 1979). We de�ne a reduction from thisproblem to plan existence as follows:Without loss of generality, assume both G1 and G2 have the same binary alphabet �, andthey are in Chomsky normal form (at most two symbols at the right hand side of productionrules). Refer to (Hopcroft et al., 1979) to see how any context-free grammar can be convertedinto this form. Similarly, assume that the sets of non terminals �1 and �2 for each grammarare disjoint; i.e. �1 \�2 = ;. We also assume neither language contains the empty string. Itis easy to check whether a CFG derives empty string. If both languages contain the emptystring, then their intersection is non-empty; we can simply return a simple htn problemthat has a solution. If one of the languages does not contain the empty string, it does nota�ect the intersection to remove the empty string from the other language.It is quite easy to see that using methods we can simulate context-free grammars: Prim-itive task symbols mimic the terminals, compound task symbols mimic the non-terminals,and methods mimic the production rules. The di�culty is in making sure there is a stringproduced by both G1 and G2. We achieve this with the help of the constraints in methods.For each terminal a 2 �, we introduce a proposition pa. We also need another propositioncalled turn.Let the initial state I = fturng.For each terminal a 2 �, we introduce two primitive tasks (one for each grammar) fa1and fa2 such that fa1 has the preconditions fturng and e�ects fpa;:turng; fa2 has thepreconditions fpa;:turng and e�ects f:pa; turng.Intuitively, fa1 produces pa, and fa2 consumes pa. The proposition turn ensures that weuse these primitive tasks alternately.For each non-terminal B in each grammar, we introduce a compound task symbol tB.20

For each production rule R : A! B1B2, we introduce a method(tA; [(n1 : �1)(n2 : �2) (n1 � n2)]), where �i = 8><>: perform[tBi] if Bi is a nonterminal;do[fa1] if Bi is a terminal a, and R is a production rule of G1;do[fa2] if Bi is a terminal a, and R is a production rule of G2.The input task network contains the three tasks perform[tS1]; perform[tS2], do[flast],where S1; S2 are the starting symbols of the grammars G1; G2 respectively, and flast is aprimitive task with no e�ects. The constraint formula states that tS1 � tlast, and tS2 � flast,and that turn needs to be true immediately before flast. The last condition ensures that thelast primitive task fpa belongs to G2.The task decompositions mimic the production rules of the grammars. The propositionturn ensures that each grammar contributes a primitive action to any plan alternatively, andthe conditions with propositions pa ensure that whenever G1 contributes a primitive taskfa1, G2 has to contribute fa2. Thus, there is a plan i� G1 and G2 have a common word intheir corresponding languages.Theorem 2 There are htn planning domains that contain only totally ordered methodseach with at most two tasks, for which plan existence is strictly semi-decidable.Proof: We construct a planning domain D and show that planning in this domain is semi-decidable, using a reduction from the intersection of context-free grammars problem.Domain Description We use four primitive tasks fa1; fb1; fa2; fb2 (they are exactly thesame primitive tasks used in the previous proof), and another dummy primitive task fdummywith no e�ects or preconditions.We have three propositions pa; pb; turn, and a predicate R(X,Y,Z), used for expressingproduction rules of the form X ! Y Z.We declare the following four operators that specify the e�ects of those tasks:(operator fa1 (pre : turn) (post : pa;:turn))(operator fa2 (pre : :turn; pa) (post : :pa; turn))(operator fb1 (pre : turn) (post : pb;:turn))(operator fb2 (pre : :turn; pb) (post : :pb; turn))(operator fdummy (pre :) (post :))21

We use �ve compound tasks t(A1); t(A2); t(B1); t(B2); t(Dummy) corresponding to ourprimitive tasks.We declare �ve methods describing how those compound tasks expand to their corre-sponding primitive tasks:(t(v) [(n : do[fa1]) (v = A1)])(t(v) [(n : do[fb1]) (v = B1)])(t(v) [(n : do[fa2]) (v = A2)])(t(v) [(n : do[fb2]) (v = B2)])(t(v) [(n : do[fdummy]) (v = Dummy)])We use a predicate R(v; v1; v2) to encode grammar rules. We declare a �nal method :(t(v) [(n1 : perform[t(v1)])(n2 : perform[t(v2)]) (n1 � n2) ^ (n1; R(v; v1; v2))])Basicly, this method speci�es that a task t(X) can be expanded to t(Y)t(Z) i� there is aproduction rule of the form X ! Y Z. Thus we have a domain with 5 operators and 5methods.The reduction Given two context-free grammars, here is how we create the initial stateand the input task-network.Let Gi =< �;�i; Ri > i = 1; 2 be two context-free grammars. Without loss of gen-erality, assume � = fa; bg;�1 \ �2 = ;, the production rules are in Chomsky normalform (at most two symbols at right hand sides), and the grammars don't use the symbolsfA1; A2; B1; B2;DummygHere is the initial state:� For each production rule of the form X ! Y Z, we assert a predicate R(X;Y;Z).� For each production rule of the form X ! a from grammar i, we assert a predicateR(X;Ai;Dummy). We handle rules of the form X ! b, similarly.� Finally, we assert turn.The input task network to the planner contains the three tasks t(S1); t(S2); fdummy, whereS1; S2 are the starting symbols of the grammars G1; G2 respectively. The constraint formulastates that both t(S1) and t(S2) precede fdummy , and that turn needs to be true immediatelybefore flast. The last condition ensures that the last primitive task belongs to G2.22

How it works: The construction is very similar to that of Theorem 1. In that construction,we introduced a method for each production rule. This time, we observe that all thosemethods had the same structure, so instead we use a single method with variables and anextra constraint R(X;Y;Z) that makes sure that we can expand t(X) to t(Y)t(Z) onlywhen we have the corresponding production rule. The sequence of actions t(Si) can expandto corresponds to the strings that can be derived from Si. The e�ects of the actions and theconditions on them ensure that in any �nal plan the actions from S1 and S2 alternate, andthat whenever S1 contributes an action, it has to be followed by the corresponding action inS2. Obviously, the reduction can be done in linear time.Theorem 3 plan existence is decidable if P has a k-level-mapping for some integer k.Proof. When there exists a k-level-mapping, no task can be expanded to a depth morethan k. Thus, whether a plan exists can be determined after a �nite number of expansions.Theorem 4 plan existence is expspace-hard and in double-exptime if P is re-stricted to be totally ordered. plan existence is pspace-hard and in exptime if P isfurther restricted to be propositional.Proof.Membership: Here, we present an algorithm that runs in double-exptime, and solvesthe problem. In the propositional case, the number of atoms, the number of states etc. wouldgo one level down, and thus, the same algorithm would solve the problem in exptime.The basic idea is this: for each ground task t, states sI ; sF , and set of ground literalsL = fl1; : : : ; lkg, we want to compute whether there exists a plan for t starting at sI andending at sF while protecting the literals in L (i.e. without making them false). We storeour partial results in a table with an entry for each tuple ht; sI; sF ; Li. An entry in the tablehas value either yes, no, or unknown.Here is the algorithm:1. Initialize all the entries in the table to unknown.2. For each sI ; sF ; L and ground primitive task fp, compute whether executing fp at sIresults in sF , and that all literals in L are true in both SI and sF . Insert the result inthe table. 23

3. For each method ht; (n1 : �1) : : : (nk : �k); �i and the input task network do:� Replace each constraint of the form (ni; l; nj) with (ni; l; ni+1) ^ (ni+1; l; ni+2) ^: : :^(nj�1; l; nj). (For simplicity, we assume the label of a node re
ects its positionin the total order.)� Apply de Morgan's rule so that negations come before only atomic constraints.4. Go over all the entries ht; sI ; sF ; Li in the table with value unknown, doing the following:For all ground instances of methods for t ht; (n1 : �1) : : : (nk : �k); �i do:For all k + 1 tuples of states (s0; : : : ; sk) do:For all expansions �0 of � into conjuncts do:(a) for each conjunct of the form (ni; l) or (l; ni+1), check whether si satis�esl.(b) For each i � k, let L0i be the set of literals l such that (ni; l; ni+1) is aconjunct. Check whether the entry for hti; si�1; si; Lii is yes.(c) Check whether the variable binding constraints are satis�ed(d) If all checks are OK, enter yes to the table for ht; sI ; sF ; Li.5. If step 4 modi�ed the table, then goto step 4.6. For all ground instances h(n1 : �1) : : : (nk : �k); �i of the input task network doFor all k + 1 tuples of states (s0; : : : ; sk) doFor all expansions �0 of � into conjuncts do(a) for each conjunct of the form (ni; l) or (l; ni+1), check whether si satis�esl.(b) For each i � k, let L0i be the set of literals l such that (ni; l; ni+1) is aconjunct. Check whether the entry for hti; si�1; si; Lii is yes.(c) Check whether the variable binding constraints are satis�ed(d) If all checks are OK, halt with success; if not, halt with failure.The algorithm works bottom-up. For all ground tasks, state pairs and protection setsht; sI ; sF ; Li, it computes whether there exists a plan for t starting at sI and ending at sFthat does not violate the literals in L. When step 4 terminates without any modi�cation tothe table, the table contains all the answers. Thus in step 6, we can check whether the inputtask network can be achieved. 24

The table has a doubly exponential number of entries (roughly the cube of the numberof states times number of ground tasks). Step 4 is executed at most a doubly exponentialnumber of times (when we make one modi�cation at each step). At each execution step 4goes over all the entries in the table, taking double exponential time. Processing each entrytakes double exponential time. The resultant time is the product of these, which is stilldouble exponential. The rest of the steps in the algorithm obviously do not take more thandouble exponential time. Thus the algorithm runs in double exponential time.When we restrict the problem to be propositional, the number of states goes down fromdoubly exponential to exponential, and so does the size of table and the number of executionsin all the steps. Thus in propositional case, the algorithm runs in exponential time.Hardness: plan existence, restricted to totally ordered regular planning domains, is aspecial case of our problem. But in Theorems 5 and 6, we prove that under this restrictedversion of plan existence is expspace-hard (or pspace-hard in the propositional case).Thus the hardness follows.Theorem 5 plan existence is expspace-complete if P is restricted to be regular. Itis still expspace-complete if P is further restricted to be totally ordered, with at most onenon-primitive task symbol in the planning language, and all task networks containing atmost two tasks.Proof.Membership: It su�ces to present a nondeterministic algorithm that uses at most expo-nential space and solves the problem, as expspace=n-expspace, so that is what we willdo. Since all task networks will contain at most one non-primitive task, all we need to dois keep track of what atoms need to be true/false immediately before, immediately after,and along that single task. Since there are an exponential number of atoms, we can do thiswithin exponential space. Here is the algorithm:1. Let d be the input task network.2. If d contains only primitive tasks, thennon-deterministically guess a total-ordering and variable-binding.If it satis�es the constraint formula and the preconditions of the primitive tasks, thenhalt with success; if not, halt with failure.25

3. Non-deterministically, guess a total-ordering and variable-binding. The task networkwill be of the form[(n1 : do[f1]) : : : (nm : do[fm])(n : perform[t])(n01 : do[f 01]) : : : (n0u : do[f 0u])]with ordering n1 � n2 � : : : � nm � n � n01 � : : : � n0u.Note that t is the only non-primitive task in the network. Let si; s0i; st be the statesimmediately after fi; f 0i ; t, respectively.4. Eliminate all variable binding and task ordering constraints from the constraint formulausing the guess in step 3.5. Replace any constraint of the form (ni; l; n0j) with (ni; l; nm) ^ (nm; l; n01) ^ (n01; l; n0j).6. Replace any constraint of the form (ni; l; nj) or (n0i; l; n0j) with (ni; l) ^ : : : ^ (nj�1; l)and (n0i; l) ^ : : : ^ (n0j�1; l), respectively.7. Process the constraint formula (using De Morgan's rule) so that negations apply toonly atomic constraints.8. Now the resultant constraint formula contains only conjuncts and disjuncts. For eachdisjunct, nondeterministically pick a component, obtaining a constraint formula con-taining only conjuncts.9. Compute all the intermediate states before n and verify that all constraints of the form(ni; l); (l; ni) are satis�ed. Remove these constraints from the constraint formula.10. For all the state constraints after n, use regression to determine what needs to be trueimmediately after n for those constraints to be satis�ed7.11. Set the initial state I to fm(fm�1(: : : f1(I) : : :)), i.e., the state that results from applyingall the primitive tasks before t.12. Now we can get rid of all the primitive tasks in the task network. The constraintformula contains only what needs to be true while we achieve t and what needs to betrue immediately after we achieve t.7Here is how we do this. Consider the task (n0i : t0i) and the condition (n0i; l). When we regress thiscondition, we get TRUE if t0i asserts l, FALSE if t0i denies l, or (n0i�1; l) if t0i neither denies nor asserts l.This is what needs to be TRUE before t0i, for the condition to hold after t0i.26

13. Nondeterministically, choose a method for t, expand it, and assign the resulting tasknetwork to d.14. Go to step 2.Hardness: In (Erol et al., 1992), we showed that plan existence problem in STRIPSrepresentation is expspace-complete. Here we de�ne a reduction from that problem.The plan existence problem in STRIPS representation is de�ned as \Given a set ofconstants, a set of predicates, a set of STRIPS operators, an initial state and a goal, is therea plan that achieves the goal?"Given such a problem, we transform it into an HTN planning problem as follows:We use the same set of constants and predicates. We will also have the same initialstate. For each STRIPS operator o, we de�ne a primitive task fo that has exactly the samepreconditions and postconditions as o. We also need an extra primitive task f� with noe�ects, that will be used as a dummy.We will need a single non-primitive task t that can be expanded to any executablesequence of actions. Thus we declare the following methods for t:� (t; [(n1 : f�); TRUE]);� for each strips operator o(t; [(n1 : fo)(n2 : t); (n1 � n2)]):Finally, the input task network will be of the formh(n1 : t); (n1; g1) ^ (n1; g2) : : : ^ (n1; gk))i;where gi are the goals of the STRIPS problem.The resulting htn problem satis�es all the restrictions of the theorem. A plan � solvesthe STRIPS plan existence problem instance i� � is a solution for the htn planning probleminstance. Hence the reduction is correct. Obviously, the reduction is in polynomial time.Theorem 6 plan existence is pspace-complete if P is restricted to be regular andpropositional. It is still pspace-complete if P is further restricted to be totally ordered,with at most one non-primitive task symbol in the planning language, and all task networkscontaining at most two tasks.Proof. 27

Membership: The algorithm we presented for the membership proof in Theorem 5 worksalso for the propositional case. In the propositional case we have only a linear number ofatoms, and as a result, the size of any state is polynomial. Thus the algorithm requires onlypolynomial space.Hardness: In (Bylander, 1991; Erol et al., 1992), it is shown that plan existence problemin STRIPS representation is pspace-complete if it is restricted to be propositional. Thereduction from STRIPS style planning that we presented in the hardness proof of Theorem 5also works for the propositional case.Theorem 7 If P is restricted to be regular and D is �xed in advance, then plan exis-tence is in pspace. Furthermore, there exists �xed regular htn planning domains D forwhich plan existence is pspace-complete.Proof. When D is �xed in advance, the number of ground instances of predicates and taskswill be polynomial in the size of the input. Thus we can reduce it to propositional regularhtn-planning. As a direct consequence of Theorem 6, it is in pspace.In the proof of Theorem 5.17 in (Erol et al., 1992), we had presented a set of stripsoperators containing variables for which planning is pspace-complete. Applying the reduc-tion de�ned in the hardness proof of Theorem 5 to this set of operators would give a regularhtn planning domain (containing variables) with the same set of solutions and complexityas its strips counterpart.Theorem 8 plan existence is np-complete if P is restricted to be primitive, or prim-itive and totally ordered, or primitive and propositional. However, plan existence is inpolynomial time P is restricted to be primitive, totally ordered, and propositional.Proof. If P is primitive, propositional and totally ordered, we can compute whether anatomic constraint is satis�ed in linear time. In order to �nd a plan, all we need to do is tocheck whether the constraint formula is satis�ed, which can be done in polynomial time.Membership: Given a primitive task network, we can nondeterministically guess a totalordering and variable binding, and then we can verify that it satis�es the constraint formulain polynomial time. Thus the problem is always in np.28

Hardness: There are three cases:Case 1: Primitive and propositional.We de�ne a reduction from satis�ability problem as follows:Given a boolean formula, we de�ne a planning problem such that it uses the same set ofpropositions as the boolean formula. we have two primitive tasks for each proposition,one that deletes the proposition, and one that adds the proposition. The initial stateis empty. The input task network contains all the primitive tasks, and the constraintformula states that the boolean formula needs to be true in the �nal state.If there exists a total ordering that satis�es the constraint formula, the truth valuesof propositions in the �nal state would satisfy the boolean formula; if there is a truthassignment that satis�es the boolean formula, we can order the tasks such that if aproposition p is assigned true, then the primitive task that adds it is ordered after theprimitive task that deletes it (and vice versa), coming up with a plan that achieves thetask network.Obviously, the reduction can be done in linear time.Case 2: Primitive and totally ordered.Again, we de�ne a reduction from satis�ability problem.We will use two constant symbols t and f , standing for true and false, respectively.For each proposition p in the boolean formula, we will introduce a unary predicate P ,and a unary primitive task symbol Tp(vp) that has the e�ect P (vp).The initial state will be empty, and the input task network will contain one task foreach proposition, namely Tp(vp).We construct a formula F from the input boolean formula by replacing each propositionp with P (t). Our constraint formula will require F to be true in the �nal state.If there exists a truth assignment that satis�es the boolean formula, we can construct avariable binding such that vp is bound to t whenever p is assigned true, and vp is boundto f otherwise. This variable binding would make sure the constraints are satis�ed.If there exists a variable binding that achieves the task network, we construct thefollowing truth assignment that satis�es the boolean formula. We assign true to p i�vp is bound to t.Obviously, the reduction can be done in polynomial time.29

Case 3: Primitive.Both case 1 and case 2 are special cases of case 3, so hardness follows immediately.

30

