Technical report CS-TR-3240, UMIACS-TR-94-32, ISR-TR-95-10, March, 1994
To appear in Annals of Mathematics and Artificial Intelligence, 1995

Complexity Results for HTN Planning*

Kutluhan Erol James Hendler Dana S. Nau
kutluhan@cs.umd.edu hendler@cs.umd.edu nau@cs.umd.edu

Institute for Advanced Computer Studies
Institute for Systems Research, and
Computer Science Department,

University of Maryland, College Park, MD 20742

Abstract

Most practical work on Al planning systems during the last fifteen years has been
based on hierarchical task network (HTN) decomposition, but until now, there has been
very little analytical work on the properties of HT'N planners. This paper describes how
the complexity of HT'N planning varies with various conditions on the task networks,
and how it compares to STRIPS-style planning.

1 Introduction

In Al planning research, planning practice (as embodied in implemented planning systems)
tends to run far ahead of the theories that explain the behavior of those systems. There
is much recent analysis of the properties of total- and partial-order planning systems using
STRIPS-style planning operators. STRIPS-style planning systems, however, were developed
more than twenty years ago, and most of the practical work on Al planning systems during
the last fifteen years has been based on hierarchical task network (HTN) decomposition (e.g.,

*This work was supported in part by NSF Grants IRI-9306580 and NSF EEC 94-02384, AFOSR (F49620-
93-1-0065), the ARPA/Rome Laboratory Planning Initiative (F30602-93-C-0039), and ONR grant N00014-
91-J-1451. Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National Science Foundation or ONR.

NOAH(Sacerdoti, 1975), NONLIN (Tate, 1977), DEVISER (Vere, 1983), and siPE (Wilkins,
1988)).

Until now, there has been very little analytical work on the properties of HT'N planners.
One of the primary obstacles impeding such work has been the lack of a clear theoretical
framework explaining what a HTN planning system is, although two recent papers (Yang,
1990; Kambhampati et al., 1992) have provided important first steps in that direction. A
primary goal of our current work is to define, analyze, and explicate features of the design
of HTN planning systems.

Our work has progressed far enough to do complexity analyses of HT'N planning similar to
analyses which Bylander(1991), Erol et al. (1992) performed for planning with STRIPS-style
operators. In particular, we have examined how the complexity of determining whether a
plan exists depends on the following factors: (1) restrictions on the existence and/or ordering
of non-primitive tasks in task networks, (2) whether the tasks in task networks are required
to be totally ordered, and (3) whether variables are allowed.

The paper is organized as follows. Section 2 contains an overview of HTN planning and
our formalization of HTN planning. Section 3 contains the complexity results, and Section 3.3
investigates the relation between HTN planning and STRIPS-style planning.

2 Basics of HTN Planning

2.1 Overview

This section contains an informal description of HTN planning, intended to provide an
intuitive feel for HTN planning. The precise description is presented in the Sections 2.2
through 2.4.

HTN planning can be described best by contrasting it with its predecessor, STRIPS-style
planning.! The representations of the world and the actions in HTN planning are very similar
to those of STRIPS-style planning. Fach state of the world is represented by the set of atoms
true in that state. Actions correspond to state transitions, that is, each action is a partial
mapping from the set of states to set of states. However, actions in HTN planning are usually
called primitive tasks.

The difference between HTN planners and STRIPS-style planners is in what they plan for,
and how they plan for it. STRIPS-style planners search for a sequence of actions that would

'We use the term “sTRIPS-style” planning to refer to any planner (either total- or partial-order) in
which the planning operators are sTRIPs-style operators (i.e., operators consisting of three lists of atoms: a
precondition list, an add list, and a delete list). These atoms are normally assumed to contain no function
symbols.

See a show

Go(D.C., Las Vegas) < > Go(Las Vegas, D.C.)

Figure 1: A task network

bring the world to a state that satisfies certain conditions, i.e. attainment goals. Planning
proceeds by finding operators that has the desired effects, and by asserting the preconditions
of those operators as subgoals. On the other hand, one of the motivations for HTN planning
was to close the gap between Al planning techniques and operations-research techniques
for project management and scheduling (Tate, 1977). HTN planners search for plans that
accomplish task networks, and they plan via task decomposition and conflict resolution,
which we shall explain shortly.

A task network is a collection of tasks that need to be carried out, together with con-
straints on the order in which the tasks are carried out, the way variables are instantiated,
and what literals must be true before or after each task is performed. For example, Figure 1
contains a task network for a trip to Las Vegas. Constraints allow the user to specify how he
desires the tasks to be performed. For instance, in the Las Vegas example, the user might
desire to get rich before seeing a show, which can be represented as an ordering constraint.
Unlike STRIPS-style planning, the constraints may or may not contain conditions on what
must be true in the final state.

A task network that contains only primitive tasks is called a primitive task network.
Such a network might occur, for example, in a scheduling problem. In this case, an HTN
planner would try to find a schedule (task ordering and variable bindings) that satisfies all
the constraints.

In the more general case, a task network can contain non-primitive tasks. Non-primitive
tasks are those that cannot be executed directly, and the planner needs to figure out how
to accomplish them. They represent activities that involve performing multiple tasks. For
example, consider the task of travelling to New York. There are several ways to accomplish
it, such as flying, driving or taking the train. Flying would involve tasks like making reserva-
tions, going to the airport, buying ticket, boarding the plane, and it would only work under
certain conditions such as availability of tickets, being at the airport on time, having enough
money for the ticket etc.

Ways of accomplishing non-primitive tasks are represented using constructs called meth-
ods. A method is of the form (o, d) where « is a non-primitive task, and d is a task network.
It states that one way to accomplish the task « is to achieve all the tasks in the task net-

Go(X,Y)
U
Rent-a-car |— |Drive(X,Y)

Figure 2: A (simplified) method for going from X to Y.

Rent-a-car |~ |drive(D.C., Las Vegas) < > Go(L.V., D.C.)

Figure 3: A decomposition of the the task network in Fig. 1

work d without violating the constraints in d. Figure 2 presents a (simplified) method for
accomplishing Go(X,Y).

Planning proceeds by starting with the the initial task network d, and doing the following
steps repeatedly, until no non-primitive tasks are left: pick a non-primitive task « in d and a
method («, d’). Then modify d by “decomposing” « (i.e., replace a with the tasks in d’, and
incorporate the constraints of d' into d). Figure 3 demonstrates how to do a decomposition
on the task network presented in Figure 1 using the method displayed in Figure 2. Once
no non-primitive tasks are left in d, the next problem is to find a totally-ordered ground
instantiation o of d that satisfies all of the constraints. If this can be done, then o is a
successful plan for the original problem.

In practice, HTN planning also has several other aspects. In particular, functions are
often provided which can “debug” partially reduced task networks to eliminate potential
problems. These “critic” functions are used to handle constraints, resource limitations, and
to provide domain-specific guidance. The formalization described in (Erol et al., 1994a)
explains critics and the relationship between these and the constraints described above. For
the purposes of this paper, the critics do not affect worst-case behavior, and thus we will
omit this detail.

Here are some examples to further clarify the distinctions between different types of tasks
and STRIPS-style goals. Building a house requires many other tasks to be performed (laying
the foundation, building the walls, etc.), thus it is a compound task. It is different from the
goal task of “having a house,” since buying a house would achieve this goal task, but not the
compound task of building a house (the agent must build it himself). As another example,

the compound task of making a round trip to New York cannot easily be expressed as a
single goal task, because the initial and final states would be the same. Goal tasks are very
similar to STRIPS-style goals. However, in STRIPS-style planning, any sequence of actions
that make the goal expression true is a valid plan, where as in HTN planning, only those
plans that can be derived via decompositions are considered as valid. This allows the user to
rule out certain undesirable sequences of actions that nonetheless make the goal expression
true. For example, consider the goal task of “being in New York”, and suppose the planner
is investigating the possibility of driving to accomplish this goal, and suppose that the agent
does not have a driver’s licence. Even though learning how to drive and getting a driver’s
licence might remedy the situation, the user can consider this solution unacceptable, and
while writing down the methods for be-in(New York), she can put the constraint that the
method of driving succeeds only when the agent already has a driver’s licence.

2.1.1 Alternative Views of Non-Primitive Tasks

There appears to be some general confusion about the nature and role of tasks in HTN plan-
ning. This appears largely due to the fact that HTN planning emerged, without a formal
description, in implemented planning systems (Sacerdoti, 1975; Tate, 1977). Many ideas in-
troduced in HTN planning (such as nonlinearity, partial order planning, etc.) were formalized
only as they were adapted to STRIPS-style planning, and only within that context. Those
ideas not adapted to STRIPS-style planning (such as compound tasks and task decomposi-
tion) have been dismissed as mere efficiency hacks. In our formalism, we have tried to fill
the gaps, and replace informal descriptions with precise definitions, without omitting HTN
planning constructs.

Our formalism is mostly shaped after NONLIN (Tate, 1977) and the works of Yang and
Kambhampati (Yang, 1990; Kambhampati et al., 1992) on hierarchical planning. However,
our terminology for referring to non-primitive tasks is slightly different from theirs, which
instead uses the term “high level actions” (Sacerdoti, 1975; Yang, 1990). Although this term
has some intuitive appeal, we prefer not to use it, in order to avoid any possible confusion
with STRIPS-style actions. STRIPS-style actions are atomic, and they always have the same
effect on the world; non-primitive tasks can be decomposed into a number of primitive tasks,
and the effect of accomplishing a non-primitive task depends not only on the methods chosen
for doing decompositions, but also on the interleavings with other tasks.

Compound tasks are also different from STRIPS-style goals. As we have discussed earlier,
compound tasks represent activities for which the final state might be totally irrelevant, or
in the case of round-trip example, the final state might be the same as the initial state.

Yet another view of HTN planning totally discards compound tasks, and views methods
for goal tasks as heuristic information on how to go about achieving the goals (i.e., which

5

operator to use, in which order achieve the preconditions of that operator etc.). Although
this is a perfectly coherent view, we find it restrictive, and we believe there is more to HTN
planning, as we try to demonstrate in our formalism and in the section on expressive power.

2.2 Syntax for HTN Planning

Our language £ for HTN planning is a first-order language with some extensions, and it
is fairly similar to the syntax of NONLIN (Tate, 1977). The vocabulary of £ is a tuple
(V,C,P,F,T,N), where V is an infinite set of variable symbols, C'is a finite set of constant
symbols, P is a finite set of predicate symbols, F' is a finite set of primitive-task symbols
(denoting actions), T' is a finite set of compound-task symbols, and N is an infinite set of
symbols used for labeling tasks. All these sets of symbols are mutually disjoint.

A state is a list of ground atoms. The atoms appearing in that list are said to be true in
that state and those that do not appear are false in that state.

A primitive task is a syntactic construct of the form do[f(x1,...,x)], where f € F and
T1,..., T are terms. A goal task is a syntactic construct of the form achieve[l], where [is a
literal. A compound task is a syntactic construct of the form per form[t(zq,...,)], where
t €T and xq,..., 2} are terms. We sometimes refer to goal tasks and compound tasks as
non-primitive tasks.

A task network is a syntactic construct of the form [(nq : a1)...(nm : am), @], where

e cach «; is a task;

e n; € N is a label for «; (to distinguish it from any other occurrences of «; in the
network);

e ¢ is a boolean formula constructed from variable binding constraints such as (v = v’)
and (v = ¢), ordering constraints such as (n < n'), and state constraints such as (n, /),
(I,n), and (n,l,n'), where v,0" € V, lis a literal, ¢ € C', and n,n’ € N.? Intuitively
(this will be formalized in the “Operational Semantics” section), (n < n’) means that
the task labeled with n must precede the one labeled with n’; (n,1), (I,n) and (n,l,n’)
mean that [must be true in the state immediately after n, immediately before n, and
in all states between n and n’, respectively. Both negation and disjunction are allowed
in the constraint formula.

A task network containing only primitive tasks is called a primitive task network.

*We also allow n,n’ to be of the form first[n;,n;,..] or last[n;, n;,..] so that we can refer to the task
that starts first and to the task that ends last among a set of tasks, respectively.

[(n1 : achieve[clear(v1)])(ng : achieve[clear(vy)])(ns @ do[move(vy, vs, v3)])
(n1 < n3) A (ny < ns) A (ny, clear(vy),n3) A (ng, clear(ve), ns) A (on(vy, vs), ns)
A =(v1 = v2) A =(vg = v3) A = (vg = v3)]

1.

clear(vy)

achieve[clear(v;)] \
nsa.

on(vl,vg) ClO[l'l'lOVE(Ul7 Vs, 1)2)]

Ny

cleap(vsy)

achieve[clear(v;)]

Figure 4: A task network, and its graphical representation.

As an example, Fig. 4 shows a blocks-world task network and its graphical representation.
In this task network there are three tasks: clearing vy, clearing vs, and moving vy to ve. The
task network also includes the constraints that moving v; must be done last, that v; and vy
must remain clear until we move vy, that vy, v, vs are different blocks, and that on(vy,vs)
be true immediately before vy is moved. Note that on(v,vs) appears as a constraint, not
as a goal task. The purpose of the constraint (on(vq,vs),ns) is to ensure that vs is bound
to the block under v; immediately before the move. Representing on(vq,vs) as a goal task
would mean moving vy onto some block v3 before we move it onto vy, which is not what is
intended.

A plan is a sequence o of ground primitive tasks.

An operator is of the form [operator f(v1,...,vp)(pre : i, ..., Ln)(post = 1, ... 1L)],
where f is a primitive task symbol, and /4, ..., [,, are literals describing when f is executable,
li,...,0l are literals describing the effects of f, and vy,...,v; are the variable symbols
appearing in the literals.

A method is a construct of the form («, d) where « is a non-primitive task, and d is a task
network. As we will define formally in the “Operational Semantics” section, this construct
means that one way of accomplishing the task « is to accomplish the task network d, i.e. to
accomplish all the subtasks in the task network without violating the constraint formula of
the task network. For example, a blocks-world method for achieving on(vq, v2) would look
like (achieve(on(vy,vq)),d), where d is the task network in Fig. 4. To accomplish a goal task
(achieve[l]), [needs to be true in the end, and this is an implicit constraint in all methods for
goal tasks. If a goal is already true, then an empty plan can be used to achieve it. Thus, for

each goal task, we (implicitly) have a method (achieve[l],[(n : do[f]), (I,n)]) which contains
only one dummy primitive task f with no effects, and the constraint that the goal [is true
immediately before do|f].

Each primitive task has exactly one operator for it, where as a non-primitive task can
have an arbitrary number of methods.

2.3 Planning Domains and Problems

A planning domain is a pair D = (Op, Me), where Op is a set of operators, and Me is a set
of methods.

A planning problem instance is a triple P = (d, I, D), where D is a planning domain, [is
the initial state, and d is the task network we need to plan for. The language of P is the HTN
language £ generated by the constant, predicate, and task symbols appearing in P, along
with an infinite set of variables and an infinite set of node labels. Thus, the set of constants,
predicates and tasks are all part of the input.

Next, we define some restrictions on HTN-planning problems. P is primitive if the task
network d contains only primitive tasks. This corresponds to the case where the planner is
used only for scheduling. P is regular if all the task networks in the methods and d contain
at most one non-primitive task, and that non-primitive task is ordered with respect to all
the other tasks in the network. Surprisingly, this class of HTN-planning problems is closely
related to STRIPS-style planning, as we shall see in Section 3.3. P is propositional if no
variables are allowed. P is totally ordered if all the tasks in any task network are totally
ordered.

PLAN EXISTENCE is the following problem: given P = (d, I, D), is there a plan that
solves P?

2.4 Operational Semantics

In this section, we give a fixed point definition for the set of solutions for a given HTN-
planning problem. Description of an equivalent model-theoretic semantics appear in (Erol
et al., 1994a).

First, we define how primitive tasks change the world when executed. Similar to the
way it is done in STRIPS-style planning, we verify that the primitive task is executable and
then update the input state based on the effects of the primitive task. More precisely,
Let s be a state, and f € F' be a primitive task symbol with the corresponding operator
[f(vr,...,op)(pre Iy, ... ln)(post : 14, ..., I!)]. We define the resulting state from executing
f with ground parameters ¢y, ..., ¢ as

Undefined if £;0 1s false in s for some 7 in 1..m

apply(s, fyc1y. .. cp) =
(s — F.0) U EL0 otherwise

, where 6 is the substitution {¢;/v; | ¢ = 1..k}, and F,, E, are the sets of negative and
positive literals in [7,..., [/, respectively.

Next, we define the set of plans for a ground primitive task network. Let d be a primitive
task network (one containing only primitive tasks), and let I be the initial state. A plan
o is a completion of d at I, denoted by o € comp(d, I, D), if o is a total ordering of the
primitive tasks in a ground instance of d that satisfies the constraint formula of d. More
precisely, Let o = (fi(c11, -y €1y)s e oy fm(Cmts- v« s Cmk,,) be a plan, sg be the initial state,
and s; = apply(si—1, fi, i1y .., ¢ir,) for ¢ = 1...m be the intermediate states, which are all
defined (i.e. the preconditions of each f; are satisfied in s;,_; and thus actions in the plan
are executable). Let d = [(ny : a1)-- (nm : am), ¢] be a ground primitive task network,
and 7 be a permutation such that whenever 7(i) = j, a; = do[f;(cj1,...,¢cx,;)]. Then
o € comp(d,sg, D), if the constraint formula ¢ of d is satisfied. The constraint formula is
evaluated as follows:

e (¢; = ¢j) is true, if ¢;, ¢; are the same constant symbols;

o first[n;,nj,...] evaluates to min{r(¢),7(j),...};

last[ni,nj,...] evaluates to max{x(:),x(j),...};
(n; < nj)is true if 7(¢) < 7(j);

(1,n;) is true if [holds in s,(jy_1;

(ni, 1) is true if [holds in s,;);

(n;,I,n;) is true if [holds for all s., 7(¢) < e < 7w(y);

o logical connectives -, A,V are evaluated as in propositional logic.
It d is a primitive task network containing variables, then

comp(d, so, D) = {c | o € comp(d', s0,D), d' is a ground instance of d}

If d contains non-primitive tasks, then the set of completions for d is the empty set.

Now, we define how to do task decompositions. Let d = [(n: a)(ny : a1) ... (nm : @), @]
be a task network containing a non-primitive task a. Let me = (o/,[(n] : @) ... (n} :), ¢']
be a method,” and 6 be the most general unifier of @ and o’. Then we define reduce(d, n, me)
to be the task network obtained from df by replacing (n : «)f with the task nodes of the
method, and incorporating the constraint formula of the method into the constraint formula
of df. More precisely,

reduce(d,n,me) = [(ny : a})0...(n} :)l (ny 1 a1)0 ... (N)b, "0 A 3],
where 1) 1s obtained from ¢f with the following modifications:

e replace (n < nj) with (last[ny,...,n}] < n;), as n; must come after every task in the
decomposition of n;

e replace (n; < n) with (n; < first[ny,...,ny]);

e replace (I,n) with (I, forst[n],...,n,]), as [must be true immediately before the first
task in the docomposition of n;

e replace (n,l) with (last[n),...,n}],1), as [must be true immediately after the last task
in the docomposition of n;

e replace (n,l,n;) with (last[n),...,ni],1,n;]);
e replace (nj,l,n) with (n;, I, first[n},...,nk]);

e cverywhere that n appears in ¢ in a first[] or a last[| expression, replace it with
! !
ny,...,n.

We define red(d, I, D), the set of reductions of d as

red(d,I,D) ={d'| d € reduce(d,n,me), n is the label for a non-primitive task in d,
and me is a method in D for that task.}

Thus, a plan o solves a primitive task network d at initial state I, iff o € comp(d, I, D);

a plan o solves a non-primitive task network d at initial state /I, iff o solves some reduction
d'" € red(d, I, D) at initial state [.

3All variables and node labels in the method must be renamed with variables and node labels that do
not appear anywhere else.

10

Table 1: Complexity of HT'N Planning

Must every
Restrictions on HTN be total- Are variables allowed?
non-primitive tasks || ly ordered? no yes
no Undecidable® Undecidable®?
none yes in EXPTIME; in DEXPTIME;
PSPACE-hard EXPSPACE-hard
“regularity” (<1
non-primitive task, || doesn’t PSPACE- EXPSPACE-
which must follow || matter complete complete?
all primitive tasks)
no non-primitive no NP-complete NP-complete
tasks yes Polynomial time | NP-complete

“Decidable with acyclicity restrictions.

#Undecidable even when the planning domain is fixed in advance.

7In PSPACE when the planning domain is fixed in advance, and PSPACE-complete
for some fixed planning domains.

Now, we can define the set of plans sol(d, I, D) that solves a planning problem instance

P=<d I,D>:

soly(d, I1,D) = comp(d, I, D)
SOln+1 (d,], D) == SOln(d,], D) U Ud’ETed(d,I,D) SOln(d/,], D)
sol(d, 1, D) = Upcwsol,(d, I,D)

Intuitively, sol,(d, I, D) is the set of plans that can be derived in n steps, and sol(d, I, D)
is the set of plans that can be derived in any finite number of steps. In (Erol et al., 1994a),
we prove that the set of solutions according to the model-theoretic semantics coincide with

sol(d, I, D).

3 Results

Our complexity results are summarized in Table 1. In the following sections, we state the
theorems and discuss their implications.

11

3.1 Undecidability Results

It is easy to show that we can simulate context-free grammars within HTN planning by us-
ing primitive tasks to emulate terminal symbols, compound tasks to emulate non-terminal
symbols, and methods to encode grammar rules. More interesting is the fact that we can
simulate any two context-free grammars, and with the help of task interleavings and con-
straints, we can check whether these two grammars have a common string in the languages
they generate. Whether the intersection of the languages of two context-free grammars is
non-empty is a semi-decidable problem (Hopcroft et al., 1979). Thus:

Theorem 1 PLAN EXISTENCE is strictly semi-decidable, even if P is restricted to be propo-
sitional, to have at most two tasks in any task network, and to have only totally ordered
methods.

This result might seem surprising at first, since the state space (i.e., the number and size
of states) is finite. If the planning problem were that of finding a path from the initial state
to a goal state (as in STRIPS-style planning), indeed it would be decidable, because, for that
problem, whenever there is a plan, there is also a plan that does not go through any state
twice, and thus we need to examine only a finite number of plans. On the other hand, HTN
planning can represent compound tasks accomplishing which might require going through
the same state many times, and thus we have the undecidability result.

Instead of encoding each context-free grammar rule as a separate method, it is possible
to encode these rules with predicates in the initial state, and to have a method containing
variables and constraints such that only those decompositions corresponding to the grammar
rules encoded in the initial state are allowed. Hence, even when the domain description (i.e.,
the set of operators and methods) is fixed in advance, it is possible to find planning domains
for which planning is undecidable, as stated in the following theorem:

Theorem 2 There are HTN planning domains that contain only totally ordered methods each
with at most two tasks, for which PLAN EXISTENCE is strictly semi-decidable.

3.2 Decidability and Complexity Results

One way to make PLAN EXISTENCE decidable is to restrict the methods to be acyclic. In
that case, any task can be expanded up to only a finite depth, and thus the problem becomes
decidable. To this end, we define a k-level-mapping to be a function level() from ground
instances of tasks to the set {0,...,k}, such that whenever we have a method that can
expand a ground task « to a task network containing a ground task o/, level(a) > level(a).
Furthermore, level(a) must be 0 for every primitive task .

12

Intuitively, level() assigns levels to each ground task, and makes sure that tasks can be
expanded into only lower level tasks, establishing an acyclic hierarchy. In this case, any task
can be expanded to a depth of at most k. Therefore,

Theorem 3 PLAN EXISTENCE is decidable if P has a k-level-mapping for some integer k.

Examples of such planning domains can be found in manufacturing, where the product
is constructed by first constructing the components and then combining them together.

Another way to make PLAN EXISTENCE decidable is to restrict the interactions among
the tasks. Restricting the task networks to be totally ordered limits the interactions that
can occur between tasks. Tasks need to be achieved serially, one after the other; interleaving
subtasks for different tasks is not possible. Thus interactions between the tasks are limited
to the input and output state of the tasks, and the “protection intervals”, i.e the literals
that need to be preserved, which are represented by state constraints of the form (n, [, n’).

Under the above conditions, we can create a table with an entry for each task, in-
put/output state pair, and set of protected literals, that tells whether it is possible to achieve
that task under those conditions. Using dynamic programming techniques we can compute
the entries in the table in DOUBLE-EXPTIME, or in EXPTIME if the problem is further re-
stricted to be propositional. As shown in the next section, STRIPS-style planning can be
modeled using HTNs that satisty these conditions, so we can use the complexity results on
STRIPS-style planning in (Bylander, 1991; Erol et al., 1992) to establish a lower bound on
the complexity of HT'N planning. Thus:

Theorem 4 PLAN EXISTENCE is EXPSPACE-hard and in DOUBLE-EXPTIME if P s restricted
to be totally ordered. PLAN EXISTENCE ¢s PSPACE-hard and in EXPTIME if P is further
restricted to be propositional.

It we restrict our planning problem to be regular, then there will be at most one non-
primitive task in any task network (both the initial input task network, and those we obtain
by expansions). Thus, subtasks in the expansions of different tasks cannot be interleaved,
which is similar to what happens in Theorem 4. But in Theorem 4, there could be several
non-primitive tasks in a task network, and we needed to keep track of all of them (which is
why we used the table). If the planning problem is regular, we only need to keep track of a
single non-primitive task, its input/final states, and the protected literals. Since the size of a
state is at most exponential, the problem can be solved in exponential space. But even with
regularity and several other restrictions, it is still possible to reduce an EXPSPACE-complete
STRIPS-style planning problem (described in (Erol et al., 1992)) to the HTN framework.
Thus:

13

Theorem 5 PLAN EXISTENCE is EXPSPACE-complete if P is restricted to be reqular. It
is still EXPSPACE-complete if P is further restricted to be totally ordered, with at most one
non-primitive task symbol in the planning language, and all task networks containing at most
two tasks.

When we further restrict our problem to be propositional.it is still possible to define a re-
duction from propositional STRIPS-style planning, which is proven to be PSPACE-complete (By-
lander, 1991). Thus the complexity goes down one level:

Theorem 6 PLAN EXISTENCE is PSPACE-complete if P is restricted to be reqular and propo-
sitional. It is still PSPACE-complete if P is further restricted to be totally ordered, with at
most one non-primitive task symbol in the planning language, and all task networks contain-
ing at most two tasks.

If we allow variables but instead fix the planning domain D(i.e. the set of methods and
operators) in advance, then the number of ground atoms and ground tasks is polynomial
in the length of the input to the planner. Hence the complexity of regular HTN planning
with a fixed planning domain with variables is no harder than the complexity of regular
propositional HTN planning, which is shown to be PSPACE-complete in Theorem 6.

In the proof of Theorem 5.17 in (Erol et al., 1992) a set of three STRIPS operators with
variables for which planning is PSPACE-complete is presented. The reduction described in
the proof of Theorem 5 transforms this set of operators into a regular HTN planning domain
(with variables) for which planning is PSPACE-complete. Hence:

Theorem 7 IfP is restricted to be reqular and D is fixed in advance, then PLAN EXISTENCE
is in PSPACE. Furthermore, there exvists fired regular HTN planning domains D for which
PLAN EXISTENCE is PSPACE-complete.

Suppose a planning problem is primitive, and either propositional or totally ordered.
Then the problem’s membership in NP is easy to see: once we nondeterministically guess
a total ordering and variable binding, we can check whether the constraint formula on the
task network is satisfied in polynomial time. Furthermore, unless we require the planning
problem to be both totally ordered and propositional, our constraint language enables us to
represent the satisfiability problem, and thus we get NP-hardness. Hence:

Theorem 8 PLAN EXISTENCE is NP-complete if P is restricted to be primitive, or primitive
and totally ordered, or primitive and propositional. However, PLAN EXISTENCE can be solved
in polynomial time if P is restricted to be primitive, totally ordered, and propositional.

“In a related result, (Bylander, 1991) shows that propositional sTRIPS-style planning is also PSPACE-
complete. We investigate the relation between regular HTN planning and STRIPS-style planning in Section 3.3.

14

3.3 Expressivity: HTNs versus STRIPS Representation

There has not been a clear consensus on what HTNs can and cannot represent. It was
generally believed that although HTNs are more flexible compared to STRIPS-style planning,
anything that can be done in HTN planning can be also done in STRIPS-style planning. Due
to the lack of a formalism for HTN planning, such claims could not be proved or disproved.
We address this question using the formalism in this paper.

When we compare HTNs and STRIPS, we observe that the HTN approach provides all the
concepts (states, actions, goals) that STRIPS has. In fact, given a domain encoded as a set of
STRIPS operators, we can transform it to an HTN planning domain, in low-order polynomial
time. A straightforward transformation would be to declare one primitive task symbol for
each STRIPS operator, and for every effect of each operator, to declare a method similar to
the one in Fig. 4. Each such method contains the preconditions of the operator as goal tasks,
and also the primitive task corresponding to the operator itself.

Below is a more instructive transformation, which demonstrates that the relationship
between STRIPS-style planning and HTN planning is analogous to the relationship between
right linear (regular) grammars and context-free grammars. We summarize the transforma-
tion below; for details see the proof of Theorem 5.

In this transformation, the HTN representation uses the same constants and predicates
used in the STRIPS representation. For each STRIPS operator o, we declare a primitive task
f with the same effects and preconditions as 0. We also use a dummy primitive task f; with
no effects or preconditions. We declare a single compound task symbol ¢. For each primitive
task f, we construct a method of the form

per form[t]| = do[f] per form|t]

We declare one last method | per formlt]| = |do[fs]| Note that ¢ can be expanded to any
sequence of actions ending with f;, provided that the preconditions of each action are satis-
fied. The input task network has the form [(n : per form[t]), (n,G1) A ... A (n, Gy)] where
Gy,...,G,, are the STRIPS-style goals we want to achieve. Note that the transformation
produces regular HTN problems, which has exactly the same complexity as STRIPS-style
planning. Thus, just as restricting context-free grammars to be right linear produces regular
sets, restricting HTN methods to be regular produces STRIPS-style planning.

The next question is whether there exists a transformation in the other direction, that is

whether it is possible to encode HTN planning problems as STRIPS-style planning problems.
Intuitively, such a transformation cannot exist, because STRIPS-style planning lacks the
concept of compound tasks, and its notion of goals is more restrictive than in HTN planning.

15

For example, it does not provide means for declaring goals/constraints on the intermediate
states as HTNs do. A more formal argument can be made as follows.

iFrom Theorem 1, HTN planning with no function symbols (and thus only finitely many
ground terms) is semi-decidable. Even if we require the domain description D to be fixed
in advance (i.e., not part of the input), Theorem 2 tells us that there are HTN planning
domains for which planning is semi-decidable. However, with no function symbols, STRIPS-
style planning is decidable, regardless of whether or not the planning domain® is fixed in

advance (Erol et al., 1992). Thus:

Theorem 9 There does not exist a computable function i from the set of HTN planning
problem instances to the set of STRIPS-style planning problem instances such that for any
HTN-planning problem instance P, and any plan o, o solves P iff 1(o) solves h(P).°

Showing whether a polynomial or computable transformation exists is one way of com-
paring the expressivity of two languages. The lack of a computable transformation from
HTN planning to STRIPS-style planning means that for some planning problems, the prob-
lem representation in STRIPS-style planning will be exponentially (or in some cases, even
infinitely!) larger than in HTN planning. However, there are also some other ways in which
one might want to compare expressivity. For example, for comparing the expressive power
of knowledge representation languages, Baader (Baader, 1990) has developed an approach
based on model-theoretic semantics.

According to Baader’s definition, a knowledge-representation language L is as expressive
as Ly iff there exists a function ¢ (which does not have to be computable) that maps each
set of sentences from [to a set of sentences from Ls, such that the following property is

satisfied whenever ¢(I'y) = I's:

for any model of I'y, there is an equivalent (modulo renaming of symbols) model
of I'y, and vice versa.

Ly can express Ly if and only if such a transformation exists. If L, can express Ly, but I,
cannot express L, then Ly is strictly more expressive than L.

To adapt Baader’s definition to planning languages, there are two possible approaches:
develop a model-theoretic semantics for planning, or use the operational semantics presented
in Section 2.4. As we discuss in (Erol et al., 1994a), these two approaches yield different (non-
equivalent) definitions of the expressivity of planning languages. However, HTN planning is

Since STRIPS-style planning does not include methods, a STRIPS-style planning domain is simply a set
of operators.

5In proving this theorem, we use the standard assumption that the STRIPS operators do not contain
function symbols, nor do the HTN operators.

16

more expressive than STRIPS-style planning according to both of these definitions. In (Erol
et al., 1994a) we prove this for the model-theoretic definition; below we present a definition
of expressivity based on operational semantics, and we use this definition to prove that HTN
planning is more expressive than STRIPS-style planning.

We define a planning language L to be as expressive as a planning language Ly iff there
exists a function ¢ from the set of planning problem instances in Ly to the set of planning
problem instances in L such that for any planning problem instance P in Ly, P and ¢ (P)
have the same set of solutions (plans) modulo symbol renaming. 1 need not be computable.

In the proofs of the undecidability theorems, we have shown that the set of solutions for
an HTN-planning problem instance can be any context-free set, or even the intersection of
any two context-free sets. In general, such a set cannot be expressed as the set of solutions
to a STRIPS-style planning problem, because the set of solutions to a STRIPS-style planning
problem correspond to a regular set (where the states in the planning domain correspond
to the states of a finite automata, and the actions correspond to state transitions). Hence
there does not exist a function ¥ from the set of HTN-planning problem instances to the set
of STRIPS-style planning problem instances that preserves the set of solutions. On the other
hand, we have presented a transformation that maps each STRIPS-style planning problem
instance to an HTN-planning problem instance with the same set of solutions. Thus we can
conclude

Theorem 10 HTN planning is strictly more expressive than STRIPS-style planning.

The power of HTN planning comes from two things: (1) allowing multiple tasks and
arbitrary constraint formulas in task networks, (2) compound tasks. Allowing multiple tasks
and arbitrary formulae provides flexibility—but if all tasks were either primitive or goal
(STRIPS-style) tasks, these could probably be expressed with STRIPS-stye operators (albeit
clumsily and using an exponential number of operators/predicates). Compound tasks provide
an abstract representation for sets of primitive task networks, similar to the way non-terminal
symbols provide an abstract representation for sets of strings in context-free grammars.

4 Conclusion

We have presented a formal description of HTN planning, and we have done a complexity
analysis based on this formalism. ;From our results we can draw the following conclusions:

1. HTN planners can represent a broader set of planning domains than STRIPS-style plan-
ners. The transformations from HTN planning problems to STRIPS-style planning prob-
lems have revealed that STRIPS-style planning is a special case of HTN planning, and

17

that the relation between them is analogous to the relation between context-free lan-
guages and regular languages. This contradicts the idea, held by some researchers,
that HI'Ns are just an “efficiency hack.”

2. Handling interactions among non-primitive tasks is the most difficult part of HTN plan-
ning. In particular, if subtasks in the expansions for different tasks can be interleaved,
then planning is undecidable, under even a very severe set of restrictions. However re-
stricting the planning problems to be totally-ordered or regular reduced the complexity
significantly, because that limited the interactions among tasks.

3. In general, what restrictions we put on the non-primitive tasks has a bigger effect
on complexity than whether or not we allow variables, or require tasks to be totally
ordered.

4. If there are no restrictions on non-primitive tasks, then whether or not we require tasks
to be totally ordered has a bigger effect (namely, decidability vs. undecidability) than
whether or not we allow variables. But in the presence of restrictions on non-primitive
tasks, whether or not we allow variables has a bigger effect than whether or not we
require tasks to be totally ordered.

Currently, we are investigating how to use constraint satisfaction techniques such as tree
search versus repair, value ordering and variable ordering heuristics to increase the efficiency
of HTN planning. We are also investigating how to extend the action representation of HTNs
to allow conditional, probabilistic and future effects.

5 Acknowledgement

We thank A. Barrett, W. Gasarch, R. Kambhampati, B. Kettler, and anonymous reviewers
for their insightful comments.

References

(Baader, 1990) Baader, F. A formal definition for expressive power of knowledge represen-
tation languages. In Proceedings of the 9th Furopean Conference on Artificial Intelligence,
Stockholm, Sweden, Aug. 1990. Pitman.

(Bylander, 1991) Bylander, Tom 1991. Complexity results for planning. In [JCAI-91.

18

(Chapman, 1987) Chapman, D. Planning for conjunctive goals. Artificial Intelligence,
32:333-378, 1987.

(Drummond, 1985) Drummond, M. Refining and Extending the Procedural Net. In Proc.
IJCAI-85, 1985.

(Erol et al., 1992) Erol, K.; Nau, D.; and Subrahmanian, V. S. Complexity, decidability and
undecidability results for domain-independent planning. Artificial Intelligence to appear.
A more detailed version is available as Tech. Report CS-TR-2797, UMIACS-TR-91-154,
SRC-TR-91-96, University of Maryland, College Park, MD, 1992.

(Erol et al., 1994a) Erol, K.; Hendler, J.; and Nau, D. Semantics for Hierarchical Task Net-
work Planning. Technical report CS-TR-3239, UMIACS-TR-94-31, ISR-TR-95-9, Com-
puter Science Dept., University of Maryland, March 1994.

(Fikes et al., 1971) Fikes, R. E. and Nilsson, N. J. STRIPS: a new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2(3/4) 1971.

(Hopceroft et al., 1979) Hopcroft and Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley Publishing Company Inc., California, 1979.

(Kambhampati et al., 1992) Kambhampati, S. and Hendler, J. “A Validation Structure
Based Theory of Plan Modification and Reuse” Artificial Intelligence, May, 1992.

(Lansky, 1988) Lansky, A.L. Localized Event-Based Reasoning for Multiagent Domains.
Computational Intelligence Journal, 1988.

(Sacerdoti, 1975) Sacerdoti, E. D. The nonlinear Nature of Plans In Proceedings of IJCAI,
1975. pp 206—214.

(Tate, 1977) Tate, A. Generating Project Networks In Proceedings of IJCAIL, 1977. pp
888—889.

(Vere, 1983) Vere, S. A. Planning in Time: Windows and Durations for Activities and Goals.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-5(3):246-247,
1983.

(Wilkins, 1988) Wilkins, D. Practical Planning: FExtending the Classical Al Planning
Paradigm, Morgan-Kaufmann 1988.

(Yang, 1990) Yang, Q. Formalizing planning knowledge for hierarchical planning Computa-
tional Intelligence Vol.6., 12-24, 1990.

19

Appendix

Theorem 1 PLAN EXISTENCE is strictly semi-decidable, even if P is restricted to be
propositional, to have at most two tasks in any task network, and to have only totally
ordered methods.

Proof.

Membership: We can restate PLAN EXISTENCE as 3k soly(d, I, D) # 0. Thus the problem
is in X1

Hardness: Given two context-free grammars (G4 and Go, whether L(G1) N L(G) is non-
empty is an undecidable problem(Hopcroft et al., 1979). We define a reduction from this
problem to PLAN EXISTENCE as follows:

Without loss of generality, assume both G; and (G have the same binary alphabet ¥, and
they are in Chomsky normal form (at most two symbols at the right hand side of production
rules). Refer to (Hopcroft et al., 1979) to see how any context-free grammar can be converted
into this form. Similarly, assume that the sets of non terminals I'; and I'y for each grammar
are disjoint; i.e. I'1 Ny = (). We also assume neither language contains the empty string. It
is easy to check whether a CFG derives empty string. If both languages contain the empty
string, then their intersection is non-empty; we can simply return a simple HTN problem
that has a solution. If one of the languages does not contain the empty string, it does not
affect the intersection to remove the empty string from the other language.

It is quite easy to see that using methods we can simulate context-free grammars: Prim-
itive task symbols mimic the terminals, compound task symbols mimic the non-terminals,
and methods mimic the production rules. The difficulty is in making sure there is a string
produced by both (G4 and G3. We achieve this with the help of the constraints in methods.

For each terminal a € ¥, we introduce a proposition p,. We also need another proposition
called turn.

Let the initial state I = {turn}.

For each terminal ¢ € ¥, we introduce two primitive tasks (one for each grammar) f,;
and f, such that f,; has the preconditions {turn} and effects {p,,-turn}; f,, has the
preconditions {p,, ~turn} and effects {—p,, turn}.

Intuitively, f,; produces p,, and f,2 consumes p,. The proposition turn ensures that we
use these primitive tasks alternately.

For each non-terminal B in each grammar, we introduce a compound task symbol ¢g.

20

For each production rule R : A — B{B;, we introduce a method

(ta,[(n1:a1)(ne @ az) (ng < n2)))

, where
per form[tg;] if B; is a nonterminal,
a; =% do[f.1] if B;is a terminal a, and R is a production rule of Gy,
do[fs2] if B;is a terminal a, and R is a production rule of Gj.

The input task network contains the three tasks per forml[tsi], per formltsa], do|fius],
where 57,55 are the starting symbols of the grammars G, Gy respectively, and fi 5 is a
primitive task with no effects. The constraint formula states that ts; < tj,5, and ts2 < frase,
and that turn needs to be true immediately before fi,5. The last condition ensures that the
last primitive task f,, belongs to (5.

The task decompositions mimic the production rules of the grammars. The proposition
turn ensures that each grammar contributes a primitive action to any plan alternatively, and
the conditions with propositions p, ensure that whenever (; contributes a primitive task
fa1, G2 has to contribute f,,. Thus, there is a plan iff G; and G5 have a common word in
their corresponding languages.

|

Theorem 2 There are HTN planning domains that contain only totally ordered methods
each with at most two tasks, for which PLAN EXISTENCE is strictly semi-decidable.

Proof: We construct a planning domain D and show that planning in this domain is semi-
decidable, using a reduction from the intersection of context-free grammars problem.

Domain Description We use four primitive tasks fu1, fo1, fa2, foo (they are exactly the
same primitive tasks used in the previous proof), and another dummy primitive task fiummy
with no effects or preconditions.

We have three propositions pq, py, turn, and a predicate R(X,Y,Z), used for expressing
production rules of the form X — Y Z.

We declare the following four operators that specify the effects of those tasks:

(operator fu1 (pre : turn) (post @ pg, ~turn))
(operator fqz (pre : —turn,p,) (post : —p,,turn))
(operator fu (pre : turn) (post : py, ~turn))
(operator fuy (pre : —turn,py) (post : —py, turn))
(operator foummy (pre:) (post :))

21

We use five compound tasks t(Al),t(A2),t(B1),t(B2),{(Dummy) corresponding to our
primitive tasks.

We declare five methods describing how those compound tasks expand to their corre-
sponding primitive tasks:

(t(v) [(n: do[fa1]) (v =A1)])
(t(v) [(n: do[fn]) (v = B1)])
(t(v) [(n: do[fa2]) (v = A2)])
(t(v) [(n : do[f2]) (v = B2)])
(t(v) [(n:do[faummy]) (v = Dummy)])

We use a predicate R(v,v1,vs2) to encode grammar rules. We declare a final method :

(t(v) [(ng: perform[t(vi)])(ne : per form[t(vz)]) (n1 < n2) A (n1, R(v,v1,02))])

Basicly, this method specifies that a task #(X) can be expanded to t(Y)t(7Z) iff there is a
production rule of the form X — Y Z. Thus we have a domain with 5 operators and 5
methods.

The reduction Given two context-free grammars, here is how we create the initial state
and the input task-network.

Let G; =< X1, Ry > ¢ = 1,2 be two context-free grammars. Without loss of gen-
erality, assume ¥ = {a,b},I'y N Ty = 0, the production rules are in Chomsky normal
form (at most two symbols at right hand sides), and the grammars don’t use the symbols
{Al, A2, B1, B2, Dummy}

Here is the initial state:
e For each production rule of the form X — Y 7, we assert a predicate R(X,Y, 7).

e For each production rule of the form X — «a from grammar ¢, we assert a predicate

R(X, A;, Dummy). We handle rules of the form X — b, similarly.
e Finally, we assert turn.

The input task network to the planner contains the three tasks ¢(S1),%(52), fawmmy, Where
S1, 52 are the starting symbols of the grammars GGy, GG3 respectively. The constraint formula
states that both ¢(S1) and ¢(.52) precede fiummy, and that turn needs to be true immediately
before fi,s:. The last condition ensures that the last primitive task belongs to Gis.

22

How it works: The construction is very similar to that of Theorem 1. In that construction,
we introduced a method for each production rule. This time, we observe that all those
methods had the same structure, so instead we use a single method with variables and an
extra constraint R(X,Y,7) that makes sure that we can expand t(X) to ¢(Y){(Z) only
when we have the corresponding production rule. The sequence of actions ¢(.5;) can expand
to corresponds to the strings that can be derived from 5;. The effects of the actions and the
conditions on them ensure that in any final plan the actions from S; and S, alternate, and
that whenever S; contributes an action, it has to be followed by the corresponding action in
Sy. Obviously, the reduction can be done in linear time.

|

Theorem 3 PLAN EXISTENCE is decidable if P has a k-level-mapping for some integer k.

Proof. When there exists a k-level-mapping, no task can be expanded to a depth more
than k. Thus, whether a plan exists can be determined after a finite number of expansions.
|

Theorem 4 PLAN EXISTENCE is EXPSPACE-hard and in DOUBLE-EXPTIME if P is re-
stricted to be totally ordered. PLAN EXISTENCE is PSPACE-hard and in EXPTIME if P is
further restricted to be propositional.

Proof.

Membership: Here, we present an algorithm that runs in DOUBLE-EXPTIME, and solves
the problem. In the propositional case, the number of atoms, the number of states etc. would
go one level down, and thus, the same algorithm would solve the problem in EXPTIME.

The basic idea is this: for each ground task ¢, states sy, sy, and set of ground literals
L ={hL,..., i}, we want to compute whether there exists a plan for ¢ starting at s; and
ending at sy while protecting the literals in L (i.e. without making them false). We store
our partial results in a table with an entry for each tuple (¢, sy, sp, L). An entry in the table
has value either yes, no, or unknown.

Here is the algorithm:

1. Initialize all the entries in the table to unknown.

2. For each sy, sp, L and ground primitive task f,, compute whether executing f, at s;
results in sp, and that all literals in L are true in both S; and sp. Insert the result in
the table.

23

3. For each method (Z,(ny : a1)...(nk : ag), ¢) and the input task network do:

e Replace each constraint of the form (n;, {1, n;) with (n;, [, n41) A (Rig1, [nig2) A
.. A(nj—1, 0 nj). (For simplicity, we assume the label of a node reflects its position
in the total order.)

e Apply de Morgan’s rule so that negations come before only atomic constraints.
4. Go over all the entries (¢, sy, s, L) in the table with value unknown, doing the following:

For all ground instances of methods for ¢ (¢, (ny : aq)...(ng : ag), @) do:

For all k& + 1 tuples of states (sq,...,s;) do:
For all expansions ¢’ of ¢ into conjuncts do:

(a) for each conjunct of the form (n;,) or (I, n;41), check whether s, satisfies

.

(b) For each ¢ < k, let L} be the set of literals [such that (n;, [, n;11) is a
conjunct. Check whether the entry for (¢;, s;_1, s;, L;) is yes.

(c) Check whether the variable binding constraints are satisfied
(d) If all checks are OK, enter yes to the table for (¢, sy, sp, L).

5. If step 4 modified the table, then goto step 4.
6. For all ground instances ((ny : aq1)...(nk : ai), @) of the input task network do

For all k + 1 tuples of states (sg,...,sx) do

For all expansions ¢’ of ¢ into conjuncts do
(a) for each conjunct of the form (n;,) or (I,n,41), check whether s; satisfies
l.
(b) For each ¢ < k, let L} be the set of literals [such that (n;,[,n;11) is a
conjunct. Check whether the entry for (¢;,s,_1, s;, L;) is yes.
(c) Check whether the variable binding constraints are satisfied
(d) If all checks are OK, halt with success; if not, halt with failure.

The algorithm works bottom-up. For all ground tasks, state pairs and protection sets
(t,s1,8p, L), it computes whether there exists a plan for ¢ starting at s; and ending at sp
that does not violate the literals in L. When step 4 terminates without any modification to
the table, the table contains all the answers. Thus in step 6, we can check whether the input
task network can be achieved.

24

The table has a doubly exponential number of entries (roughly the cube of the number
of states times number of ground tasks). Step 4 is executed at most a doubly exponential
number of times (when we make one modification at each step). At each execution step 4
goes over all the entries in the table, taking double exponential time. Processing each entry
takes double exponential time. The resultant time is the product of these, which is still
double exponential. The rest of the steps in the algorithm obviously do not take more than
double exponential time. Thus the algorithm runs in double exponential time.

When we restrict the problem to be propositional, the number of states goes down from
doubly exponential to exponential, and so does the size of table and the number of executions
in all the steps. Thus in propositional case, the algorithm runs in exponential time.

Hardness: PLAN EXISTENCE, restricted to totally ordered regular planning domains, is a
special case of our problem. But in Theorems 5 and 6, we prove that under this restricted
version of PLAN EXISTENCE is EXPSPACE-hard (or PSPACE-hard in the propositional case).
Thus the hardness follows.

|

Theorem 5 PLAN EXISTENCE is EXPSPACE-complete if P is restricted to be regular. It
is still EXPSPACE-complete if P is further restricted to be totally ordered, with at most one
non-primitive task symbol in the planning language, and all task networks containing at
most two tasks.

Proof.

Membership: It suffices to present a nondeterministic algorithm that uses at most expo-
nential space and solves the problem, as EXPSPACE=N-EXPSPACE, so that is what we will
do. Since all task networks will contain at most one non-primitive task, all we need to do
is keep track of what atoms need to be true/false immediately before, immediately after,
and along that single task. Since there are an exponential number of atoms, we can do this
within exponential space. Here is the algorithm:

1. Let d be the input task network.

2. If d contains only primitive tasks, then
non-deterministically guess a total-ordering and variable-binding.
If it satisfies the constraint formula and the preconditions of the primitive tasks, then
halt with success; if not, halt with failure.

25

3. Non-deterministically, guess a total-ordering and variable-binding. The task network
will be of the form

[(n1 = do[f1]) ... (nm : dolfun])(n : per formli])(n} : do[fi]) ... (n, : do[f])]

with ordering ny <ny < ... <n, <n<nj <...<nl.
Note that ¢ is the only non-primitive task in the network. Let s;, s}, s; be the states

immediately after f;, f/, ¢, respectively.

4. Eliminate all variable binding and task ordering constraints from the constraint formula
using the guess in step 3.

5. Replace any constraint of the form (n;,[,n}) with (ni, [, nm) A (g, [,nh) A (nf, 1 n}).

6. Replace any constraint of the form (ng,l,n;) or (n},l,n) with (n;,[) A ... A (n_1,1)
and (n, [) A ... A (n_y,1), respectively.

7. Process the constraint formula (using De Morgan’s rule) so that negations apply to
only atomic constraints.

8. Now the resultant constraint formula contains only conjuncts and disjuncts. For each
disjunct, nondeterministically pick a component, obtaining a constraint formula con-
taining only conjuncts.

9. Compute all the intermediate states before n and verify that all constraints of the form
(n;, 1), (I,n;) are satisfied. Remove these constraints from the constraint formula.

10. For all the state constraints after n, use regression to determine what needs to be true
immediately after n for those constraints to be satisfied”.

11. Set the initial state I to fi,(frn—1(... fi(1)...)), i.e., the state that results from applying
all the primitive tasks before t.

12. Now we can get rid of all the primitive tasks in the task network. The constraint
formula contains only what needs to be true while we achieve ¢t and what needs to be
true immediately after we achieve ¢.

"Here is how we do this. Consider the task (n! : ¢/) and the condition (n},{). When we regress this

condition, we get TRUE if t; asserts [, FALSE if ¢} denies [, or (ni_y,!) if ¢/ neither denies nor asserts [.
This is what needs to be TRUE before t;, for the condition to hold after ¢;.

26

13. Nondeterministically, choose a method for ¢, expand it, and assign the resulting task
network to d.

14. Go to step 2.

Hardness: In (Erol et al., 1992), we showed that plan existence problem in STRIPS
representation is EXPSPACE-complete. Here we define a reduction from that problem.

The plan existence problem in STRIPS representation is defined as “Given a set of
constants, a set of predicates, a set of STRIPS operators, an initial state and a goal, is there
a plan that achieves the goal?”

Given such a problem, we transform it into an HTN planning problem as follows:

We use the same set of constants and predicates. We will also have the same initial
state. For each STRIPS operator o, we define a primitive task f, that has exactly the same
preconditions and postconditions as o. We also need an extra primitive task f. with no
effects, that will be used as a dummy.

We will need a single non-primitive task ¢ that can be expanded to any executable
sequence of actions. Thus we declare the following methods for ¢:

e (£, [(n1: f.), TRUE));

e for each STRIPS operator o
(, [(n1: fo)(na 2 1), (n1 < na)]).
Finally, the input task network will be of the form

((ny: 1), (n1,91) A (n1,92) .- A (1, 98))),

where g; are the goals of the STRIPS problem.

The resulting HTN problem satisfies all the restrictions of the theorem. A plan o solves
the STRIPS plan existence problem instance iff ¢ is a solution for the HTN planning problem
instance. Hence the reduction is correct. Obviously, the reduction is in polynomial time. W

Theorem 6 PLAN EXISTENCE is PSPACE-complete if P is restricted to be regular and
propositional. It is still PSPACE-complete if P is further restricted to be totally ordered,
with at most one non-primitive task symbol in the planning language, and all task networks
containing at most two tasks.

Proof.

27

Membership: The algorithm we presented for the membership proof in Theorem 5 works
also for the propositional case. In the propositional case we have only a linear number of
atoms, and as a result, the size of any state is polynomial. Thus the algorithm requires only
polynomial space.

Hardness: In (Bylander, 1991; Erol et al., 1992), it is shown that plan existence problem
in STRIPS representation is PSPACE-complete if it is restricted to be propositional. The
reduction from STRIPS style planning that we presented in the hardness proof of Theorem 5
also works for the propositional case. [|

Theorem 7 If P is restricted to be regular and D is fixed in advance, then PLAN EXIS-
TENCE is in PSPACE. Furthermore, there exists fixed regular HTN planning domains D for
which PLAN EXISTENCE is PSPACE-complete.

Proof. When D is fixed in advance, the number of ground instances of predicates and tasks
will be polynomial in the size of the input. Thus we can reduce it to propositional regular
HTN-planning. As a direct consequence of Theorem 6, it is in PSPACE.

In the proof of Theorem 5.17 in (Erol et al., 1992), we had presented a set of STRIPS
operators containing variables for which planning is PSPACE-complete. Applying the reduc-
tion defined in the hardness proof of Theorem 5 to this set of operators would give a regular
HTN planning domain (containing variables) with the same set of solutions and complexity
as its STRIPS counterpart. [|

Theorem 8 PLAN EXISTENCE is NP-complete if P is restricted to be primitive, or prim-
itive and totally ordered, or primitive and propositional. However, PLAN EXISTENCE is in
polynomial time P is restricted to be primitive, totally ordered, and propositional.

Proof. If P is primitive, propositional and totally ordered, we can compute whether an
atomic constraint is satisfied in linear time. In order to find a plan, all we need to do is to
check whether the constraint formula is satisfied, which can be done in polynomial time.

Membership: Given a primitive task network, we can nondeterministically guess a total
ordering and variable binding, and then we can verify that it satisfies the constraint formula
in polynomial time. Thus the problem is always in NP.

28

Hardness: There are three cases:

Case 1: Primitive and propositional.
We define a reduction from satisfiability problem as follows:

Given a boolean formula, we define a planning problem such that it uses the same set of
propositions as the boolean formula. we have two primitive tasks for each proposition,
one that deletes the proposition, and one that adds the proposition. The initial state
is empty. The input task network contains all the primitive tasks, and the constraint
formula states that the boolean formula needs to be true in the final state.

If there exists a total ordering that satisfies the constraint formula, the truth values
of propositions in the final state would satisfy the boolean formula; if there is a truth
assignment that satisfies the boolean formula, we can order the tasks such that if a
proposition p is assigned true, then the primitive task that adds it is ordered after the
primitive task that deletes it (and vice versa), coming up with a plan that achieves the
task network.

Obviously, the reduction can be done in linear time.

Case 2: Primitive and totally ordered.
Again, we define a reduction from satisfiability problem.
We will use two constant symbols ¢t and f, standing for true and false, respectively.

For each proposition p in the boolean formula, we will introduce a unary predicate P,
and a unary primitive task symbol T,(v,) that has the effect P(v,).

The initial state will be empty, and the input task network will contain one task for
each proposition, namely T,(v,).
We construct a formula F' from the input boolean formula by replacing each proposition

p with P(t). Our constraint formula will require F' to be true in the final state.

If there exists a truth assignment that satisfies the boolean formula, we can construct a
variable binding such that v, is bound to ¢ whenever p is assigned true, and v, is bound
to f otherwise. This variable binding would make sure the constraints are satisfied.

It there exists a variable binding that achieves the task network, we construct the
following truth assignment that satisfies the boolean formula. We assign true to p iff
v, is bound to 7.

Obviously, the reduction can be done in polynomial time.

29

Case 3: Primitive.

Both case 1 and case 2 are special cases of case 3, so hardness follows immediately.

30

