
UMIACS-TR-93-134 November, 1992CS-TR-3193 Revised April, 1993A Framework for Unifying Reordering TransformationsWayne Kelly William Pughwak@cs.umd.edu pugh@cs.umd.eduInstitute for Advanced Computer StudiesDept. of Computer Science Dept. of Computer ScienceUniv. of Maryland, College Park, MD 20742AbstractWe present a framework for unifying iteration reordering transformations such as loopinterchange, loop distribution, skewing, tiling, index set splitting and statement reorder-ing. The framework is based on the idea that a transformation can be represented as aschedule that maps the original iteration space to a new iteration space. The frameworkis designed to provide a uniform way to represent and reason about transformations.As part of the framework, we provide algorithms to assist in the building and use ofschedules. In particular, we provide algorithms to test the legality of schedules, to alignschedules and to generate optimized code for schedules.This work is supported by an NSF PYI grant CCR-9157384 and by a Packard Fellowship.

1 IntroductionOptimizing compilers reorder iterations of statements to improve instruction scheduling, register use, andcache utilization, and to expose parallelism. Many di�erent reordering transformations have been developedand studied, such as loop interchange, loop distribution, skewing, tiling, index set splitting and statementreordering [AK87, Pol88, Wol89b, Wol90, CK92].Each of these transformations has its own special legality checks and transformation rules. These checksand rules make it hard to analyze or predict the e�ects of compositions of these transformations, withoutperforming the transformations and analyzing the resulting code.Unimodular transformations [Ban90, WL91a] go some way towards solving this problem. Unimodulartransformations is a uni�ed framework that is able to describe any transformation that can be obtainedby composing loop interchange, loop skewing, and loop reversal. Such a transformation is described by aunimodular linear mapping from the original iteration space to a new iteration space. For example, loopinterchange in a doubly nested loop maps iteration [i; j] to iteration [j; i]. This transformation can bedescribed using a unimodular matrix: " 0 11 0 # " ij # = " ji #Unfortunately, unimodular transformations are limited in two ways: they can only be applied to per-fectly nested loops, and all statements in the loop nest are transformed in the same way. They can thereforenot represent some important transformations such as loop fusion, loop distribution and statement reorder-ing.1.1 SchedulesThe points in the iteration space resulting from a unimodular transformation will be executed in lexi-cographic order. Thus a unimodular transformation implicitly speci�es a new order or schedule for thepoints in the original iteration space. We use this idea of a schedule as the basis for our uni�ed reorderingtransformation framework. This framework is more general than unimodular transformations as it candescribe a larger class of mappings (or schedules) from the old iteration space to the new iteration space.A schedule has the following general form:T : [i1; : : : ; im]! [f1; : : : ; fn] j Cwhere:� The iteration variables i1; : : : ; im represent the loops nested around the statement(s).� The f j 0s are functions of the iteration variables.� C is an optional restriction on the domain of the schedule.This schedule represents the fact that iteration [i1; : : : ; im] in the original iteration space is mapped toiteration [f1; : : : ; fn] in the new iteration space if condition C is true.For example the above unimodular transformation would be represented by the schedule:T : [i; j]! [j; i]In the case of unimodular transformations:� All statements are mapped using the same schedule.� The f j 0s are linear functions of the iteration variables.1

� The schedule is invertable and unimodular (i.e., 1-1 and onto).� The dimensionality of the old and new iteration spaces are the same (i.e., m = n).� There is no restriction C on the domain.In our framework we generalize unimodular transformations in the following ways:� We specify a separate schedule for each statement� We allow the f j 0s to include a constant term (possibly symbolic).� We require the schedules to be invertable, but not necessarily unimodular (i.e., 1-1 but not necessarilyonto).� We allow the dimensionality of the old and new iteration spaces to be di�erent.� We allow the schedules to be piecewise (as suggested by [Lu91]): we can specify a schedule Tp asSi Tpi j Cpi where the Tpi j Cpi's are schedules with disjoint domains.� We allow the f j 0s to be functions that include integer division and modular operations provided thedenominator is a known integer constant.By generalizing in these ways, we can represent a much broader set of reordering transformations, includingany transformation that can be obtained by some combination of:� loop interchange� loop reversal� loop skewing,� statement reordering� loop distribution� loop fusion� loop alignment [ACK87]� loop interleaving [ST92]� loop blocking1 (or tiling) [AK87]� index set splitting1 [Ban79]� loop coalescing1 [Pol88]� loop scaling1 [LP92]1.2 ExamplesFigure 1 gives some interesting examples of schedules.1.3 OverviewOur framework is designed to provide a uniform way to represent and reason about reordering transfor-mations. The framework itself is not designed to decide which transformation should be applied. Theframework should be used within some larger system, such as an interactive programming environmentor an optimizing compiler. It is this surrounding system that is �nally responsible for deciding whichtransformation should be applied. The framework does however provide some algorithms that would aidthe surrounding system in its task.1Our current implementation cannot handle all cases of these transformations.2

Code adapted from OLDA in Perfect club (TI) [B+89] LU Decomposition without pivotingOriginal codedo 20 mp = 1, npdo 20 mq = 1, mpdo 20 mi = 1, morb10 xrsiq(mi,mq)=xrsiq(mi,mq)+$ xrspq((mp-1)*mp/2+mq)*v(mp,mi)20 xrsiq(mi,mp)=xrsiq(mi,mp)+$ xrspq((mp-1)*mp/2+mq)*v(mq,mi) Original codedo 20 k = 1, ndo 10 i = k+1, n10 a(i,k) = a(i,k) / a(k,k)do 20 j = k+1, n20 a(i,j) = a(i,j) - a(i,k) * a(k,j)Schedule (for parallelism)T10 : f [mp; mq; mi] ! [mi; mq; mp; 0]gT20 : f [mp; mq; mi] ! [mi; mp; mq; 1]g Schedule (for locality)T10 : f[k; i] ! [64((k�1) div 64)+1;64(i div 64);k; k; i]gT20 : f[k; i; j] ! [64((k�1) div 64)+1;64(i div 64); j; k; i]gTransformed codeparallel do 20 mi = 1,morbparallel do 20 t2 = 1,npdo 10 t3 = 1,t2-110 xrsiq(mi,t2)=xrsiq(mi,t2) +$ xrspq((t3-1)*t3/2+t2)*v(t3,mi)xrsiq(mi,t2)=xrsiq(mi,t2) +$ xrspq((t2-1)*t2/2+t2)*v(t2,mi)xrsiq(mi,t2)=xrsiq(mi,t2) +$ xrspq((t2-1)*t2/2+t2)*v(t2,mi)do 20 t3 = t2+1,np20 xrsiq(mi,t2)=xrsiq(mi,t2) +$ xrspq((t2-1)*t2/2+t3)*v(t3,mi)
Transformed codedo 30 kB = 1, n-1, 64do 30 iB = kB-1, n, 64do 5 i = max(iB, k+1), min(iB+63, n)5 a(i,kB)=a(i,kB)/a(kB,kB)do 20 t3 = kB+1, min(iB+62,n)do 10 k = kB, min(t3-1, kB+63)do 10 i = max(k+1,iB), min(iB+63,n)10 a(i,t3)=a(i,t3)-a(i,k)*a(k,t3)do 20 i = max(iB,t3+1), min(iB+63,n)20 if (t3<=kB+63) a(i,t3)=a(i,t3)/a(t3,t3)do 30 t3 = iB+63, ndo 30 k = kB to min(iB+62,kB+63)do 30 i = max(k+1,iB), iB+6330 a(i,t3)=a(i,t3)-a(i,k)*a(k,t3)Transformations required normally� index set splitting� loop distribution� triangular loop interchange� loop fusion Transformations required normally� strip mining� index set splitting� loop distribution� imperfectly nested triangular loop interchangeCode adapted from CHOSOL in the Perfect club (SD) Banded SYR2K [LP92] adapted from BLAS [JDH90]Original codedo 30 i=2,n10 sum(i) = 0.do 20 j=1,i-120 sum(i) = sum(i) + a(j,i)*b(j)30 b(i) = b(i) - sum(i) Original codedo 10 i = 1, ndo 10 j = i, min(i+2*b-2,n)do 10 k = max(i-b+1,j-b+1,1),min(i+b-1,j+b-1,n)10 C(i,j-i+1) = C(i,j-i+1) +$ alpha*A(k,i-k+b)*B(k,j-k+b) +$ alpha*A(k,j-k+b)*B(k,i-k+b)Schedule (for parallelism)T10 : f [i] ! [0; i; 0; 0] gT20 : f [i; j] ! [1; j; 0; i] gT30 : f [i] ! [1; i� 1; 1; 0] g Schedule (for locality and parallelism)T10 : f [i; j; k] ! [j � i+ 1; k � j; k] gTransformed codeparallel do 10 i = 2,n10 sum(i) = 0.do 30 t2 = 1, n-1parallel do 20 i = t2+1,n20 sum(i) = sum(i) + a(t2,i)*b(t2)30 b(t2+1) = b(t2+1) - sum(t2+1) Transformed codeparallel do 10 t1 = 1, min(n,2*b-1)do 10 t2 = max(1-b,1-n), min(b-t1, n-t1)parallel do 10 k = max(1,t1+t2), min(n+t2,n)10 C(-t1-t2+k+1,t1) = C(-t1-t2+k+1,t1) +$ alpha*A(k,-t1-t2+b+1)*B(k,-t2+b) +$ alpha*A(k,-t2+b)*B(k,-t1-t2+b+1)Transformations required normally� loop distribution� imperfectly nested triangular loop interchange Transformations required normally� loop skewing� triangular loop interchangeFigure 1: Example Codes, Schedules, and Resulting Transformations3

operation Description De�nitionF �G The composition of F with G x!z 2 F �G, 9y s:t: x!y 2 F ^ y!z 2 GF (S) Apply the relation F to the set S y 2 F (S), 9x s:t: x!y 2 F ^ x 2 SF�1 The inverse of F x!y 2 F�1 , y!x 2 FF \G The intersection of F and G x!y 2 F \G, x!y 2 F ^ x!y 2 GS \ T The intersection of S and T x 2 S \ T , x 2 S ^ x 2 Tdomain(F) The domain of F x 2 domain(F), 9y s:t: x!y 2 Frange(F) The range of F y 2 range(F), 9x s:t: x!y 2 F�1;:::;v S The projection of S onto variables 1; : : : ; v x 2 �1;:::;v S , jxj = v ^ 9y s:t: xy 2 Sfeasible(S) True if S is not empty feasible(S), 9x 2 STable 1: Operations on tuple sets and relations, where F and G are tuple relations and S and T are tuplesetsIn Section 2 we describe how dependences and schedules are represented. In Section 3 we demonstratethat a large class of traditional transformations can be represented using schedules. In Section 4 wedescribe an algorithm that tests whether a schedule is legal. A surrounding system that is able to comeup with a complete schedule by itself need only use this schedule legality test. Other systems may needthe schedule component legality test and schedule alignment algorithm described in Section 5 to build acomplete schedule.In Section 6 we describe our code generation algorithm. This algorithm takes a schedule and producesoptimized code corresponding to the transformation represented by that schedule. By making use of thegist operation [PW92] we are able to produce code with a minimal number of conditionals and loop bounds.In Section 7 we extend our schedule syntax to allow us to denote the fact that a schedule producesfully-permutable loop nests [WL91a, WL91b]. Given a permutable schedule, it is easy to reorder or tilethe loops for parallelism and locality without continual concern about legality.In Section 8 we discuss surrounding systems and the interface between surrounding systems and ourframework. Finally we discuss related work, give our implementation status and state our conclusions.2 Representing Dependences and SchedulesMost of the previous work on program transformations uses data dependence directions and distances tosummarize dependences between array references. For our purposes, these abstractions are too crude.We evaluate and represent dependences exactly using linear constraints over integer variables. We usethe Omega test [Pug92, PW92] to manipulate and simplify these constraints. This approach allows us toaccurately compose dependences and provides more information about which transformations are allowable.The following is a brief description of integer tuple relations and dependence relations.2.1 Integer tuple relations and setsAn integer k-tuple is simply a point in Zk. A tuple relation is a mapping from tuples to tuples. A singletuple may be mapped to zero, one or more tuples. A relation can be thought of as a set of pairs, eachpair consisting of an input tuple and its associated output tuple. All the relations we consider map fromk-tuples to k0-tuples for some �xed k and k0. The relations may involve free variables such as n in thefollowing example: f [i] ! [i + 1] j 1 � i < n g. These free variables correspond to symbolic constantsor parameters in the source program. We use Sym to represent the set of all symbolic constants. Table1 gives a brief description of the operations on integer tuple sets and relations that we have implemented.4

See [Pug91] for a more thorough description.2.2 Simple relationsInternally, a relation is represented as the union of a set of simple relations: relations that can be describedby the conjunction of a set of linear constraints. We can represent simple relations containing non-convexconstraints such as f [i] ! [i] j i even g by introducing wildcard variables (denoted by greek letters):f [i]! [i] j 9� s:t: i = 2� g.2.3 Control dependenceWe require that conditionals be removed using if-conversion [AKPW83] and that all loop bounds be a�nefunctions of surrounding loop variables and symbolic constants. All control dependences can thereforebe implicitly represented by describing the iteration space using a set of linear inequalities on the loopvariables and symbolic constants.Alternatively, structured if statements can be handled by treating them as atomic states.In future research we plan handle a larger class of control dependences.2.4 Data dependenceFrom now on, when we refer to dependences, we will be implicitly referring to data dependences. We usetuple relations to represent dependences. If there is a dependence from sp[i] (i.e., iteration i of statementsp) to sq[j] then the tuple relation dpq representing the dependences from sp to sq will map [i] to [j] (iand j are tuples). We do not distinguish between di�erent kinds of dependences (i.e.,
ow, output andanti-dependences) because they all impose ordering constraints on the iterations in the same way. It ispossible to remove output and anti-dependences using techniques such as array and scalar expansion; weassume that this has already been done if it is desirable, and that the dependences have been updated. Analternative approach is to annotate the dependence information in such a way that certain dependencesare ignored under the presumption that they can be removed if necessary.2.5 Transitive dependenceIf there is a dependence from sp[i] to sq[j] and from sq[j] to sr[k], then we say there is a transitivedependence from sp[i] to sr[k].We calculate transitive dependences and store them in a graph called the transitive dependence graph.Our algorithms would work if applied to the normal dependence graph rather than the transitive depen-dence graph, but by using the transitive dependence graph we can determine earlier that a schedule isillegal.Computing the transitive closure of the dependences can be expensive, and it is not always possibleto �nd a closed form. Since the transitive dependences are needed only to improve e�ciency, we canavoid computing a complete transitive closure when it appears too expensive or we can't �nd a closedform. A rough approximation of transitive closure works well for the applications to which we put it (theapproximation has to be a lower bound on the transitive closure).2.6 The gist and approx operationsWe make use of the gist operation that was originally developed in [PW92]. Intuitively, (gist p given q) isde�ned as the new information contained in p, given that we already know q. More formally, if p ^ q issatis�able then (gist p given q) is a conjunction containing a minimal subset of the constraints in p suchthat ((gist p given q) ^ q) = (p ^ q)). For example gist 1 � i � 10 given i � 5 is 1 � i. If p ^ q is notsatis�able then (gist p given q) is False. 5

The approx operation is de�ned so that approx (p) � p and approx (p) is convex. Within theseconstraints, approx (p) is made as tight as possible; if p is convex, approx (p) = p. The original set ofconstraints p may involve wildcard variables which may cause the region described by p to be non-convex.The approx (p) operation works by simplifying the constraints in p under the assumption that the wildcardvariables can take on rational values. This allows us to eliminate all wildcard variables.2.7 SchedulesWe associate a separate schedule with each statement, we therefore need a way to refer to the schedules ofindividual statements. We represent the schedule associated with statement sp as:Tp : [i1p; : : : ; impp]! [f1p ; : : : ; fnp] j CpThe f ip expressions are called schedule components. For simplicity but without loss of generality we requirethat all of the schedules have n components. We refer to each of the positions 1; : : : ; n as levels. A levelcan also be thought of as all of the schedule components at a particular position.We will use the term schedule to refer to both the schedules of individual statements and the set ofschedules associated with all statements.3 Representing Traditional Transformations as SchedulesIn this section we demonstrate how schedules can be used to represent all transformations that can beobtained by applying any sequence of the traditional transformations listed in Section 1.We will describe how to construct schedules to represent traditional transformations by describing howto modify schedules that correspond to the normal sequential execution of programs. When constructingthese schedules we categorize schedule components as being either syntactic components (always an integerconstant) or loop components (a function of the loop variables for that statement). syntactic(f ip) is aboolean function which is true i� f ip is a symbolic component (loop(f ip) is de�ned analagously).The schedule that corresponds to the normal sequential execution of a program, can be constructed by arecursive descent of the abstract syntax tree (AST). Nodes in the AST have three forms: loops, statementlists and guarded assignment statements. The function schedule(S; []! []) returns a schedule for each ofthe assignment statements in S:The common syntactic level (csl) of two statements sp and sq is de�ned as:csl(sp; sq) � minfi� 1 j 1 � i ^ f ip 6= f iq ^ syntactic(f ip) ^ syntactic(f iq)gIntuitively, the common syntactic level of two statements is the deepest loop which surrounds both state-ments. Figure 2 describes how to construct schedules to represent traditional transformations by describinghow to modify the schedules we have just described. Since the rules described in Figure 2 can be appliedrepeatedly, we can represent not only standard transformations but also any sequence of standard trans-formations.4 Schedule Legality TestIn this section we describe an algorithm that tests whether a schedule is legal. A schedule is legal if thetransformation it describes preserves the semantics of the original code. This is true if the new orderingof the iterations respects all of the dependences in the original code.The legality requirement is as follows: If i is an iteration of statement sp and j an iteration of statementsq, and the dependence relation dpq indicates that there is a dependence from i to j then Tp(i) must beexecuted before Tq(j): 8i; j; p; q; Sym i!j 2 dpq) Tp(i) � Tq(j) (1)6

Distribution Distribute loop at depth L over the statements D, with statement sp going into rpth loop.Requirements: 8sp; sq sp 2 D ^ sq 2 D) loop(fLp) ^ L � csl(sp; sq)Transformation: 8sp 2 D, replace Tp by [f1p ; : : : ; f (L�1)p ; syntactic(rp); fLp ; : : : ; fnp]Statement Reordering Reorder statements D at level L so that new position of statement sp is rp.Requirements: 8sp; sq sp 2 D ^ sq 2 D)syntactic(fLp) ^ L � csl(sp; sq) + 1^(L � csl(sp; sq), rp = rq)Transformation: 8sp 2 D, replace Tp by [f1p ; : : : ; f (L�1)p ; syntactic(rp); f (L+1)p ; : : : ; fnp]Fusion Fuse the loops at level L for the statements D with statement sp going into the rpth loop.Requirements: 8sp; sq sp 2 D ^ sq 2 D)syntactic(f (L�1)p) ^ loop(fLp) ^ L� 2 � csl(sp; sq) + 2^(L� 2 < csl(sp; sq) + 2) rp = rq)Transformation: 8sp 2 D, replace Tp by [f1p ; : : : ; f (L�2)p ; syntactic(rp); f (L)p ; f (L�1)p ; f (L+1)p ; : : : ; fnp]Unimodular Transformation Apply a k � k unimodular transformation U to a perfectly nested loopcontaining statements D at depth L : : :L+ k. Note: Unimodular transformations include loop inter-change, skewing and reversal [Ban90, WL91b].Requirements: 8i; sp; sq sp 2 D ^ sq 2 D ^ L � i � L+ k) loop(f ip) ^ L+ k � csl(sp; sq))Transformation: 8sp 2 D, replace Tp by [f1p ; : : : ; f (L�1)p ; U [f (L)p ; : : :f (L+k)p]>; f (L+k+1)p ; : : : ; fnp]Strip-mining Strip-mine the loop at level L for statements D with block size BRequirements: 8sp; sq sp 2 D^sq 2 D) loop(fLp)^L � csl(sp; sq))^B is a known integer constantTransformation: 8sp 2 D, replace Tp by [f1p ; : : : ; f (L�1)p ; B(f (L)p div B); f (L)p ; : : : ; fnp]Index Set Splitting Split the index set of statements D using condition CRequirements: C is a�ne expression of symbolic constants and indexes common to statements D.Transformation: 8sp 2 D, replace Tp by (Tp j C) [(Tp j :C)Figure 2: Using schedule transformations to achieve standard reordering transformationswhere Sym is the set of all symbolic constants in the equation, and � is the lexicographic ordering operator.We verify this by equivalently computing::9i; j; p; q; Sym s:t: i!j 2 dpq ^ Tp(i) � Tq(j)We also require that the schedule be 1-1 so that the new program performs exactly the same set ofcomputations as the original program:8p; q; i; j; Sym (p = q ^ i = j), Tp(i) = Tq(j) (2)which can be easily veri�ed.5 Aids to Building SchedulesA surrounding system that is able to come up with a complete schedule by itself need only use the schedulelegality test. Other systems may need help in building a complete schedule. In this section we describe7

function schedule(S, [i1; :::; ik]! [f1; :::; fa])case S of\for ik+1 = : : : do S1":return Schedule(S1; [i1; : : : ; ik; ik+1]! [f1; : : : ; fa; ik+1])\S1;S2; : : : ;Sm":return Smp=1 Schedule(Sp ; [i1; : : : ; ik]! [f1; : : : ; fa; p])\assignment #p":return fTp : [i1; : : : ; ik]! [f1; : : : ; fa]gthe schedule component legality test and schedule alignment algorithm, which aid the surrounding systemin building a complete schedule.5.1 Level by level philosophyOur algorithms that aid in the construction of schedules assume that the surrounding system is using thefollowing basic philosophy. Schedules are constructed in a step by step manner:1. Initially it is only known which statements are being scheduled and what their iteration variables are.None of the f ip's have been speci�ed; we may not even know the depth (n) of the new iteration space.2. At each step some of the unspeci�ed f ip's are speci�ed.3. At each step we require that it be possible to extend the current partially speci�ed schedule into acomplete legal schedule by specifying the remaining unspeci�ed f ip's.The third requirement places some restrictions on the order in which the schedule components canbe speci�ed. For example if fnp was speci�ed before specifying f1p ; : : : ; fn�1p then there would be no easyway to determine whether this partially speci�ed schedule could be extended to a complete legal schedule.Therefore, we require that the schedule components be speci�ed level by level starting at the �rst level,(i.e., during step k, fk1 ; : : : ; fkp are speci�ed). This strategy, is in some ways a generalization of Allen andKennedy's codegen algorithm [AK87].5.2 Ensuring legalityIf we use T kp to represent the schedule: [i1p; : : : ; impp]! [f1p ; : : : ; fkp]then after each step k we require that:8i; j; p; q; Sym i!j 2 dpq) T kp (i) � T kq (j) (3)We can simplify this condition by noting that at level k we can ignore dependences carried at levels lessthan k: 8r; i; j; p; q; Sym 1 � r � k ^ i!j 2 drpq) trp(i) � trq(j) (4)where trp = [i1p; : : : ; impp]! [f rp]d1pq = dpqdrpq = dr�1pq \ ((tr�1q)�1 � tr�1p)8

(if i!j 2 dkpq then T k�1p (i) 6� T k�1q (j), i.e., dkpq is the set of dependences in dpq that haven't been satis�edbefore step k). If the requirement described by Equation 4 has been maintained during steps 1 throughk � 1 then at step k we need only ensure that:8i; j; p; q; Sym i!j 2 dkpq) tkp(i) � tkq (j) (5)The step by step process of specifying additional levels must continue until the schedule is 1-1. Thecondition that the schedule is 1-1 (Equation 2) together with Equation 3 and the following property ofdependence relations: :9i; p; Sym s:t: i! i 2 dppimply the legality condition (Equation 1).5.3 Variable and constant partsWe distinguish two parts of a schedule component: the variable part and the constant part. The variablepart is the largest subexpression of the schedule component that is a linear function of the iterationvariables. The rest of the expression is called the constant part. For example in the schedule[i; j]! [2i+ j + n+ 1; 0; j]the level 1 schedule component has variable part 2i+ j and constant part n+ 1.The variable parts of a schedule are of primary importance in determining the parallelism and datalocality of the code resulting from a schedule. The constant parts of a schedule will often a�ect theschedule's legality, but will generally have minimal a�ect on the resulting parallelism and locality.It is therefore reasonable to require that the surrounding system specify the variable parts of theschedule, and let algorithms provided with our framework select constant parts that make the schedulelegal.5.4 Component legality testThe following sections describe how step k of the schedule construction process would proceed when usingour schedule alignment algorithm. The surrounding system speci�es the variable parts of the level kschedule components (one for each statement). Before we try to align (i.e., �nd constant parts for) thevariable parts, we can test each variable part to see if it is \legal" in isolation. A variable part V kp is legalfor a statement sp, if using it as a schedule component would not violate any self-dependences1 on sp,including any transitive self-dependences.If a variable part is illegal for a given statement at a given level then it cannot be used in any schedulecomponent in that context.More formally, a variable part V kp for statement sp is considered legal at level k i�:8i; j; Sym i!j 2 dkpp) vkp(i) � vkp(j) (6)where vkp : [i1p; : : : ; impp]! [V kp] and dkpq is de�ned as it was in Equation 4.For example, in the following code i and j are both legal variable parts for statement 1 at level 1, but�i and �j are illegal.do 2 i = 1, ndo 2 j = 1, n1 a(i,j) = b(i,j-1) + a(i-1,j)2 b(i,j) = a(i,j-1)1A self-dependence is a dependence from one iteration of a statement to another iteration of the same statement.9

Using legal variable parts is necessary but not su�cient to ensure that they can be aligned. For examplei is a legal variable part for statement 1 at level 1 and j is a legal variable part for statement 2 at level 1,but they cannot be aligned with one another.If we are not able (or willing) to compute the exact transitive closure, then it is important that theapproximation we use be a subset of the actual dependences. This approximation may cause some illegalvariable parts to be accepted but importantly won't reject any legal variable parts. It is acceptable toaccept illegal variable parts at this stage as we will latter determine that they are illegal. In other words,the component legality test is only an initial �lter designed to improve the e�ciency of the rest of thealgorithm.5.5 Schedule alignment algorithmWe now assume that we have been given a legal variable part V kp for each statement sp. It is our job to, ifpossible, select constant parts that align the variable parts (i.e., satisfy Equation 5).We create a new variable ckp for each statement sp. These new variables represent the constant o�setsthat must be added to the variable parts to make them align with one another. More precisely, this canbe stated as fkp = V kp + ckp . We construct a set of constraints involving these constant o�set variables, suchthat any set of constant o�set values that satisfy the constraints will properly align the variable parts.We �rst consider the constraints on a pair of constant o�set variables ckp and ckq , that are imposed by asimple dependence relation d � dkpq. Equation 5 tells us that:8i; j; Sym i!j 2 d) tkp(i) � tkq (j)By substituting vkp(i) + ckp for tkp and removing the quanti�cation on Sym, we get:8i; j s:t: i!j 2 d) vkp(i) + ckp � vkq (j) + ckqwhich is the set of constraints on ckp, ckq and the symbolic constants that are imposed by the simpledependence relation d. These constraints can be described equivalently as:A : :(9i; j s:t: i!j 2 d ^ vkp(i) + ckp > vkq (j) + ckq) (7)Unfortunately, the negation in Equation 7 usually produces a disjunction of several constraints. Ourgoal now, is to deduce from 7 a system of linear constraints for the alignment constants. The conditions,D, under which the dependence exists are:D : 9i; j s:t: i!j 2 d (8)Since :D) A, we know that A � (D) A). We transform A as follows:A � D) A� :(D ^ :A)� :(D ^ gist :A given D)� D) :gist :A given DTherefore Equation 7 is equivalent to:9i; j s:t: i!j 2 d) :(gist 9i; j s:t: i!j 2 d^ vkp(i) + ckp > vkq (j) + ckq given 9i; j s:t: i!j 2 d) (9)Usually, the gist in Equation 9 will produce a single inequality constraint. There are cases where thisdoes not occur. For example, in the following code,10

do 2 i = 1, min(n,m)1 a(i) = ...2 ... = ... a(i) ...attempting to align V 11 = i and V 12 = 0 gives:1 � n ^ 1 � m) (c12 � c11 � n _ c12 � c11 � m)In practice we have found that this very seldomly occurs. When the gist produces a disjunction of inequalityconstraints, we strengthen the condition by throwing away all but one of the inequalities produced by thegist.Unfortunately, Equation 9 also contains an implication operator. We describe two approaches to �ndingconstant terms to satisfy Equation 9. The �rst, described in Section 5.5.1, is a fast and simple methodthat seems to handle the problems that arise in practice. The second, described in Section 5.5.2, is amore sophisticated method that is complete provided the gist in Equation 9 produces a single inequalityconstraint.5.5.1 A fast and simple but incomplete techniqueRather than constructing the set of constraints described by Equation 9, we construct a slightly strongerset of constraints by changing the antecedent to true::(gist 9i; j s:t: i!j 2 d ^ vkp(i) + ckp > vkq (j) + ckq given 9i; j s:t: i!j 2 d) (10)If an acceptable set of constant o�set values can be found that satisfy these stronger constraints, theseo�sets must satisfy the weaker constraints, and therefore align the variable parts.For a given pair of statements sp and sq , we form a single set of constraints Akpq by combining thealignment constraints (Equation 10) resulting from all simple dependence relations between those twostatements. We then combine the Akpq constraints one statement at a time, checking at each stage that thealignment constraints formed so far are satis�able for all values of the symbolic constants:function AlignSchedule (vp being considered)for each statement pvkp = vp being considered[p]Conditions = truefor each statement pfor each statement q < pCalculate AkpqConditions = Conditions ^Akpqif not (8Sym (9ck1; : : : ; ckp s:t: Conditions) thenreturn falsereturn ConditionsFigure 3 gives an example of aligning schedules using this technique.Having obtained a set of alignment constraints, we can either return this set of constraints for use byan external system, or we can �nd a set of constant o�set values that satisfy the alignment constraints. In�nding this set of satisfying values, we could consider optimality criteria such as locality or lack of loopcarried dependences. 11

Original Code:do 2 i = 1, ndo 2 j = 1, n1 a(i,j) = b(i,j-2)2 b(i,j) = a(i,j-3)Example of variable parts being considered at level one: v11[i; j] = j; v12 [i; j] = j(We use the normal dependence graph rather than the transitive dependence graph)Alignment constraints from s1 to s2:d112 : f[i; j]! [i; j + 3] j 1 � i � n; 1 � j � n � 3gA112 , : (gist 9[i; j]; [i0; j 0] s:t: [i; j]! [i0; j 0] 2 d ^ v11([i; j])+ c11 > v12([i0; j 0]) + c12given 9[i; j]; [i0; j 0] s:t: [i; j]! [i0; j 0] 2 d), : (gist 9[i; j]; [i0; j 0] s:t: i0 = i ^ j 0 = j + 3 ^ 1 � i � n ^ 1 � j � n� 3 ^ j + c11 > j0 + c12given 9[i; j]; [i0; j 0] s:t: i0 = i ^ j 0 = j + 3 ^ 1 � i � n ^ 1 � j � n � 3), : (gist 4 � n ^ 4 + c12 � c11 given 4 � n) /* simpli�ed using the Omega test */, : (4 + c12 � c11), c11 � 3 + c12Alignment constraints from s2 to s1:d121 : f[i; j]! [i; j + 2] j 1 � i � n; 1 � j � n � 2gA121 , : (gist 9[i; j]; [i0; j 0] s:t: [i; j]! [i0; j 0] 2 d ^ v12([i; j])+ c12 > v11([i0; j 0]) + c11given 9[i; j]; [i0; j 0] s:t: [i; j]! [i0; j 0] 2 d), : (gist 9[i; j]; [i0; j 0] s:t: i0 = i ^ j 0 = j + 2 ^ 1 � i � n ^ 1 � j � n� 2 ^ j + c12 > j0 + c11given 9[i; j][i0; j 0] s:t: i0 = i ^ j 0 = j + 2 ^ 1 � i � n ^ 1 � j � n � 2), : (gist 3 � n ^ 3 + c11 � c12 given 3 � n) /* simpli�ed using the Omega test */, : (3 + c11 � c12), c12 � 2 + c11These variable parts can be aligned because:8Sym (9c11; c12 s:t: A112 ^A121), 8n (9c12; c11 s:t: c11 � 3 + c12 ^ c12 � 2 + c11), 8n (9c12; c11 s:t: c12 � 2 � c11 � c12 + 3), 8n True, TrueFigure 3: Example of Aligning Schedules12

5.5.2 A complete techniqueIf we wish to construct exactly the set of constraints described by Equation 9 then we can use the followingtechniques proposed by Quinton [Qui87]. The vertex method [Qui87] relies on the fact that a linearconstraint holds everywhere inside a polyhedron if and only if it holds at all vertices of the polyhedron.Therefore, we can convert Equation 9 into a conjunction of constraints by determining the verticesof Equation 8 and adding the constraint that the consequent of Equation 9 is true at each of thosepoints. To obtain constraints on the ckp 's in terms of the other symbolic constants, we represent each ckpas: Pmi=1 �piSi + �p0 where the Si's are the original symbolic variables and the �pi's are new variables.Constraints are then formed on the �pi's rather than the ckp's. We combine the constraints generated fromall dependence relations, and then use any integer programming technique to �nd a solution for the �pi's.This solution for the �pi's can then be used to form a solution for the ckp's.6 Optimized Code GenerationIn this section we describe an algorithm to generate e�cient source code for a schedule. As an example,we consider changing the KIJ version of Gaussian Elimination (without pivoting) into the IJK version.do 20 k = 1, ndo 10 i = k+1, n10 a(i,k) = a(i,k)/a(k,k)do 20 j = k+1, n20 a(i,j) = a(i,j)-a(k,j)*a(i,k)The version refers to the nesting of the loops around the inner most statement. Michael Wolfe notesthat this transformation requires imperfect triangular loop interchange, distribution, and index set splitting[Wol91]. We can also produce the IJK ordering using the following schedule:T10 : f[k; i] ! [i; k; 1; 0]gT20 : f[k; i; j] ! [i; j; 0; k]gA naive code generation strategy that only examined the minimum and maximum value at each level wouldproduce the following code:do 20 t0 = 2, ndo 20 t1 = 1, ndo 20 t2 = 0, 1do 20 t3 = 0, n10 if (t1<t0.and.t2=1.and.t3=0)$ a(t0,t1) = a(t0,t1)/a(t1,t1)if (t3<t0.and.t3<t1.and.t2=0)20 $ a(t0,t1) = a(t0,t1)-a(t3,t1)*a(t0,t3)This is, of course, undesirable. This section explains how we produce the following more e�cient code:do 40 i = 2,na(i,1) = a(i,1)/a(1,1)do 30 t2 = 2,i-1do 20 k = 1,t2-120 a(i,t2) = a(i,t2)-a(k,t2)*a(i,k)30 a(i,t2) = a(i,t2)/a(t2,t2) 13

do 40 j = i,ndo 40 k = 1,i-140 a(i,j) = a(i,j)-a(k,j)*a(i,k)To simplify the discussion we do not consider piecewise schedules in this section (they can be handledby considering each piece of the schedule as a separate statement).6.1 Old and new iteration spacesWe are currently able to transform programs that consist of guarded assignment statements surrounded byan arbitrary number of possibly imperfectly nested loops. For each statement sp we combine informationfrom the loop bounds and steps into a tuple set Ip that describes the original iteration space of thatstatement. If the schedule associated with statement sp is Tp, then the statement's new iteration space Jpis given by Tp(Ip). This new iteration space is represented internally as a set of linear constraints and isthe starting point for the rest of this section.In the example above, the original iteration space is:I10 : f[k; i]j1� k � n ^ k + 1 � i � ngI20 : f[k; i; j]j1� k � n ^ k + 1 � i � n ^ k + 1 � j � ngand the new iteration space is:I10 : f[i; k; 1; 0]j1� k � n ^ k + 1 � i � ngI20 : f[i; j; 0; k]j1� k � n ^ k + 1 � i � n ^ k + 1 � j � ng6.2 Code generation for a single levelOur code generation algorithm builds the transformed code recursively, level by level (see Figure 4). Inthis sub-section we describe how code is generated for a single level L.We introduce a new index variable jL to be used for this level. For each statement sp, we need togenerate a set of constraints JLp that represents the values of jL for which statement sp should be executed.We cannot simply project Jp onto jL, because this will only give us absolute upper and lower bounds onjL. Expressing the tightest possible upper and lower bounds on jL may require using expressions thatinvolve index variables from earlier levels. So we instead calculate the projection:�1;:::;L(Jp)This set contains constraints on jL, on index variables from earlier levels (j1; : : : ; jL�1), and on symbolicconstants. Many of these constraints are redundant because the code we generated at earlier levels enforcethem. We remove these redundant constraints and simplify others by making use of the information thatis know about the values of index variables from earlier levels. So we haveJLp = gist �1;:::;L(Jp) given knownL�1The JLp sets for di�erent statements may, in general, overlap. If JLp and JLq overlap over some range, thenthe jL loop that iterates over that overlap range must contain both statements sp and sq (otherwise theiterations will not be executed in lexicographic order as required). In general, it is not possible to generatea loop containing more than one statement that iterates over exactly the JLp sets of the statements in theloop. The problem is that in general the JLp sets will have incompatible constraints. Modulo constraintsare constraints of the form jL = c� + s, where � is a wildcard variable. These sorts of constraints canappear in JLp if the coe�cients of the schedule components are not �1, or if the original program containssteps which are not �1. 14

procedure GenerateCode()for each (stmt)J[stmt] = T[stmt](I[stmt])GenerateCodeRecursively(1, fall stmtsg, True, True)procedure GenerateCodeRecursively(level, was active, required, known)for each (stmt) 2 was activeJL[stmt] = gist �1;:::;level J [stmt] given knownM[stmt] = approx (JL[stmt,level])for each (interval) in temporal orderR = required ^(Vstmt2was active appropriate range(stmt, interval) ^ greatest common step(interval,JL) if j fstmt : stmt is active in intervalg j = 1R = R ^ J[stmt active in interval]R = gist R given knownif feasible(R)for each (stmt)active[stmt] = was active[stmt] ^ (stmt is active in interval) ^ feasible(JL[stmt] ^ R ^ known)parallel = no dependences between active statements carried at this leveloutput loop(level, R, parallel)new known = known ^ information in R represented by loopnew required = gist R given new knownif last levelstmt = only active statementoutput guard(new required)output statement(stmt)else GenerateCodeRecursively(level+1, active, new required, new known)Figure 4: The Code Generation algorithm
15

We solve this problem by removing all modulo constraints from the JLp sets, and to worry about addingthem later. To remove the modulo constraints, we use approx :MLp = approx (JLp)The constraints in JLp now describe a continuous range of values for jL. For purposes of explanationwe de�ne (but do not compute): EL =[p MLpHaving removed the modulo constraints, we can now put more than one statement into a loop, butthere is still one problem remaining: If we were to generate a single jL loop iterating over all points in Eand containing all statements, then we would possibly still execute some statements with values of jL notin their MLp ranges. We could overcome this problem by adding guards around the elementary assignmentstatements. However, we prefer a more e�cient solution.We would like to partition EL into disjoint intervals such that, if a statement is active at any point inan interval, then it is active at every point in that interval. We could then generate a separate jL loop foreach interval, and put into those loops exactly the set of statements that are active at every point in thatloop. If we did so we would not need to add guards around elementary assignment statements, becausethe constraints speci�ed in the MLp ranges would be represented entirely by the bounds of the loops.Unfortunately, it is not always possible to partition EL in this way, because we may not know at compiletime how the execution periods of statements relate to one another. This is the case when the bounds in theMLp ranges involve symbolic constants or mins and maxs. In these cases we represent as much informationas possible in the loop bounds, and represent any remaining information in guards around the elementaryassignment statements.In general each of the MLp ranges will have multiple (non-redundant) upper and lower bounds. Foreach statement sp we arbitrarily choose a lower bound lLp and an upper bound uLp from MLp . These are thebounds that will be represented in the loop bounds. The remaining bounds if any will be represented inguards. For each statement sp, the two points lLp and uLp divide EL into three disjoint intervals: BLp , DLpand ALp , that are \before", \during" and \after" the execution of the statement respectively.BLp : ft j t < lLp gDLp : ft j lLp � t ^ t � uLp gALp : ft j lLp � t ^ uLp < tgWe partition E into disjoint intervals by forming combinations of these intervals from di�erent state-ments. Each combination is made up of one of BLp , DLp or ALp from each statement sp. For example if wehad two statements we would enumerate the following intervals:BL1BL2 ! BL1DL2 ! BL1AL2# # #DL1BL2 ! DL1DL2 ! DL1AL2# # #AL1BL2 ! AL1DL2 ! AL1AL2A statement sp is said to be active in an interval if that interval was formed using DLp . Intervals inwhich there are no active statements (e.g., BL1BL2 or BL1AL2) are not actually enumerated as code does nothave to be generated for these intervals. There exists an obvious partial order on intervals (as shown bythe arrows above), and we generate the code for the intervals in a total order compatible with that partialorder. 16

For each interval i we calculate CLi | the range of values of jL corresponding to the interval. CLi isdetermined by intersecting the appropriate intervals of the statements. The appropriate interval for sp iseither BLp , DLp or ALp , depending on whether sp is before, during or after in this interval.Now that we know exactly which statements are active in a particular interval, we may be able to addsome of the modulo constraints that we removed earlier. Each statement sp that is active in this intervalmay contribute a single modulo constraint that was removed earlier:jL = aLp �Lp + bLpwhere aLp is a constant, �Lp is a wildcard variable and bLp is a constant term (possibly involving symbolicconstants).The greatest common step of this interval is:gcsLi = gcd(faLp j sp is activeg [fgcd(bLq � bp) j sq is active ^ sp is activeg)In performing these calculations, the gcd of an expression is de�ned to be the gcd of all of the coe�cientsin the expression.We pick an arbitrary statement sp that is active in the interval, and add to CLi the modulo constraint:jL = gcsLi � + bLpWe can safely add this constraint since if jL satis�es the modulo constraint of any active statement thenit will also satisfy this constraint.The greatest common step will later be extracted from these constraints and used as the step for theloop corresponding to this interval. In general the step will not enforce all of the modulo constraints, butit is the best we can do at this level. The remaining modulo constraints (if any) will have to be enforcedat deeper levels.Before actually generating code for this interval, we must check that the proposed range CLi is consistentwith the information that is known about the index variables at earlier levels. If (CLi ^ knownL�1) is notfeasible then code is not generated for this interval. If (CLi ^ knownL�1) is feasible then we may be ableto simplify the constraints in CLi by making use of the information in knownL�1. We calculateRLi = gist CLi given knownL�1If RLi is feasible we generate a do loop to iterate over the appropriate values of jL. If we earlier addeda modulo constraint to CLi then we may still have a modulo constraint of the form:jL = g � + c. If this is the case we enforce the constraint by using a non-unit step in the loop. In order to do thishowever, we must ensure that the loop's lower bound satis�es the modulo constraint.The loop's lower bound is derived from constraints in RLi of the form: lower � m jL. If the followingconditions are true: knownL�1) lower = m�lower = m jL ^ knownL�1) jL =
 g + cthen we can use: lower=mas a lower bound of the loop, otherwise we will have to use:g � lower� c mm g �+ c17

(if RLi doesn't contain a modulo constraint then g is 1 and c is 0)The loop's upper bound is derived from constraints in RLi of the form: n jL � upper. It is su�cient touse upper=n as an upper bound of the loop.The loop we generate at depth L, corresponding to interval i has the form:do jL = max(x1; : : : ; xp); min(y1; : : : ; yq); g: : :where the xi's and yi's are the loop bounds described above. If we can determine that the loop containsat most a single iteration, we perform the obvious simpli�cations to the code.We generate a sequential loop if there exists a data dependence that is carried by the loop. Otherwisewe generate a parallel loop.Within each interval i which contains at least one iteration, we recursively generate code for level L+1.At level L + 1 we only consider statements that were active at level L. This process continues until wereach level n, at which time we generate the elementary assignment statements.6.3 Elementary statementsOnce we have generated code for all levels, only a single statement will be active. We generate code toguard the statement from any conditions not already handled in loop bounds. If not all of the moduloconstraints could be expressed as loop steps, then these guards will contain mod expressions.Finally, we output the transformed assignment statement. The statement has the same form as in theoriginal code, except that the original index variables are replaced by expressions involving the new indexvariables. We determine these replacement expressions by using the Omega test to invert the schedulingrelation and extract expressions corresponding to each of the original index variables. For example, if theschedule is [i1; i2]! [i1 + i2; i1] then i1 is replaced by j2 and i2 is replaced by j1 � j2.7 Permutable SchedulesSome codes have only a handful of legal schedules, while other codes have an enormous number of legalschedules. LU decomposition is a typical example of code with a large number of legal schedules.do 20 k = 1, ndo 20 i = k+1, n10 a(i,k)=a(i,k)/a(k,k)do 20 j = k+1, n20 a(i,j)=a(i,j)-a(k,j)*a(i,k)A large number of legal schedules exist, including:T10 : [k; i]! [k; i; k]; T20 : [k; i; j]! [k; i; j]T10 : [k; i]! [k; k; i]; T20 : [k; i; j]! [k; j; i]T10 : [k; i]! [i; k; k]; T20 : [k; i; j]! [i; k; j]T10 : [k; i]! [i; k; k]; T20 : [k; i; j]! [i; j; k]T10 : [k; i]! [k; k; i]; T20 : [k; i; j]! [j; k; i]T10 : [k; i]! [k; i; k]; T20 : [k; i; j]! [j; i; k]This situation is common and is typi�ed by a nested set of adjacent loops that are fully permutable[WL91a, WL91b]. A set of loops is fully permutable i� all permutations of the loops are legal. We havedeveloped an extension to our schedule syntax that allows us to succinctly describe a large number of18

related schedules. Expressions in this extended syntax are called permutable schedules. A permutableschedule represents a set of normal schedules and has the following general form:Tp : [i1p; : : : ; impp]! [g1p; : : : ; gnpp]where the gjp are either schedule components or permutations lists. Permutation lists have the formhe1; : : : ; evixwhere the ej are schedule components. A permutable schedule represents all of the normal schedules thatcan be obtained by replacing each of its permutation lists by some permutation of the schedule componentsin that permutation list. For example the permutable schedule:[k; i; j]! [k; hi; ji; 1]represents the following two normal schedules:[k; i; j]! [k; j; i; 1] and [k; i; j]! [k; i; j; 1]A permutable schedule is legal if and only if all of the schedules it represents are legal. This factallows us to prove an important property of permutable schedules: all schedules represented by a legalpermutable schedule will produce fully permutable loop nests. Recognizing that a schedule will producefully permutable loop nests is useful for a number of reasons, including those described in Section 7.1.It is not unusual to �nd multiple statements, each of which has a set of fully permutable loop nests, butdue to alignment constraints choosing any permutation for one of the statement results in only one of thepermutations for the other statements being legal. In this situation we still want to use our permutationsyntax, but we need to indicate that the permutable schedule only represents those schedules that canbe obtained by using the same permutation for all of these permutation lists. We indicate this by givingthese permutation lists the same subscript. For example the following is a legal permutable schedule forLU decomposition: T10 : [k; i]! [hk; k; ii1]; T20 : [k; i; j]! [hk; j; ii1]We use the term permutation list set to refer to a set of permutation lists with the same subscript.7.1 Schedules for blocking/tilingDirect generation of blocked or tiled loops is only possible if there exists a fully permutable loop nest[WL91a, Wol89a]. A permutable schedule represents a set of schedules, all of which produce fully per-mutable loop nests. It is therefore easy to build a schedule corresponding to a blocking transformationfrom a permutable schedule.Given a fully permutable loop nest, we need to decide which loops will be blocked, what their blockingfactors will be, and which permutation of the loops will be used. These choices must be made consistentlyfor all permutation lists in a permutation list set. We have therefore developed a syntax that speci�esthese blocking speci�cations for a permutation list set. For a permutation list set x, with v positions, ablocking speci�cation has the form: x : [h1; : : : ; hw]The hj expressions have either the unblocked form k or the blocked form k :c where k is a position (1; : : : ; v)and c is a blocking factor (a known integer constant2). The blocked expressions specify which loops will beblocked and what their blocking factors will be. The order of the expressions speci�es which permutation2We are currently working on techniques to allow symbolic constants to be used.19

procedure BuildSchedule(Level)for each StatementLegalVariableParts = flist of pro�table legal variable partsgfor each Combination of LegalVariableParts (1 from each statement)AlignConstraints = AlignSchedule(Combination)AlignedSchedules = fset of aligned schedules derived from AlignConstraintsgfor each AlignedScheduleif AlignedSchedule is complete thenif fWorthAcceptingg thenadd AlignedSchedule to list of accepted scheduleselse if fWorthContinuingg thenBuildSchedule(Level+1)Start by calling: BuildSchedule(1)Figure 5: General form of surrounding system, in collaborative settingof the loops will be used. Every position must appear exactly once as an unblocked expression, and anyblocked instance of a loop must come before the unblocked instance. For example the following is a blockingspeci�cation for the LU decomposition permutable schedule above:1 : [1 :64; 3:64; 2; 1; 3]Given a permutable schedule and a blocking speci�cation we can build a schedule that produces blockedcode as follows: We use the schedule components outside of the permutation lists unchanged. We replaceeach permutation list by a number of normal levels, creating a new level for each entry hi in the blockingspeci�cation for that permutation list. For an unblocked expression k we use the k'th schedule componentin the permutation list. For a blocked expression k : c we use c ((E � L) div c) + L, where E is the k'thschedule component in the permutation list, and L is a constant expression chosen by our system to simplifythe loop bounds. For example, the above blocking speci�cation will produce the following schedule:T10 : f[k; i]! [64((k�1) div 64)+1; 64(i div 64); k; k; i]gT20 : f[k; i; j]! [64((k�1) div 64)+1; 64(i div 64); j; k; i]gwhich produces the code given in Figure 1.8 The Surrounding SystemOur framework is designed to provide a uniform way to represent and reason about transformations.The framework itself is not designed to decide which transformation should be applied. The frameworkshould be used within some larger system, such as an interactive parallelizing environment or an automaticparallelizing compiler. This surrounding system is �nally responsible for deciding which transformationshould be applied. In this section we discuss surrounding systems and the interface between surroundingsystems and our framework.Our framework can be used in two di�erent settings. In the �rst of these settings, the surroundingsystem interacts with algorithms of Section 5 to build a schedule. In the second setting, the surroundingsystem decides on a transformation by itself, that is then represented as a schedule and used to generatecode using our code generation algorithm. 20

8.1 Collaborative schedule generationAs mentioned in Section 5, it is reasonable to require that the surrounding system specify the variableparts of the schedule, and allow algorithms provided with the framework to select constant parts thatmake the schedule legal. Figure 5 gives the general form of a surrounding system in such a setting. Thecode fragments in curly braces are the parts that would change from one implementation to another. Inits most general form, this is a recursive backtracking algorithm. It is therefore capable of generating morethan one schedule. By generating a set of schedules rather than a single schedule we have a greater chanceof �nding the \best" schedule. Of course the problem then is to decide which of the generated schedules touse. If the generated set of schedules is relatively small, a schedule can be chosen by applying traditionalperformance estimation or by having the user select among a set of transformed codes.If the code fragments in curly braces consider only one legal variable part per statement and only onealignment per set of alignment constraints, then no backtracking will occur and only one schedule willbe generated. Such an implementation would be potentially very e�cient. However, to �nd the \best"transformation, the algorithms that choose the legal variable parts and the alignments would have to bevery intelligent.8.2 Using permutable schedulesIn circumstances where a large number of legal schedules exist, we �rst generate permutable schedules.These permutable schedules can then be used to generate code that is optimized for parallelism and locality.This approach has the advantage that fewer combinations are considered when generating permutableschedules. Using permutable schedules to generate optimized code is also easy because we know that allpermutations are legal, so we can concentrate on performance issues while ignoring legality.9 Related WorkThe framework of Unimodular transformations [Ban90, WL91a, ST92, KKB92] has the same goal as ourwork, in that it attempts to provide a uni�ed framework for describing loop transformations. It is limitedby the facts that it can only be applied to perfectly nested loops, and that all statements in the loop nestare transformed in the same way. It can therefore not represent some important transformations such asloop fusion, loop distribution and statement reordering.Unimodular transformations are generalized in [LP92, Ram92] to include mappings that are invertablebut not unimodular. This allows the resulting programs to have steps in their loops, which can be usefulfor optimizing locality.Unimodular transformations are combined with blocking in [WL91a, ST92]. A similar approach, al-though not using a unimodular framework, is described in [Wol89a].Lu describes in [Lu91] a classi�cation of scheduling techniques into various generality classes. Usingtheir classi�cation scheme, our schedules �t into the Mixed-Nonuniform class which is the most generalclass.Our previous paper [Pug91] gives techniques to represent loop fusion, loop distribution and statementreordering in addition to the transformations representable by unimodular transformations. Because ituses only single level a�ne schedules and requires that all dependences be carried by the outer loop, itcan only be applied to programs that can be executed in linear time on a parallel machine. It uses lesssophisticated methods for aligning schedules than our current techniques, and does not give methods togenerate e�cient code.Paul Feautrier [Fea92a, Fea92b] generates the same type of schedules that we do (generating a separateschedule for each statement). His methods are designed to generate a single schedule that produces codewith a \maximal" amount of parallelism. These schedules will often not be optimal in practice because of21

issues such as granularity, data locality and code complexity. Our framework attempts to provide a settingin which multiple performance issues can be traded-o�. Feautrier does not give methods for generatingcode corresponding to the schedules.10 Implementation StatusPrototype versions of most of the algorithms described in this paper are currently implemented in our ex-tension of Michael Wolfe's tiny tool, and we are continuing to expand and strengthen our implementation.Our extension of tiny is available via anonymous ftp from ftp.cs.umd.edu in the directory pub/omega.11 ConclusionsWe have presented a framework for unifying reordering transformations such as loop interchange, distribu-tion, skewing, tiling, index set splitting and statement reordering. The framework is based on the idea thata transformation can be represented as a schedule that maps the original iteration space to a new iterationspace. We have demonstrated that schedules are able to represent traditional reordering transformations,such as those above. We believe that using schedules is the purest or most fundamental way to describearbitrary reordering transformations.The framework is designed to provide a uniform way to represent and reason about transformations.The framework does not solve the fundamental problem of deciding which transformation to apply, butit does provide a simpler setting in which to solve this problem. We therefore believe that productionsystems would bene�t from using our framework, rather than an arbitrary set of unrelated traditionaltransformations.We have provided algorithms that assist in the building and use of schedules. In particular we haveprovided algorithms to test the legality of schedules, to align schedules, and to generate optimized code forschedules. Our code generation algorithm can be used to produce code that avoids and/or eliminates manyof the guards that can occur around statements when performing reordering transformations. This makesour code generation algorithm useful for other applications such as the generation of code for distributedmemory machines and the generation of code for traditional transformations.References[ACK87] R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scienti�c programs for parallelexecution. In Conference Record of the Fourteenth ACM Symposium on Principles of ProgrammingLanguages, pages 63{76, January 1987.[AK87] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form. ACM Transac-tions on Programming Languages and Systems, 9(4):491{542, October 1987.[AKPW83] J.R. Allen, K. Kennedy, C. Porter�eld, and J. Warren. Conversion of control dependence to datadependence. In Conf. Rec. Tenth ACM Symp. on Principles of Programming Languages, pages 177{189,January 1983.[B+89] M. Berry et al. The PERFECT Club benchmarks: E�ective performance evaluation of supercomputers.International Journal of Supercomputing Applications, 3(3):5{40, March 1989.[Ban79] U. Banerjee. Speedup of Ordinary Programs. PhD thesis, Dept. of Computer Science, U. of Illinois atUrbana-Champaign, October 1979.[Ban90] U. Banerjee. Unimodular transformations of double loops. In Proc. of the 3rd Workshop on ProgrammingLanguages and Compilers for Parallel Computing, pages 192{219, Irvine, CA, August 1990.[CK92] Steve Carr and Ken Kennedy. Compiler blockability of numerical algorithms. In Proceedings Supercom-puting'92, pages 114{125, Minneapolis, Minnesota, Nov 1992.22

[Fea92a] Paul Feautrier. Some e�cient solutions to the a�ne scheduling problem, Part I, One-dimensional time. Int. J. of Parallel Programming, 21(5), Oct 1992. Postscript available aspub.ibp.fr:ibp/reports/masi.92/78.ps.Z.[Fea92b] Paul Feautrier. Some e�cient solutions to the a�ne scheduling problem, Part II, Multidi-mensional time. Int. J. of Parallel Programming, 21(6), Dec 1992. Postscript available aspub.ibp.fr:ibp/reports/masi.92/28.ps.Z.[JDH90] I. Du� J.J. Dongarra, J. DuCroz and S. Hammarling. A set of level 3 basic linear algebra subprograms.ACM Trans. on Math. Soft., 16:1{17, March 1990.[KKB92] K. G. Kumar, D. Kulkarni, and A. Basu. Deriving good transformations for mapping nested loopson hieracical parallel machines in polynomial time. In Proc. of the 1992 International Conference onSupercomputing, pages 82{92, July 1992.[LP92] Wei Li and Keshav Pingali. A singular loop transformation framework based on non-singular matrices.In 5th Workshop on Languages and Compilers for Parallel Computing, pages 249{260, Yale University,August 1992.[Lu91] Lee-Chung Lu. A uni�ed framework for systematic loop transformations. In Proc. of the 3rd ACMSIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 28{38, April 1991.[Pol88] C. Polychronopoulos. Parallel Programming and Compilers. Kluwer Academic Publishers, 1988.[Pug91] William Pugh. Uniform techniques for loop optimization. In 1991 International Conference on Super-computing, pages 341{352, Cologne, Germany, June 1991.[Pug92] William Pugh. The Omega test: a fast and practical integer programming algorithm for dependenceanalysis. Communications of the ACM, 8:102{114, August 1992.[PW92] William Pugh and David Wonnacott. Going beyond integer programming with the Omega test toeliminate false data dependences. Technical Report CS-TR-3191, Dept. of Computer Science, Universityof Maryland, College Park, December 1992. An earlier version of this paper appeared at the SIGPLANPLDI'92 conference.[Qui87] Patrice Quinton. The systematic design of systolic arrays. In F. Fogelman, Y. Robert, and M. Tschuente,editors, Automata networks in Computer Science, pages 229{260.Manchester University Press, December1987.[Ram92] J. Ramanujam. Non-unimodular transformations of nested loops. In Supercomputing `92, pages 214{223,November 1992.[ST92] Vivek Sarkar and Radhika Thekkath. A general framework for iteration-reordering loop transformations.In ACM SIGPLAN'92 Conference on Programming Language Design and Implementation, pages 175{187, San Francisco, California, Jun 1992.[WL91a] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In ACM SIGPLAN'91Conference on Programming Language Design and Implementation, 1991.[WL91b] Michael E. Wolf and Monica S. Lam. A loop transformation theory and an algorithm to maximizeparallelism. In IEEE Transactions on Parallel and Distributed Systems, July 1991.[Wol89a] Michael Wolfe. More iteration space tiling. In Proc. Supercomputing 89, pages 655{664, November 1989.[Wol89b] Michael Wolfe. Optimizing Supercompilers for Supercomputers. Pitman Publishing, London, 1989.[Wol90] Michael Wolfe. Massive parallelism through program restructuring. In Symposium on Frontiers onMassively Parallel Computation, pages 407{415, October 1990.[Wol91] Michael Wolfe. The tiny loop restructuring research tool. In Proc of 1991 International Conference onParallel Processing, pages II{46 { II{53, 1991.23

