
Dynamic Recon�guration ofDistributed ApplicationsChristine R. HofmeisterDepartment of Computer ScienceUniversity of MarylandCollege Park, MD 20742AbstractApplications requiring concurrency or access to specialized hardware are naturallywritten as distributed applications, where each software component (module) can ex-ecute on a di�erent machine, and modules interact via bindings. In order to makechanges to very long-running applications or those that must be continuously avail-able, we must dynamically change the application. Dynamic recon�guration of adistributed application is the act of changing the con�guration of the application asit executes. Examples of con�guration changes are replacing a module, moving amodule to another machine, and adding or removing modules from the application.The most challenging aspect of dynamic recon�guration is that an application in exe-cution has state information, both within the modules and within the communicationchannels between modules. This state information may need to be transferred fromthe old con�guration to the new in order to reach an application state compatiblewith the new con�guration. Thus, in addition to requiring a mechanism for changingthe con�guration during execution, dynamic recon�guration requires that modulesbe able to divulge and install state information, and requires a mechanism for coor-dinating the communication during recon�guration. Prior to this work, all systemssupporting some form of dynamic recon�guration have given the application program-mer no support nor even guidelines for capturing and restoring an application's stateinformation. We have developed a machine-independent method for installing thisfunctionality in the application, given a set of recon�guration points designated bythe programmer. This new technique has been implemented as part of the generalframework we have developed to support dynamic recon�guration of distributed ap-plications. These recon�guration capabilities were implemented on top of existingoperating systems and compilers, requiring no modi�cations to either. They supportdynamic recon�guration for applications composed of mixed languages, communicat-ing via message passing, running on a heterogeneous distributed platform.This research was supported by the National Science Foundation under contract NSF CCR-9021222. This paper is the author's PhD dissertation, as supervised by James M. Purtilo.1

Chapter 1IntroductionDynamic recon�guration of a distributed application is the act of changing the con�gurationof the application as it executes. Dynamic recon�guration is needed in order to make changesto very long-running applications or those that must be continuously available. Examples ofcon�guration changes are replacing a software component (module), moving a module to anothermachine, and adding or removing a module from the application.The most challenging aspect of dynamic recon�guration is that an application in execution hasstate information, both within the modules and within the communication channels betweenmodules. This state information may need to be transferred from the old con�guration to the newin order reach an application state compatible with the new con�guration. Thus, in addition torequiring a mechanism for changing the con�guration during execution, dynamic recon�gurationrequires that modules be able to divulge and install state information, and requires a mechanismfor coordinating the communication during recon�guration.We view a software application as being a system of interoperating processes, where each processis implemented by one module, i.e., a collection of individual data and program units. Moduleinterfaces that are bound to one another represent communication channels between the processes.These communication channels, or bindings, together with the modules themselves, comprisethe application structure. The application's geometry describes how this structure is mappedonto a heterogeneous distributed architecture. Within this distributed application framework,programmers need reliable techniques for managing three general types of changes:Module implementations: The system's overall structure remains the same, but a user mayrequire alteration to one of the individual modules. For example, experimenters may wishto replace some program unit with another that implements a di�erent algorithm, in orderto study the impact on performance; system administrators may wish to replace or repairdevice drivers without loss of service; and software engineers, responsible for enhancing along-running program, may need to extend an application's functionality without losingpersistent state within the executing program.2

eatingthinking

hungry

hungry

Christine

Jack

Liz Jim

right left

right

left

rightleft

right

left

Figure 1.1: The Dining Philosopher Problem.Structure: The system's logical structure (also called either the modular structure or the topol-ogy) may change. The bindings between module interfaces may be altered, new modulesmay be introduced, and other modules may be removed. Of course, structural changes mayin turn require alterations to the implementation of modules, as described above. Usersmay introduce entirely new capabilities to an existing application.Geometry: The logical application structure may remain �xed, but the mapping of that struc-ture onto a distributed architecture | that is, the geometry | may change. Geometricrecon�guration is useful for load balancing, software fault tolerance, adaptation to changesin available communication resources, and relocation of processes in order for them to accessguarded resources.To illustrate these requirements, we shall introduce an example, a distributed version of the well-known dining philosophers problem. The dining philosophers problem is a resource allocationproblem in which mutual exclusion must be preserved and resources must be allocated fairly.The resources in this case are forks, each of which is shared between a pair of philosophers. Thegroup of dining philosophers is seated around a circular table with a single fork between eachpair (Figure 1.1, left). Each diner thinks for a while, then gets hungry and tries to eat. In orderto eat, a diner must have exclusive use of its two adjacent forks, so no neighboring philosopherscan eat at the same time. After eating, the diner returns to thinking, thus beginning the cycleagain.Our implementation of this problem uses the decentralized algorithm developed by Chandy andMisra [10]. The details of this algorithm are not critical to our purpose here, so we show onlythe pseudo-code for a diner in Figure 1.2. Our original example has four diners, each a separateprocess, passing forks and requests for forks on bindings between pairs of diners (Figure 1.1,3

initialize diner state to HUNGRY;initialize left fork state;initialize right fork state;main() fif (status is special) set initial values so that graph is acyclic;while (1) fupdate left fork state;update right fork state;if (HUNGRY and conditions are right) start EATING;else if (done EATING) start THINKING;else if (done THINKING) become HUNGRY;gg Figure 1.2: Pseudo-code for diner.c.right). Because the algorithm is decentralized, the protocol for sharing forks is contained in eachdiner, and is based entirely on a diner's local state.We illustrate this problem on an existing distributed programming system, Polylith [27]. Inorder to run this example on a heterogeneous network using Polylith, the user provides an appli-cation speci�cation, a simple description of the application's modular structure. The applicationspeci�cation describes the attributes of each module, including its interfaces, and de�nes thebindings between them. Given an application speci�cation and implementations for the modules,Polylith is responsible for packaging and invoking processes, and for coercing data represen-tation, synchronization, and marshalling of data during communication. Figure 1.3 shows theapplication speci�cation for the diner example.We can now describe each of the possible forms of recon�guration in terms of this example:Module implementations: An example of individual module recon�guration is to replace oneof the diners with a verbose diner, one that displays detailed information about its activities.Whereas the original diner says only whether it is eating, thinking, or hungry, the verbosediner also provides information about the forks and requests for forks. In order to performthis replacement without losing the fair allocation and mutual exclusion properties of theapplication, the old diner's state information must be used to initialize the verbose diner.Structure: One way to change the structure of this application is to add a new diner. Again,in order to preserve the mutual exclusion properties, the new diner must be initialized with4

service "diner" : {implementation : { binary : "/world/Users/crh/diner.out" }algebra : { "STATUS=($S)" }client "left" : { string } accepts { string }function "right" : { string } returns { string }}orchestrate "diners" : {tool "Jim" : "diner $S=special"tool "Christine" : "diner $S=regular"tool "Liz" : "diner $S=regular"tool "Jack" : "diner $S=regular"bind "Jim left" "Christine right"bind "Christine left" "Liz right"bind "Liz left" "Jack right"bind "Jack left" "Jim right"} Figure 1.3: Application Speci�cation for Dining Philosophers.appropriate state information. But in this case the new diner's initial state is based on thestate of its two future neighbors.Geometry: An example of geometric recon�guration is to move a diner from its originalhost to another host. If both hosts are of like architecture and operating system, thenthe migration is a straightforward engineering operation. However, heterogeneity defeatsexisting migration techniques. To deal with this problem, we use the same technique as forchanging a module implementation: we capture the diner's state before removing it, thenuse that state information to initialize a new version created on the target machine.There are a large number of activities that must be coordinated before a user can begin to captureand manipulate the state of a running process. Any environment to support general dynamicprogram recon�guration in the presence of heterogeneity must meet the following requirements:1. Communication across heterogeneous hosts: Especially because of the presence ofheterogeneity of architectures and languages, programmers need a reliable way to coercethe representation of data that is transmitted during both normal communication and anyrecon�guration.2. Current con�guration is accessible: Users must have a notation for identifying theprogram components or attributes that they wish to recon�gure, and they must be able tovisualize the current state and geometry of a running program. Because the con�gurationis no longer static, users cannot reliably recon�gure a program without understanding whatprocesses are currently being employed and where they are running.5

3. Bindings are not compiled into modules: In order to isolate the locality of dynamicchanges, modules should not explicitly name the other modules with which they communi-cate. To do so would require that modules be replaced simply because their bindings hadchanged.4. No covert communication among modules: The execution environment must ensurethat all communication between processes can be controlled by the external agent responsi-ble for recon�guration. If processes are allowed to communicate by a private channel, thena subsequent recon�guration involving one of the processes may fail to update all depen-dencies | as a result, a module may �nd itself trying to access a non-existent resource.5. Ability to add and remove modules and bindings: The execution environment mustprovide a mechanism for manipulating the application components dynamically. The ba-sic operations are to add and remove modules and bindings; other operations, such asreplacement, can be built from these basic operations.6. Access to messages in transit: When changes are made dynamically, there may be mes-sages in transit across bindings. These must either be accessible to the recon�gurer, or theremust be a mechanism for ensuring that no messages are in transit during recon�guration.7. Mechanism for synchronizing activities: When dynamic recon�guration activitiesinvolve more than one module, changes may need to be synchronized so that applicationproperties (such as freedom from deadlock) are preserved.8. Access to module's state information: The dynamic recon�guration mechanism mustensure that all relevant information characterizing a process is captured and represented.This can include state information that is cached on behalf of the process in the underlyingoperating system. The primary example of this type of information is the table of open �ledescriptors that the operating system maintains for each process.Our approach to meeting the above requirements is to build upon the existing Polylith softwareinterconnection system [27]. Polylith provides users with an environment for easily constructinglarge (and possibly distributed) applications for use in heterogeneous execution environments. Forthese reasons, Polylith is a natural platform for recon�gurable applications.The Polylith bus organization satis�es our requirements concerning coercion of data's rep-resentation in a heterogeneous system. The bus manages data transformation during normalcommunication, and this same coercion mechanism serves to relocate the process state on otherhosts.The design philosophy of Polylith separates the con�guration of the application (as in Figure1.3) from the implementation of the modules (Figure 1.2). This con�guration information directsthe application start-up, and is accessible at run time for directing dynamic changes. In addition,bindings are given as part of the con�guration information, and are hidden from the particularmodule implementations. Thus dynamic binding changes are done at the con�guration level, notwithin the modules. 6

The bus abstraction also helps assure programmers that processes do not communicate by privatechannels. All modules built using the Polylith system will only communicate via the bus. Thebus protocol noti�es each process of its symbolic name, but never passes it an `absolute' namefor other modules. Since, by design, no application component communicates directly with othermodules, these components cannot be a�ected by recon�guration of other modules. Once a newversion of a module has been created, the bus directs subsequent communication to the newversion, abandoning the old version.Thus the �rst four requirements for a recon�guration environment are met by the Polylithsystem. The remaining four items were not originally supported by Polylith. Our approachwas to supplement the original Polylith system by adding recon�guration primitives to supportitems 5. (add/remove modules and bindings), 6. (access messages in transit), and 7. (synchronizerecon�guration activities). These new facilities are described in Chapter 2.The last two items in the list of requirements are the most challenging. First consider a geometricchange: this case amounts to replacing an executing module with the same module, perhapscompiled for a di�erent architecture. The process state of the module must be captured in anabstract format, transferred to the other machine, then restored in the new module. A moduleimplementation change is also a form of replacement, but in this case the process state must betransformed into a state appropriate for the new implementation of the module.The main contributions of this work are in providing support for module participation duringdynamic recon�guration. We have de�ned an approach to capturing and restoring persistentstate that is supported by the recon�guration primitives, and discovered a machine-independentmethod for capturing and restoring the activation record stack. Chapter 2 covers module re-placement when the process state can be ignored, and Chapter 3 describes how modules canparticipate during recon�guration by capturing and restoring their process states.With replacement, synchronization is not a signi�cant problem because only one module is in-volved. Structural changes may also require capturing and restoring the process state, but thesechanges may in addition require synchronizing the recon�guration activities among several mod-ules. Chapter 4 explores di�erent approaches to synchronizing dynamic recon�guration. The�nal chapter summarizes this work, and the appendix contains a detailed description of the newrecon�guration primitives described in Chapter 2.
7

Chapter 2Application-level ReplacementActivitiesIn this chapter, we de�ne the recon�guration primitives needed to perform general dynamicrecon�guration. These recon�guration primitives operate at the application level: they provideall services that take place outside the modules. We show how these are used for replacement ina simple Producer/Consumer example, where the module state does not need to be captured orrestored. Finally, we describe a recon�guration catalyst, a special module that can be installedin any application to provide dynamic replacement of other modules. The catalyst is built fromthe recon�guration primitives.2.1 Dynamic Recon�guration PrimitivesThe recon�guration primitives are extensions to Polylith system; they provide application-levelsupport for recon�guration tasks by allowing users to suspend communication between modulesduring recon�guration, alter the con�guration of the application, and transfer state informationfrom one module to another. A particular dynamic recon�guration activity, such as replacement,consists of a sequence of these primitives, and can be initiated by any module of the application,or by a third party. Figures 2.1, 2.2, and 2.3 show the three groups of recon�guration primitives,which use the same approach to applying changes: �rst get a capability for applying the change(mh obj cap, for example), next make a series of edits to describe the change (mh edit ...), thenapply the change atomically (mh chg obj).First we examine the primitives that change the application con�guration (Figures 2.1 and 2.2).Since an application is composed of modules and bindings, it is natural to describe recon�gurationin terms of changes to these modules and bindings: speci�cally, adding and deleting modules andbindings.In addition to operations for making con�guration changes, the recon�guration framework must8

mh obj cap(&m,n) Get capability to module n(&m,NULL) Get capability to a new modulemh edit if(&m,"add",if) Add speci�ed interface to &m(&m,"del",if) Remove speci�ed interface from &mmh edit objattr(&m,"add",attr,val) Add or replace attribute value for &m(&m,"del",attr,NULL) Remove speci�ed attribute from &mmh edit ifattr(&m,"add",if,attr,val) Add or replace attribute value for interface if of &m(&m,"del",if,attr,NULL) Remove attribute from interface if of &mmh chg obj(&m,"add") Add module &m(&m,"del") Remove module &mFigure 2.1: Polylith Recon�guration Primitives for Altering Modules
mh bind cap (&b,appl) Get capability for altering bindings in applmh edit bind(&b,"add",n1,if1,n2,if2) Add binding between interfaces n1 if1, n2 if2(&b,"del",n1,if1,n2,if2) Delete binding between n1 if1, n2 if2(&b,"cpo",n1,if1,n2,if2) Copy messages queued for n1 if1, n2 if2(&b,"rmq",n1,if1,NULL,NULL) Remove messages queued for n1 if1mh rebind (&b) Apply all binding changes speci�ed in &bFigure 2.2: Polylith Recon�guration Primitives for Altering Bindings9

mh hold cap (&h,appl) Get capability for holding objectsmh edit hold(&h,NULL,n,if) Hold interface if of module n(&h,"obj",n,NULL) Hold module nmh hold (&h) Apply all holds speci�ed in &hmh rlse (&h) Release all holds speci�ed in &hmh objstate move Induce &m1 to divulge its state via if1(&m1,if1,&m2,if2) and forward it to &m2 if2Figure 2.3: Primitives for Synchronizing Recon�gurationprovide operations for synchronizing recon�guration activities. If a binding is deleted while amessage is in transit, the message may be only partially transmitted. Another potential problemarises with multiple binding changes: if a module has multiple interfaces, these must be reboundsimultaneously so that messages on these interfaces are consistent with each other.The group of primitives in Figure 2.3 provides synchronization for recon�guration by holdinginterfaces or modules at the application level. When a hold is applied to an interface, the moduleattempting communication over that interface is blocked. Similarly, a held module is blockedupon attempting any Polylith bus service. One of the parameters of mh edit hold indicateswhether unread messages will be moved to another interface.The synchronization operations allow us to hold a group of interfaces, perform the recon�guration,then release the same group. Holding a group of interfaces \freezes" portions of the application ina consistent state, allowing modules to continue execution, but preventing communication withother modules along those held interfaces.Purely structural changes (adding or deleting modules, and changing bindings) can be done with-out any support from within the modules' implementations. But many recon�guration changesinvolve changes at the module level, either to replace the implementation of the module, or tomove the module to another host. These module-level changes require the module's participationin capturing its process state. In order to coordinate the module-level activities, the recon�gu-ration framework includes an operation that signals a module to divulge state information on aparticular interface, then moves that state information to an interface of another module. Thismh objstate move operation will be described in Chapter 3, when we describe how to captureand restore module state.2.2 The Producer/Consumer ExampleIn this section, we introduce a simple Producer/Consumer application in order to demonstrate the10

producer()s = next input stringWhile (s is not the empty string) dosend s on the \produce" interfaces = next input stringend whileend producerconsumer()while (true) doreceive message s from the \consume" interfacewrite s to outputend whileend consumer Figure 2.4: Modules for the Producer/Consumer Problem
Consumer1Producer1Figure 2.5: Initial Con�guration for the Producer/Consumer Applicationrecon�guration primitives. This application is an example of replacement where the module doesnot have to be captured and restored. In the application's initial con�guration, a producer moduleaccepts a character string from standard input and writes the string to its outgoing interface,repeating this until an empty string is entered to terminate the application. A consumer modulereads a character string from its incoming interface and writes it to standard output, and repeatsthis until the producer terminates. Pseudo-code for these two modules is shown in Figure 2.4.Initially, the outgoing interface of the producer is bound to the incoming interface of the consumer.(The graphic representation of our initial con�guration is shown in Figure 2.5.) Polylith bu�ersmessages on the binding between these two interfaces; thus the consumer has no internal bu�er,and the producer does not synchronize with the consumer.The application speci�cation for the Producer/Consumer example is shown in Figure 2.6. Itde�nes an application consisting of two modules, a producer and a consumer, bound togetheron their corresponding interfaces.The producer or consumer module can be replaced with a module on another machine or amodule that uses a di�erent binary. The structure of the application does not change during thisrecon�guration, but a new module must be created and bound into the application, then the oldmodule must be deleted. Figure 2.7 shows how the recon�guration primitives are used to replacethe consumer module of the Producer/Consumer application.11

service "producer" : {implementation : { binary : "./producer.out" }source "produce" : { string }}service "consumer" : {implementation : { binary : "./consumer.out" }sink "consume" : { string }}orchestrate "application" : {tool "producer1" : "producer"tool "consumer1" : "consumer"bind "producer produce" "consumer1 consume"} Figure 2.6: Application Speci�cation for the Producer/Consumer Problemmh_obj_cap (&old,"consumer1");mh_obj_cap (&new,"consumer1");mh_edit_objattr (&new,"add","BINARY","./consumer2.out");mh_hold_cap (&h,"");mh_edit_hold (&h,NULL,"producer1","produce");mh_edit_hold (&h,NULL,"consumer1","consume");mh_hold (&h);mh_bind_cap (&b,"");mh_edit_bind (&b,"del","producer1","produce",&old,"consume");mh_edit_bind (&b,"add","producer1","produce",&new,"consume");mh_edit_bind (&b,"cpo",&old,"consume",&new,"consume");mh_rebind (&b);mh_chg_obj (&new,"add");mh_chg_obj (&old,"del");mh_rlse (&h); Figure 2.7: Recon�guration Events for Replacing the Consumer12

(1)

Consumer1Producer1

Consumer2

Consumer1Producer1

(2)

Consumer2

Consumer1Producer1

(3)

Consumer2

Producer1

Consumer2

(4)Figure 2.8: Replacing the ConsumerOur basic rebind operation allows us to move messages bu�ered on a binding to another binding,and to rebind a group of bindings atomically. We need both these features for this recon�guration:we must move any messages on the old binding to the new binding before deleting the old; andwe must delete the old binding and add the new at the same time, to avoid a temporary state ofhaving two bindings between producer and consumer or having none. Because reading from andwriting to an interface are also atomic operations, the rebind occurs between sending or receivingmessages; rebinding will never happen while a message is being sent or received.The timing of a replacement recon�guration is critical because a module is being deleted fromthe con�guration. In fact, we cannot delete a module at an arbitrary time and guarantee thatno data will be lost during the recon�guration. If we want to be able to interrupt the moduleand do the recon�guration immediately instead of waiting for the module to reach a desirableprogram state, we must relax our correctness requirements. Inconsistencies are allowed duringrecon�guration, as long as consistency returns when the recon�guration is complete.One inconsistency that can appear in this application is that recon�guration can occur after theconsumer has received its input string but before it has written that string to standard output.The new version of the consumer is created and bound to the producer, and the old version isdeleted along with the string that it had not yet displayed. We could wait for a while beforedeleting the original consumer, giving it time to write the string, but how long do we wait? Nolength of time will be long enough for all cases, except an in�nite wait. An in�nite wait is notacceptable; it is not practical to keep all former versions of a module running throughout the lifeof an application.Although there is a chance that messages will be lost if a module is interrupted for replacement,once the old version of the module has been deleted, the replacement is complete, and the13

application again works correctly.2.3 The CatalystWriting the detailed sequence of steps needed to replace a module is a tedious task, prone tominor errors when done manually. This task is automated with the catalyst module, whichexamines the current con�guration of the application in order to determine how to bind thenew module to existing ones. The catalyst can replace more than one module at a time; inthe Producer/Consumer example, both the producer and the consumer can be replaced at onetime. Thus a new module may be bound to an existing module or to a new module, dependingon which modules are being replaced. To decide where a new module should be bound, thecatalyst examines the original bindings: if the module it was originally bound to is also beingreplaced, the catalyst binds the new module to its corresponding new module. Otherwise, ifthere is no change to the module to which it was originally bound, the catalyst binds the newmodule to the original.The catalyst is built from the basic recon�guration operations discussed in Section 2.1. It ispart of the resulting software application but remains inactive until a recon�guration is requested.At such a time, the catalyst performs the requested recon�guration, then reverts to its inactivestate until another recon�guration is requested (Figure 2.9).Using a catalyst, the recon�guration described in the previous section is done by entering\replace consumer1." The catalyst asks for a binary and site for the new module, creates anew version of the module (at the new site if one is speci�ed), moves all bindings from the oldversion to the new, deletes the old version, and starts the new version. The site speci�es themachine where the module will execute; if no site is speci�ed, the new module will run on thesame machine as the original consumer module.In this chapter, the catalyst was used for replacement without module participation, but wewill show in Chapter 3 that it works equally well when module participation is required. Thecharacteristics of the Producer/Consumer application suggest general characteristics of modulesthat are recon�gurable without any participation from the application modules:� The module's program state, including both data structures and program counter, can besafely discarded during recon�guration. As an example, in an application where the modulecontinuously provides updated information and an occasional lost message can be tolerated,that module can be replaced without its participation.� The module requires no special initialization when it is created dynamically. Modules thatmust restore data passed from the old version do not qualify, nor do modules whose statedepends on other modules. In an application where a module shares a token with others,we can discard the program state of one of these modules during replacement, but thenew module must be initialized using state information from the others in order to reach aconsistent application state after recon�guration.14

M � f m j m is a recon�gurable module gmi � interface i of module mR � the set of modules replaced, where R � MR0 � the set of modules addedEach time through the loop, M is replaced by (M - R) [R0catalyst()Loop in�nitelyget R- -for each m 2 R(1) get name, binary, site for m0create m0- -for each m0 2 R0for each interface m0i(2) �nd the rj that mi is bound toif r 2 Rthen bind m0i to r0jelse bind m0i to rj- -for each m0 2 R0(3) start up m0remove m- -end loopend catalyst Figure 2.9: catalyst: the Recon�guration Module
15

� There is no synchronization between the recon�gurable module and its neighbors. Forexample, modules that use a procedure call/return protocol do not �t this characteristic. Ifthe client module is waiting for a return message from the server module when the server isinterrupted for replacement, the new server will not give the expected return message andthe client will deadlock.While most applications will not be as simple as the Producer/Consumer example, many appli-cations will contain individual modules that can be replaced without module participation. Onegeneral type of producer is a module that serves as an interface for gathering real-time data. Amodule that continuously sends out temperature, pressure, or load data can usually be replacedwithout module participation.

16

Chapter 3Module Participation duringReplacementDynamic recon�guration may require a module's participation in one of the following ways:� A module may need to divulge its program state, for initializing another module afterrecon�guration. The program state can include things such as data structures, programcounter, and other run-time information.� A module may need to perform special initialization when it is created dynamically.During replacement, the new module may need to be initialized so that it has the sameprogram state as the original module. A newly created module may need to initialize itsstate based on the current state of other modules in the application.� Instead of allowing recon�guration at any time, a module may need to delay the recon�g-uration until it reaches a program state where application consistency can be maintained;this state is the recon�guration point.Current research recognizes that a general solution to dynamic recon�guration requires moduleparticipation. The dynamic recon�guration environment provided by Conic [22] [23] supportsthe application-level recon�guration activities of adding or deleting modules and the bindingsbetween them, but requires the programmer to manually adapt a module to participate duringrecon�guration. The recon�guration framework of Conic is separated into con�guration-levelconcerns and application-level concerns. Con�guration-level activities are independent of thealgorithms, protocols, and states of the application, and are guaranteed to leave the system in aconsistent state (where consistency is de�ned in terms of the application). To ensure consistencyafter recon�guration, the modules in the application must be programmed to respond to thecon�guration level commands unlink, link, and passivate, corresponding to the three types ofmodule participation listed above. 17

There are other distributed environments that support limited recon�guration, namely replace-ment, and these also require the programmer to provide module participation. Durra [5] [6]and Argus [7] have facilities for incorporating fault tolerance into an application, and they usethese facilities to help support dynamic recon�guration. But even with these facilities, moduleparticipation must be written by the programmer in order to perform recon�guration. In Durra,module participation is required when recon�guration is triggered by a raise signal call. InArgus, there are two di�erent methods of replacement. One method uses the same approachwe take: encode and decode operations are used to support module participation. The otherapproach requires the user to transfer state from an old guardian (module) to a new one.Podus, the updating environment described in [15], requires that module participation be pro-vided by the programmer when program state must be transferred from an old version to anew one. The other aspect of module participation, that of delaying the recon�guration untila suitable time, is handled outside the module, by invoking replacement only when the moduleis inactive. This approach is feasible only because interactions among modules are restricted toprocedure-call semantics and calling cycles are disallowed.3.1 Abstract Process StateTo support general dynamic recon�guration activities, the characterization of the process statemust be in an abstract format. On a multiprogrammed computer, programs are continuallyswapped into and out of main memory, and with each swap a process state must be saved andanother restored. This capture/restoration of process state is machine-speci�c, but it serves as amodel for an abstract characterization of the process state. Assuming a static-scoped languageand single-threaded modules, the items comprising a process state are:� program counter� static data{ in data area� dynamic data{ in activation record (AR) stack� temporary values{ in registers or AR stack� procedure call/return information{ in AR stack� return address� control link to restore context upon return� register values to restore upon return� user-allocated data{ in heap� �le descriptors, process status information{ accessible only to kernelThe temporary or intermediate values used when a statement in a high-level language is compiledinto multiple machine language statements may not be compatible with the values used whencompiling into a di�erent machine language. Thus the abstract program state must be capturedbetween high-level statements. In addition, optimizing compilers sometimes cache variables inregisters to reduce the number of writes to memory. Our approach is to let the compiler handlereferencing these variables correctly. 18

abstract
AR stack

source
code

machine A
compile

A −> abs

abs −> A

B −> abs

abs −> B

process
executing
on A

machine B
compile

process
executing
on BFigure 3.1: Obvious Approach to Capturing and Restoring the Abstract Process StateBecause the process status information is machine-speci�c, we do not attempt to restore thisinformation in the new process. File descriptors are an essential part of the process state, butthis information is usually accessible only to the kernel of the operating system, so we do notautomatically capture them at this time. The data stored in the heap is dynamically allocatedby the programmer. At the present time, the programmer must write code to capture and restoreheap data structures and to regain access to �les.When a process executes a procedure call, the process state makes a logical \context switch" bypushing a new frame onto the activation record stack. This new activation record contains theprocedure parameters, variables local to the procedure, and various pointers for accessing non-local variables and for restoring the old context after the procedure completes. Upon returningfrom the procedure, the topmost frame is popped from the activation record stack. Although allstatic-scoped languages follow this approach, the exact format of the activation records dependson the compiler and the architecture of the machine.The obvious approach to capturing and restoring state is to write machine-speci�c programsthat translate the run-time stack and data areas into an abstract format, then back to anothermachine-speci�c format (Figure 3.1). Our solution adds a layer of abstraction: these translationprograms are written in a high-level language, namely the same language used to write themodule. Thus all machine-speci�c details are generated by the standard compilers provided withthe machine.The original program is augmented with source-level statements that can capture and restore thedata area and any activation record stack that reaches a recon�guration point. This transformed19

abstract
AR stack

machine A
compile

machine B
compile

A −> abs

abs −> A

process
executing
on A

B −> abs

abs −> B

process
executing
on B

source
code

source −> abs

abs −> source

source
code

dynamic
reconfiguration
transform

Figure 3.2: Our Approach to Capturing and Restoring the Abstract Process Statesource program is compiled in the normal way, resulting in a program that translates a machine-speci�c process state into an abstract format and vice versa (Figure 3.2).3.2 Global Data and the Program CounterOur �rst step in addressing the di�cult problem of capturing and restoring the abstract processstate is to examine the global data and the program counter. In this section, we describe how tocapture and restore the following highlighted items from the list of items constituting the processstate:� program counter� static data{ in data area� dynamic data{ in activation record (AR) stack� temporary values{ in registers or AR stack� procedure call/return information{ in AR stack� return address� control link to restore context upon return� register values to restore upon return� user-allocated data{ in heap� �le descriptors, process status information{ accessible only to kernel20

The approach is described in Section 3.2.1, then in Section 3.2.2 it is applied to the DiningPhilosopher Example introduced earlier. With this example, we show how the catalyst moduleis used for replacement with module participation.3.2.1 Transmitting ADTsAs a �rst step for capturing and restoring the module state, we use the approach for transmit-ting abstract data types (ADTs) presented in [16]. In this work, Herlihy and Liskov extendthe ADT concept to include the new operations encode and decode, which map a particularimplementation of the ADT into an external (canonical) representation and vice versa.In this section, we show how this approach is useful for capturing and restoring global data inthe module state, demonstrating this on a module that implements a stack data type. Figure3.3 shows the basic operations of the stack, push, pop, create, full, plus the new encodeand decode operations. In the Herlihy/Liskov scheme, the encode and decode operations areinvoked in the same way as all other operations; this interface is shown in left half of Figure 3.4.For recon�guration, instead of simply transmitting the ADT, we must transmit the state of theentire module, which includes the state of the program counter. The reasonable place to capturethe state of the stack module is between operations, when it is not servicing a request. So weplace the recon�guration point at the end of the while loop (Figure 3.4(right side)), invokingthe encode operation at this point. The invocation of the encode/decode is not staticallydetermined, as it is in the case of ADT transmission, but is determined dynamically. Eventhough the implementation we have given is not asynchronous, the encode message can arriveat any time. The stack module checks for an encode message at each recon�guration point; thisis equivalent to allowing the encode messages to arrive asynchronously, with the stack moduleimmediately moving to the recon�guration point by �nishing its current operation.For restoring the module state, the module must decode the ADT, then resume execution at therecon�guration point. In order to perform this special initialization, the module checks whether ithas a special status value of clone, and if so, proceeds with the special initialization. This statusattribute is a convenient mechanism for detecting modules that need special initialization, and itis our convention throughout this work. Other mechanisms, such as a command line argument,could also be used.The general format for special initialization is to check the status attribute, and if it has avalue of clone, to restore the data (decode), then jump to the recon�guration point. In thismodule, resuming execution at the beginning of the program is equivalent to resuming at therecon�guration point. Thus we have implicitly captured and restored the program counter bycontrolling where the state is captured and where execution resumes upon restoration.With these recon�guration capabilities installed, this stack module, which implements the stackwith a linked list, could be replaced by a stack module that uses an array implementation.21

/* internal representation */struct inode {char item;struct inode *next; };typedef struct inode *istack;/* external representation */struct xstack {int size; char *item; };encode(i_s,x_s)istack *i_s;struct xstack *x_s;{ int i; istack t;t = *i_s;for (i=0; t!=NULL; i++) {x_s->item[i] = t->item;t = t->next;}x_s->item[i] = NULL;x_s->size = i;send (x_s);}decode(i_s,x_s)istack *i_s;struct xstack *x_s;{ int i;receive (&x_s);create (i_s);for (i=x_s->size-1; i>=0; i--) {push (i_s, x_s->item[i]);}}

push(s,j)istack *s; /* stack can't be full */char j;{ istack t;t = malloc(sizeof(struct inode));t->item = j;t->next = *s;*s = t;}char pop(s)istack *s; /* stack can't be empty */{ char item; istack t = *s;*s = (*s)->next;item = t->item;free(t);return (item);}create(s)istack *s;{ while (*s != NULL) { pop(s); } }int empty(s)istack *s;{ return (*s==NULL); }int full(s)istack *s;{ int i; istack t = *s;for (i=0; t!=NULL; i++) {t = t->next;}return (i==STKSIZE);}Figure 3.3: Stack Operations22

char s[256];char xstack_buf[256];struct xstack x_s={0,xstack_buf};main(argc,argv)int argc;char **argv;{while (1) {if (push requested) ...else if (pop requested) ...else if (create requested) ...else if (empty requested) ...else if (full requested) ...else if (encode requested) ...else if (decode requested) ...}}
char s[256];char xstack_buf[256];struct xstack x_s={0,xstack_buf};int reconfig_requested=0;main(argc,argv)int argc;char **argv;{if (status is clone)decode(s, &x_s);signal(SIGHUP,catch_reconfig);while (1) {if (push requested) ...else if (pop requested) ...else if (create requested) ...else if (empty requested) ...else if (full requested) ...if (reconfig_requested)encode(s, &x_s);}}catch_reconfig(){ reconfig_requested = 1; }Figure 3.4: Two Interfaces for the Stack Module

23

Jim

Jack

Liz

Christine

Jim

Jack
Christine

Liz

Liz
Christine

Jim

Jack Liz

verbose_diner.c

(1) (2) (3)Figure 3.5: Replacing a Diner with a Verbose Diner.3.2.2 Replacing a Dining PhilosopherThe stack example from the previous section demonstrates how the program counter and globaldata can be captured and restored, and in this section we show how this approach �ts into therest of the recon�guration activities for replacement. In the Introduction, we described a scenariowhere one of the diners is dynamically replaced with a verbose diner. Here we give the details ofthis recon�guration activity. The replacement is accomplished by creating a new verbose dinermodule, copying the state from the old diner to the new, binding the verbose diner into theapplication, and removing the old diner (Figure 3.5).The catalyst is enhanced to perform replacement with module participation; it does this byinvoking the mh objstate move recon�guration primitive. Figure 3.6 shows the recon�gurationevents performed by the catalyst, which coordinates application-level changes and moduleparticipation for replacing modules.First the catalyst gains access to the speci�cation for the existing module, in order to determineits attributes and eventually delete the module and bindings. This module speci�cation containsthe same items as those supplied in the original con�guration speci�cation (Figure 1.3), butit corresponds to the current con�guration, which could have been changed dynamically. Afteracquiring access to the old diner and creating a new diner, the new diner is given an updatedBINARY attribute, specifying the implementation of the new diner as a verbose diner, and a STATUSattribute, indicating that the new diner must restore its state upon start up.Next the rebinding commands are prepared. The mh struct objnames command returns an arraycontaining the names of the module's interfaces, which are passed to the mh struct ifdest andmh struct ifsources commands in order to determine the current bindings. Bindings to the oldmodule's interfaces are replaced by bindings to the new module's interfaces of the same name.The rebinding commands are applied all at once, after the old module has divulged its state.The mh objstate move operation signals the old module to divulge its state, waits until the old24

mh_obj_cap(&old,"Liz"); /* access old module */mh_obj_cap(&new,"Liz"); /* create new module */mh_edit_objattr(&new,"add","BINARY","verbose_diner.out");mh_edit_objattr(&new,"add","STATUS","clone");mh_bind_cap(&b); /* prepare binding commands */mh_struct_objnames(&old,if,&num_if);for (i=0; i<num_if; i++) { /* rebind outgoing */mh_struct_ifdest(&old,if[i],bind,&num_bind);for (j=0; j<num_bind; j++) {mh_edit_bind(&b,"del",&old,if[i],bind[j],NULL);mh_edit_bind(&b,"add",&new,if[i],bind[j],NULL);} /* rebind incoming */mh_struct_ifsources(&old,if[i],bind,&num_bind);for (j=0; j<num_bind; j++) {mh_edit_bind(&b,"del",bind[j],NULL,&old,if[i]);mh_edit_bind(&b,"add",bind[j],NULL,&new,if[i]);mh_edit_bind(&b,"cpq",&old,if[i],&new,if[i]);}} /* get state from old module, send it to new */mh_objstate_move(&old,"encode",&new,"decode");mh_rebind(&b); /* apply binding commands */mh_chg_obj(&new,"add"); /* start up new module */mh_chg_obj(&old,"del"); /* remove old module */Figure 3.6: Replacement with Module Participation
25

module has complied, and sends this state to the new module. The old diner sends its processstate on interface encode then blocks inde�nitely. The old diner's state is sent to the decodeinterface of the new diner, which is not yet active. This accomplishes the state transfer from theold module to the new, except for messages that may be queued for the old diner. These queuedmessages are copied to the new diner in the rebinding phase: here the old module's bindings areremoved, bindings for the new module are added, and queued messages are copied from the oldto the new. Now that the state of the old diner and its bindings has been copied to the newdiner, the old module is deleted and the new one is started.Applying the binding changes atomically simpli�es the recon�guration task, both by reducing thenumber of steps required and by making it easier to reason about the recon�guration. Notice thatwe did not need any mh hold primitives in this scenario: the old module blocks after encoding itsstate, e�ectively holding itself. But the modules bound to this old module can continue sendingmessages to it, and without atomic rebinding, we would have to hold both ends of each bindingdestined for replacement.The geometric recon�guration described in the Introduction is to move a diner to another host.This recon�guration is almost identical to replacing a module with another implementation; thedi�erence is that instead of changing the BINARY attribute, we change the MACHINE attribute tospecify a di�erent host name. The Polylith platform, designed to accommodate heterogeneity,handles all underlying details.The recon�guration events shown in Figure 3.6 are a simpli�ed version of the catalyst, whichis parameterized to accept a module name and attributes. We have also left out the details ofdetermining whether to bind the new module to another new module or an existing one. Thecatalyst can be used to replace one or more modules in any application, provided the moduleshave been prepared to participate during recon�guration.We have not yet discussed the old and new diners' participation in this replacement scenario.Figure 3.7 shows the code for diner.c after it has been modi�ed to support state capture andrestoration for replacement. (When comparing this to Figure 1.2, the amount of new code mayseem substantial; but while we abstracted away all details of the original algorithm, we includedthe details of the recon�guration aspects.) To support replacement, the module provides encodeand decode operations to capture and restore its own process state.During recon�guration, themh objstate move(&old,"encode",&new,"decode")command �rst binds the �rst module's encode interface to the new module's decode interface,then signals the �rst module to divulge its state. The diner module is prepared to receive the signalwith procedure catch reconfig() (Figure 3.7), and it turns on the
ag reconfig requested.The purpose of this
ag is to delay the encode operation until the diner reaches a recon�gurablestate. After returning from the signal handler, the diner continues normal execution until itreaches the bottom of the main while loop, where it performs the encode operation and blocks.26

initialize diner state to HUNGRY;initialize left fork state;initialize right fork state;reconfig requested = 0;catch reconfig() f reconfig requested = 1 gmain() fif (status is special) set initial values so that graph is acyclic;else if (status is clone) receive diner state, left fork state,and right fork state on interface decode;signal(SIGHUP,catch reconfig);while (1) fupdate left fork state;update right fork state;if (HUNGRY and conditions are right) start EATING;else if (done EATING) start THINKING;else if (done THINKING) become HUNGRY;if (reconfig requested) fsend diner state, left fork state, and right fork state on interface encode;block;ggg Figure 3.7: Recon�gurable Version of diner.c.
27

By delaying the encode operation, we have in e�ect de�ned the process state to include theprogram counter, with its value set to the end of the loop.Because this diner's encode interface is temporarily bound to the new diner's decode interface,the process state is sent to the new diner. Recall that the �nal recon�guration steps are toremove the old diner and start up the new one. The new diner has a STATUS attribute of clone,so when it is started up, its �rst action is to perform the decode operation. Since the programcounter was at the end of the main while loop when the state was captured, there is no need foran explicit goto the end of the loop; execution resumes at the beginning of the loop.3.3 The Activation Record StackIn the previous section, the variables used in capturing and restoring process state were globaldata, and there was a single recon�guration point, located in procedure main. Next we showhow to capture and restore the module state in the general case, which includes capturing andrestoring local data (data allocated on the activation record stack), and includes recon�gurationpoints located in called procedures.The approach we take is similar to the technique proposed in [31] for heterogeneous processmigration, where by compiling a special program that restores the process state, the authorsforce the compiler to manage the machine-speci�c details of restoring the activation record stack.We use the compiler to restore and capture the activation record stack, without making anychanges to the compiler or operating system.Using this approach we can capture and restore the following highlighted items in the processstate:� program counter� static data{ in data area� dynamic data{ in activation record (AR) stack� temporary values{ in registers or AR stack� procedure call/return information{ in AR stack� return address� control link to restore context upon return� register values to restore upon return� user-allocated data{ in heap� �le descriptors, process status information{ accessible only to kernelThe example in Section 3.3.1 illustrates how this activation record capture and restoration work,Section 3.3.2 explains the algorithm used in the transformation, and Section 3.3.3 describes theDynamic Recon�guration Transform (drt) tool that implements this source-to-source transfor-mation. 28

display

compute

sensor

display

compute

sensor

m
ac

hi
ne

 A

m
ac

hi
ne

 A
m

ac
hi

ne
 B

m
ac

hi
ne

 C

m
ac

hi
ne

 BFigure 3.8: The Monitor Example Before Recon�guration (left); After Recon�guration (right)3.3.1 The Monitor ExampleThe Monitor example is a distributed application containing three modules, each of which can bedistributed to a di�erent machine. The recon�guration performed in this example is to move oneof the modules to another machine while the application executes. The starting con�gurationis shown in Figure 3.8 (left): module sensor produces temperature values at regular intervals,module display requests a value then displays it, and upon request module compute performs acomputation on a group of temperature values and returns the result. In the ending con�gurationshown in Figure 3.8 (right), the compute module has been relocated to another machine.The computation performed in the compute module is merely to average a group of temperaturevalues. However, to best illustrate the mechanism used to capture and restore the activationrecord stack, we have used a recursive algorithm to perform this computation, placing the re-con�guration point within the recursive procedure. Thus moving the compute module duringexecution requires capturing the state of the activation record stack in the midst of these recur-sive calls.The Polylith con�guration speci�cation for this application is shown in Figure 3.9. In additionto the standard information included in an application speci�cation, the recon�guration points(in this case, R) are speci�ed. This could be incorporated into the application speci�cation, butfor now the recon�guration points are speci�ed in a separate �le. The recon�guration pointspeci�ed corresponds to a label R inserted by the programmer into the source code for modulecompute. For the current prototype these labels are unique across all modules in the application,but the recon�guration points could easily be quali�ed by module name and even by procedure29

service "display" {implementation : { binary : "./display.out" }client "temper" : {integer} accepts {^float}}service "compute" {implementation : { binary : "./compute.exe" }function "display" : {^integer} returns {float}sink "sensor" : {^integer}}service "sensor" {implementation : { binary : "./sensor.exe" }source "out" : {integer}}orchestrate "monitor" {tool "display"tool "compute"tool "sensor"bind "display temper" "compute display"bind "sensor out" "compute sensor"}reconfiguration point = RFigure 3.9: Application Con�guration Speci�cationname.The source code for the compute module is shown in Figure 3.10. It loops forever, checkingfor requests on the "display" interface. If one arrives, it recursively computes the average of ntemperature values read from the "sensor" interface. When no requests are pending, it discardsany available temperature values by trivially computing the average of one value.When recon�guration is requested, the compute module executes until it reaches recon�gurationpoint R. Because the recon�guration point is inside the recursive procedure, at recon�gurationtime there will be one or more activation record for this procedure at the top of the stack. Sincethe recursive procedure could have been called from one of three places within the module, thepenultimate activation record in the stack can correspond to any one of these three calls.During recon�guration, it is the responsibility of the module to delay recon�guration until theappropriate point, package up its state, and install state in a dynamically created module. In themonitor example, module compute is moved to another machine, so this module must be prepared30

main(argc, argv)int argc; char **argv;{ int n; double response; void compute();mh_init (&argc, &argv, NULL, NULL);while (1) {/* handle requests for temp */while (mh_query_ifmsgs("display")) {mh_read("display","i",NULL,NULL,&n);/* compute avg of n temps */compute (n, n, &response);mh_write("display","F",NULL,NULL,response);}/* keep sensor buffer clear */if (mh_query_ifmsgs("sensor")) {compute (1, 1, &response);}sleep(2);}}voidcompute(num, n, rp)int num, n; double *rp;{ int temper;if (n<=0) { *rp = 0.0; return; }compute (num, n-1, rp);R: mh_read ("sensor","i",NULL,NULL,&temper);*rp = *rp + ((double)temper / (double)num);} Figure 3.10: Original Compute Module
31

to participate during recon�guration. Our method of providing this module participation is topre-process the source program for the module, adding code to capture and restore the processstate at the recon�guration point speci�ed by the programmer. When the recon�guration pointis located in a procedure other than the main procedure, the state of each procedure in theactivation record stack must be captured and restored.Figures 3.11 and 3.12 show the source code for module compute after the module participationstatements (in slanted typeface) have been automatically inserted. When a recon�guration signalis captured (Figure 3.12), the
ag reconfig requested is turned on, and the module continuesexecuting until it reaches the block of code just above the recon�guration point R. Inside thiscapture block, the reconfig requested
ag is turned o�, the capture stack
ag is set, thestate speci�ed by the programmer is captured, and the procedure returns, thus completing thecapture and pop of the top activation record.The procedure containing the recon�guration point could have been called from one of threestatements, labeled here by L1, L2, or L3. Immediately following each of these three statementsis another capture block. This block is executed when the capture stack
ag is set: it simplycaptures the local state and returns. The di�erences between the capture blocks in the main andthose in procedure compute are that the local state is di�erent, and that the main contains anmh encode() to send the captured state outside the module. The capture block just after L3 willexecute once for each recursive call on the activation record stack. The bottom activation recordis captured and popped by one of the capture blocks in the main.In each of the calls to mh capture, in addition to the local variables, an integer 1, 2, 3, or 4is captured. This integer value corresponds to a label marking the statement where executionshould resume during restoration. Thus these integers represent an abstract program counter.During restoration, the same source program is executed for module compute, but it is assigned astatus such that the
ag mh restoring is turned on. This
ag remains on, triggering the restoreblocks, until the activation record stack has been completely rebuilt. Each restore block restoresthe local state and jumps to the statement where execution should resume, thus restoring theprogram counter. When the �nal activation record is restored, the mh restoring
ag is turnedo�, and execution resumes at the recon�guration point.Since the code for divulging and installing program state is part of the source program, thecompiler takes care of dereferencing variables from the activation record stack and of rebuildingthe activation record stack during restoration. Thus the module thread is captured and restoredwithout explicit reference to the program counter or to any of the call/return information storedin the activation record stack.Because the state is captured and restored between statements in the high-level language, tempo-rary or intermediate values used in a computation are never part of the process state. Variablescached in registers will be correctly captured and restored, because the capture and restore state-ments are embedded in the source program, and the compiler takes care of referencing thesevariables correctly. 32

main(argc, argv)int argc; char **argv;f int n; double response; void compute();mh init (&argc,&argv,NULL,NULL);/* -- begin restore -------- */if (strcmp(mh get status(),"clone")==0) mh restoring=1; else mh restoring=0;if (mh restoring) fmh decode(); mh restore("iif",&mh location,&n,&response);if (mh location==1) goto L1;if (mh location==2) goto L2;gsignal(SIGHUP,mh catch recon�g);/* --- end restore --------- */while (1) f /* handle requests for updated temperature */while (mh query ifmsgs ("display")) fmh read("display","i",NULL,NULL,&n);L1: compute (n, n, &response);/* -- begin capture -------- */if (capture stack) fmh capture("IIF",1,n,response); mh encode();return; g/* --- end capture --------- */mh write("display","F",NULL,NULL,response);gif (mh query ifmsgs ("sensor")) fL2: compute (1, 1, &response);/* -- begin capture -------- */if (capture stack) fmh capture("IIF",2,n,response); mh encode();return; g/* --- end capture --------- */gsleep(2);gg Figure 3.11: Procedure main Prepared for Recon�guration33

void compute(num, n, rp)int num, n; double *rp;f int temper;/* -- begin restore -------- */if (mh restoring) fmh restore ("iiif",&mh location,&num,&n,rp);if (mh location==3) goto L3;if (mh location==4) fmh restoring=0; signal(SIGHUP,mh catch recon�g);goto R; gg /* --- end restore --------- */if (n<=0) f *rp=0.0; return; gL3: compute (num, n-1, rp);/* -- begin capture -------- */if (capture stack) fmh capture("IIIF",3,num,n,*rp);return; g/* --- end capture --------- *//* -- begin capture -------- */if (recon�g requested) frecon�g requested=0; capture stack=1;mh capture("IIIF",4,num,n,*rp);return; g/* --- end capture ----------*/R: mh read ("sensor","i",NULL,NULL,&temper);*rp = *rp + ((double)temper / (double)num);gvoid mh catch recon�g() f recon�g requested=1; gFigure 3.12: Recursive Procedure compute Prepared for Recon�guration
34

3.3.2 Source Code TransformationThe monitor example described in Section 3.3.1 illustrates how the activation record stack iscaptured and restored. This section describes the general technique for transforming a sourceprogram with recon�guration points speci�ed by the programmer into a recon�gurable sourceprogram. Several issues that must be resolved for the general case did not arise in the monitorexample. A program may have more than one recon�guration point; in such a case, the questionis whether each recon�guration point must have its own capture and restore blocks, or all recon-�guration points can share the same capture and restore blocks. A more subtle problem is thepotential discrepancy between the local state used to restore the activation record stack and thelocal state when the original procedure call was made.The static call graph of a program contains a node for each procedure and function in the program,and a directed edge from node a to node b if and only if the source code for procedure a containsa call to procedure b. All nodes in this graph have one or more incoming edges except for thenode corresponding to the main procedure, which has only outgoing edges. Figure 3.13 showsan example program and its corresponding static call graph. (The line numbers Si are uniquein order to simplify the explanation; in practice, the �le name distinguishes between duplicateline numbers.) The static call graph is determined by examining the source program, not byanalyzing its run-time behavior. At any particular time during program execution, the framescontained in the activation record stack correspond to a path in the static call graph originatingat node main. Thus the static call graph describes all possible activation record stacks.Because we allow recon�guration to occur only at recon�guration points and not at any arbitrarypoint in the program execution, when recon�guration occurs, only procedures containing a re-con�guration point can be at the top of the activation record stack. Thus only procedures whichcould be below these on the activation record stack need be instrumented for recon�guration. Interms of the static call graph, only nodes on paths starting at main and ending at a procedurecontaining a recon�guration point are of concern; these nodes and edges de�ne a subgraph of theoriginal static call graph. Each of the procedures in this subgraph, including the main and theprocedure containing the recon�guration point, must be prepared for recon�guration.The �rst step in preparing a program for recon�guration is to augment this subgraph of the staticcall graph. The augmented subgraph, called the recon�guration graph, contains an edge for eachprocedure call, and each edge is labeled with the line number of the call. Thus if procedure maincalls a in two di�erent statements, there are two edges from main to a. The recon�gurationgraph also contains a new node, named recon�g, and an edge from each recon�guration pointto the recon�g node, annotated with the line number of the recon�guration label. In addition,the edges in the recon�guration graph are numbered consecutively, so each edge is labeled (i; Si),where i is an integer and Si is a line number. These edges de�ne the places where the programstate is potentially captured and restored. Figure 3.13 shows the recon�guration graph and itscorresponding program.The second step is to install code to capture and restore the program state. The state may becaptured at various places within the procedure, but it is always restored at the beginning of the35

main() f. . .S1 a(x1). . .S2 a(x2). . .S3 b(x3). . .g a() f. . .R1:. . .S4 b(x4). . .g b() f. . .S5 b(x5). . .R2:. . .S8 c(x8). . .g c() f. . .g
Sample Program

main

a b

c

Static Call Graph

main

a b

reconfig

(7,R1)
(6,R2)

Reconfiguration Graph

1(1,S)

2(2,S)

3(3,S)

5(5,S)
4(4,S)Figure 3.13: Example of Static Call Graph and Recon�guration Graph

36

Capture Block for Recon�guration Edge (j,R):if (recon�g requested) frecon�g requested = 0;capture stack = 1;mh capture (j, local vars);return;gR:Capture Block for Edge (i,Si):Si: f(x);if (capture stack) fmh capture (i, local vars);return;gLi: Figure 3.14: Capture Blocksprocedure. Thus each node in the recon�guration graph will receive a single restore block andone or more capture blocks. For each edge originating at that node, restore code is inserted intothe restore block, and a capture block is installed at the line number associated with that edge.There are two kinds of capture blocks that must be inserted in order to recon�gure. The �rstis used at a recon�guration point, and the second is used to capture the state of the activationrecord stack. The only di�erence between these two types of blocks is that they are triggeredby di�erent
ags (Figure 3.14). The
ag set in the recon�guration signal handler triggers theblocks installed at recon�guration points, and these blocks set the
ag which triggers the blocksinstalled for activation record capture.For each edge terminating at node recon�g, a capture block for that recon�guration point isinstalled immediately preceding the recon�guration label installed by the programmer. For eachremaining edge i associated with statement Si in the recon�guration graph, a label Li is insertedat the statement immediately following Si, and a capture block is installed immediately precedinglabel Li.Notice that a single capture block is installed after each procedure call that could be interruptedby a recon�guration. In our example, main's call to a in line S1 could be interrupted by arecon�guration at R1 (in procedure a) or at R2 (in procedure b). Capturing the state of mainat S1 does not depend on which recon�guration point triggered the capture, so recon�gurationpoints can share capture blocks. 37

if (mh restoring) fmh restore (&mh location, local vars);restore code for each edgegRestore Code for Edge (i,Si):if (mh location==i) ff(x);goto Li;gRestore Code for Recon�guration Edge (j,R):if (mh location==j) fmh restoring = 0;install recon�guration signal handlergoto R;g Figure 3.15: Restore BlockWe have not yet discussed how to automatically determine which variables should be captured inthese capture blocks. At the present time, the programmer provides this information as part ofthe speci�cation of a recon�guration point. For capturing the state of the activation record stack,the relevant variables are the parameters and local variables of a procedure. Data-
ow analysiscould be used to determine the set of live variables at each capture block; variables are live whenthey contain values that will (or might) be used in the remainder of the program. The primarydi�culty in automatically determining which variables to capture arises with pointer variables.Since pointers are addresses, they must be translated into an abstract format for capture andrestoration. For example, a pointer variable containing an explicit address would be translatedinto a variable that points to the nth character of a string located at some symbolic address.A restore block is inserted at the top of each procedure present in the recon�guration graph.Inside this restore block the local state is restored, then there is restore code for each edgeoriginating at that node (Figure 3.15). Again, the restore code for a recon�guration point di�ersslightly from the code for restoring the activation record stack. If the state capture was triggeredby recon�guration point R, then the activation record stack has been completely restored andafter jumping to R, recon�guration is complete. If the state capture was triggered by a returnfrom a procedure call interrupted by recon�guration, then the restore code repeats the procedurecall and jumps to the statement immediately following the original procedure call.38

transformdirectives sortreachcxref awk sort

tool
DRT

Figure 3.16: Dynamic Recon�guration Transform ToolHere arises the question of whether it is acceptable to simply repeat the original procedure callswhen restoring. The local state at the time of the original procedure call is not guaranteedto be the same as the local state at the time it is captured, because the called procedure maychange the values of variables that are visible to the callee. Thus the values of the argumentswhen the procedure is originally called can be di�erent from their values when the procedureis reinvoked during restoration. On the surface this discrepancy appears to be acceptable, sinceduring restoration the �rst action of the called procedure is to restore its own local state, includingall parameter values, so the values of arguments passed during restoration are inconsequential.However, a problem can arise when the arguments are not scalars but are expressions. Whenthe original procedure call is repeated during restoration, these expressions are evaluated withthe restored state, and their evaluation can cause a run-time error that did not arise when theywere evaluated with the original state. The solution to this problem is to not repeat the originalprocedure call, but to modify the call by substituting dummy arguments for expressions whoseevaluation could result in a run-time error. The data types of these dummy arguments aredetermined by the types declared in the parameter list of the procedure.3.3.3 The Dynamic Recon�guration Transform ToolIn this section, we describe the Dynamic Recon�guration Transform (drt) tool, built for per-forming the source-to-source transform. Our goal was to implement the algorithm from Section3.3.2, automating the installation of capture and restore blocks, not automating the entire statecapture.The approach used for the drt tool was to use existing Unix tools (cxref, awk, sort) plussome programs written speci�cally for this transform (Figure 3.16). The primary di�culty ingenerating the static call graph lies in parsing the original source program. To avoid having tolocate or develop an adequate C grammar for one of the standard analysis tools (Yacc, NewYacc),we chose to use the cross-reference information produced by cxref to deduce the static call graph.In addition to being quick to develop, the advantage of this approach is that the parsing matchesthat of the compiler. The drawback to this approach is that the output is line-oriented, givingrise to some restrictions for this prototype: the recon�guration label must be located at the39

beginning of a physical line, and functions that can reach a recon�guration point cannot be usedas expressions (the value returned must be assigned to a temporary variable, which can then beused inside an expression).The output generated by cxref, which is in a report format, is sent through awk in order to putit into a record format. The next step is to extract certain portions of the cross-reference infor-mation. The cross-reference information lists where each variable, procedure, or label is de�nedand used, giving the line number, procedure, and �le for each entry. Thus we can determine theprocedure in which the recon�guration label is located, and all the procedures that can reach it.The custom program reach takes the output of awk, plus the list of recon�guration points, andsaves only the cross-reference information for procedure calls that can reach a recon�gurationpoint.This reachability information is then sorted so that we can generate recon�guration directives ina single pass over the original source program. The directives are generated, one capture directiveand one restore directive for each recon�guration point and for each procedure call that couldreach a recon�guration point.Because the restore directives are grouped together at the beginning of a procedure, while thecapture directives are scattered throughout the procedure (at recon�guration points and at callsto procedures that can reach a recon�guration point), these directives are sorted. Then, inprogram transform, these sorted directives are applied to the original source program in a singlepass, creating the transformed source program.3.3.4 DiscussionThe large body of work on process migration deals mainly with homogeneous process migration,in which the process state is captured in a machine-speci�c format and restored on a machine ofthe same architecture [14]. The main examples of this approach are Amoeba [24], Charlotte [2],Demos/MP [25], MOS [4], Sprite [12], and the V system [32]. Emerald [20] uses the samebasic approach, although here the unit of granularity is an object, not a process. These systemsall rely on an operating system designed or customized to support migration, whereas our goalwas to develop techniques that operate above the operating system. But the most fundamentaldi�erence between the homogeneous process migration work and ours is that they have no needto represent the process state in an abstract format, so their approach to capturing and restoringstate is to copy the executing image.Our approach does not use checkpointing, in which the entire state of the process is saved period-ically, and execution is rolled back to the most recent checkpoint in order to restore the process.Instead, when a recon�guration is requested, the process continues executing until it reaches thenext recon�guration point. Thus the run-time cost is merely that of periodically testing the
ags installed for recon�guration. The cost of capturing the process state is paid only when arecon�guration is performed, instead of at regular intervals during execution.40

Because in checkpointing the run-time cost is that of capturing the process state at regularintervals, and a low run-time cost is desired, work on this topic generally assumes that theprocess state is saved by copying it out to secondary storage [11, 21, 29, 30]. This of coursedepends on the state being restored on a machine of the same architecture and operating system,whereas the focus of our work is to remove those dependencies.In our approach, only the
ags are tested at regular intervals. The frequency of
ag testingdepends on how many recon�guration points are inserted, and where they are placed. In orderfor a module to quickly respond to a recon�guration request, the recon�guration points must belocated within the most frequently executed code. However, for applications with an executiontime on the order of days rather than seconds, placing recon�guration points where they will bechecked regularly is more important than placing them where they will be checked frequently.Putting recon�guration points in deeply-nested procedures or in procedures that are called frommany places increases the occurrence of recon�guration
ags in the source code, but the executioncost due to testing these
ags depends on how often the procedure is actually invoked.By virtue of where a recon�guration point is placed, it could prohibit certain compiler optimiza-tions such as code motion. Because these recon�guration techniques are intended for long-runningor continuously available applications, a recon�guration delay measured in seconds rather thanmicro-seconds may be perfectly acceptable. If so, recon�guration points should be placed outsideof computationally intensive loops or procedures, so that the code executed most often can beoptimized as much as possible.A recon�guration platform supports dynamic updates at a particular level of atomicity: updatescan be atomic at the module level, at the procedure level, or at the statement level. If therecon�guration is atomic at the module level, it means that modules execute atomically withrespect to recon�guration; a module cannot be updated while it is executing. Recon�gurationwithout module participation, as discussed in Chapter 2, is atomic at the module level becausemodule state cannot be captured and restored (although there can be a partial execution of amodule).Podus, a system that supports updates with procedure-level atomicity is described in [15]. Thissystem is restricted to updating a program without moving it from the original machine. Theprogram is updated by replacing each procedure when it is not executing. To maintain consistencybetween the old version and the new during the replacement, the update is performed from thebottom up, by allowing a procedure to be replaced only after all the procedures it invokes havebeen replaced. The implications of this update strategy are that programs written in a top-downstyle will be updated more successfully than those that are not modularized. When changes to theprogram are restricted to the lower-level procedures, updates can be performed quickly, but whenthe higher-level procedures have changed, the update cannot complete until these procedures areinactive. For example, when the main procedure has changed, the update cannot complete untilthe program terminates. When a procedure has some cached state that must be installed in thenew version, the programmer must write a special routine to do this.A platform that preserves atomicity at the statement level could support recon�guration either at41

every statement, or at certain recon�guration points speci�ed by the programmer. We take thelatter approach, as does the recon�guration framework of Conic [23]. In Conic, recon�gurationactivities are separated into con�guration level concerns and application level concerns. Con�gu-ration level activities are independent of the algorithms, protocols, and states of the application,and are guaranteed to leave the system in a consistent state, where consistency is de�ned interms of the application. To ensure consistency after recon�guration, the programmer writescode for the modules to respond to the con�guration level commands passivate, unlink, andlink. These commands correspond to the module-level activities of moving to a compatible state,capturing process state, and restoring process state.In contrast to the Conic work, work by Hollander and Silberman addresses the problem of cap-turing the process state in an abstract format [19]. Although the goal of their work is to supportheterogeneous process migration, not a full spectrum of dynamic recon�guration activities, theMigration/Recovery points they use are similar to our recon�guration points. However, in theirapproach, preparing the process state for migration is done primarily at migrate time, not at com-pile time as in our approach. They cannot do the preparation statically because their approachrelies on examining the activation record stack in order to determine the call chain. Of course, di-rect examination of the activation record stack requires knowledge of its machine-speci�c layout,so this approach is not machine-independent. In this respect, it is similar to the work describedin [13].The method proposed in [31] supports heterogeneous process migration (moving a module)between every possible statement. These migration points are the places where the abstract statede�ned by the high-level source program and the state in the binary correspond. To capture theprocess state at one of these migration points, they propose using a procedural interface to anexisting source-level debugger. At migration time, a machine-independent migration programwould be generated, compiled, and executed on the target machine. The migration program�rst reconstructs global and heap data, then rebuilds the activation record stack by executinga sequence of calls to special procedures, which are modi�ed versions of the procedures in theactivation record stack at migration time. The modi�ed procedures initialize local variables, callthe next modi�ed procedure in the call stack, and arrange to resume execution in the originalprocedure. Thus the details of the code and data translation are hidden in the compilers for eachmachine.This approach is summarized in Figure 3.17. For capturing the activation record stack a sepa-rate, machine-speci�c translation program is required, (as in Figure 3.1), but for restoring theactivation record stack the translation is embedded in the source program (as in Figure 3.2).The main advantages of our work over the technique described in [31] are that the state iscaptured abstractly and that the run-time cost is much lower. Their goal is to support heteroge-neous process migration, requiring that migration points be transparent to the programmer andthat they be available at as many places in the source code as possible. Our goal is to supportdynamic recon�guration: we expect the programmer to be involved in selecting a small set ofrecon�guration points. Because the number of recon�guration points is relatively small, we canprepare the program to capture the process state in addition to restoring it, instead of using one42

machine A
compile

machine B
compile

abstract
AR stack

process
executing
on A

A −> abs process
executing
on Babs −> B

source
code source

code
some
tool abs −> source

Figure 3.17: Theimer/Hayes Approach to Capturing and Restoring the Abstract ActivationRecord Stack
43

technique for capturing process state and a di�erent technique for restoring it. For the samereason, we can prepare the program for all possible recon�gurations when the original program iscompiled. In contrast, Theimer and Hayes prepare the program for one speci�c migration whenthat migration is requested, by generating and compiling the new source program at run time.3.4 Files and the HeapThe approach presented up to this point shows how to capture and restore static and dynamicdata (in the data area and in the activation record stack), procedure call/return information,and the program counter. This includes everything from the list in Section 3.1 except for thefollowing highlighted items:� program counter� static data{ in data area� dynamic data{ in activation record (AR) stack� temporary values{ in registers or AR stack� procedure call/return information{ in AR stack� return address� control link to restore context upon return� register values to restore upon return� user-allocated data{ in heap� �le descriptors, process status information{ accessible only tokernelThe example in this section shows how data from the heap and �les can be captured and restored.This application is a regenerative simulation used for studying disk I/O behavior [9]. This ex-ample was our �rst experience adapting for recon�guration a previously existing application, onethat was developed without any forethought of providing dynamic recon�guration capabilities.The simulation's execution time varies from minutes to hours, depending on the command-linearguments given at start-up. With dynamic recon�guration, a long simulation could be replacedwith a faster version, without losing the work computed by the slower simulation.The pseudo-code for the simulation is shown in Figure 3.18, and the label R indicates our desiredrecon�guration point. The lines in slanted typeface are the capture and restore blocks insertedby the drt tool. Inside these capture and restore blocks the data local to the procedure must becaptured (restored), and the blocks installed in the main procedure must also capture (restore)the global data.After inserting the capture and restore blocks, we examined the program to determine the globaland static data. Figure 3.19 lists the di�erent �les used in this application and the global andstatic data declared in each one. Of the six �les, three contain data that must be captured andrestored (sim.c, reg.c, and sched.fclrp.c). In each of these three �les, we provided encode44

main()f local declarationsrestore blockread cmd line argumentsfor (read increments)for (write increments) fL2: run simulation();capture blockgggrun simulation()f local declarationsrestore blockinitializewhile (more events and termination criteria not met) fswitch (event type) fcase A: ...case B: ...case C: ...event q decap();capture blockR: next service();break;case D: ...ggprintstats();g Figure 3.18: Regenerative Simulation45

sim.c: global data:scalars3 linked list data structures allocated from heapqueue of eventsqueue of disk readsqueue of disk writes2 instances of a simple structure2 �lesrandom number generatorlocal data: scalarsreg.c: static data: scalarssched.fclrp.c: global data: scalarsserv time.c: no global or static datapoisson.c: no global or static datadistr.c: no global or static dataFigure 3.19: Structure of Simulation Filesand decode routines that capture and restore the data declared in that �le. These routines areinvoked in the capture and restore blocks of the main procedure.Most of the global and static variables are simple scalars, which pose no problem when capturingand restoring their values. However, there are three linked list data structures declared in sim.c,and these data structures are allocated from the heap. Our approach to capturing these linkedlists is to traverse the list and transmit each item in the list. For restoring the lists, we readeach item and rebuild the list in the same manner that it was originally built. When the datastructure is implemented with accessors for inserting and removing an item (instead of in-liningthe operations), it is simple to
atten and transmit the data structure. Figure 3.20 shows howone of these linked lists is captured and restored; this particular data structure was implementedwith a queue event operation but no corresponding dequeue event operation, so restoring thelinked list is simpler than capturing it.The two �les used in this program are used for output only, so we capture the �les simply byclosing them, and restore by re-opening them with append. This assumes that the �le systemis cross-mounted when the module replacement is across machines. If cross-mounting were notfeasible, the �le would have to be physically moved to the new machine.The random number generator used in this application is another example of process state that isnot immediately accessible. In restoring the state, if the seed used to initialize the random numbergenerator is the same as the original seed or is given some arbitrary value, then the sequence46

capture:n = 0;e = eventq;while (e != (EVENT *)NULL) ff buf[n] = e->ev time;i buf[n] = e->ev type;e = e->ev next;n++;gsend n, i buf, f buf;restore:receive n, i buf, f buf;eventq = (EVENT *)NULL;for (k=0; k<n; k++) fqueue event (i buf[k], f buf[k]);g Figure 3.20: Capturing and Restoring Data from the Heapof numbers is not random. The state of the random number generator must be captured, andthat state used to initialize the random number generator during restoration. Random numbergenerators generally include such operations, so these would be invoked in the capture and restoreblocks.This example is not intended to imply that we have an automated approach for capturing andrestoring �les and heap data. At this time these must be addressed on a case-by-case basis,but this application demonstrates that they can be successfully captured and restored given therecon�guration primitives we have provided.This application also provided the opportunity to determine the performance impact of installingrecon�guration capabilities in a module. We measured the execution time of the program �rst inits original form and then with the capture and restore blocks installed (but no recon�gurationperformed). There was no detectable di�erence in execution time between the original and thetransformed program, so the run-time cost of testing the
ags guarding the capture/restore blocksis not signi�cant.
47

Chapter 4Structural ChangesAll previous dynamic recon�guration scenarios are examples of module replacement, where mod-ules and bindings may be added and removed, but the net e�ect of the recon�guration is toleave the structure intact. For module replacement, synchronization is of concern only within themodule being replaced: the module's process state may need to be captured and restored so thatits new version interacts correctly with the rest of the application.In this chapter, we discuss examples of dynamic recon�guration where the structure of the appli-cation changes. For these structural changes, the recon�guration activities may require synchro-nization between two or more modules. In addition to requiring the process states of individualmodules to be captured and restored, a structural change may require these process states to becompatible before recon�guration can occur.The three examples in this chapter require di�erent degrees of synchronization in order to per-form a structural dynamic recon�guration. The �rst example, replicating the producer in theProducer/Consumer application, needs no synchronization. The second example, adding a dinerin the Dining Philosopher application, uses the mh hold primitives to synchronize recon�gura-tion activities. The third example, repartitioning in a Jacobi relaxation application, requires themodules to cooperate in moving to compatible states before recon�guring.4.1 Replicating the ProducerGiven the Producer/Consumer application described in Section 2.2, a simple structural recon�g-uration is to replicate the producer module and its binding (Figure 4.1). Replication of a moduleand its bindings is done in three steps, labeled (1), (2), and (3) in the �gure. First a new moduleis created with the same attributes and interfaces as the original, but with a new name. Second,the new module is given the same bindings as the original. The third and �nal step is to start theexecution of the new module. Replicating the producer does not require synchronization becauseno existing module or binding is deleted, changed, or interrupted; we are simply adding a new48

(1)

Consumer1Producer1

Producer2

(2)

Consumer1Producer1

Producer2

(3)

Consumer1Producer1

Producer2Figure 4.1: Replicating the Producer Modulemodule and new binding to the application.The recon�gured application works correctly (works as it would have if the new con�gurationwere the original con�guration) because of certain characteristics of the producer and consumer.The new producer begins execution exactly as desired: it prompts for an input string. It needs nospecial coordination with the consumer because both producers are bound to the same interfaceon the consumer; the consumer need not know that two di�erent modules are sending messagesto it.Because the replacement of a producer or consumer requires no synchronization or state cap-ture/restoration, it is not surprising that replicating the producer is correspondingly simple.However, replicating the consumer is not trivial, because the semantics of this recon�gurationare ambiguous. The producer's messages could be broadcast to both consumers, or they couldalternate between the consumers, or they could be sent randomly to one of the two, etc.4.2 The Uninvited DinerNext we examine a structural change that does require synchronization and state capture/ restora-tion, although this is accomplished in a very di�erent way than for the module replacement ex-amples. In the Introduction, the example we gave of a structural change was to add a diner tothe Dining Philosophers application. This is done by creating a new diner, binding it into theapplication, and giving it an appropriate initial state. One approach to initializing the new dineris to wait until its future neighbors reach some known state, then initialize the new diner accord-ingly. Our approach is instead to initialize the new diner with a composite of its two neighbors'states, as shown in Figure 4.2. The shaded portion of the initial application con�guration (left)corresponds to the state we are capturing. This shaded portion is duplicated to arrive at the�nal con�guration (right). The advantage of this approach is that the new diner can be added49

right
fork
state

left
fork
state

diner
state

right
fork
state

left
fork
state

diner
state

right
fork
state

left
fork
state

diner
state

right
fork
state

left
fork
state

diner
state

right
fork
state

left
fork
state

diner
state

right
fork
state

left
fork
state

diner
state

right
fork
state

left
fork
state

diner
state

right
fork
state

left
fork
state

diner
state

right
fork
state

left
fork
state diner

state
HUNGRYFigure 4.2: Adding an Uninvited Diner.immediately, without waiting for the application to reach some predetermined state.The sequence of events in this recon�guration scenario is shown in Figure 4.3. The new diner isthe same as the original diners, except for its NAME and STATUS attributes. In this recon�gurationwe use the state of two modules plus the state of the binding between them to initialize the newdiner; this composite state must be consistent, meaning that it must re
ect a correct applicationstate. When the mh objstate move primitive is invoked for each neighbor, there is no guaranteethat the two neighbors will divulge their states at the same time. Thus we must freeze a portionof the application before calling mh objstate move, and release it only after the two neighborshave divulged their states. The mh edit hold is applied to the two interfaces within the shadedportion of Figure 4.2; this prevents the two neighbors from making any further communicationuntil these interfaces are released. In addition to removing the existing (bi-directional) bindingand adding two new ones, the binding changes include copying queued messages to the appropriateinterface of the new diner.This recon�guration scenario presents an approach to capturing and restoring process state thatis distinctly di�erent from the case where a diner is being replaced. For replacement, we captureand restore the full state of the module, including the program counter. In order to add a diner,we capture the partial state of two di�erent modules, and do not capture the program counter.But in initializing the new module, we use the two partial states and appropriate default valuesto create a composite state. Figure 4.4 shows what is added to diner.c and verbose diner.cin order to support state capture and restoration for this recon�guration scenario.During recon�guration, the 50

mh_obj_cap (&new,left_neighbor); /* create the new diner */mh_edit_objattr (&new,"add","NAME",newname);mh_edit_objattr (&new,"add","STATUS","composite");mh_hold_cap (&hcap,NULL); /* hold neighbors */mh_edit_hold (&hcap,NULL,left_neighbor,"right");mh_edit_hold (&hcap,NULL,right_neighbor,"left");mh_hold (&hcap); /* bind in new diner */mh_bind_cap (&bcap,NULL);mh_edit_bind (&bcap,"del",left_neighbor,"right", right_neighbor,"left");mh_edit_bind (&bcap,"del",right_neighbor,"left", left_neighbor,"right");mh_edit_bind (&bcap,"add",left_neighbor,"right", &new,"left");mh_edit_bind (&bcap,"add",&new,"left", left_neighbor,"right");mh_edit_bind (&bcap,"add",&new,"right", right_neighbor,"left");mh_edit_bind (&bcap,"add",right_neighbor,"left", &new,"right");mh_edit_bind (&bcap,"cpo",right_neighbor,"left", &new,"left");mh_edit_bind (&bcap,"cpo",left_neighbor,"right", &new,"right");mh_rebind (&bcap); /* get state from neighbors and send it to new diner */mh_objstate_move (left_neighbor,"right_fork_state",&new,"right_fork_state");mh_objstate_move (right_neighbor,"left_fork_state",&new,"left_fork_state");mh_chg_obj(&new,"add"); /* start up new diner */mh_rlse (&hcap); /* release neighbors */Figure 4.3: Recon�guration Events for the Uninvited Diner.
51

initialize diner state to HUNGRY;initialize left fork state;initialize right fork state;catch reconfig() fsend left fork state on interface left fork state;send right fork state on interface right fork state;gmain() fif (status is special) set initial values so that graph is acyclic;else if (status is clone) freceive left fork state on interface left fork state;receive right fork state on interface right fork state;gsignal(SIGHUP,catch reconfig);while (1) fupdate left fork state;update right fork state;if (HUNGRY and conditions are right) start EATING;else if (done EATING) start THINKING;else if (done THINKING) become HUNGRY;gg Figure 4.4: The Uninvited Diner: diner.c.
52

0 1 2

3 4 5

0 1 2

3 4 5Figure 4.5: Jacobi Example with Six Partitions (left); Application Structure (right).mh objstate move (&left neighbor, "right fork state",&new, "right fork state")command (Figure 4.3) binds the two right fork state interfaces together, and signals the leftneighbor to divulge its right fork state. A similar command is directed to the right neighbor.Upon receiving the signal, each diner sends its fork state immediately, then resumes normalexecution. The new diner, with a STATUS of clone, begins by getting each fork state from theappropriate interface. Its initial diner state is de�ned to be HUNGRY, since this state is compatiblewith any combination of fork states. We know that mutual exclusion and fair allocation havebeen preserved because the new module's initial state is consistent with each of its neighbors'states, its diner state of HUNGRY is compatible with its fork states, and after initialization it followsthe same protocol rules as all other diners.4.3 Jacobi RelaxationThe third example of a structural change arises in a scienti�c application that uses a Jacobirelaxation technique for solving partial di�erential equations. The original sequential version issolved by initializing a large matrix, performing a computation on the matrix, then repeatingthis computation for a set number of iterations. This application is amenable to a distributedsolution by dividing the matrix into partitions, each of which executes concurrently as a separatemodule. The modules are connected to each other in a grid pattern, and each module mustswap boundary values with its neighbors at every iteration. For example, the distributed versionwith six partitions has six modules, named "0" through "5", connected by the bindings shownin Figure 4.5. The recon�guration activity we provide is to repartition the data dynamically, bygathering the data from all partitions, then dividing it into new partitions (Figure 4.6).Each module executes the code shown in Figure 4.7. In each iteration there is a communicatephase followed by a compute phase, and the recon�guration point (designated by the label R) islocated at the compute phase. When a recon�guration request is received by a module, it delayssending its state until execution reaches the recon�guration point. Thus when the modules divulge53

0 1

0 1 2

3 4 5 Figure 4.6: Repartitioning the Matrix.
main() fint i;initialize my partition;for (i=1; i<=numiter; i++) fR: send boundary values to all neighbors;receive boundary values from all neighbors;relax();compute error();gg Figure 4.7: Pseudocode for the Jacobi module.54

0 1 2

3 4 5

i=12 i=11 i=10

i=11 i=10 i=9Figure 4.8: Possible Application State for Jacobi Relaxation.their state for repartitioning, they will all be at the same place in the code, at the communicationphase.In all prior examples, delaying recon�guration until the module reaches the recon�guration pointis su�cient for achieving a consistent application state, but this is not su�cient for the repar-titioning example. In the Jacobi application, even though the modules communicate at eachiteration, they are not guaranteed to be executing the same iteration upon reaching their respec-tive recon�guration points.For example, with six partitions (two rows and three columns), the modules could be executingthe iterations shown in Figure 4.8. This is the application state that would result from thefollowing events, assuming that initially all modules are on the 9th iteration, and all have sentvalues to their neighbors:1. modules 0� 4 receive values in the 9th iteration, execute the computation phase, move tothe 10th iteration and send values2. modules 0; 1; 3 receive values in the 10th iteration, execute the computation phase, move tothe 11th iteration and send values3. module 0 receives values from 1 and 3 in the 11th iteration, executes the computation phase,moves to the 12th iteration and sends valuesThus although neighbors can be at most one iteration apart, the iteration distances can accumu-late.If recon�guration occurs when the original modules are on di�erent iterations, then the compositematrix created from those modules is meaningless. All modules must be at the same iterationbefore repartitioning can take place. The recon�gurable state in this application is de�ned to bethe state where all modules are at their recon�guration points, and all modules are at the sameiteration. When recon�guration is requested, the modules must agree upon the iteration at whichthey will divulge their state, then continue normal processing until they reach this iteration.55

int reconfig=0, restoring=0;int global i=-1, found global i=0;catch reconfig() f reconfig = 1; gencode() f send my partition on interface encode; gdecode() f receive my partition on interface decode; gmain() fint i;if (status is clone) fdecode();receive i on interface decode;signal (SIGHUP, catch reconfig);goto R;ginitialize my partition;signal(SIGHUP,catch reconfig);for (i=1; i<=numiter; i++) fif (reconfig) fif (!found global i) fsend my id and i on interface reconfig;receive global i and found global i on interface reconfig;gif (found global i) && (i==global i) freconfig = 0 ;encode() ;send i on interface encode;ggR: send boundary values to all neighbors;receive boundary values from all neighbors;relax();compute error();gg Figure 4.9: Jacobi Module Adapted for Repartitioning.56

Figure 4.9 shows the code for each module, adapted for recon�guration. Once the module hasreceived the recon�guration signal, at every subsequent iteration it checks to see whether it hasreached the recon�gurable state, where the recon�gurable state is de�ned as(found global i) && (i == global i)Until the value for global i has been determined, the module must advertise its own value of iat every iteration.The recon�guration events for repartitioning the matrix are shown in Figure 4.10. After all theoriginal modules have been told to divulge their state, the value of global i is determined by�rst getting the next iteration of every module, then setting global i to the maximum of thesevalues. The value of global i is sent to all modules, which will divulge their state upon reachingthe appropriate iteration. After the state of the old modules has been received, the matrix isdivided into new partitions and sent to the new modules.This application demonstrates another issue that can arise in recon�guration: sometimes therecon�gurable state cannot be determined solely by a module's local state information. Globalstate information may be required in order for a module to determine its recon�gurable state.In this case, �rst the application must determine the appropriate global state at which to recon-�gure, then each module must do its part in establishing that global state before moving to itsrecon�guration point.

57

for (n=0; n < old_num_nodes; n++) { /* get access to old nodes */mh_obj_cap (&(old_caps[n]), name[n]);}for (n=0; n < new_num_nodes; n++) { /* create new nodes */mh_obj_cap (&(new_caps[n]), name[0]);mh_edit_objattr (&(new_caps[n]), "add", "NAME", name[n]);mh_edit_objattr (&(new_caps[n]), "add", "MACHINE", site[n]);mh_edit_objattr (&(new_caps[n]), "add", "STATUS", "clone");mh_edit_objattr (&(new_caps[n]), "add", "CMDLINEARGS", new_args);}for (n=0; n < old_num_nodes; n++) { /* tell old nodes to divulge state */mh_objstate_move (&(old_caps[n]),"encode","filter","decode");} /* determine the appropriate value for global_i, send it to all modules */global i = -1;found global i = false;for (n=0; n < old num nodes; n++) next i[n] = -1;num checked in = 0;while (num checked in < old num nodes) freceive node, i;if (next i[node]==-1) num checked in++;next i[node] = ++i; /* must do at least one more iteration */send global i, found global i to &(old caps[node]);gglobal i = max (next i, old num nodes);found global i = true;for (n=0; n < old num nodes; n++) freceive node, i;send global i, found global i to &(old caps[node]);gfilter_in (N, old_rows, old_cols); /* read state from old nodes */for (n=0; n < old_num_nodes; n++) { /* remove old nodes */mh_chg_obj (&(old_caps[n]), "del");}config (N, new_rows, new_cols); /* bind new nodes to each other */for (n=0; n < new_num_nodes; n++) { /* start up new nodes */mh_chg_obj (&(new_caps[n]), "add");}filter_out (N, new_rows, new_cols); /* send state to new nodes */Figure 4.10: Recon�guration Events for Repartitioning the Matrix.58

Chapter 5SummaryIn extending the Polylith environment with recon�guration primitives, we have corroboratedthe conclusions drawn in [23] about the basic activities that a dynamic recon�guration envi-ronment must support. However, our recon�guration environment supports modules writtenin standard procedural languages (such as C or Pascal), and the Polylith platform supportsheterogeneous languages on heterogeneous machines.The main focus of this thesis is providing support for module participation during recon�guration.To this end, we have �rst de�ned an approach to capturing and restoring global data (the encode,decode operations) that is supported by the recon�guration primitives, and second, discovered amechanism for capturing and restoring the activation record stack that is machine-independent.Given recon�guration points speci�ed by the programmer, we automatically place the captureand restore blocks needed. Within these capture/restore blocks, we know what data should becaptured/restored, although we do not generate the code to capture/restore individual variablesor data structures.Another contribution of this work is exploring the extent of module participation required duringdynamic recon�guration. When replacing a module, module participation is limited to capturingand restoring the local state. When performing a structural change, modules may need access toglobal state information during dynamic recon�guration.It is not realistic to expect to support general dynamic recon�guration without preparing theapplication beforehand (statically). This is in contrast to the approach taken for supportingprocess migration.5.1 Performance IssuesThere are several aspects of performance that arise in dynamic recon�guration. The most im-portant of these is how adapting an application for dynamic recon�guration a�ects the normal59

execution of the application. The techniques described in Chapter 3 for adapting modules toparticipate during recon�guration a�ect normal execution only through the capture and restoreblocks inserted in the module. The contents of these blocks does not a�ect execution speed,because the blocks are entered only when dynamic recon�guration occurs. Thus the capture andrestore blocks a�ect execution speed only via the global
ag used to guard a block.As discussed in Section 3.3.4, the frequency with which these
ags are tested depends on howmany recon�guration points are de�ned, and where they are located. A general guideline for plac-ing recon�guration points is to put them where they will be checked regularly. In the simulationapplication described in Section 3.4, we compared the execution time of the original programwith the execution time of the version adapted for recon�guration, and the performance impactwas not detectable.The placement of the recon�guration points also has an impact on the size of the process statethat must be captured and restored. The set of variables that are live (those containing a valuethat may be needed in the future) at the recon�guration point is a superset of the variables thatmust be captured and restored. However, a reasonable approximation is to capture all globalvariables plus the local variables declared in procedures that can reach the recon�guration point.The size of the process state also a�ects the time it takes to perform dynamic recon�guration,since this process state must be transmitted and installed in another module.The length of time from initiation of dynamic recon�guration until the recon�guration is com-plete depends on the cost of performing the con�guration-level activities, in addition to the timeit takes for modules to move to a recon�gurable state and transmit their process state. In our im-plementation, each module is a heavy-weight process, so the cost of creating and deleting modulesreduces to the cost of creating and killing processes. Bindings are logical entities mapped ontoa single physical connection (a socket), so the cost of rebinding depends mainly on the numberof modules involved, not the number of logical bindings between modules. In addition, many ofthese con�guration-level activities can occur while the modules are moving to a recon�gurablestate and divulging their process state.5.2 Open ProblemsBefore concluding, we describe some of the open problems in dynamic recon�guration. One ofthese is the problem of automatically determining what type of recon�guration activity should beinstalled in an application, and what conditions should trigger the recon�guration. An exampleof this is determining when a module should be moved and where it should be placed in order tosupport load balancing.Another issue outside the scope of this thesis is determining what the semantics of the applicationrequire for a recon�gurable state. We have shown an example where each module needed globalstate information in order to establish a recon�gurable state (the Jacobi relaxation example).For other applications, moving to the recon�guration point is su�cient, but the location of therecon�guration point must be determined. Other applications can lie between these two extremes,60

perhaps needing the cooperation of one other module in order to establish the recon�gurable state.Although we have developed a tool that performs all application-level activities for replacing amodule in any application (the catalyst), we have not attempted to provide a similar tool forperforming arbitrary recon�guration activities, such as changing the structure of the applicationin some way. Thus another open problem is �nding a general way to support structural changesin which module participation requires access to the global state.It is our conviction that much remains to be learned by applying existing dynamic recon�gurationtechniques and approaches to real applications. This experience is essential for the areas ofresearch we have just described.In order to study module participation during dynamic recon�guration, we use a statically-scoped procedural language, C. Our reason for focusing on this type of language is the prevalenceof statically-scoped procedural languages. Although the tools we developed would need to beadapted for other languages of this type, the techniques are directly applicable. For moduleswritten in other types of programming languages, the approach to capturing and restoring per-sistent state (cf. global variables in C) carries over, but we would not expect the approach tocapturing and restoring run-time structures to be directly applicable.Given modules written in statically-scoped procedural languages, there are several possible guide-lines for placing recon�guration points. One possibility is to use data-
ow analysis to determinewhere the state (the set of live variables) is smallest. This would minimize the size of the statethat is captured and restored, but does not take into consideration how frequently the recon�g-uration points are checked. Control-
ow analysis could be used to place recon�guration pointsoutside of loops, but control-
ow and data-
ow analysis are expensive to perform and currenttools are not robust enough for analyzing arbitrary programs. More promising possibilities are toplace recon�guration points at procedure boundaries or at communication points, places wherethe module interacts with other modules. This approach takes advantage of the programmer'sprocedural and communication abstractions.5.3 ConclusionsDynamic recon�guration is critically important for long-running applications or those that mustbe continuously available, in order to perform maintenance and to adapt the software to a chang-ing environment. As the physical environment changes, an application with dynamic recon�gu-ration capabilities can make corresponding changes, in order to improve the performance of theapplication, or simply to maintain adequate functionality. Not all changes can be anticipated apriori, but when an application is equipped with general dynamic recon�guration capabilities, itis provided with a mechanism for adding new recon�guration capabilities.In this work we have examined the module participation aspect of dynamic recon�guration.We �rst developed a platform for experimentation, then took applications written in standardprocedural languages and analyzed what was needed to support module participation. As a61

result, we have provided a structuring technique for capturing and restoring data, and provideda general technique for capturing and restoring state from anywhere in the program.

62

Bibliography[1] A. Aho, R. Sethi, J. Ullman, \Run-Time Environments," Compilers: Principles, Tech-niques, and Tools, Addison-Welsey, Chapter 7, pp. 389-462, 1986.[2] Y. Artsy, R. Finkel, \Designing a Process Migration Facility: The Charlotte Experience,"IEEE Computer Magazine, vol. 22, no. 9, pp. 47-56, September 1989.[3] M. Bach, The Design of the Unix Operating System, Prentice-Hall, Chapters 6-7, pp.146-246, 1986.[4] A. Barak, A. Litman, \MOS: A Multicomputer Distributed Operating System," SoftwarePractice and Experience, vol. 15, no. 8, pp. 725-737, August 1985.[5] M. Barbacci, D. Doubleday, C. Weinstock, \Application-Level Programming," Proceedingsof the 10th International Conference on Distributed Computing Systems, pp. 458-465, 1990.[6] M. Barbacci, C. Weinstock, D. Doubleday, M. Gardner, R. Lichota, \Durra: A StructureDescription Language for Developing Distributed Applications," IEE Software EngineeringJournal, vol. 8, no. 2, pp. 83-94, March 1993.[7] T. Bloom, M. Day, \Recon�guration and Module Replacement in Argus: Theory and Prac-tice," IEE Software Engineering Journal, vol. 8, no. 2, pp. 102-108, March 1993.[8] J. Callahan, J. Purtilo, \A Packaging System for Heterogeneous Execution Environments,"IEEE Transactions on Software Engineering, vol. 17, pp. 626-635, 1991.[9] S. Carson, S. Setia, \Optimal Write Batch Size in Log-structured File Systems," to appear,Computing Systems. Currently available in Proceedings of the USENIXWorkshop on FileSystems, pp. 79-91, May 1992.[10] K. Chandy, J. Misra, \The Drinking Philosophers Problem," ACM Transactions on Pro-gramming Languages and Systems, vol. 6, no. 4, pp. 632-646, October 1984.[11] K. Chandy, C. Ramamoorthy, \Rollback and Recovery Strategies for Computer Programs,"IEEE Transactions on Computers, vol. C-21, no. 6, pp. 546-556, June 1972.[12] F. Douglis, J. Ousterhout, \Process Migration in Sprite: A Status Report," IEEE ComputerSociety Technical Committee on Operating Systems Newsletter, vol. 3, no. 1, pp. 8-10, Winter1989. 63

[13] F.B. Dubach, R. Rutherford, C. Shub, \Process-Oriented Migration in a HeterogeneousEnvironment," Proceedings of the ACM Seventeenth Annual Computer Science Conference,pp. 98-102, February, 1989.[14] M.R. Eskicioglu, L.F. Carbrera, \Process Migration: An Annotated Bibliography," IEEETechnical Committee on Operating Systems and Applications Environments Newsletter, vol.4, no. 4, pp. 5-16, Winter 1990.[15] O. Frieder, M. Segal, \On Dynamically Updating a Computer Program: From Concept toPrototype," Journal of Systems and Software,vol. 14, pp. 111-128, 1991.[16] M. Herlihy, B. Liskov, \A Value Transmission Method for Abstract Data Types," ACMTransactions on Programming Languages and Systems, vol. 2, pp. 527-551, 1982.[17] C. Hofmeister, J. Purtilo, \Dynamic Recon�guration in Distributed Systems: AdaptingSoftware Modules for Replacement," Proceedings of the IEEE 13th International Conferenceon Distributed Computing Systems, pp. 101-110, May 1993.[18] C. Hofmeister, E. White, J. Purtilo, \SURGEON: A Packager for Dynamically Recon�g-urable Distributed Applications," IEE Software Engineering Journal, vol. 8, no. 2, pp. 95-101, March 1993.[19] Y. Hollander, G. Silberman, \A Mechanism for the Migration of Tasks in HeterogeneousDistributed Processing Systems," Proceedings of the International Conference on ParallelProcessing and Applications, pp. 93-98, September 1987.[20] E. Jul, H. Levy, N. Hutchinson, A. Black, \Fine-Grained Mobility in the Emerald System,"ACM Transactions on Computer Systems, vol. 6, no.1, pp. 109-133, February 1988.[21] R. Koo, S. Toueg, \Checkpointing and Rollback-Recovery for Distributed Systems," IEEETransactions on Software Engineering, vol. SE-13, no. 1, pp. 23-31, January 1987.[22] J. Kramer, J. Magee, \Dynamic Con�guration for Distributed Systems," IEEE Transactionson Software Engineering, vol. SE-11, no. 4, pp. 424-436, 1985.[23] J. Kramer, J. Magee, \The Evolving Philosophers Problem: Dynamic Change Management,"IEEE Transactions on Software Engineering, vol. 16, no. 11, pp. 1293-1306, 1990.[24] S. Mullender, \Process Management in a Distributed Operating System," Proceedings ofthe International Workshop on Experiences with Distributed Systems, pp. 38-51, September1987.[25] M. Powell, B. Miller, \Process Migration in Demos/MP," Proceedings of the Ninth ACMSymposium on Operating System Principles, pp. 110-119, November 1983.[26] T. Pratt, Programming Languages: Design and Implementation, Prentice-Hall,Chapters 6-8, pp. 149-302, 1984. 64

[27] J. Purtilo, \The Polylith Software Toolbus," To appear, ACM Transactions on Program-ming Languages and Systems, January 1994. Also available as University of Maryland CSDTechnical Report 2469, 1990.[28] J. Purtilo, C. Hofmeister, \Dynamic Recon�guration of Distributed Programs," Proceedingsof the 11th International Conference on Distributed Computing Systems, pp. 560-571, 1991.[29] B. Randell, \System Structure for Software Fault Tolerance," IEEE Transactions on Soft-ware Engineering, vol. SE-1, no. 2, pp. 220-232, June 1975.[30] D. Russell, \State Restoration in Systems of Communicating Processes," IEEE Transactionson Software Engineering, vol. SE-6, no. 2, pp. 183-194, March 1980.[31] M. Theimer, B. Hayes, \Heterogeneous Process Migration by Recompilation," Proceedingsof the 11th International Conference on Distributed Computing Systems, pp. 18-25, 1991.[32] M. Theimer, K. Lantz, D. Cheriton, \ Preemptable Remote Execution Facilities for the VSystem," Proceedings of the Tenth ACM Symposium on Operating System Principles, pp.2-12, December 1985.

65

Appendix APolylith Recon�guration PrimitivesThere are three categories of recon�guration primitives: primitives for altering modules, prim-itives for altering bindings, and synchronization primitives. For these three categories, the ap-proach is �rst to acquire a capability for making changes, then to perform one or more edits onthis capability, and �nally to apply the changes accumulated via this capability. In the last sec-tion of this appendix, we give operations that return information about the current con�gurationof the application.A.1 Primitives for Altering ModulesGet capability to a new or existing object:mh obj cap (&ocap, obj)struct capability {int client;int object;int interface;};intmh_obj_cap(cap, objname)struct capability *cap;char *objname;The caller must declare ocap to be of type capability, and pass the address of this structureas the �rst parameter. The caller must preserve the value of ocap for the entire sequence of theinitial call to mh obj cap, multiple calls to mh edit ..., and the �nal call to mh chg obj.For the second parameter, obj, the caller can pass a string containing the name of an existing66

object, or can set it to NULL. When obj contains NULL, the bus returns a capability to a newobject; otherwise it returns a capability to the existing object.The call to mh obj cap returns 0 if everything is ok, else it returns a negative value.Edit the description of an object:mh edit objattr, mh edit if, mh edit ifattrThese calls to mh edit ... return 0 if everything is ok, else return a negative value.Add or remove interfaces: mh edit if (&ocap, action, iface)intmh_edit_if(cap, typ, interface)struct capability *cap;char *typ, *interface;Apply action "add" to create a new interface for module &ocap. The interface name is passed asa string in iface. Apply action "del" to remove interface iface from module &ocap.Add, replace, or remove attributes and their values: mh edit objattr (&ocap,action, attrib, val)intmh_edit_objattr(cap, typ, attrib, value)struct capability *cap;char *typ;char *attrib, *value;Apply action "add" to insert or replace value of speci�ed attribute for module &ocap. Theparameter attrib is a string containing the name of the attribute, val is a string containingthe value. Apply action "del" to remove speci�ed attribute (value and attribute) from module&ocap (in this case val should be NULL).NOTE:Currently, when creating a new object with mh obj cap (&ocap, NULL), the interfaces must beadded with mh edit if before any object attributes can be speci�ed with mh edit objattr.Add, replace, or remove interface attributes: mh edit ifattr (&ocap, action, if,attrib, val) 67

intmh_edit_ifattr(cap, typ, interface, attrib, value)struct capability *cap;char *typ, *interface;char *attrib, *value;Apply action "add" to insert or replace value of speci�ed attribute for interface if (a string)of module &ocap. The parameter attrib is a string containing the name of the attribute, valis a string containing the value. Apply action "del" to remove speci�ed attribute (value andattribute) from if interface of module &ocap (value passed should be NULL).Add or remove module from the application:mh chg obj (&ocap, action)intmh_chg_obj(cap, typ)struct capability *cap;char *typ;The bus makes sure that this request was made by the same object/process that originallyobtained capability to it. The action indicates whether the object is to be added or removed:"add" Add module &ocap to the application. The object is started up by the bus, according tothe description of ocap created by the preceding calls to mh obj cap and mh edit Ifthe object is already running, no new object is started up; the request is ignored."del" Remove module &ocap from the application. The object is shutdown by the bus, and itsdescription is erased. If the object description has been created but the object was neverstarted up, the description is erased.The call to mh chg obj returns 0 if everything is ok, else it returns a negative value.A.2 Primitives for Altering BindingsGet capability for rebinding interfaces:mh bind cap (&bcap, applname)intmh_bind_cap(bp, applname)int *bp;char *applname; 68

The caller must declare bcap to be of type integer, and pass the address of this variable asthe �rst parameter. The caller must preserve the value of bcap for the entire sequence of theinitial call to mh bind cap, multiple calls to mh edit bind, and the �nal call to mh rebind. Rightnow applications have only one application name, so if the applname parameter is left NULL, it isassumed to be the current application.The call to mh bind cap returns 0 if everything is ok, else it returns a negative value.Request a binding change:mh edit bind (&bcap, action, &obj1, if1, &obj2, if2)intmh_edit_bind(bp, action, obj1, if1, obj2, if2)int *bp;struct capability *obj1, *obj2;char *action, *if1, *if2;Put a new entry in the bcap structure, recording action and interface(s). The actions availableare:"add" Add a new binding from obj1 if1 to obj2 if2, overwriting any existing binding. Bi-directional bindings require an "add" for each direction."del" Delete binding for interface obj1 if1 (obj2 if2 must be speci�ed, but may both beNULL)."cpq" Copy messages queued for obj1 if1 to obj2 if2. If no hold was applied to �rst iface,the whole queue gets copied. If hold was applied to �rst iface, then only messages thatarrived after the hold get copied."rmq" Remove messages queued for obj1 if1 (obj2 if2 must be speci�ed, but both may beNULL). If no hold was applied to the iface, the whole queue is deleted. If hold was applied,then only messages that arrived after the hold get deleted."cpo" Copy old messages queued for obj1 if1 to obj2 if2. If a hold was applied to the �rstinterface, only messages queued before the hold are copied. Thus in order to copy messagesqueued both before and after the hold, you must �rst call mh edit bind(&bcap,"cpo",...),then call mh edit bind(&bcap,"cpq",...). If no hold was applied, no messages are copied."rmo" Remove old messages queued for obj1 if1 (obj2 if2 must be speci�ed, but both maybe NULL). If a hold was applied to the �rst interface, only messages queued before the holdare deleted. If no hold was applied, no messages are deleted.69

When the binding changes are applied (with mh rebind), the interface names are resolved; theyare not resolved with each mh edit bind command. Thus the state of the application at rebindtime is not its state at the time of the mh edit bind command, but its state at the time of themh rebind command. There are three ways of specifying interfaces:1. Put NULL for &obj and a string \objname ifname" for if.2. Pass an object capability (from mh capability) for &obj and a string \ifname" for if.3. Pass an interface capability (from mh capability) for &obj and put NULL for if.The call to mh edit bind returns 0 if everything is ok, else it returns a negative value.Apply the binding changes speci�ed in bcap:mh rebind (&bcap)intmh_rebind(bp)int *bp;These take place atomically, from the application's point of view, since no new bus calls areprocessed during the mh rebind. Although the rebinding is done atomically, acting on the appli-cation state at the time of the mh rebind command, each mh edit bind command changes theapplication state for the subsequent mh edit bind (the edit commands are processed in the sameorder that they arrived).The call to mh rebind returns 0 if everything is ok, else it returns a negative value.A.3 Synchronization PrimitivesGet capability for holding objects/interfaces:mh hold cap (&hcap, applname)intmh_hold_cap(hp, applname)int *hp;char *applname;The caller must declare hcap to be of type integer, and pass the address of this variable as the�rst parameter. The caller must preserve the value of hcap for the entire sequence of the initial70

call to mh hold cap, multiple calls to mh edit hold, the call to mh hold, and the �nal call tomh rlse. Right now applications have only one application name, so if the applname parameteris left NULL, it is assumed to be the current application.The call to mh bind cap returns 0 if everything is ok, else it returns a negative value.Request hold on an object or interface:mh edit hold (&hcap, action, obj, iface)intmh_edit_hold(hp, action, obj, if)int *hp;struct capability *obj;char *action, *if;Put a new entry in the hcap structure, recording action and object or interface. The symbolicname of the object or interface is stored, and this is resolved with the actual object when mh holdor mh rlse is applied. The action speci�es whether the hold applies to an interface or an entireobject:NULL Hold interface obj iface. In addition to holding the interface, a hold token is placedin the queue, at the end of any messages that are queued (in transit) when the mh holdcommand is applied. The hold token distinguishes between messages queued before thehold, and those that arrive during the hold. This is useful for module replacement, when wemay want messages queued prior to the hold left at the old version, and messages arrivingduring the hold copied to the new version and removed from the old. (These messages canbe copied to another interface or removed with mh edit binding, "cpo", "cpq", "rmo","rmq".) There are three ways of specifying interfaces:1. Put NULL for &obj and a string \objname ifname" for iface.2. Pass an object capability (from mh capability) for &obj and a string \ifname" foriface.3. Pass an interface capability (from mh capability) for &obj and put NULL for iface."obj" Hold object speci�ed by obj and iface. There are two ways of specifying objects:1. Put NULL for &obj and a string \objname" for iface.2. Pass an object or interface capability (from mh capability) for &obj and put NULLfor iface.The call to mh edit hold returns 0 if everything is ok, else it returns a negative value.71

Apply the holds speci�ed in hcap:mh hold (&hcap)intmh_hold(hp)int *hp;These take place atomically, from the application's point of view. Once an object (interface) isheld, all object-level (interface-level) requests are deferred until the object (interface) is released.The module initiating the request is blocked until the request has completed.REQUEST TYPE ON HELD OBJECT ON HELD INTERFACEmh_init blocksmh_shutdown blocksmh_readselect blocks ignores held ifacemh_readbackmh_query_objmsgs blocks 0 for held ifacemh_identity blocksmh_query_objattr blocksmh_query_objnames blocksmh_capability (obj) blocksmh_write (by capability) blocksmh_write (by binding) blocksmh_read blocksmh_query_ifmsgs blocksmh_query_ifattr blocksmh_capability (iface) blocksNOTE: Currently, the mh write does not block when keepalive is turned on. (It is on by default,and can be turned o� with the -K run-time option.)The call to mh hold returns 0 if everything is ok, else it returns a negative value.Release all holds speci�ed in hcap:mh rlse (&hcap)intmh_rlse(hp)int *hp; 72

Release all holds speci�ed in &hcap, and resume processing of deferred requests. These takeplace atomically, from the application's point of view. An mh read or mh readselect that wasnot deferred but depends on a held interface is completed as the interface is released. After allobjects and interfaces are released, the deferred transactions are resumed in the same order thatthey originally arrived. No new bus requests are accepted until these deferred transactions havebeen processed.The call to mh rlse returns 0 if everything is ok, else it returns a negative value.Get and send module state:mh objstate move (&ocap1, if1, &ocap2, if2)intmh_objstate_move(cap1, interface1, cap2, interface2)struct capability *cap1, *cap2;char *interface1, *interface2;Induce module &ocap1 to divulge its state via if1and forward the state to &ocap2 if2. Interfacesif1 and if2 need not be declared in the MIL program; the bus will add the interfaces to theobject descriptions as necessary and bind if1 to if2. Then the bus sends a SIGHUP signal toocap1, which is responsible for providing a signal handler to accept the signal, package up itsstate, and send it out on if1. Object ocap2 must be written so that the �rst thing it does uponstartup is to read in its state from if2.The call to mh objstate move returns 0 if everything is ok, else it returns a negative value.A.4 Determine Current Con�gurationFind all Interfaces of an Object:mh struct objnames (&ocap, oname, ...)intmh_struct_objnames(obj_cap,obj_name,response,rsize,if_caps,if_names,max_num_if,num_ifaces)struct capability *obj_cap;char *obj_name, *response;int rsize;struct capability *if_caps[];char *if_names[];int max_num_if, *num_ifaces; 73

Find all interfaces of the object speci�ed by obj cap, obj name. The object is speci�ed in oneof two ways:1. Put NULL for &ocap and a string \objname" for oname.2. Pass an object or interface capability (from mh capability) for &ocap and put NULL foroname.The number of interfaces is returned in num ifaces, and both the names of these interfacesand capabilities to them are returned: pointers to the interface names are placed in the arrayif names, and pointers to the interface capabilities are placed in the array if caps. The char-acter bu�er response provides space for the capabilities and names referenced by if names andif caps. The caller must provide the size of these two arrays in max num if, and the size of theresponse bu�er in rsize.The call to mh struct objnames returns 0 if everything is ok, else it returns a negative value.Find what Interface is Bound to:mh struct ifdest (&scap, sname, ...)intmh_struct_ifdest(source_cap,source_name,response,rsize,if_caps,if_names,max_num_if,num_ifaces)struct capability *source_cap;char *source_name, *response;int rsize;struct capability *if_caps[];char *if_names[];int max_num_if, *num_ifaces;Find what the source interface is bound to. The source interface is speci�ed in one of three ways:1. Put NULL for &scap and a string \objname ifname" for sname.2. Pass an object capability (from mh capability) for &scap and a string \ifname" for sname.3. Pass an interface capability (from mh capability) for &scap and put NULL for sname.There is only one destination interface, so num ifaces is returned with a value of 1, and boththe name of this interface and capability to it are returned: a pointer to the interface name isplaced in the array if names, and a pointer to the interface capability is placed in the arrayif caps. The character bu�er response provides space for the capabilities and names referenced74

by if names and if caps. The caller must provide the size of these two arrays in max num if,and the size of the response bu�er in rsize.The call to mh struct objnames returns 0 if everything is ok, else it returns a negative value.Find Everything Bound to an Interface:mh struct ifsources (&dcap, dname, ...)intmh_struct_ifsources(dest_cap,dest_name,response,rsize,if_caps,if_names,max_num_if,num_ifaces)struct capability *dest_cap;char *dest_name, *response;int rsize;struct capability *if_caps[];char *if_names[];int max_num_if, *num_ifaces;Find everything bound to an interface (the destination interface). The destination interface isspeci�ed in one of three ways:1. Put NULL for &dcap and a string \objname ifname" for dname.2. Pass an object capability (from mh capability) for &dcap and a string \ifname" for dname.3. Pass an interface capability (from mh capability) for &dcap and put NULL for dname.The number of interfaces bound to the destination is returned in num ifaces, and both thenames of these interfaces and capabilities to them are returned: pointers to the interface namesare placed in the array if names, and pointers to the interface capabilities are placed in the arrayif caps. The character bu�er response provides space for the capabilities and names referencedby if names and if caps. The caller must provide the size of these two arrays in max num if,and the size of the response bu�er in rsize.The call to mh struct objnames returns 0 if everything is ok, else it returns a negative value.
75

Example#include <stdio.h>#define A_SIZE 10char buf1[256], buf2[256];struct capability {int client;int object;int interface;};main(argc,argv)int argc;char **argv;{ mh_init(&argc, &argv, NULL, NULL);show_binding_info("hello");show_binding_info("hi");show_binding_info("greetings");show_binding_info("duplicate");show_binding_info("print");show_binding_info("queries");mh_shutdown(0, 42, "");}show_binding_info(obj)char *obj;{ int i, j, num_ifaces, num_bindings;struct capability *if_caps[A_SIZE], *bind_caps[A_SIZE];char *if_names[A_SIZE], *bind_names[A_SIZE];struct capability objcap;char iface[80];if (mh_struct_objnames (NULL, obj, buf1,sizeof(buf1), if_caps, if_names, A_SIZE, &num_ifaces) == 0) {/* Another way of achieving same result:* mh_obj_cap (&objcap, obj);* mh_struct_objnames (&objcap, NULL, ...*/printf("%s's interfaces are:\n", obj);for (i=0; i<num_ifaces; i++) {printf(" %s\n", if_names[i]);}for (i=0; i<num_ifaces; i++) {if (mh_struct_ifdest (if_caps[i], NULL, buf2, sizeof(buf2),bind_caps, bind_names, A_SIZE, &num_bindings) == 0) {/* Two other ways of achieving same result:* strcpy (iface, obj);* strcat (iface, " "); 76

* strcat (iface, if_names[i]);* mh_struct_ifdest (NULL, iface, ...* or* mh_obj_cap (&objcap, obj);* mh_struct_ifdest (&objcap, if_names[i], ...*/printf("OUTGOING\n");printf(" \"%s %s\" bound to:\n", obj, if_names[i]);for (j=0; j<num_bindings; j++) {printf(" \"%s\"\n", bind_names[j]);}}if (mh_struct_ifsources (if_caps[i], NULL, buf2, sizeof(buf2),bind_caps, bind_names, A_SIZE, &num_bindings) == 0) {/* Two other ways of achieving same result:* strcpy (iface, obj);* strcat (iface, " ");* strcat (iface, if_names[i]);* mh_struct_ifsources (NULL, iface, ...* or* mh_obj_cap (&objcap, obj);* mh_struct_ifsources (&objcap, if_names[i], ...*/printf("INCOMING\n");for (j=0; j<num_bindings; j++) {printf(" \"%s\"\n", bind_names[j]);}printf(" bound to \"%s %s\"\n", obj, if_names[i]);}}}}
77

