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1 IntroductionThere is a 
ow dependence from an array access A(I) to an array access B(I 0) i�� A is executed with iteration vector I,� B is executed with iteration vector I0,� A(I) writes to the same location as is read by B(I 0),� A(I) is executed before B(I 0), and� there is no write to the location read by B(I 0) between the execution of A(I) and B(I 0).However, most array data dependence algorithms ignore the last criterion (either explicitly or im-plicitly). While ignoring this criterion does not change the total order imposed by the dependences,it does cause 
ow dependences to become contaminated with output dependences (storage depen-dences). This can reduce the e�ectiveness of several optimizations: First, it can inhibit the use oftechniques (such as privatization, renaming, and array expansion) that eliminate storage-relateddependences. These techniques cannot be applied if they appear to a�ect the 
ow dependences ofa program. Second, it reduces the compiler's ability to make e�ective use of caches or distributedmemories. Flow dependences represent the 
ow of information in the program being compiled;accurate information about this 
ow is critical for memory use optimizations.Array 
ow dependences in which the value written at the source is actually used at the sink ofthe dependence are referred to as value-based 
ow dependences [PW92] or data-
ow dependences[May92, MAL93]. Dependence tests that are based on only the �rst four of the above criteria aresaid to �nd memory-based dependences [PW92].Data dependence testing is undecidable in general. Within the restricted domain described inSection 2, performing exact memory-based array dependence testing is NP-complete [Pug92]. PaulFeautrier [Fea91] showed that performing exact value-based dependence analysis of arrays withinthis restricted domain is decidable, and gave an algorithm for doing so. Many other researchershave also studied value-based array data dependence analysis, however no other work is completeover the same domain as Feautrier's, with the exception of recent work by Maslov [Mas94]. Some ofthese other methods handle larger domains (such as complicated control 
ow) but are not completewithin that domain [Bra88, Rib90, GS90, Ros90, Li92, Fea91, MAL92, MAL93, DGS93].We describe an extension of our previous work on dependence analysis [Pug92, PW92]. Thisextension makes us complete over the same domain as Feautrier's technique, and produces thesame information (although using a di�erent computational method and a di�erent dependenceabstraction). In this paper, we review this extension and compare it with Feautrier technique.Dror Maydan developed [May92, MAL93] a variant of Feautrier's techniques that apply in amore restricted domain, but appears faster and to apply to most real cases. Maydan's techniquesintegrate well with Feautrier's and in cases in which Maydan's techniques do not apply, Feautrier'salgorithms can be called. We believe that when Maydan's methods apply, our methods will be fastas well.We evaluate our methods on the examples evaluated by Feautrier [Fea91] and �nd that ourmethods are 40-90 times faster than Feautrier's current implementation.1



2 Dependence AnalysisFor the methods we describe to apply, we must be able to determine which loops and conditionalscontrol the execution of each statement. This can be done in a straightforward manner for codethat uses only structured loops and if's for control 
ow.We can produce exact dependence information for any single structured procedure in which theexpressions in the subscripts, loop bounds, and conditionals are a�ne functions of the loop indicesand loop-independent variables, and the loop steps are known constants.We start our dependence analysis by producing traditional dependence di�erence summaries.Dependence di�erence is equivalent to the more traditional \dependence distance" when loops arenormalized, as they are in all examples in this paper. The term \dependence distance" is not wellde�ned for unnormalized loops { see [Pug93] for details.Dependence di�erence summaries do not describe which iterations are involved in the depen-dence, and do not describe the e�ect of the values of symbolic constants. We therefore representdependences with dependence relations [Pug91]. A dependence relation is a mapping from oneiteration space to another, and is represented by a set of linear constraints on variables that repre-sent the values of the loop indices at the source and sink of the dependence and the values of thesymbolic constants (e.g., n). The notation we use in the constraints is adapted from [ZC91]:A;B; : : : Refers to a speci�c array reference in a programI; I 0; I00; : : : An iteration vector that represents a speci�c set ofvalues of the loop variables for a loop nest.[A] The set of iteration vectors for which A is executedA(I) The iteration of reference A when the loop variableshave the values speci�ed by IA(I) sub= B(I0) The references A and B refer to the same array andthe subscripts of A(I) and B(I0) are equal.A(I)� B(I0) A(I) is executed before B(I 0)A(I)�D B(I 0) The dependence di�erence from A(I) to B(I 0) is de-scribed by the direction/di�erence vector DThe dependence relation below describes exactly the iterations and values of symbolic constantsfor which A(I) and B(I0) refer to the same element of the array, and A(I) is executed before B(I 0)(i.e., it describes the memory-based dependence from A to B).f I ! I 0 j I 2 [A] ^ I 0 2 [B]^ A(I)� B(I 0) ^ A(I) sub= B(I 0) g (1)For example, the 
ow dependence from b(i) to b(j) in Example 1 is described by the directionvector (+), and the dependence relation:f [i]! [i0; j0] j I2[A]z }| {1 � i � n^ 1 � j0 < i0 � n| {z }I02[B] ^ A(I)�B(I0)z }| {i < i0 ^ i = j0| {z }A(I)sub= B(I0) gThis can be simpli�ed to f [i]! [i0; j0] j 1 � i = j0 < i0 � ng.2



1: for i := 1 to n do2: s := 03: for j := 1 to i-1 do4: s := s + a(i,j)*b(j)5: endfor6: b(i) := b(i) - s7: endfor Example 1
1: for i := 1 to 2*n do2: a(i) := ...3: for j := 1 to n-1 do4: a(2*j) := ...5: a(2*j+1) := ...6: endfor7: ... := a(i)8: endfor Example 22.1 Value-based dependencesWe can calculate value-based 
ow, output, and anti-dependences, but in this paper we are notconcerned with the latter two. There is a value-based 
ow dependence between an instance of awrite A(I) and an instance of a read C(I00) if and only if C(I00) reads the value that was writtenby A(I). For this to occur, A(I) and C(I00) must access the same element of the array, and thatelement must not be overwritten between A(I) and C(I 00). If the element is overwritten by B(I0),we say B(I0) kills the dependence from A(I) to C(I 00). Let B1, B2, ..., Bp be the array writes thatmight kill the dependence (note that A might be included in the list of Bq's). The value-based 
owdependence from A to C is described by the relation:f I ! I 00 j I 2 [A] ^ I00 2 [C] ^ A(I)� C(I 00) ^ A(I) sub= C(I 00)^ 8q; 1 � q � p;:9I0 s:t: I 0 2 [Bq] (2)^ A(I)� Bq(I0)� C(I 00) ^ Bq(I0) sub= C(I 00) gFor example, consider the 
ow dependence from the write at line 2 to the read at line 7 inExample 2. We build the dependence relation by expanding the 8q; : : : with a set of constraintsfor each Bq. The relation will have two \kill" terms (Bq's): the writes at lines 4 and 5 (there isno kill term for the write on line 2 because there is no self output dependence for this write). Theunsimpli�ed version of the relation is:f [i]! [i00] j I2[A]z }| {1 � i � 2n ^ I002[C]z }| {1 � i00 � 2n^A(I)�C(I00)z }| {i = i00 ^A(I)sub= C(I00)z }| {i = i00^ :( 9[i0; j0] s:t: (1 � i0 � 2n ^ 1 � j0 � n�1) ^ (i � i0 ^ i0 � i00) ^ (2j0 = i00) )^ :( 9[i0; j0] s:t: (1 � i0 � 2n ^ 1 � j0 � n�1) ^ (i � i0 ^ i0 � i00) ^ (2j0+1 = i00) )| {z }8q;1�q�p;:9I0 s:t: I02[Bq ]^A(I)�Bq(I0)�C(I00)^Bq(I0)sub= C(I00) gBy using techniques described in Section 3, we need 10 milliseconds on a Sun Sparc IPX to simplifythis to: f [i]! [i00] j (1 = i = i00 � n) _ (1 � i = i00 = 2n) _ (1 � i = i00 � 2n ^ n = 1) gThus, we have discovered that there is a dependence from the �rst write of Example 2 to the readonly during the �rst iteration and last iteration (if n = 1, there are only 2 iterations).3



2.2 Implementation detailsEquation 2 is best thought of as a denotational description of how array kills are computed. Thereare a number of tricks we can use that will improve our e�ciency while still computing the exactsame results as if we had used Equation 2.When computing value-based dependences, we use characterizations of the memory based de-pendences (such as the level that carries the dependence, or a direction/distance vector) that de-scribes the dependence. The dependence between two variable accesses might need to be describedby several such descriptions (for example, a dependence might be carried by several di�erent levels).We treat each such description as a separate dependence, and use A(I) x! B(I 0) to describe thedependence from A(I) to B(I 0) that is characterized by x { the type of characterization does notmatter.To compute the value-based version of a 
ow dependence A(I) f! C(I 00), we need to considerall kills of the form A(I) o! B(I 0) f 0! C(I 00). For the dependence B(I 0) f 0! C(I 00), we can ignoreany dependences that we have already proven to not be value-based. We can perform a quick checkbased only on f; o and f 0 to see if we can prove that A(I) f! C(I 00) \A(I) o! B(I 0) f 0! C(I 00) = ;.If so, we need not consider this kill combination. Otherwise, we can use o and f 0 to enforce the �restrictions in the kill clause:f I ! I 00 j I 2 [A] ^ I 00 2 [C] ^A(I)�f C(I 00) ^A(I) sub= C(I 00): : :^ :9I 0 s:t: I 0 2 [B]^ A(I)�o B(I 0)�f 0 C(I 00) ^B(I0) sub= C(I 00) gWhile this seems to increase the number of clauses we need to consider, it actually saves uswork. Equation 2 uses� constraints, which are non-linear. Expanding these out to be linear wouldintroduce a larger expansion than the one we get here by using the output dependences to the killand the 
ow dependences from the kill.2.2.1 Partial coverWith respect to A(I) f! C(I 00), the dependence B(I0) f 0! C(I00) is a partial cover i� there does notexist a dependence B(I 0) o0! A(I) such thatB(I 0) f 0! C(I00) \B(I 0) o0! A(I) f! C(I 00) 6= ;We try to prove this based only by quick checks on f , o0, and f 0. If we can prove this, then if amemory location is touched by both A(I) f! C(I 00) and B(I0) f! C(I00), then the write by B(I0)comes after A(I), and there can't be any 
ow of values from A(I) to C(I 00). In other words, wecan ignore the dependence A(I) o! B(I0) in considering the e�ects of the kill. We can calculatethe iterations I 00 of [C] that might be involved in the dependence with the relation:I00 2 [C] ^ :9I 0 s:t: I 0 2 [B] ^ B(I0)�f 0 C(I 00) ^ B(I0) sub= C(I 00)This has the e�ect of eliminating from I 00 any iterations that are supplied a value by B. Sincethe e�ects of this kill do not depend on A(I), we can compute it just once and use this informationfor any dependence for which B(I 0) f 0! C(I 00) is a partial cover.4



Being somewhat more aggressive, we can sort the complete list of 
ow dependences to C(I 00),so that the ones that are closest in time (according to the level that carries the dependence, thedirection/distance vector, ...) are at the head of the list.In computing each value-based dependence to C(I 00), some dependences on this list will be legalto use as partial covers. Assume the �rst p are legal and the p + 1st is not (there may be othersafter the p + 1st that are legal, but we will ignore them). We can now compute the e�ects of thepartial kills by the �rst p dependences on the list, and use that in computing the dependence. Ifwe had previously computed the e�ects for the �rst q partial covers (q < p), we can simply extendthat information by taking into account the q + 1st through the pth element of the list.Of course, we may �nd that after considering the �rst r partial covers, the read is completelycovered. In this case, any dependence that can use the �rst r partial covers has no value-basedcomponent.2.2.2 Partial terminationWith respect to A(I) f! C(I 00), the dependence A(I) o! B(I0) is a partial terminator i� there doesnot exist a dependence C(I 00) a! B(I 0) such thatA(I) o! B(I 0) \A(I) f! C(I 00) a! B(I0) 6= ;If we can prove this, then if a memory location is touched by bothA(I) f! C(I00) and A(I) o! B(I0),then the read by C(I00) comes after B(I 0), and there can't be any dependence from A(I) to C(I00).In other words, we can ignore the dependence B(I 0) f 0! C(I 00) in considering the e�ects of the kill,and the iterations I of A that might be involved in the dependence are:I 2 [A] ^ :9I 0 s:t: I0 2 [B] ^ A(I)�o B(I 0) ^A(I) sub= B(I0)2.2.3 Putting it all togetherNow, when considering a kill of A(I) f! C(I 00), we get the appropriate information from the partialtermination list for A(I) and the partial coverage list for C(I 00), and only need to directly considerthe kills that we not handled as either a partial cover or as a partial terminator.When considering kills, it is probably best consider all the dependences to a single read at atime, and to consider the 
ow dependencies in the order they appear on the partial cover list.We describe this technique as partial cover and termination, since it is similar to the cover andtermination tests described in [PW92], but records the e�ect of dependences that only partiallycover or termination an array reference (just as Equation 2 is an extension of the kill test describedin [PW92]).3 Simplifying Formulas Containing NegationWhen performing array kill analysis, we have to simplify formulas of the form:: : :_ (C0 ^ :(9V1 s:t: C1) ^ : : :^ :(9Vn s:t: Cn))_ : : :Here, the Ci's are conjunctions of linear constraints, and the Vi's are (possibly empty) sets ofvariables. Techniques described in our previous papers ([Pug92, PW92]) allow us to eliminate5



existentially quanti�ed variables, check for the feasibility of a conjunction of constraints, and per-form other simpli�cations, but these techniques do not address negation. There are two problemsinvolved in simplifying formulas containing negations:� We must transform a formula into disjunctive normal form in order to verify the existence ofsolutions. A straightforward transformation of a formula containing negation into disjunctivenormal form may lead to a huge explosion in the number of terms. We describe in Section 3.1a method for replacing the formula with an equivalent form that, typically, will not su�er fromas large an increase. By only evaluating the negation for one term at a time and reapplyingthe transformation in Section 3.1, additional savings may be obtained.� If a negated term 9Vi s:t: Ci represents non-convex constraints (e.g., 9� s:t: x = 5�), wecan not directly evaluate the negation. When standard Fourier-Motzkin variable eliminationcannot eliminate an integer variable exactly, we can sometimes eliminate the variable exactlyby introducing quasi-linear constraints (constraints containing 
oor and ceiling operators)[AI91]. For example, (9� s:t: x = 5�) � dx=5e � bx=5c. In these cases, negation is easy toapply (e.g., :(dx=5e � bx=5c) � (dx=5e > bx=5c)).Although we can always eliminate one variable this way, we may not be able to eliminatemultiple variables this way, since we may not be able to apply Fourier-Motzkin variableelimination to a set of constraints containing 
oor and ceiling operators. In these cases, weapply the technique given in Section 3.2.1, which is complete.The complete set of steps we apply is described in Section 3.3, and some examples are given inSection 3.4.3.1 Using Gist to Simplify NegationsThe goal of the gist operator is to simplify a term B as much as possible, given than A is knownto be true. In [PW92], we de�ne gist B given A as a minimal subset of the constraints of B suchthat (A ^ (gist B given A)) � (A ^ B). When performing negations, we rely on the fact that(A ^ :B) = (A^ :(gist B given A)) (see Step 1 of our algorithm in Section 3.3).A ^ :B � A ^ :(A ^B)� A ^ :(A ^ (gist B given A))� A ^ :(gist B given A)Since gist B given A will often have fewer constraints than B, the disjunctive normal form of A ^:(gist B given A) will often have fewer clauses than A ^ :B.3.2 Negating Non-Convex ConstraintsTo eliminate an integer variable x with Fourier-Motzkin variable elimination, we combine eachupper and lower bound on x. In general, a lower bound � � ax and an upper bound bx � �produce d�=ae � b�=bc. If a = 1 or b = 1, then d�=ae � b�=bc is equivalent to b� � a�, which ispreferred as it does not introduce 
oor and ceiling operations.Constraints involving 
oor and ceiling operations are called quasi-linear constraints [AI91].When a set of constraints involves quasi-linear constraints, we cannot verify the existence of so-lutions, and our ability to eliminate redundant constraints is diminished. We normally avoid theintroduction of quasi-linear constraints by simply avoiding the elimination of variables that would6



introduce them. Variables that we would like to eliminate but cannot because they would intro-duce quasi-linear constraints are called wildcard variables. When we need to verify the existence ofsolutions to sets of constraints, methods described in [Pug92] allow us to do so accurately in thepresence of wildcard variables.However, it is easier to negate sets of constraints containing quasilinear constraints than setscontaining wildcards. We therefore use quasilinear constraints, when possible, to perform negation.To eliminate a ceiling operation d�=ae we introduce a new wildcard variable c, add the con-straints ac�a < � � ac and replace d�=ae with c. To eliminate a 
oor operation b�=bc we introducea new wildcard variable f , add the constraints bf � � < bf + b and replace b�=bc with f .3.2.1 Quasi-linear Constraints are not CompleteUnfortunately, using quasi-linear constraints is an incomplete method. Given a set of constraintsinvolving ceiling and 
oor operators, we do not know of a general purpose method to eliminatean existentially quanti�ed variable that appears inside a ceiling or 
oor operator. For example,consider 9x; y s:t: 0 � x; y � 10 ^ 4x+ 7z � 3y ^ 2y � 3x+ zAfter the elimination of y, this becomes9x s:t: 0 � x � 10^ d(4x+ 7z)=3e � b(3x+ z)=2c ^ 4x+ 7z � 30 ^ 0 � 3x+ zCurrent methods for eliminating existential quanti�ers cannot eliminate variables inside 
oor orceiling functions.Rather than introducing ceiling and 
oor operators, we can eliminate variables by using splin-tering [Pug92]. Splintering performs exact elimination by producing a set of problems, the unionof which exactly describe the result of the quanti�er elimination. The subproblems produced bysplintering may contain wildcards (existentially quanti�ed variables). In this case, the constraintsin the �nal subproblems are of the form:f ~x; ~y j 9~� s:t: " ~x~y # = T " ~x~� # + " 0~c # ^ A " ~x~� # � ~b gwhere T has the form: " I 0S #Here, ~y represent the variables that have been eliminated from the subproblem via substitution,~x represent the variables that remain in the problem and ~� represent wildcard variables. Due tothe way substitutions are performed, the mapping from ~x and ~� to ~x and ~y is 1-1, so the aboveequation is equivalent to the following: (where T+ is the pseudoinverse [Str88] of T ):f~x; ~y j 9~� s:t: " ~x~y � ~c # 2 RowSpace(T )^ " ~x~� # = T+ " ~x~y � ~c # ^ AT+ " ~x~y � ~c # � ~b g7



Each wildcard now appears in only one equality constraint that enforces a modulo constraint(e.g., 9� s:t: 3� = x+2y). Such constraints can be easily negated (e.g., 9� s:t: 3� < x+2y < 3�+3).Since we can negate each constraint in the subproblem, we can negate the entire subproblem.It is unclear how often it will be necessary to resort to the handling of negation via splintering,or how expensive it will be to apply. However, we feel that it is important to have a completemethod for handling negation.3.3 Detailed algorithmWe convert such formulas to disjunctive normal form by repeatedly choosing a clause that containsa negated term, and applying the following steps:1. We simplify each of the 9Vi s:t: Ci terms using the gist operation we de�ned in [PW92]. Wereplace each 9Vi s:t: Ci term with gist (9Vi s:t: Ci) given C0. This step is justi�ed in Section3.1. In doing this simpli�cation, we use Fourier-Motzkin variable elimination to remove asmany existentially quanti�ed variables as is possible to do exactly.If we �nd that the simpli�ed term contains a single inequality constraint, we immediatelynegate it and add it to C0, discarding the Ci term. We repeatedly simplify terms until eachnegated term has been checked at least once since the last time C0 changed.If a Ci simpli�es to TRUE, we know that the entire clause is unsatis�able.2. Of the remaining negated terms, we pick a term that is likely to cause the least amountof combinatorial explosion when negated. A simple and e�ective estimate of the expansionfactor is the number of inequality constraints needed to express the term (i.e., number ofinequality constraints plus twice the number of equality constraints).3. For the term we pick, we eliminate exactly all existentially quanti�ed variables (see Section3.2).4. We then negate the term, producing a disjunction of constraints.5. We remove any 
oor and ceiling operators from the constraints in the disjunction by intro-ducing additional constraints and wildcards (see Section 3.2).6. We now convert the entire clause into disjunctive normal form and simplify, producing a listof clauses that replace the original clause.We repeat this process until there are no more clauses involving negation. This process may generateredundant clauses. If desired, we can eliminate many of them by testing for pairs of clauses Ci; Cjsuch that Ci ) Cj (in this case, Ci is redundant and can be removed).3.4 ExamplesIn the following examples, we show examples of negation that would arise from direct use ofEquation 2, ignoring the techniques described in Section 2.2. This is purely for illustrative purposes;the techniques described here for handling negation work with either a direct implementation ofEquation 2, or the more sophisticated techniques described in Section 2.2.The relation for Example 2 given in Section 2.1 contains negations. Figure 1 shows the results ofeach step (except #2) in our simpli�cation of this relation. Step 2 involves selection of a term, andthus has no visible result in our table. After the initial simpli�cation, each term can be represented8



f [i] ! [i00] j 1 � i � 2n ^ 1 � i00 � 2n ^ i = i00 ^ i = i00 Unsimpli�ed relation^:(9[i0; j0] s:t: 1 � i0 � 2n ^ 1 � j0 � n�1 ^ i � i0 ^ i0 � i00 ^ 2j0 = i00) from Example 2^:(9[i0; j0] s:t: 1 � i0 � 2n ^ 1 � j0 � n�1 ^ i � i0 ^ i0 � i00 ^ 2j0+1 = i00) gf [i] ! [i00] j 1 � i = i00 � 2n ^ :(9� s:t: i = 2� ^ i + 2 � 2n) Simplify (1)^:(9� s:t: i = 2�� 1 ^ 3 � i) gf [i] ! [i00] j � � � ^ :(d(i + 1)=2e � b(i + 1)=2c ^ 3 � i) g Introduce b c, d e (3)f [i] ! [i00] j � � � ^ (d(i + 1)=2e > b(i + 1)=2c _ 3 > i) g Apply negation (4)f [i] ! [i00] j � � � ^ (3 > i Introduce wildcards (5)_9f; c s:t: c > f ^ 2f � i + 1 < 2f + 2 ^ 2c� 2 < i + 1 � 2c)gf [i] ! [i00] j 1 � i = i00 � 2n ^ (9� s:t: i = 2�) ^ :(9� s:t: i = 2� ^ i + 2 � 2n) Convert to DNF_ 1 � i = i00 � 2n ^ i � 2 ^ :(9� s:t: i = 2� ^ i + 2 � 2n) g and simplify (6)f [i] ! [i00] j 1 � i = i00 � 2n ^ (9� s:t: i = 2�) ^ :(i + 2 � 2n) Simplify (1) and_ 1 � i = i00 � 2n ^ i � 2 ^ :(di=2e � bi=2c ^ i + 2 � 2n) g Introduce b c, d e (3)f [i] ! [i00] j 1 � i = i00 � 2n ^ (9� s:t: i = 2�) ^ (i + 2 > 2n) Apply negation (4)_ 1 � i = i00 � 2n ^ i � 2 ^ (di=2e > bi=2c _ i + 2 > 2n) gf [i] ! [i00] j 1 � i = i00 � 2n ^ (9� s:t: i = 2�) ^ (i + 2 > 2n) Introduce wildcards (5)_ 1 � i = i00 � 2n ^ i � 2 ^ (9f; c s:t: c > f ^ 2f � i < 2f + 2 ^ 2c� 2 < i � 2c) and convert to_ 1 � i = i00 � 2n ^ i � 2 ^ i + 2 > 2n g DNF (6)f [i] ! [i00] j 1 � i = i00 = 2n Simplify (6)_ 1 = i = i00 � 2n_ 1 � i = i00 � 2n ^ n = 1 gFigure 1: Evaluating negations produced by Example 2as three inequalities, and thus we can choose either one (in the example, we choose the second).After the second application of step 1, each clause contains only one negated term, so there is noneed to apply step 2.When a group of assignments kills a dependence, but no single assignment from the group doesso, we say the dependence is killed by a comb. Combs often involve a set of subscripts that di�eronly in the constant term. Figure 2 shows a comb used in the Perfect Club program MDG. This codedemonstrates the advantages of the repeated simpli�cation in step 1 of our technique.To the right of the code is the dependence relation for the value-based 
ow dependence fromthe write of xl(j) on line 18 to the read of xl(j) on line 17. Our initial application of step 11: for i := 1 to n do2: xl(1) := ...3: xl(2) := ......15: xl(14) := ...16: for j := 1,14 do17: if (abs(xl(j))>boxh)18: xl(j) := xl(j)-...19: endif20: endfor21: endfor f [i; j]! [i00; j00] j1 � i < i00 � n ^ 1 � j = j00 � 14^ :(9i0 s:t: i < i0 = i00 ^ j00 = 1)^ :(9i0 s:t: i < i0 = i00 ^ j00 = 2)^ : : :^ :(9i0 s:t: i < i0 = i00 ^ j00 = 14) gf [i; j]! [i00; j00] j1 � i < i00 � n ^ 1 � j = j00 � 14^ :(j � 1) ^ :(j = 2) ^ : : : ^ :(j � 14) gDependence relation before and after step 1Figure 2: Example of dependence analysis in the presense of a comb kill9



eliminates all of the existentially quanti�ed variables. If we were to perform all of the negationsat this time, we would produce twelve terms containing disjunctions, yielding 212 clauses when weconvert to disjunctive normal form. We would have to simplify all of these clauses to show thatthere is no value-based 
ow dependence.We avoid this problem with our re-application of step 1: On our �rst pass, we negate (j � 1)and :(j � 14), producing the new C0 = 2 � j � 13. Our second application of Step 1 reduces:(j = 2) to :(j � 2), and :(j = 13) to :(j � 13), allowing both of these terms to be negatedwithout introducing disjunction. Thus, we never produce more than one clause, and perform fewersimpli�cations than we would perform without repeated use of step 1. Furthermore, a simpli�cationmay reduce the size of a term, speeding up future simpli�cations of that term.3.5 Simplifying Arbitrary Presburger FormulasThe ability to negate conjunctions of linear constraints with wildcards or with quasilinear con-straints gives us a complete method for simplifying Presburger formulas.We propagate negations inwards, but not over quanti�ers. We eliminate universal quanti�ersby replacing formulas of the form 8x; P with formulas of the form :9x s:t: :P . Given a quanti�edexpression 9x s:t: P where P contains no embedded quanti�ers, we convert P into disjunctivenormal form, and then apply the methods of [Pug92] to eliminate the existential quanti�er (possibleleaving wildcards). When applying negation, we use the techniques of this section.The best known upper bound on the performance of an algorithm for verifying Presburgerformulas is 222n [Opp78], and we have no reason to believe that this method be provide betterworst-case performance. However, our method may be more e�cient for many simple cases thatarise in many applications.4 Related WorkThe method described by Feautrier [Fea88b, Fea91] was the �rst method for computing exact value-based dependence information over the restricted domain of programs with structured control 
owand a�ne subscripts, guards and loop bounds. Dror Maydan and Monica Lam developed analternative way of computing the same information as Feautrier does. This method is faster, butdoes not apply in some cases (in which case the falls back to Feautrier's method). Vadim Maslov[Mas94] has recently described a new framework for value-based dependence information that isexact over the same domain.In previous work we described exact methods for computing memory-based dependences [Pug92]and methods for identifying some, but not all, dependences that were not value-based [PW92].4.1 Feautrier's and Maydan's approachFeautrier and Maydan compute a decision tree (called a quast or a last write tree(LWT)) to describea dependence. This decision tree allows the computation of the source of any particular read. Theinternal nodes represent tests to be performed. The left branch corresponds to a false result, aright branch to a true result. The leaves are either a description of the statement and iteration thatwrote the value read in the iteration of interest, or ?, corresponding to a read of an uninitializedlocation. In the method described by Paul Feautrier and Dror Maydan, there are three basic stepsto dependence analysis: 10



1. Computing the data-
ow dependence from a single write to a single read, assuming there areno other writes.2. Combining the dependences generated in step 1 from multiple writes to describe the data-
owdependences from many writes to a single read.3. Check each leaf of the quast/LWT to verify that it is feasible. (Note: this check can be doneon-the-
y while building the quast/LWT).4.1.1 Parametric Integer Programming with the Omega testPaul Feautrier discusses parametric integer programming [Fea88a], which is the problem of �ndingthe optimal/maximal solution to a set of linear constraints over integer variables. For example,maxfi j i � j ^ i � kg = if j � k then j else k. Parametric integer programming is done withrespect to �nding the minimum or maximum lexical value for a vector of variables.Parametric integer programming can be restated in a form of Presburger arithmetic that wecan handle in the Omega test:maxfI j P (I; I 00)g � P (I; I 00) ^ :9I 0 s:t: I � I 0 ^ P (I0; I 00)4.1.2 Computing dependences from single writes to a readPaul Feautrier uses parametric integer programming to compute the value-based dependences froma single write to a read, ignoring all other writes. Dror Maydan and Monica Lam noted that inmany common situations, faster techniques would su�ce.4.1.3 Computing dependences from many writes to a readWhen quasts or LWT's from multiple writes are combined to give a single description of whichwrites reach a read, the size of the quast/LWT can grow exponentially [Fea91, May92]. There isnot yet enough experimental evidence to evaluate the growth of quast's/LWT's vs. the growth inthe number of conjunctions produced by our methods. We suspect that the requirement that thequast/LWT be a decision tree will tend to make it grow faster. Whatever condition is tested as theroot of the tree becomes part of the conditions of every leaf, even it is not relevant to some leaves.4.1.4 Checking feasibility and handling negationThe quasts or Last Write Trees constructed by combining quast's/LWT's may contain infeasiblepaths [Fea91, MAL93]. To enable compile-time transformations such as privatization, it is necessaryto determine which of these paths are feasible. This cost is likely to be substantial, particularly sincethe number of leaves in a quast/LWT grows exponentially when multiple writes are considered.Dror Maydan suggested that if we check the feasibility interior and leaf nodes, using a depth-�rst-search, we can avoid checking all nodes and leaves below any infeasible node found. No studieshave yet been done to see what improvements could be obtained this way.Determining which of the paths are feasible requires checking the feasibility of a problem suchas: P1 ^ P2 ^ � � � ^ Pn ^ :N1 ^ :N2 ^ � � � ^ :Nmwhere the Pi's are the conditions for the nodes where we take the true branch and the Ni's are theconditions for the nodes where we take the false branch. Each of these conditions is a conjunction11



of linear constraints, and may include non-convex constraints (e.g., constraints such as \i is even"speci�ed using wildcards or quasi-linear constraints). Directly converting these expressions intodisjunctive normal form would be infeasible for many real problems. The methods we describe inSection 3 should reduce this blow-up.The methods described by [MAL93] can handle only special cases of negated non-convex con-straints. Paul Feautrier uses quasi-linear constraints (constraints containing 
oor and ceiling oper-ations) to handle negation. Unfortunately, this technique is not complete for all cases. In Section3.2.1, we describe techniques that do not su�er this incompleteness.It is our belief that the cost of checking the feasibility of all leaves of a quast/LWT is likely tobe the major expense in an implementation of Feautrier's or Maydan's scheme.4.1.5 A question of formOne advantage of the quasts/LWT's computed by Feautrier and by Maydan is that they arerepresented as a set of constraints over the read iteration and the symbolic variables, which can beeasily tested at run-time, and by simple formulas that, given the values of the read iteration andsymbolic variables, determine the write iteration.If all constraints are a�ne, Equation 2 is guaranteed to produce a dependence relation such that,for any value of the read iteration of symbolic variables, there is exactly one write iteration thatsatis�es the constraints. However, we can make few guarantees about the form of the constraintsin the dependence relation. For example, we might obtain a dependence relation of the form:f[iw; ir � 2iw]! [ir] j 0 � iw � m ^ q � ir � p ^ ir � 1 � 2iw � ir ^ ir � n+ 2iwgIn order to produce these properties of quasts/LWT's, we will need to recognize constraintsthat are equivalent to integer division (and perhaps integer remainder?). This would allow us torecognize the above dependence relation as:f[(ir � 2); ir � 2(ir � 2)]! [ir] j 0 � (ir � 2) � m ^ q � ir � p ^ ir%2 � ngIt is currently an open question as to whether this extension will allow us to obtain theseproperties in all cases.4.2 Maslov's approachVadim Maslov [Mas94] suggested that using just Equation 2 to compute value-based dependenceswould be ine�cient. His observation was that it is wasteful to consider all possible killers for everypossible dependence; instead, we can keep track of the upwards exposed iterations of a read, andutilize this information. Since the upwards exposed information can be calculated once per killer-read pair, as opposed to once per write-killer-read triple, this could lead to a substantial performanceimprovement. He also suggested reordering computations in a more lazy fashion, so as to avoidperforming computations that might be rendered useless or irrelevant by later computations.We have incorporated this idea into our system with the idea of partial covers (Section 2.2).We have extended it by also keeping track of the downwards exposed iterations of each write (usingpartial termination).There are two other signi�cant di�erences between this work and Maslov's. First, our methoduses memory-based dependences to calculate the value-based dependences, while Maslov's doesnot require that memory-based dependences be calculated (which, in some cases, can save time).Second, Maslov uses a lexicographical maximum calculation instead of Equation 2.12



It is our belief that any system using value-based dependence information will also need memory-based dependence information. Thus, we have not tried to avoid the cost of computing memory-based dependence information. However, our methods for computing value-based dependenceswork just �ne if we start from a conservative approximation to the memory based dependences.If fact, if we start from the crude approximation that there is a dependence carried at every levelbetween any two references to the same variable, our algorithm works in a fashion very similarto that of Maslov's, and Equation 2 and Maslov`s lexicographical maximum performance almostidentical computational steps. The main di�erence is that our use of partial terminators may saveus some work.In the case where we use better information about memory-based dependences, we may be ableto save additional work. We may be able to handle more killers as partial covers and terminatorsand we may be able to avoid considering some killers at all.Maslov utilizes our previous work on the Omega test [Pug92, PW92] and the techniques de-scribed here for handling negation (Section 3).4.3 Tu's and Padua's ApproachWe will brie
y compare our scheme with that of Tu and Padua [TP92, PEH+93], as a representativeexample of other related work on array privatization [GS90, Ros90, Li92]. Their scheme handlescontrol 
ow, while ours currently does not. We believe that a naive implementation of the methodsdescribed in their papers would be equivalent, in our scheme, to performing only those kills wherethe output dependence from the write to the kill or the 
ow dependence from the kill to the readwas loop independent. Equivalently, we could perform the upward-exposed and downward-exposedcalculations of Section 2.2. They [PEH+93] note that this is imprecise:... a naive aggregation of USEb(L) may exaggerate the exposed use set....They do not describe in [TP92, PEH+93] the algorithm used to perform the more sophisticatedaggregation. It is our belief that the e�ect of the more sophisticated aggregation will be equivalent,in our scheme, to using only partial covers in computing kills.The primary e�ects of these di�erences are that while they correctly determine whether or nota 
ow dependence is carried by a loop, they are approximate when determining the exact sourceof a dependence (i.e., which iteration of which write). Since their scheme is targeted at priva-tizing arrays, the information they determine is su�cient. For other purposes, such as analyzingcommunications [AL93] and scalar replacement, additional information is needed.Another di�erence is that Tu's and Padua's method is based on determining which array ele-ments are covered, while Feautrier's and our methods are based on determining which read iterationsare covered. when all array references are linear, this does not make a di�erence. It could make adi�erence when non-linear subscripts occur, but it is unclear which would be advantageous.Tu and Padua use an extension of regular sections [CK88] to represent used, de�ned and exposedarray sections. Their intersection (and their di�erence?) operators are approximate. If exactcalculations are desired, our algorithms for simplifying Presburger formulas may be useful.5 Performance evaluationIn Table 1, we report Feautrier's performance evaluation of his techniques, and a performanceevaluation of our techniques on the same problems. For our work, we list the times required toperform a standard, memory-based dependence analysis and to perform a value-based dependence13



analysis. Our times are on a SPARC IPX (a SPECint89 rating of 21.7), Feautrier's are on aSPARC ELC (a SPECint89 rating of 18.0). So that our results can be compared with Feautrier's,we analyze both array and scalar variables. We also report the time required to analyze just thearray variables.In analyzing memory based dependences as a pre-pass, we calculated conservative approximatememory-based dependences for scalar variables and for dependences with no common loops. Usingapproximate memory-based dependences still allows us to compute exact value-based dependences.Our current implementation uses the partial covers described in Section 2.2; we do not currentlyuse partial terminators. We found that using partial covers give a factor of 2-4+ improvement inanalysis time, compared with use of Equation 2 alone. We also experimented with using Equation2 with the complete cover and termination checks described in [PW92] (but not partial cover andtermination). For a few programs, computing partial covers gave a nearly a factor of 2 improvementover doing only full cover and termination checks. But for most programs, they do not lead to amajor improvement and in some cases even slows down the analysis. However, since partial coversand terminators reduce the number of situations in which we see worst-case "cubic number ofterms" behaviour of Equation 2, we think they are a valuable idea.Some of the dependence relations we calculate for olda and the NASA NAS kernels are con-servative since they contain (non-loop) control 
ow and non-linear terms. We currently do notattempt to perform a kill using a non-linear dependence. However, a dependence might be linearunless carried by the outer loop (e.g., if the dependence involved a variable that was changingunpredictably in the outermost loop). We detect such cases and handle the linear components ofthe dependence.The times reported for Feautrier's algorithm are from an implementation of his algorithm thathas not been engineered for e�ciency. While the PIP algorithm is implemented in C, the remainderof his algorithm is implemented in Lisp. Work is underway to recode Feautrier's algorithms moree�ciently. Feautrier hopes that this will result in a signi�cant speed-up.Dror Maydan [MAL93] notes that his techniques require 100 milliseconds on a Decstation 3100(a SPECint89 rating of 11.8) to evaluate the relax example and to calculate the dependencedirection/distance vectors from the LWT's. The relax example does not require merging LWT's.6 Implementation Status and Benchmark AvailabilityThe techniques described here are being implemented in our extended version of Michael Wolfe'stiny tool [Wol91], which is available for anonymous ftp from ftp.cs.umd.edu:pub/omega. Theprograms analyzed in Table 1 come from a set of benchmark programs for comparing the per-formance and coverage of algorithms for analyzing value-based 
ow dependences between arrayreferences. Send email to omega@cs.umd.edu to receive a copy of the benchmarks and be added tothe data
ow benchmarks mailing list.7 ConclusionThe cost of performing exact value-based 
ow dependence analysis for arrays appears to be 2-7 times that required to do exact memory-based exact array dependence analysis using integerprogramming techniques [Pug92]. We believe that these methods are suitable for use in productioncompilers. However, we may wish to avoid applying them blindly. It may be cost e�ective todetermine when it might be pro�table to have exact value-based dependence information, and14



Analyzing array variables onlyFrom Code M V M + V f77 D M+VD[Fea91] across 3 6 9 200 13 0.69burg 14 58 72 600 32 2.25relax 4 20 24 400 8 3.00gosser 5 52 58 700 16 3.63choles 4 7 12 600 12 1.00lanczos 29 78 107 1700 136 0.79jacobi 379 621 999 1600 255 3.92[MAL93] ocean (extract) 11 14 25 500 16 1.56Perfect olda (simpli�ed) 51 338 389 3300 48 8.10NASA btrix 330 1036 1369 8600 771 1.78NAS c�t2d1 33 484 516 1500 52 9.92Kernels cholsky 86 156 242 2900 106 2.28emit 34 87 121 3700 129 0.94gmtry 25 70 95 3700 91 1.04vpenta 262 163 425 5700 1501 0.28Analyzing array and scalar variablesFrom Code M V M + V [Fea91] D M+VD[Fea91] across 3 6 9 600 13 0.69burg 15 76 91 5600 46 1.98relax 4 19 24 1700 8 3.00gosser 6 56 62 2800 24 2.58choles 6 25 32 2600 32 1.00lanczos 28 91 119 12600 148 0.80jacobi 386 718 1104 81900 374 2.95[MAL93] ocean (extract) 10 15 25 16 1.56Perfect olda (simpli�ed) 65 732 796 142 5.61NASA btrix 331 1175 1515 809 1.87NAS c�t2d1 37 540 577 103 5.60Kernels cholsky 84 162 246 107 2.30emit 37 144 181 181 1.00gmtry 34 146 180 161 1.12vpenta 253 220 473 1757 0.27M - Memory-based dependence analysis timeV - Value-based 
ow dependence analysis time (needs M )f77 - Time required to compile with f77 -c -O3[Fea91] - Times reported by FeautrierD - # of dependences for which value-based dependences are calculated(all times in milliseconds)Table 1: Evaluation of times required to perform analysis15



apply them only in those cases. Some methods for doing this are described in [PW93]. Also,the methods described here are more susceptible to bad worst-case performance than the methodsdescribed in [Pug92, PW92]. We might want to be able to detect when computing exact value-baseddependence information is going to be very expensive, and use some approximation.Neither Feautrier nor Maydan has does an analysis of which components of their algorithms areexpensive. Therefore, we can only speculate on the reasons why our scheme appears 40-75 timesfaster than Feautrier's.Use of the algorithm described by Maydan (which falls back to Feautrier's when the specialcases handled by Maydan do not apply) is probably a reasonable way to determine the exact value-based dependence from a single write to a read. More work is needed to compare the two, but wedo not expect more than an order of magnitude di�erence between our scheme and Maydan's.The algorithm used by Feautrier and Maydan for merging quasts/LWT may be subject toproblems with exponential growth in the number of leaves. Compared with our scheme, two factorsmight lead to a larger blow-up:� We use the dependence direction/distance vectors for the 
ow and the output dependencesto and from a kill to determine when a kill is feasible. This allows us to rule out more kills.� Tests irrelevant to a particular dependence may increase the branching factor. For example, ifthere are three possible sources of a dependence (s1, s2 and s3), the leaves for the dependenceto s3 will occur under both branches of a test that determines if the write by s1 or s2 is mostrecent.The papers by Feautrier and Maydan have not addressed the issue of e�ciently checking thefeasibility of formulas containing negation. It is our belief that this is responsible for a substantialportion of the time required by Feautrier's algorithm. Some e�cient scheme for testing the feasibil-ity of a set of linear constraints is needed, such as [MHL91, Pug92]. In is unclear how e�ective PIP[Fea88a] is at checking feasibility (as opposed to parametric integer programming). In addition,some method like the one we describe here will be required to handle negation e�ciently.It is unclear if the exact information computed by our scheme and by Feautrier will ever berequired, or if approximate information, computed by schemes such as [TP92, PEH+93], will suf-�ce. For array privatization, approximate schemes may su�ce but more advanced transformations[AL93, PW93] may require more exact information. We have pursued exact analysis methods be-cause we want to determine exactly how expensive it will be to compute, and because we �ndthat it gives us a better insight into the problem. If exact methods do not cost signi�cantly morethan approximate methods, then the justi�cation for using approximate methods is weaker. If we�nd that exact methods are too expensive, we can decide to cut corners and know exactly whatinformation we may be loosing.The techniques we have described are impractical for real programs, since they do not handlecontrol 
ow (other than loops) and procedure calls. We are currently exploring ways of extendingour methods to deal with these cases. We expect that we will have to abandon our goal of beingexact in all cases to deal with these features.References[AI91] Corinne Ancourt and Fran�cois Irigoin. Scanning polyhedra with do loops. In Proc. of the Third ACMSIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 39{50, April 1991.[AL93] Saman P. Amarasinghe and Monica S. Lam. Communication optimization and code generation for dis-tributed memory machines. In ACM '93 Conf. on Programming Language Design and Implementation,June 1993. 16
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