
Routing in Optical Multistage Interconnection Networks:a Neural Network SolutionUNIVERSITY OF MARYLAND TECHNICAL REPORTUMIACS-TR-94-21 AND CS-TR-3227C. Lee Gilesa;b and Mark W. GoudreaucaNEC Research Institute4 Independence Way, Princeton, NJ 08540bInstitute for Advanced Computer StudiesUniversity of Maryland, College Park, MD 20742cDepartment of Computer ScienceUniversity of Central Florida, Orlando, FL 32816E-mail: giles@research.nj.nec.comFebruary 1994AbstractThere has been much interest in using optics to implement computer interconnectionnetworks. However, there has been little discussion of any routing methodologies besidesthose already used in electronics. In this paper, a neural network routing methodologyis proposed that can generate control bits for an optical multistage interconnectionnetwork (OMIN). Though we present no optical implementation of this methodology,we illustrate its control for an optical interconnection network. These OMINs may beused as communication media for shared memory, distributed computing systems. Therouting methodology makes use of an Arti�cial Neural Network (ANN) that functionsas a parallel computer for generating the routes. The neural network routing schememay be applied to electrical as well as optical interconnection networks. However, sincethe ANN can be implemented using optics, this routing approach is especially appealingfor an optical computing environment. The parallel nature of the ANN computationmay make this routing scheme faster than conventional routing approaches, especiallyfor OMINs that are irregular. Furthermore, the neural network routing scheme is fault-tolerant. Results are shown for generating routes in a 16� 16, 3 stage OMIN.1



1 IntroductionArti�cial Neural Networks (ANNs) of the type that were described by Hop�eld [15] are ca-pable of �nding good solutions for certain optimization problems [14]. Furthermore, theseANNs can also solve certain constraint satisfaction problems. Constraint satisfaction prob-lems can often be modelled as optimization problems that have numerous correct solutionsthat are of equal worth.The routing of a set of messages through a multistage interconnection network (MIN) canbe modelled as a constraint satisfaction problem. MINs are often used in parallel processingand distributed computing systems and are currently the subject of much interest in theparallel computing community. Generating the control bits that de�ne the routes for theMIN may be a time consuming process that can cause a bottleneck in the system.An ANN has been designed that can potentially solve the problem faster than conven-tional means. This neural network solution, however, is only applicable to a particular classof interconnection network. The interconnection network must be constructed out of layersof complete or incomplete crossbar switches. There is no restriction on the connectionsbetween successive layers. But there can be no feedback connections and no connectionsthat skip a layer of the interconnection network. Such interconnection networks are oftencalled levelled interconnection networks. We shall call them MINs.Electronic multistage interconnection networks (EMINs) are usually considered to be2-dimensional, while optical multistage interconnection networks (OMINs) are generally 3-dimensional. However, the structures of both EMINs and OMINs are such that the routingproblem is similar in both cases. In fact, a 3-dimensional MIN routing problem can bedirectly mapped to a 2-dimensional MIN routing problem.The system being considered will have a set of input ports and a set of output portsthat are connected via the MIN. The problem that is addressed here will be a point-to-pointcommunication problem. That is to say, no broadcasting will be allowed. Additionally, thecircuit switching problem is being considered: for an input port to communicate with anoutput port, the entire route has to be established and maintained for a certain period2



of time. There is no stage-by-stage passing of message packets through the MIN. At thebeginning of each message cycle, an input port may decide that it wants to communicatewith an output port. So for each message cycle there is a set of desired messages. Theproblem is to generate control bits for the MIN given the message set.Figure 1 contains a diagram of a communication system with a neural network router.The neural network router is discussed in [8, 9]. In these references the neural network routerwas applied to an EMIN routing problem. The very same methodology, however, can beapplied to a 3-dimensional OMIN problem by collapsing the 3-dimensional problem down toa 2-dimensional problem. The ANN mentioned above is the crucial component of the neuralnetwork router. Since Hop�eld model neural networks can be constructed e�ciently usingan optical system [4, 5], the neural network routing methodology is particularly appealingfor an optical computing environment.The neural network router in Figure 1 has two logic blocks to interface the neural networkwith the rest of the communication system. The logic block Logic1 converts the desiredmessage set into a language the neural network can understand, namely bias currents. Thelogic block Logic2 is required to convert the routing array solution of the neural networkinto a crosspoint form that the interconnection network can understand. The constructionof these logic blocks should be a straightforward process.Further information on interconnection networks may be found in [1, 16]. There hasalready been some interesting work done on utilizing Hop�eld model neural networks tofacilitate communication through interconnection networks. Both the routing problem andthe maximization of throughput problem have been addressed for certain interconnectionnetworks [2, 3, 6, 10, 11, 19, 21, 20, 23, 25, 27].2 Optical Interconnection NetworksThere has been much interest in using optical technology for implementing interconnectionnetworks and switches; for a collection of such work see [7]. Our concern will be on opticalmultistage interconnection networks [13, 18, 22, 17]Consider the interconnection network in Figure 2. It is an example of a 16� 16, 3 stage3
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Figure 1: The communication system with a neural network router.
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OMIN. The basic building block is a 4� 4 optical crossbar switch [24, 12]. The OMIN has12 of these switches. Each crossbar switch in the OMIN is connected to each crossbar switchin the neighboring stages. This MIN is capable of routing any input/output permutation.Its construction is similar to that of the standard Benes network [1, 26], although the Benesnetwork's basic building block is a 2� 2 crossbar switch. However, the OMIN has the sametype of recursive structure that the standard Benes network has.The 3-dimensional routing problem will now be reduced to a 2-dimensional routingproblem. This concept was mentioned in Section 1. In Figure 3, there is a 2-dimensionalrepresentation of the 3-dimensional MIN from Figure 2. The MIN in Figure 3 is exactlythe same as the MIN in Figure 2.3 The Routing RepresentationA routing representation for routes in a MIN will now be constructed. This representationwill be called the routing array. It was �rst presented in [8], and it is the representationthat is used by the ANN. In Section 4, the appropriate ANN structure will be described.The neural network will be in a state of minimal energy when the neuron outputs directlyrepresent a legal routing array.Figure 3 shows two routes, namely a 2-12 route and a 13-16 route. Only one of themany possible routing solutions for these two desired connections is shown.Each message route will have a corresponding routing matrix. For example, the routingmatrix for the 2-12 message in Figure 3 is shown as the leftmost table in Table 1. Thecolumns of a routing matrix represent the stages of the interconnection network, while therows represent the output ports for each stage of the interconnection network. If ai;j = 1,the message is routed through output port i of stage j. Having ai;j = 0 implies that themessage is not routed through output port i of stage j. Thus, the 2-12 message is routedthrough output port 4 of stage 1, output port 15 of stage 2, and output port 12 of stage 3.The routing matrix for the 13-16 message is shown as the rightmost table in Table 1.The routing array for the set of messages is simply constructed by treating each routingmatrix as a \slice" and constructing a \loaf". The routing array is a 3-dimensional repre-5



sentation of a set of routes, and each slice of the array represents a single route. For ourexample, there are two messages to be routed so the routing array will have two slices. Ingeneral, if a system has m input ports, as in Figure 1, there can be m slices in the routingarray.Each element of the routing array now has three indices. If element ai;j;k is equal to 1then message i is routed through output port k of stage j. We say ai;j;k and al;m;n are inthe same row if i = l and k = n. They are in the same column if i = l and j = m. Finally,they are in the same rod if j = m and k = n.A legal routing array will satisfy the following three constraints:1. one and only one element in each column is equal to 1.2. the elements in successive columns that are equal to 1 represent output ports thatcan be connected in the interconnection network.3. no more than one element in each rod is equal to 1.The �rst restriction ensures that each message will be routed through one and only oneoutput port at each stage of the interconnection network. The second restriction guaranteesthat each message will be routed through a legal path in the interconnection network.The third restriction resolves any resource contention in the interconnection network. Inother words, only one message can use a certain output port at a certain stage in theinterconnection network. When all three of these constraints are met, the routing array willprovide a legal routing for each message in the message set.4 The Neural Network RouterIn this section we describe the construction of an ANN (of the type examined by Hop�eld) inwhich each neuron directly represents an element in the routing array for an interconnectionnetwork and message set. The ANN has a three-dimensional structure just like the routingarray. Each ai;j;k of a routing array is represented by the output voltage of a neuron, Vi;j;k.It will be shown in later in this section that a neuron will only be connected to other neurons6



1 2 3

Figure 2: A 3-dimensional optical interconnection network using 12 4�4 crossbar switches.1 2 3 1 2 31 0 0 0 1 0 0 02 0 0 0 2 0 0 03 0 0 0 3 0 0 04 1 0 0 4 0 0 05 0 0 0 5 0 0 06 0 0 0 6 0 0 07 0 0 0 7 0 0 08 0 0 0 8 0 1 09 0 0 0 9 0 0 010 0 0 0 10 0 0 011 0 0 0 11 0 0 012 0 0 1 12 0 0 013 0 0 0 13 0 0 014 0 0 0 14 1 0 015 0 1 0 15 0 0 016 0 0 0 16 0 0 1Table 1: Matrix representations for the 2-12 and 13-16 connections shown in Figure 3.7
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that are in its neighborhood. That is, the ANN is not totally connected. At the beginningof a message cycle, the neurons have a random output voltage. If the ANN settles in oneof the global minima, the problem will have been solved.A synchronous Hop�eld model neural network is used [14, 15]. The value of � , from[14], was set to 1.The ANN is forced into stable states that are the local minima of the energy equation:E = �12 NXi=1 NXj=1TijViVj � NXi=1 ViIi (1)Now an energy function is constructed such that the neural network will be in a globalminima when it directly represents a legal routing array. The energy function has fourcomponents that are shown here:E1 = A2 MXm=1 S�1Xs=1 PXp=1Vm;s;p(�Vm;s;p + PXi=1 Vm;s;i) (2)E2 = B2 S�1Xs=1 PXp=1 MXm=1Vm;s;p(�Vm;s;p + MXi=1 Vi;s;p) (3)E3 = C2 MXm=1 S�1Xs=1 PXp=1(�2Vm;s;p + Vm;s;p(�Vm;s;p + PXi=1 Vm;s;i)) (4)E4 = D MXm=124S�1Xs=2 PXp=1 PXi=1 d(s; p; i)Vm;s�1;pVm;s;i (5)+ PXj=1(d(1; �m; j)Vm;1;j + d(S; j; �m)Vm;S�1;j)35A, B, C, and D are arbitrary positive constants. E1 and E3 handle the �rst constraintin the routing array. E4 deals with the second constraint. E2 ensures the third. >From theequation for E4, the function d(s1; p1; p2) represents the \distance" between output port p1from stage s1� 1 and output port p2 from stage s1. If p1 can connect to p2 through stages1, then this distance may be set to zero. If p1 and p2 are not connected through stage s1,then the distance may be set to one. Also, �m is the source address of message m, while�m is the destination address of message m. 9



The entire energy function is:E = E1 +E2 +E3 +E4 (6)Solving for the connection and bias current values as shown in Equation 1 results in thefollowing equations:T(m1;s1;p1);(m2;s2;p2) = �(A+ C)�m1;m2�s1;s2(1� �p1;p2) (7)�B�s1;s2�p1;p2(1� �m1;m2)�D�m1;m2[�s1+1;s2d(s2; p1; p2)+ �s1;s2+1d(s1; p2; p1)]Im;s;p = C �D[�s;1d(1; �m; p) + �s;S�1d(S; p; �m)] (8)�i;j is a Kronecker delta (�i;j = 1 when i = j, and 0 otherwise). The connection values fromEquation 7 are well de�ned for a given MIN. That is, once the MIN is designed, the neuralnetwork and all of its inter-neuron connections can be calculated. When di�erent groupsof input-output ports need to be connected, it is only the input bias currents of boundaryneurons that are a�ected. Equation 8 quanti�es that change.If the circuit implementation of the ANN from [15] is utilized, changing to a new set ofdesired messages corresponds to reducing the input bias currents to illegal nodes in the �rstand last stages of the ANN. The connectivity matrix is de�ned totally by the MIN that ischosen, and so the conductances need not change.If the user has the ability to make the output of a rod of neurons equal to zero orgive a rod of neurons a large negative input bias current, then the neural network canprovide a fault-tolerant routing scheme. For example, if an output port in some stage ofthe interconnection network is faulty, the user could set the rod of neurons that representsthat output port to zero. The rest of the neural network can operate exactly as it didbefore. Neither the structure nor the weights need to be changed. Similarly, this routingmethodology could tolerate faulty input ports and broken buses. However, the user mustknow if a fault exists and where it exists in the MIN.10



M CS% SM% EM1 100.0 100.0 1.002 100.0 100.0 2.003 100.0 100.0 3.004 100.0 100.0 4.005 100.0 100.0 5.006 99.4 99.9 5.997 97.8 99.7 6.988 93.6 99.2 7.949 84.9 98.2 8.8410 75.9 97.4 9.7411 58.8 95.8 10.5412 42.9 93.8 11.2613 25.6 91.4 11.8814 17.1 89.2 12.4915 11.3 86.2 12.9316 9.4 82.7 13.23Table 2: Simulation results for the MIN shown in Figure 2.5 Simulation ResultsA synchronous ANN was simulated and the results are shown in Table 2 for routing inthe OMIN shown in Figure 2. For the OMIN shown in Figure 2, the neural network routercontained 16�16�2 = 512 neurons. Each row of the table gives the results for a set of 1000message cycles. The M represents the number of messages that are to be routed in eachmessage cycle. The message pairs are generated randomly with no input port or outputport conicts allowed. The CS% represents the percentage of complete successes, where acomplete success occurs when each message in the message set is successfully routed. TheSM% is the percentage of successful messages, that is messages that are routed correctlyregardless of whether there has been a completely successful routing for the entire messageset. Thus, CS% � SM%. A message is considered to have been routed successfully when theneural network provides it with a legal routing and when the message has no contention withany other message for an output port on in any stage of the MIN. Finally, EM represents theexpected number of messages routed in each message cycle. It is obtained by multiplyingthe �rst and third columns and dividing by 100. A graph of EM versus M is shown inFigure 4. 11
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Figure 4: Routing results from Table 2. EM versus M.
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For the OMIN shown in Figure 2, any I/O permutation is possible. Thus, any messagethat was not routed correctly implied a failure in the neural network solution, not a lim-itation in the MIN. For the distributed computing system that is used as a model in thispaper, any input port that can not communicate with an output port in a message cyclemay try to communicate with the same output port in the next message cycle. With thismodel, a very high-speed routing system that does not necessarily establish all routes possi-ble from a message set can still outperform a slower algorithm that can establish all possibleroutes. A good implementation of the neural network router may have speed advantagesover deterministic routing algorithms. Furthermore, there are many MINs that will haveno e�ective deterministic routing algorithms. For MINs such as these, the neural networkrouter may be particularly useful.For the purposes of the simulations, A, C, and D from Equations 7 and 8 were allset to 3.0. B was set to 6.0. The performance of the neural network router is highlydependent upon these parameters. The parameters that were chosen here were arrived atexperimentally. There is no claim as to their optimality. The analog neural network wassimulated with a digital computer. The output values of the neurons were updated every0.1 time units. The initial output values of the neurons were in the range (0.45,0.55) andwere uniformly distributed.The simulations show that increasing the number of messages degrades the performanceof the system. Other simulations show that the performance also degenerates when theMIN becomes more complicated.6 ConclusionsA neural network routing methodology was presented that is capable of providing controlbits to optical multistage interconnection network (OMINs). It was shown how the 3-dimensional OMIN can be reduced to a 2-dimensional MIN, making the neural networkrouting solution described in [8] possible. This routing method is valid for a wide rangeof OMINs that have a certain structure. It was shown that the routing method is fault-tolerant. Once the OMIN is chosen, the routing neural network can be constructed and the13



weights never have to change. For a new message set, only certain boundary bias currentsneed to be varied.The usefulness of this routing method depends on the speed of the Hop�eld neuralnetwork as well as other requirements of the system. The fact that a Hop�eld neuralnetwork can be readily constructed in an optical computing environment makes the neuralnetwork routing approach quite attractive for OMIN routing problems.The routing performance degrades as the MIN size increases and as the number of mes-sages in a message cycle increases. Preliminary results show that the performance of theneural network router will fall o� considerably as the number of stages in an MIN increase.Depending on the implementation of the neural network router, the routing method de-scribed in this paper may have advantages over many other routing methods in terms ofspeed. Furthermore, the neural network routing methodology may be applied to manyirregular OMINs that have no deterministic routing scheme that is any better than anexhaustive search. Thus, it is felt that the neural network routing methodology may bemost suitable for establishing routes for irregular OMINs and OMINs that do not haveself-routing capabilities. While no optical implementation of the neural network router isexplicitly proposed, such a neural network could be implemented optically.References[1] V. Bene�s, Mathematical Theory of Connecting Networks and Telephone Tra�c. NewYork: Academic Press, 1965.[2] T. Brown, \Neural networks for switching," IEEE Communications Magazine, vol. 27,no. 11, pp. 72{81, November 1989.[3] T. Brown and K.-H. Liu, \Neural network design of a Banyan network controller,"IEEE Journal on Selected Areas of Communication, vol. 8, no. 8, pp. 1428{1438, Oc-tober 1990.[4] A. David and B. Saleh, \Optical implementation of the Hop�eld algorithm using cor-relations," Applied Optics, vol. 29, no. 8, pp. 1063{1064, 1990.14
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