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1 IntroductionIntegrated services packet-switched networks, such as ATM (Asynchronous Transfer Mode) net-works [45], are expected to support a wide variety of applications (e.g., multimedia, voice, mail)with heterogeneous quality-of-service (QoS) requirements. To meet these requirements, new algo-rithms have been proposed for controlling routing, admission, and scheduling. Routing provides aselection of routes, based on cost functions associated with the transmission links. Admission de-�nes the criteria used to accept or reject a new incoming application, based on the service requestedand the resources available. Scheduling de�nes how link resources (bandwidth, bu�ers, etc.) areallocated among the di�erent services.The overall end-to-end performance of the network hinges on the algorithms used in the routing,admission, and scheduling components. The algorithms are often adaptive, with parameters beingvaried dynamically according to service class and current or delayed system state information.Arrival and service statistics are often time-dependent. As a result, there is signi�cant interactionamong the three components.The accurate and fast evaluation of such time-dependent systems is critical to their cost-e�ectivedesign. Existing evaluation methods for these systems are inadequate. Analytical methods aretypically too coarse. They usually assume steady-state conditions and do not account for adaptivepolicies and the e�ect of delayed feedback. Incorporating adaptive time-dependent behavior makesthem analytically intractable and computationally expensive to solve numerically due to the largestate space. Simulation approaches are often too expensive. They can handle realistic detail anddynamic situations, but they are invariably computationally prohibitive, especially for evaluatinghigh-speed networks where the number of scheduled events (packets, connections, etc.) is usuallyenormous.Our contributionIn this paper, we present a numerical-analytical method that yields the time-evolution of instanta-neous performance measures. Our method takes into account the interaction and time-dependentnature of the control algorithms, and is computationally inexpensive. The numerical foundation ofour method provides a modeling power close to that of simulation at a fraction of the computationexpense, typically less expensive than simulation by many orders.We apply our method to a model that permits the evaluation of a connection-oriented packet-switched network (e.g., ATM) that supports real-time communication (voice, video, etc.) by making1



use of various adaptive routing, scheduling and admission policies. Thus this model can be appliedto achieve more comprehensive evaluation of existing strategies and to propose more e�ective net-work control schemes.Among the main performance measures of interest are the instantaneous end-to-end connec-tion blocking probabilities. To calculate them, we use the link decomposition technique [33, 19]to approximate the multi-link network as a collection of single-link networks. For each link, weapproximate the relationship between the instantaneous local (or link-level) connection blockingprobabilities and the instantaneous average numbers of established connections by the relationshipat steady-state. The latter is available, usually in implicit form, from standard queueing theory [34].We solve these instantaneous relationships iteratively [32]. After all single-link models have con-verged, we compute the instantaneous end-to-end connection blocking probabilities by invoking thelink independence assumption.To obtain the time behavior of the instantaneous end-to-end connection blocking probabilities,we introduce di�erence equations in the average numbers of established connections. These di�er-ence equations relate the instantaneous 
ow rates of departure and admission of connections. Theycan be solved iteratively in conjunction with the previous solution (in previous paragraph).This allows the investigation of both transient and steady-state performances of various controlschemes. We point out that our iterative procedure di�ers from iterations commonly used in steady-state analysis (e.g. [28, 30, 35, 13, 46, 9, 39, 21]), which only solve for steady-state measures. Ourresults indicate that our method is computationally much cheaper than discrete-event simulation,which requires the averaging of a large number of independent simulation runs to obtain reliableperformance estimates. Furthermore, the performance measures it yields are very close to the exactvalues obtained by simulation.In this paper, we present results for a network with NSFNET backbone topology, weightedfair-queueing link scheduling [43], admission control based on \e�ective bandwidth" [22], and threeconnection routing schemes. Two of these routing schemes adapt to delayed state informationexpressed in terms of link utilizations. Our results indicate that the routing scheme that selectspaths which are both under-utilized and short (in number of hops) for routing new incomingconnections gives higher network throughput.In Section 2, we formulate our model. We present our solution procedure in Section 3. Sections 4and 5 illustrate how our method can capture the e�ect of various control schemes. Section 4discusses scheduling and admission, and Section 5 discusses routing. Numerical results to validate2



our method are presented in Sections 6 and 7. Section 6 contains results for single-link networks,and Section 7 for multi-link networks. Section 8 investigates three routing schemes on the NSFNETbackbone topology. Section 9 concludes with related and future work.2 ModelWe consider networks of arbitrary topology supporting real-time communication using a connection-oriented reservation scheme. That is, before a real-time application (e.g., voice, video) can starttransmitting its packets at the requested end-to-end QoS (e.g., delay), a connection has to be �rstestablished along a �xed physical route from the source node to the destination node. For this, thesource node uses its routing information to choose a potential route to the destination node. (Weuse the terms \route" and \path" interchangeably.)A connection setup message is then sent over this route, requesting a local QoS from each of itslinks such that the aggregate of these local QoS satis�es the connection's end-to-end QoS. If therequest fails at any link due to lack of resources (or any other admission constraints), the connectionis blocked and lost; it is assumed that it is not attempted on another (alternate) route. Otherwise,the connection is established and resources are allocated to it. At the end of transmission, thisconnection is torn down and resources are released.Routing can be static or dynamic. For dynamic routing, we assume routing information isupdated by periodic broadcasts by nodes of the status of their outgoing links during the lastperiod. This periodic collection of status information is often used in routing algorithms proposedfor integrated services networks (e.g., [1, 4, 11]). We assume that broadcasts of all nodes aresynchronized; it will be apparent later that we can easily model unsynchronized broadcasts. Wealso assume that these broadcasts reach other nodes instantaneously; this is justi�able because thetime to propagate routing information is small compared to the routing update period.After each update, a node uses its new routing information to compute new routes to be usedfor incoming connections until the next broadcast. The routes are thus updated at discrete timeinstants nT; n = 1; 2; � � �, where T is the routing update period. Without loss of generality, weassume T = 1.We assume that a connection setup (and teardown) request on a multi-link route reaches alllinks of the route simultaneously; this is justi�able because connection setup (and teardown) timesare small compared to the routing update interval and connection holding times.3



ServicesWe think of the network as providing real-time services. A service represents connections withthe same source-destination node pair and the same tra�c and QoS parameters. The parametersof a service s include the following:� Arrival rate of requests for a connection setup, �s(t).� Average lifetime of a connection from the time it is successfully established until it ends,1=�s(t).� QoS requirements of a connection, for example, the end-to-end statistical delay bound (Ds; "s)denoting that probability[ end-to-end packet delay > Ds ] < "s.� Packet (or cell) generation characteristics of a connection, such as its mean transmission ratems and peak transmission rate Ms.ClassesA connection of a service can potentially be established along any of the possible routes betweenthe service's source node and the service's destination node. The class of a connection is de�nedby its service and the route it takes.Figure 1 shows a network o�ering two services: service s1 from node 0 to node 4, and services2 from node 1 to node 3. Each service has two possible routes for connection setup. Hence thenetwork has four classes: classes c1 and c2 for s1 connections using route h 0, 1, 2, 3, 4 i andh 0, 5, 4 i respectively, and classes c3 and c4 for s2 connections using h 1, 0, 5, 4, 3 i and h 1, 2, 3 irespectively.The instantaneous arrival rate of class-c connections of service s, denoted by �c(t), is a functionof �s(t) and the routing algorithm. Note that with dynamic routing, class arrivals have time-varyingstatistics irrespective of whether the service arrivals have time-varying statistics.Because a class is de�ned by the pair h service, route i, we can have a large number of classes,which may cause a computational bottleneck. To avoid this, we can restrict the set of possibleroutes, for example, to the shortest (in number of hops) and close to shortest paths.1 This is1 Experiences with circuit-switched networks show that this restriction results in simple and e�cient routingschemes [3, 38]. 4
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Figure 1: A network example.acceptable because using a longer path for a connection ties up resources at more intermediatenodes, thereby decreasing network throughput. Furthermore, it also ties up more resources at eachintermediate node because satisfying the end-to-end QoS requirement would require more stringentlocal QoS requirements. Section 5 addresses the selection of routes in more detail.Obtaining class parameters at a linkEach link in the network is used by a subset of the classes. For example, in Figure 1, link h5, 4i isused by two classes, namely c2 and c3. The parameters of a class at a link on its route are obtainedfrom the parameters of its service. To do this, we make the following assumptions; some of theseassumptions can be relaxed, possibly at additional computational cost:� Connection setup requests arrive according to Poisson processes.� The routing is probabilistic. That is, probabilities are assigned to the candidate paths andarriving connections are routed independently according to these path probabilities. Withdynamic routing, the probabilities are periodically updated according to dynamic status in-formation (e.g. measured load). Note that these probabilities could take the values 0 and 1for single-path routing.� For a connection setup request on a multi-link route, the requested end-to-end QoS is dividedequally among the links. This is the so-called \equal allocation" policy. For example, if aconnection of service s requesting an end-to-end QoS (Ds; "s) is to be established on anh-link route, then we require that each link on the route guarantees a local requirement of(Dsh ; "sh ) [41, 42]. 5



� The packet generation characteristics of a connection established on a multi-link route do notchange from link to link, i.e. remain the same as the given external characteristics.The �rst assumption is often made and is reasonable in practice [20, 19, 44]. The secondassumption uses a type of routing proposed in many studies (e.g., [4, 17]). The third assumptionuses an end-to-end QoS allocation policy studied in [41, 23, 42].The last assumption is valid in practice if the network admission control makes the same as-sumption, as for example, in the e�ective bandwidth approach by Gu�erin et al: [22]. It is also validif the network uses a tightly-controlled approach that uses a non-work-conserving link schedulingdiscipline to reconstruct the tra�c pattern at each link. An example of such approach is the Rate-Controlled-Static-Priority approach by Zhang and Ferrari [52]. Otherwise, the tra�c pattern hasto be characterized at each link as in [43, 12].Given the above assumptions, it is straightforward to obtain the parameters of a class at a link.Consider, for example, the parameters of class c2 at link h0, 5i or link h5, 4i. Connection setuprequests arrive according to a Poisson process with rate �c2(t) = �s1;c2(t) �s1(t), where �s1;c2(t) isthe (possibly dynamic) probability of a connection of service s1 being routed on class-c2 route. Theaverage lifetime of a connection 1�c2(t) = 1�s1(t) . For an end-to-end QoS (Ds1; "s1), the local QoSrequirement (Djc2; "jc2) = (Ds12 ; "s12 ) for j 2 fh0; 5i; h5; 4ig, because the route of class c2 is two-hoplong. The packet generation characteristics (Mc2, mc2, � � �) = (Ms1, ms1, � � �).Our solution procedure, by assuming link independence, makes use of the class parameters ateach individual link to compute local performance measures, from which end-to-end measures arethen computed. We describe this next.3 Solution ProcedureThe above model can be solved to obtain various instantaneous performance measures. We aremainly interested in calculating the end-to-end measures of each service. An intermediate step inthis calculation is to compute the end-to-end measures of each of the service's classes. Among themain measures of class c are:� Bc(t), instantaneous blocking probability of class-c connections.� Nc(t), instantaneous average number of established class-c connections.6



These measures depend on the performance seen by class-c connections at each link j 2 Rc,where Rc denotes the route of a class-c connection. In particular, we de�ne the following:� Bjc(t), instantaneous blocking probability of class-c connections at link j 2 Rc.� N jc (t), instantaneous average number of class-c connections established on link j 2 Rc. Notethat N jc (t) = Nc(t).Then, assuming link independence, we haveBc(t) = 1� Yj2Rc[1� Bjc(t)] (1)Let Cj be the set of all classes of connections using link j. The straightforward calculation of thetime behavior of fBjc(t) : c 2 Cjg involves solving the well-known Chapman-Kolmogorov di�erentialequations for link j. However, these equations are extremely di�cult to solve analytically [49], andcomputationally expensive to solve numerically [48]. Instead, we write the following di�erenceequations for c 2 Cj , for time step � � T (recall T = 1):N jc (t + �) = [1� �c(t) �] N jc (t) + � �c(t) Yj0 2Rc[1� Bj0c (t)] (2)The �rst term in the right-hand side of equation (2) represents the average number of class-cconnections established on link j which remain on link j (i.e. do not terminate). The second termrepresents the average number of new class-c connections established on link j during [t; t+ �).Observe that if we could express Bjc(t) in terms of fN jc0(t) : c0 2 Cjg, then we could solveequations (2) and hence (1) inexpensively for the time behavior of the performance measures. Ofcourse, obtaining such an expression is intractable and is probably equivalent to solving the originalChapman-Kolmogorov equations. However it turns out that the instantaneous relationship betweenthe Bjc(t) and the N jc (t) is very well approximated by their relationship at steady-state, i.e., by therelationship between the Bjc and the N jc assuming that the �c(t) and �c(t) are constants. Thesteady-state relationship is relatively easy to obtain. We obtain it implicitly as a �xed point of twosteady-state expressions, one de�ning Bjc in terms of f�c0�c0 : c0 2 Cjg, and one de�ning �c�c in termsof N jc and Bjc . These two expressions are obtained next.Steady-state blocking probability in terms of tra�c intensitiesDenoting such an expression by Sjc , we have for c 2 Cj :Bjc = Sjc (f�c0�c0 : c0 2 Cjg) (3)7



Sjc can be obtained as follows. De�ne a schedulable state of link j to be a j Cj j-dimensional vectorrepresenting the number of connections of each class c 2 Cj that can be established simultaneouslyon link j, i.e. for which the local QoS is satis�ed for every connection [27]. Denote the setof schedulable states by F j . F j can be determined using a packet-level analysis knowing theparameters of each class at link j (obtained as shown in Section 2) and the link scheduling algorithm[22, 10]. Note that each link will typically have a di�erent set of schedulable states because links havedi�erent capacities, are used by di�erent sets of classes, etc. Section 4 illustrates the computationof F j for a weighted fair-queueing scheduling [43].The steady-state transition rates between the states of F j are functions of the �c0 and �c0 . Weobtain Sjc by solving this Markov chain. In particular, denoting by P (�) the probability of beingin a state � = (�1; �2; � � � ; �jCjj) 2 F j , we haveP (�) = P (0) jCj jYc0=1 (�c0=�c0)�c0�c0 ! (4)where P (0) = [P�2F j QjCj jc0=1 (�c0=�c0)�c0�c0 ! ]�1 is the normalization constant. This solution is validnot only for exponentially distributed connection lifetimes [28], but also for generally-distributedlifetimes [29].Assuming a simple admission control where the arrival of a new class-c connection is blocked ifits admission would lead to a nonschedulable state, we haveBjc = X�2F j If(�1; � � � ; �c + 1; � � � ; �jCjj) 62 F jg P (�) (5)whereIf(�1; � � � ; �c + 1; � � � ; �jCj j) 62 F jg = 8<: 1 if (�1; � � � ; �c + 1; � � � ; �jCj j) 62 F j0 otherwiseThis is often referred to as \complete-sharing" admission control [27]. Note that I(:) de�nes theset of blocking states. Other admission control schemes can be modeled by alternative de�nitionsof I(:). 8



Steady-state tra�c intensity in terms of average number of connections andblocking probabilityEquating the rates of departure and admission of class-c connections at link j, we have �c N jc =�c [1�Bjc ]. From this we have for c 2 Cj :�c�c = N jc[1� Bjc ] (6)Instantaneous blocking probabilities in terms of average numbers of connectionsFrom equations (3) and (6), we can express Bjc(t) approximately in terms of fN jc0(t) : c0 2 Cjgby replacing the steady-state measures Bjc and N jc by their instantaneous counterparts Bjc(t) andN jc (t), and replacing �c�c by an instantaneous quantity zjc (t) that we introduce. Doing this yieldsthe following instantaneous equations for c 2 Cj:Bjc(t) = Sjc (fzjc0(t) : c0 2 Cjg) (7)zjc (t) = N jc (t)[1� Bjc(t)] (8)For �xed fN jc (t) : c 2 Cjg, we can solve equations (7) and (8) iteratively for fBjc(t) : c 2 Cjg.In particular, we can start with initial estimates fẑjc(t) : c 2 Cjg and obtain fBjc(t) : c 2 Cjg usingequations (7). Then we use equations (8) to obtain new values for fzjc (t) : c 2 Cjg. We repeat thisprocess until the values for fzjc(t) : c 2 Cjg stabilize.Given the N jc (t) and Bjc(t), we can then solve for the N jc (t + �) using equations (2), and werepeat the process to obtain the time evolution of the performance measures for time instants0; �; 2�; � � �. Every T time units (� �), we also update the routing probabilities, which gives riseto new values for the �c(t).Figure 2 illustrates our evaluation method. Steps 7-15 represent the heart of the method. Theyshow the computation for each time instant k consisting of two parts. In the �rst part (steps 8-14),for every link j, we iteratively obtain the class blocking probabilities from the average numbersof established connections. In the second part (step 15), after all link models have converged,we update the average numbers of established connections for the next time step k + � using thedi�erence equations. Steps 5 and 6 show the periodic updates to the �c(t), resulting from theperiodic routing updates based on information collected during the past time period.Assuming that L iterations are needed for convergence of the iteration in steps 10-14, thecomputational complexity for each time step is O(jJ j jCj j ( (jBjc j+ jzjc j)L+ jN jc j )), where J is the9



set of all links, jBjc j is the cost of evaluating Bjc(:) via (7), jzjc j that of evaluating zjc(:) via (8), andjN jc j that of evaluating N jc (:) via (2). Our method requires storage of O(V jJ j jCjj), where V is thenumber of instantaneous measures. From Figure 2, we have V = 5 since we have 5 instantaneousmeasures de�ned, namely, Bjc(:), zjc(:), N jc (:), �c(:) and �c(:).begin1. Given the network topology and services, determine the set of classes for every link jand then their local tra�c and QoS parameters2. For every link j, determine its schedulable states F jand blocking states for each class c 2 Cj3. Initialize fN jc (0) : c 2 Cjg for every link j /* 0 for initially empty network */4. For p = 0; 1; 2; � � � /* Update routes periodically */begin5. Using fN jc (i) : c 2 Cj ; p� 1 � i < p; p > 0g for all j and/or other information,compute the routing probabilities as de�ned by the routing algorithm6. Using the routing probabilities, determine for every link jf�c(i) : c 2 Cj ; p � i < p+ 1g7. For k = p; p+ �; p+ 2�; � � � ; p+ 1� �begin8. For every link j/* Obtain fBjc(k) : c 2 Cjg in terms of fN jc (k) : c 2 Cjg */begin9. Initialize fẑjc(k) : c 2 Cjg /* arbitrary value if k = 0 *//* ẑjc (k � �) if k > 0 */10. repeat11. zjc (k) ẑjc(k), for every c 2 Cj12. Obtain fBjc(k) : c 2 Cjg in terms of fzjc(k) : c 2 Cjgusing (7)13. Obtain fẑjc(k) : c 2 Cjg in terms of fBjc(k); N jc (k) : c 2 Cjgusing (8)14. until j ẑjc(k)� zjc (k) j< �, for every c 2 Cjend15. For every link j, compute fN jc (k + �) : c 2 Cjg using (2)endendend Figure 2: Proposed evaluation method.10



CommentsThe generality and time-dependency of our method allow us to evaluate various control policiesthrough schedulable states, blocking states, and time-dependent arrival and service rates. Sections 4and 5 illustrate how our method can capture the e�ects of various policies.Our method can also be used to directly solve for steady-state, if the �c(t) and �c(t) are constantsand a solution exists. We simply set N jc (t+�)�N jc (t)� = 0 in equations (2) and use them in conjunctionwith equations (7) and (8) to iteratively solve for steady-state.Observe that it is easy to realize parallel implementations of our method by mapping the com-putations for di�erent links onto di�erent processors, and we would expect almost linear speedup.The accuracy of our method depends on the approximation of the relationship between theBjc(t) and the N jc (t) by its steady-state counterpart, which is the �xed point of the iteration insteps 10-14 of Figure 2. We are analyzing the errors and convergence of this iteration. Such analysisis very hard in general because of the complex nature of the underlying nonlinear system. Howeverit can be shown in many situations that the error in the approximation is small, and that theiteration is a contractive mapping of [0; 1) into [0; 1) and hence it converges to a unique �xedpoint [32]. Furthermore, our numerical computations indicate that the iteration converges quickly.(See Sections 6, 7 and 8.) In particular, our method provides signi�cant computational savingsover the (straightforward) discrete-event simulation approach, which requires the averaging over alarge number of independent runs to obtain reliable performance estimates.4 Scheduling and AdmissionOur method accounts for scheduling at a link j through the set of schedulable states F j. In thefollowing, we illustrate the computation of F j for a \per-connection" link scheduling algorithmof the weighted round-robin type. An example of this type of scheduling algorithms is weightedfair-queueing [43]. Here, each class-c connection is allocated (and guaranteed) a certain amountof bandwidth on link j 2 Rc that is enough to satisfy its local QoS requirement. This requiredbandwidth depends of course on the local QoS and the packet generation characteristics of theconnection.Henceforth we assume that a connection of service s requests an end-to-end statistical delaybound (Ds; "s), where the delay does not include the propagation delay. This QoS requirementis also referred to as packet jitter [16, 50]. This is typically required by applications such as voice11



since they can tolerate some packet loss (a packet is considered lost if its delay exceeds Ds) [15, 16].If the connection is described by a two-state model where it is either in a busy state send-ing packets back-to-back at peak rate or in an idle state sending no packets at all, the requiredbandwidth2, denoted by Rjc , can be obtained from the following approximation derived in [2, 22, 14]:Rjc =Mc �jc �Xjc +q[�jc �Xjc ]2 + 4 Xjc �c �jc2 �jc (9)where� Mc is the peak rate of the connection.� mc is the mean rate of the connection.� bc is the average duration of the busy period.� �jc = ln( 1"jc ) bc (1� �c)Mc.� �c = mcMc is the probability that the connection is active (in busy state).� Xjc = Djc �Rjc is the bu�er space required by the connection.Rjc can be computed from equation (9) iteratively. For each class c 2 Cj , we can then determineits requirements Rjc and Xjc . From this, we can determine whether a state (�1; �2; � � � ; �jCjj) belongsto F j; it must satisfy the following two conditions:� Pc2Cj �c Rjc is no greater than the total capacity of link j, denoted by Capj .� Pc2Cj �c Xjc is no greater than the total available bu�er space of the link.For ease of presentation, we assume that there is enough link bu�er space such that the secondcondition is always satis�ed. Then for a state to be schedulable it su�ces to only satisfy the �rstcondition.As pointed out in Section 3, F j would typically be di�erent for every link j because linkshave di�erent capacities, are used by di�erent sets of classes, etc. It is also di�erent for di�erentscheduling disciplines because disciplines resulting in looser performance bounds would typicallyhave a smaller set of schedulable states.The computation of F j seems expensive as it requires determining the j Cj j-dimension schedu-lable states [35]. In addition, given the admission control policy, we need to determine for each class2 Often referred to as e�ective or equivalent capacity [14, 31, 2, 22, 1].12



which of the schedulable states are blocking. This computational complexity is reduced if we assumefRjc : c 2 Cjg are integers and view the link state as belonging to the set f0; 1; 2; : : : ; Capj�1; Capjg,where the state indicates the amount of bandwidth reserved. This one-dimensional link model hasa simple steady-state solution in the multi-rate circuit switching literature [46].3 In particular, letQj(i) denote the steady-state probability of link j being in state i. Then the Qj(:) satisfy thefollowing recurrence relation [46]:i Qj(i) = Xc2Cj �c�c Rjc Qj(i�Rjc)i = 1; : : : ; Capj (10)where PCapji=0 Qj(i) = 1.With a complete-sharing admission control policy, the steady-state blocking probability forclass-c connections is simply given byBjc = CapjXi=Capj�Rjc+1Qj(i) (11)This result is valid for Poisson arrivals and generally-distributed lifetimes. It can be used insteadof the one in (5). Note that here F j is implicitly de�ned by the constraint 0 � i � Capj . This linkmodel is usually referred to as the stochastic Knapsack model [8, 9].5 RoutingOur method accounts for routing through the time-dependent class arrival rates �c(t). Theseare a�ected in our model by the route selection probabilities �s;c(t). We assume the �s;c(t) areperiodically computed based on the network topology and load averaged over the last period. Theload information consists of link/path measurements, which may include quantities such as reservedlink capacity and path blocking probability. Obviously these quantities should be measurable inpractice; indeed a node can measure the reserved capacity for each of its outgoing links from theconnection setup/teardown procedure. Also, a source node can measure the blocking probabilityof a path if we assume that when a setup fails at an intermediate node, this node sends a \reject"message back to the source.3 In a multi-rate circuit-switched network, each call may request a di�erent number of channels. This numberis however the same on every link along any route the call might take. This is not the case in the networks we areconsidering where the bandwidth required by a connection on a link depends on the number of links along the routetaken by the connection. 13



These quantities should also be obtainable from our model. We can obtain the average reservedlink capacity from the average number of established connections and the e�ective capacity of eachof the link's classes, which we compute in our model. We can also obtain a path blocking probabilityfrom the classes' blocking probabilities, which we also compute in our model.We are interested in route selection algorithms for networks of arbitrary topologies and o�er-ing heterogeneous services. We want algorithms that result in low blocking probabilities (a highsuccessful setup rate) and hence high network throughput. Our model can capture several designchoices when developing such algorithm. One design choice is related to the set of candidate pathsthe source node would consider for connection routing. This determines the number of classesde�ned for each service. We do not want the source node to consider paths that are too long sincethis would result in increased utilization and hence reduced throughput. So the set of candidatepaths could consist of only minimum-hop paths, or it could consist of both minimum-hop pathsand next-to-minimum-hop paths. (By a next-to-minimum-hop path, we mean a minimum-hop + ipath for the smallest i 2 f1; 2; � � �g such that a path exists.)Routing schemes designed for circuit-switched networks [19] and recently proposed for ATMnetworks [23, 26, 24, 25] consider one-hop and two-hop paths only. Routing schemes that considerpaths of arbitrary hop length are often proposed for the Internet [47, 6]. Our model can evaluateboth types of schemes.From the set of candidate paths, we should determine which path to use for routing the setuprequest message for a new incoming connection. A path p could be selected probabilistically atrandom or using path weights Wp where4Wp / FpHp � Lp (12)where Hp is the number of hops of path p (this gives preference to shortest paths), Lp is a measureof the load on path p averaged over the last update period (discussed below), and Fp is either 1 or0 depending on whether the path p is feasible or not; a path p is said to be feasible if the source\expects" a successful setup on p [1].5 The �s;c(t) can then be computed according to (12).Another design issue is related to how Lp is de�ned. For example, Lp could be (i) the blockingprobability of path p, (ii) the sum of the utilizations of the links on path p, where the utilizationof a link is the fraction of the link capacity reserved, (iii) the maximum link utilization of the links4 Wp may depend on other factors. We use here the ones that were considered in previous works (e.g., [4, 1, 6])when selecting routes for connections.5 The source would take into account the requirements of the new connection in addition to the current load onthe path (assuming it is accurate) to test the feasibility of the path. This is in fact an admission control function.14



on path p, or (iv) the sum of the delays of the links on path p, where the delay of a link j canbe estimated as 1Capj�CapResj where CapResj is the average reserved link capacity (note that thisdelay estimation uses the M=M=1 delay formula [34]).In Section 8, we use our model to compare di�erent route selection policies assuming the \per-connection" link scheduling and complete-sharing admission described in Section 4.6 Validation Results for Single-Link NetworksIn this section, we compare the results obtained using our method with those obtained usingdiscrete-event simulation for single-link networks. In our method, we obtain instantaneous perfor-mance measures through equations (7), (8), and (2). We take the time step � to be 0.1.The simulation model di�ers from our analytical model in that the actual events of arrival andprocessing of requests are simulated according to the speci�ed probability distributions and controlpolicies. To obtain reliable performance estimates, a number of independent replications (i.e. sim-ulation runs) must be carried out and averaged. In particular, let Y (i)(t) denote a generic measurecomputed at time instant t in replication i, where t takes on the successive values t1; t2; � � � ; tk; � � �.Then, the mean value of this measure at particular time instant tk is estimated asPNi=1 Y (i)(tk)=N ,where N is the total number of replications. The larger N is, the more accurate the simulationestimates are [36]. In our simulations, the performance measures are computed for t = 1; 2; 3; � � �.The measures considered are precisely de�ned as they are introduced below. In all experiments,we start with empty systems. For the cases with N = 50, the observed mean of the simulationmeasures at various time instants typically show 95% con�dence interval for a + 10% range. Forthe cases with higher N , 95% con�dence interval is obtained for a + 3% range.We assume class-c connections arrive according to a Poisson process of constant rate �c. Aclass-c connection requires a �xed amount of bandwidth Rc. If admitted, a class-c connection holdsthe acquired bandwidth for an exponential duration of constant rate �c.We consider a single link j1 used by 10 service classes whose parameters are shown in Figure 3.We examined the use of both equations (5) and (11) to compute the class blocking probabilities.Consistent with [46], both yield the same results. In general, we found using equations (11) muchless time-consuming. This is mainly because using equations (5) require �nding the 10-dimensionschedulable states, and also the blocking states of each class.Figures 7, 8 and 9 show the time behavior of the total number of established connections, the15



Class c Rc �c 1/�c1 30 0.125 52 15 0.5 13 50 0.2 24 10 0.1 25 40 0.125 16 25 0.5 0.57 30 1.0 0.58 10 0.0625 109 5 1.0 0.210 50 0.25 2Figure 3: Parameters of 10 classes using a link j1 with total bandwidth of 200.link utilization, and the total throughput, respectively. The �rst measure denotes the total numberof connections currently established on the link, which is equal to Pc02Cj1 N j1c0 (t) in our method.The second measure denotes the fraction of link j1's capacity currently being reserved, which isequal to (Pc02Cj1 N j1c0 (t)�Rc0)=Capj1 in our method. The third measure denotes the total currentadmission rate, which is equal toPc02Cj1 �c0 [1�Bj1c0 (t)] in our method. For a general network, it isequal to Pc02C �c0Qj02Rc0 [1� Bj0c0 (t)], where C is the set of all classes.In our simulations, the �rst two measures displayed at time instant t (t = 1; 2; 3; � � �) are simplythe values of these measures as observed at t. The last measure, namely the total throughput,displayed at time instant t is de�ned to be the total number of connections admitted in the interval[t� 1; t).Our method yields results very close to the exact values. In addition, we found our method muchless time-consuming than simulation. This is especially because the latter requires the averaging of alarge number of independent simulation runs. To give an idea of the computational savings, for thisexperiment, on a DECstation 5000/133, our method required around 6 seconds of execution timewhile the 50-run and 1000-run simulations required around 25 seconds and 8 minutes, respectively.The number of iterations required at each time step for convergence of the iterative procedure insteps 7-15 of Figure 2 is less than 6 iterations for � = 10�5 and ẑjc (0) = �c=�c.16



7 Validation Results for Multi-Link NetworksIn this section, we compare the results obtained using our method with those obtained usingdiscrete-event simulation for multi-link networks. The purpose is to validate our link independenceassumption manifested in equations (1) and (2) by the product term Q. The performance measuresare computed as described in Section 6. Similar con�dence intervals are also observed for themeasures obtained by simulation.We consider a 3-link network with 20 service classes depicted in Figure 4. Classes 1 to 10 repre-sent multi-hop connections modeling main tra�c, while other classes represent one-hop connectionsmodeling cross-tra�c. Figure 5 shows the system parameters. We assume a class-c connection re-quires a �xed amount of bandwidth on every link j 2 Rc, i.e. Rjc = Rc for all j 2 Rc.
c1 ... c10

c11 ... c13 c14 ... c16 c17 ... c20

j1 j2 j3Figure 4: Multi-link network.Figure 10 shows the instantaneous total throughput. Simulation results, denoted by Exp, arefor Poisson arrivals and exponential lifetimes. Simulation results, denoted by Det, are for Poissonarrivals and deterministic lifetimes. The results show the accuracy of our method in both cases asthey satisfy the assumptions required to obtain equations (11). (Our experiments with deterministicarrivals show large errors as expected.)Next, we consider a similar multi-link network whose parameters are given in Figure 6. Here, �c1varies with time. This mimics the e�ect of tra�c control policies such as 
ow control and routing.We assume �c1 alternates every 20 time units between zero and 0.125, starting with zero. Figures 11and 12 show the instantaneous total throughput and blocking probability, respectively. Our methodaccurately reproduces the behavior obtained by simulation. We compute the instantaneous blockingprobability B(t) from the throughput 
(t) using the relation B(t) = 1�
(t)=�(t), where �(t) is the17



Class c Rc �c 1/�cc1 30 0.125 5c2 15 0.5 1c3 50 0.2 2c4 10 0.1 2c5 40 0.125 1c6 25 0.5 0.5c7 30 1.0 0.5c8 10 0.0625 10c9 5 1.0 0.2c10 50 0.25 2c11 30 0.125 5c12 15 0.5 1c13 50 0.2 2c14 10 0.1 2c15 40 0.125 1c16 25 0.5 0.5c17 30 1.0 0.5c18 10 0.0625 10c19 5 1.0 0.2c20 50 0.25 2Figure 5: Parameters of 20 classes using 3 links r1, r2, and r3 with bandwidths of 150, 200 and250, respectively.instantaneous total arrival rate of requests. We do this rather than compute B(t) directly from thesimulations because doing that would require averaging over a very large number of replications,because B(t) typically has a very low value and thus a high sample variance.18



Class c Rc �c 1/�cc1 30 0 $ 0.125 5c2 30 0.125 5c3 10 0.1 2c4 50 0.25 2Figure 6: Parameters of 4 classes using 3 links j1, j2, and j3 with bandwidths of 50, 100 and 150,respectively.8 Numerical Results for NSFNETIn this section, we use our model to compare three route selection algorithms. We assume the use ofthe \per-connection" link scheduling and complete-sharing admission described in Section 4. Therequired bandwidths Rjc are computed using equation (9); if the computed value is not integer, itis rounded to the smallest integer greater than this value. We assume adequate bu�er space.We consider the performance of the routing algorithms on the topology of the NSFNET back-bone shown in Figure 13. All links have capacities of 600. The time step � equals 0.1. The routingupdate period T equals 5. We consider 52 services using the NSFNET backbone, with parametersas shown in Figure 14. Services with the same tra�c and end-to-end QoS parameters, but withdi�erent source/destination pairs, are grouped in the same row.We assume a source node considers only the set of minimum-hop and minimum-hop + 1 pathsfor connection routing. A path from the set is selected probabilistically according to path weightsas explained in Section 5. The �rst selection algorithm, referred to as SEL.HOP, de�nes the pathweight as 1=Hp. The second selection algorithm, referred to as SEL.UTIL, de�nes the path weightas (1� Up), where Up is the maximum link utilization of the links on path p. The third selectionalgorithm, referred to as SEL.UTIL HOP, de�nes the path weight as (1� Up)=Hp.Figure 15 shows the instantaneous network throughput for the three routing algorithms. Fig-ure 16 shows their instantaneous blocking probabilities. We observe that SEL.UTIL HOP performsthe best, closely followed by SEL.UTIL, and then by SEL.HOP, which is much worse. Clearly, forthis network con�guration, choosing paths which are both under-utilized and short for routing newincoming connections is the best strategy. We note that this is consistent with results in [4] where aroute selection algorithm similar to SEL.UTIL HOP was shown to outperform other algorithms on19



a 5-node connection-oriented reservationless network using discrete-event simulations. To obtain acurve here, our method required around 45 minutes of execution time rather than the tens of hoursthat simulation would have required.9 ConclusionsIntegrated services networks have often been analyzed under steady-state conditions (e.g. [28, 30,35, 13, 46, 9, 37]). In this paper, we presented a numerical-analytical method to rapidly evaluatedetailed and dynamic models of integrated services networks. Our results indicate that the methodgives approximate, yet accurate, instantaneous performance measures and provides signi�cant com-putational savings over discrete-event simulation. We have applied our method to compare di�erentrouting algorithms.There are several areas for future work. One area is to examine routing schemes that distinguishbetween di�erent types of tra�c (e.g., low-throughput voice and high-throughput video), computinga di�erent set of routes for each type. For example, for a particular tra�c type with very stringentQoS requirements, we could restrict the set of candidate paths to only minimum-hop paths, whilefor other tra�c types the set could also include next-to-minimum-hop paths. We intend to examinethe capability of the routing scheme to distribute connections of each type in a way that increasesthe network throughput, and also the responsiveness of the routing scheme to failures and repairs.Another area is to examine admission controls that block some connection setup requests even iftheir admission is feasible, possibly in order to reduce the chance of future blocking of connectionsof other types. In this case, blocking would occur at more schedulable states [51, 27].Another area is to investigate policies other than the equal allocation policy for dividing theend-to-end QoS requirement among the links of a route. These policies would take into accountthe current link loads as measured in the last routing update period. Other QoS requirements suchas packet loss can be considered.We solved our model by an iteration that di�ers from iterations commonly used in steady-stateanalysis, which only solve for steady-state measures and ignore the e�ect of the routing updateperiod (i.e. the delayed feedback between route changes and link load changes).Our iteration uses a basic concept, that of approximating the instantaneous relationship be-tween the blocking probabilities and average numbers of established connections by its steady-statecounterpart. This concept was originally introduced in [18], where it was used to obtain steady-state20



blocking probability and carried load for a speci�c call routing and network topology.Reference [18] considered a network of source nodes, destination nodes, and intermediate nodes,with a link from every source node to every intermediate node, and a link from every intermediatenode to every destination node. Each link can carry a �xed total number of calls. The call arrivalprocess from a source to a destination is Poisson with �xed rate. The call routing is not dynamic;a �xed fraction of the call arrivals is routed through every intermediate node. In addition, over
owtra�c (due to blocking links) is routed through alternate available routes. Each call, once admitted,has an exponential holding time of �xed mean that is the same for all calls. The blocking probabilityof a link is given by the Erlang-B formula expressed in terms of combined tra�c intensity. Thesystem is solved for steady-state average number of calls on each link by equating the call departurerate to the call admission rate.Our model extends this concept to general multi-class links, where, for example, each class hasdi�erent resource needs, and links employ di�erent scheduling disciplines. Also, our model can beapplied to describe general dynamic routing schemes with the arrival rate of a class changing as afunction of the instantaneous network state.Our dynamic 
ow model is quite general, and can be used to study both transient and steady-state performances of integrated services networks. Our method has advantages over other methodsthat might be used to analyze transient behaviors. One such method is that of time-dependentqueueing models, which involve probability distributions for all events. However, such models areextremely di�cult to solve analytically [49], and computationally expensive to solve numerically[48]. A second method is that of di�usion models, which utilize averages and variances [7, 40]. Suchmodels involve partial di�erential equations and are usually intractable. A third method is thatof 
uid models, which utilize average quantities only [5]. Such models involve ordinary di�erentialequations and are usually tractable. However, dynamic 
ow models appear more accurate sincethey include detailed probabilistic descriptions manifested in our model in the computation of theinstantaneous blocking probabilities.References[1] H. Ahmadi, J. Chen, and R. Guerin. Dynamic Routing and Call Control in High-Speed IntegratedNetworks. In Proc. Workshop on Systems Engineering and Tra�c Engineering, ITC'13, pages 19{26,Copenhagen, Denmark, June 1991.[2] D. Anick, D. Mitra, and M. Sondhi. Stochastic Theory of a Data Handling System with MultipleSources. Bell Syst. Tech. J., 61:1871{1894, 1982.[3] G. Ash, J. Chen, A. Frey, and B. Huang. Real-time Network Routing in a Dynamic Class-of-ServiceNetwork. In Proc. 13th ITC, Copenhagen, Denmark, 1991.21
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Figure 10: Total throughput versus time. Multi-link network.26
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