
ABSTRACTCIRCA:THE COOPERATIVE INTELLIGENT REAL-TIME CONTROLARCHITECTUREbyDavid John MuslinerCo-Chairs: Kang G. Shin and Edmund H. DurfeeThe Cooperative Intelligent Real-time Control Architecture (CIRCA) is a novel archi-tecture for intelligent real-time control that can guarantee to meet hard deadlines whilestill using unpredictable, unrestricted AI methods. CIRCA includes a real-time subsystemused to execute reactive control plans that are guaranteed to meet the domain's real-timedeadlines, keeping the system safe. At the same time, CIRCA's AI subsystem performshigher-level reasoning about the domain and the system's goals and capabilities, to developfuture reactive control plans. CIRCA thus aims to be intelligent about real-time: ratherthan requiring the system's AI methods to meet deadlines, CIRCA isolates its reasoningabout which time-critical reactions to guarantee from the actual execution of the selectedreactions.The formal basis for CIRCA's performance guarantees is a state-based world model ofagent/environment interactions. Borrowing approaches from real-time systems research, theworld model provides the information required to make real-time performance guarantees,but avoids unnecessary complexity. Using the world model, the AI subsystem developsreactive control plans that restrict the world to a limited set of safe and desirable states, byguaranteeing the timely performance of actions to preempt transitions that lead out of theset of states. By executing such \safe" and \stable" plans, CIRCA's real-time subsystemis able to keep the system safe (in the world as modeled) for an indeterminate amount oftime, while the parallel AI subsystem develops the next appropriate plan.We have applied a prototype CIRCA implementation to a simulated Puma robot armperforming multiple tasks with real-time deadlines, such as packing parts o� a conveyorbelt and responding to asynchronous interrupts. Our experimental results show how thesystem can guarantee to accomplish these tasks under a given set of domain conditions(e.g., conveyor belt speed) and resource limitations (e.g., robot arm speed). Furthermore,because CIRCA reasons explicitly about its own predictable, guaranteed behaviors, thesystem can recognize when its resources are insu�cient for the desired behaviors (e.g., partsare arriving too quickly to be packed carefully), and can then make principled modi�cationsto its performance (e.g., temporarily stacking parts on a table) to maintain system safety.
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CHAPTER 1INTRODUCTIONThe conceptual goal of this dissertation is, quite simply, the combination of two majorareas of Computer Science research: real-time computing and Arti�cial Intelligence (AI). Indiscussing this concept, we will �nd that these two research areas are pursuing con
ictinggoals; while real-time computing is aimed at producing predictable systems that make �xedperformance guarantees given limited resources, AI is trying to produce 
exible systemsthat behave \intelligently" in complex, dynamic domains. We will explore the nature ofthese con
icting goals and present several alternative methods for avoiding the con
icts andmerging real-time and AI research. This discussion will culminate in the introduction of anew architecture designed to combine real-time computing and AI. The Cooperative Intel-ligent Real-time Control Architecture (CIRCA) provides a powerful, 
exible combinationof real-time and AI capabilities, meeting goals that current systems have not addressed.To investigate the strengths and limitations of CIRCA, we will describe a prototype imple-mentation in great detail, and illustrate the system's operations with examples from severaldomains.1.1 MotivationArti�cially-intelligent agents that are constructed in the laboratory are often unsuited toreal-world domains, where the pace of interactions between an agent and its dynamic envir-onment may exceed the response rate of traditional AI methods. For example, an autonom-ous vehicle operating in the real world needs a control system that responds quickly enoughto avoid collisions with obstacles or other vehicles. This requirement for timely behavioris the de�ning characteristic of a class of environments known as hard real-time domains.Hard real-time domains have deadlines by which control responses must be produced, orcatastrophic failure may occur. Other common examples of hard real-time domains includenuclear power plant control, medical monitoring, and aircraft control.Because catastrophic failure may occur if deadlines are missed, control systems for agentsoperating in real-time environments must not only choose appropriate actions in variedsituations, they must also make those action choices at appropriate times. Research inreal-time systems addresses precisely this issue, by developing methods for guaranteeingthat the reaction rate of a control system matches the rate of change in the environment.Real-time computing is not about building \fast" systems; it is about building systems that1



2are predictably \fast enough" to act on their environments in ways that achieve their goals[36, 76].This understanding of what it means to be \real-time" is dramatically di�erent fromthe casual, non-technical use of the term which has become common in many �elds. Forexample, if a database querying system responds quickly according to human time-scales(i.e., in a few seconds or less), it is called \real-time." But what if we use that same databasesystem in a critical application requiring responses in milliseconds? Clearly, the system isno longer \fast enough." The fact that the inadequacy of the system in this new domain(and its \adequacy" in the slower domain) could not be recognized or predicted in anyrigorous fashion indicates that this system was never \real-time" in the technical sense; itwas never known to meet the required deadlines.Real-time systems researchers have developed a powerful set of tools to prove thatembedded systems meet their environment's deadlines. These tools include techniques forcharacterizing a system's interactions with its environment through such measures as worst-case execution time, resource requirements, and deadlines. Given this type of information,mechanisms are available to predictably schedule and execute the described behaviors andto guarantee that they will meet their deadlines.While real-time systems research addresses timeliness issues for a given set of tasks, itdoes not consider the source of those tasks; real-time researchers assume they are giventasks that have certain performance requirements, but the motivations for those tasks andrequirements are left unspeci�ed. Traditional AI planning research, on the other hand,has characterized the interactions of an agent and its environment in terms of state spacesand operators that move through those spaces. Planning has concentrated on searchingfor sequences of actions (tasks) to execute in a particular situation. Thus we would liketo combine the guaranteed performance methods of real-time systems with AI planningmechanisms to build a 
exible, intelligent control system that can dynamically plan itsown behaviors and guarantee that those behaviors will meet hard deadlines in real-timeenvironments.Note that human behavior is not a \gold standard" for real-time systems research.Although much AI research seeks to emulate human performance, people do not fully meetthe criterion for real-time systems. In particular, human performance is too uncertain andtoo subject to unpredictable delays, distractions, and errors to be considered \guaranteed"in the sense needed for hard real-time domains. It is certainly true that humans can performin demanding environments that include deadlines and response requirements: people drivecars, 
y planes, etc. However, the high incidence rate of car accidents can be largelyattributed to human error| people are simply not predictable enough to reliably handle thetask. Our research takes a �rst step towards combining the best aspects of intelligent, humanbehavior (
exibility, adaptability, robustness) with the strengths of real-time computingsystems (predictability, performance guarantees, reliability).Unfortunately, applying the insights of real-time computing to the development of in-telligent embedded agents is not trivial. One major problem in combining AI and real-timesystems is complexity. A real-time system must be guaranteed to meet the hard deadlinesthat its environment imposes, even under its worst-case performance. This requirement is
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reaction schedulesFigure 1.1: The Cooperative Intelligent Real-time Control Architecture (CIRCA).di�cult for intelligent systems because many AI techniques are not suited to analyses thatcan provide worst-case response times. For example, systems that learn are able to formnew chains of inferences, resulting in changing performance characteristics that may defyworst-case bounding [13]. Furthermore, even predictable AI methods often have such highvariance in their response times that making guarantees based on worst-case values wouldresult in severe underutilization of computational resources during normal operations [60].Thus making real-time performance guarantees while still using complex AI methods is afundamental problem.1.2 Approach and ContributionsIn pursuit of the overall goal of combining real-time computing methods and AI tech-niques, this dissertation focuses primarily on describing the concepts underlying CIRCA,and on the particular implementation we have developed. As illustrated in Figure 1.1,CIRCA combines parallel AI and real-time control subsystems to meet the requirements ofboth arbitrarily complex AI algorithms and predictable real-time control responses. TheAI subsystem (AIS) performs high-level reasoning about tasks and, in cooperation with theScheduler, develops low-level control plans consisting of reactive behaviors. These controlplans are executed in a predictable, guaranteed fashion by the real-time subsystem (RTS).Unlike many other real-time AI systems, which force their AI components to meet real-time deadlines, CIRCA explicitly isolates its AIS from domain deadlines. CIRCA's goal isto be \intelligent about real-time," rather than \intelligent in real-time." This distinctionis crucial because it allows CIRCA to provide performance guarantees that are distinctlydi�erent from those available with other systems. While many real-time AI systems canonly promise \best-e�ort" performance, CIRCA is able to make explicit guarantees aboutits ability to achieve its goals within particular domains using limited sensor, processor, andactuator resources.In a sense, the goal of this research is to automate the design, implementation, andmodi�cation of a real-time control system. Currently, real-time systems are built by humandesigners who are given a set of task speci�cations, and design a method for executing thosetasks to meet the speci�ed constraints. CIRCA is designed to receive a description of itsenvironment, its capabilities for interacting with its environment, and its goals, and then



4automatically derive a behavioral plan, con�rm that the system has su�cient resources toimplement that plan (or modify the plan, goals, or environment as necessary), and �nallyimplement the plan.In pursuit of these objectives for CIRCA, this dissertation makes several conceptualcontributions to the state of the art:� To clarify the fundamental con
ict between real-time and AI systems, we introducethe concept of any-dimension algorithms, a general class of iterative improvementalgorithms.� To allow CIRCA to build real-time reactive plans, we develop a graph-based worldmodel for representing the interactions between the environment and CIRCA's real-time subsystem. The model includes a simpli�ed temporal representation that permitseasy analysis of worst-case behaviors.� Within the world model representation, we develop a formal characterization of theway a reactive plan can isolate the AI subsystem from the domain deadlines, keep-ing the controlled agent safe while CIRCA's AI subsystem executes unpredictablealgorithms.� Using these capabilities, we characterize the domains to which CIRCA may usefullybe applied, examining the range of situations in which our approach to real-time AIis appropriate.Our research on actually implementing a prototype version of CIRCA has yielded severaltechnical contributions, including:� A novel deliberative architecture combining meta-level reasoning with interrupt-drivencommunication.� A structured interface through which the arbitrarily complex AI planning subsystemcan communicate with and control a predictable, guaranteed real-time subsystem.� A real-time subsystem that meets hard response deadlines by executing a cyclic sched-ule of behaviors.� A modular, interruptible, search-based algorithm that the AIS uses to plan within theworld model, determining which behaviors to request from the real-time subsystem.� A modi�ed deadline-driven scheduling algorithm that e�ciently produces cyclic sched-ules of reactive behaviors.� A set of methods by which the AIS can modify its world model or plans to decreasethe resource requirements of the reactive behaviors it is trying to schedule for thereal-time subsystem.The prototype CIRCA implementation has exhibited several forms of novel performance.Primarily, the system has demonstrated the feasibility of using unpredictable AI algorithmsin the process of building and executing reaction plans that can provide rigorous real-timeguarantees. Other experiments have concentrated on showing the system's unusual combin-ation of introspection and real-time performance. CIRCA is able to recognize its sensing,



5actuating, and processing resource limitations, and make performance tradeo�s when thoseresources do not allow the system to meet all of its goals within a given environment. Ex-periments have also been conducted to investigate the use of unguaranteed (or \best-e�ort")behaviors that take advantage of the execution resources that become available when guar-anteed behaviors use less than their worst-case times. CIRCA supports cognizant, gracefulperformance degradation via these best-e�ort behaviors and tradeo� methods.1.3 The Example DomainThroughout this dissertation, we will discuss examples drawn from the domain shownin Figure 1.2. The Puma robot arm is simulated in Deneb Robotics' Igrip system (seeAppendix A for details). The Puma is assigned the task of packing parts arriving on theconveyor belt into the nearby box. The conveyor moves at a �xed rate and the parts arespaced apart on the belt so that they arrive with some maximum frequency. Once at theend of the belt, each part remains motionless until the next part arrives, at which time itwill be pushed o� the end of the belt (unless the robot picks it up �rst). If a part falls o�the belt because the robot does not pick it up in time, the system is considered to havefailed. Thus, the arriving parts impose hard deadlines on the robot's responses; it mustalways pick up parts before they fall o� the conveyor.The parts can have several shapes (e.g., square, rectangle, triangle), each of whichrequires a di�erent packing strategy. The control system may not know a priori how topack all of the possible types of parts. If parts of a new shape arrive, the system can stackthose parts on the nearby table until it has derived an appropriate box-packing strategy.The derivation of the packing method may involve search algorithms with unpredictablebehavior. This aspect of the domain is used to exercise CIRCA's ability to combine arbitraryAI methods with real-time response guarantees.The robot arm is also responsible for reacting to an emergency alert light. If the lightgoes on, the system has only a limited time to push the button next to the light, or it fails.This portion of the domain represents a completely asynchronous interrupt with a harddeadline on its service time.To cope with this domain properly, the system controlling the robot arm must be able toprovide real-time responses to unsynchronized domain events (part arrivals and emergencyalerts) while also having the ability to perform complex search methods (deriving packingmethods and reaction plans in general). To complicate matters further, the speed of thePuma robot and the domain sensors is limited. Variations of the domain can be set up withdi�erent part arrival rates, emergency alert rates, robot speeds, etc. To be truly intelligentand real-time in this domain, the control system will need to be able to evaluate its capabil-ities, its goals, and the domain behavior restrictions. With that information, an intelligentsystem should provide some measure of useful performance, possibly involving tradeo�sthat sacri�ce aspects of the system behavior as necessitated by resource restrictions.
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Figure 1.2: The example Puma domain, in which the robot packs objects from theconveyor into the box.1.4 Dissertation OutlineThe body of this dissertation consists of seven additional chapters and several appen-dices. The chapters follow a logical progression from background concepts (Chapter 2),through an overview of the system (Chapter 3) and its theoretical underpinnings (Chapter4), into implementation details (Chapters 5 and 6). Experimental results follow in Chapter7, and the dissertation concludes with a brief review and discussion of future work in Chapter8. In somewhat more detail, the chapters are organized as follows:Chapter 2 presents background material describing the di�ering goals of real-time sys-tems and AI, and shows how combining these research �elds is non-trivial. We introduce theconcept of any-dimension algorithms, which can be used to describe the tradeo�s necessaryto combine the disparate goals of real-time and AI systems. This discussion clari�es theproblems with many approaches to real-time AI, and leads directly to the conceptual basisof CIRCA.Chapter 3 presents an overview of CIRCA. We describe the architecture in terms of thedivision of functional responsibilities among subsystems, and we motivate these divisionsbased on the goals described above and in Chapter 2. We then discuss in detail the previousapproaches to combining real-time and AI, and we show how CIRCA �lls a unique gap inthe space of possible real-time AI systems.



7Chapter 4 provides a detailed description of the world modeling methods CIRCA uses toreason about its environment and its own capabilities. Based on this world model, CIRCAmakes decisions about its own performance, trading o� various measures of performancequality when it recognizes that its resources are constrained. The �nal section of this chapterevaluates several advantages and disadvantages of the model.In Chapter 5 and Chapter 6, we provide extensive details on the current prototypeimplementation of CIRCA. The implementation includes several novel features, includinga reaction planner with a simpli�ed representation of time, and a programmable real-timesubsystem with predictable performance. Each of the prototype CIRCA subsystems isbrie
y evaluated according to its strengths and weaknesses.Chapter 7 returns to the any-dimension algorithm theme to guide an evaluation ofthe performance of the CIRCA implementation, focusing particularly on the performancetradeo�s the system can make. While the implementation is less well-developed than severalolder architectures, we are able to demonstrate several unique performance features thatresult from CIRCA's innovative approach to combining real-time and AI.The dissertation concludes with Chapter 8, which reviews the contributions of CIRCAand discusses interesting directions for future work. Several appendices provide additionaldetails on features of the implementation and the testing domains.



CHAPTER 2BACKGROUND: REAL-TIME VS. AIAI planning research has traditionally concentrated on being able to prove that a se-quence of actions will lead to a desirable state of the world. Real-time systems, on theother hand, are concerned with proving that the time needed by a set of actions will notexceed deadlines. Ideally, we would like to combine intelligent planning methods from AIwith the guaranteed performance features of real-time systems, to build an intelligent agentthat could be guaranteed to succeed in its environment.In this chapter, we will discuss alternative ways of meeting real-time constraints, andreveal a fundamental con
ict between these methods and the characteristics of traditional AImethods. To clarify the nature of this con
ict, we will introduce any-dimension algorithms,a generalized notion of iterative computation. The any-dimension concept will allow us toprecisely pinpoint the con
ict between the goals of real-time system and AI systems. Withthat understanding, we then survey several approaches to resolving this con
ict, beforeintroducing our approach in Chapter 3.2.1 The Strategic Approach to Real-Time GuaranteesAs noted in Chapter 1, real-time domains are primarily characterized by deadlines. Tosucceed in a real-time domain, a control system must always provide required responsesbefore their associated deadlines. Thus real-time research has focused on ways of provingthat a particular set of tasks can be guaranteed to meet a domain's timing constraints.There are two main classes of methods for obtaining performance guarantees given a limitedset of system resources. In the most common \strategic" approach, a scheduler is giveninformation about resource availability and future computational tasks, and determineshow to execute those tasks in order to avoid resource con
icts and meet some performancerequirements. This approach is well-suited to simple control algorithms and static domains,where resource needs and availability are predictable, so that the resulting schedule of taskscan be followed precisely.Unfortunately, the search-based AI methods used in complex planning systems are prob-lematic for strategic schedulers. The fundamental problem is that planning involves search-ing for the solution to a generally intractable problem [7], and thus the planning process hasextremely large worst-case resource requirements. The time to �nd a plan in the worst casemay be several orders of magnitude longer than the average time to �nd a plan. This means8



9that allocating resources to guarantee the worst-case response time of a planner will be verycostly, and will lead to very low utilization of a system's resources [60, 68]. Furthermore, AIsystems with powerful knowledge representations [7, 14] or learning abilities [13] may haveunbounded worst-case response times. In these cases, it is impossible to allocate su�cientresources ahead of time, and thus real-time guarantees are not feasible. As a result, it isnot generally possible to build an e�ective real-time AI system by embedding traditionalAI methods within a real-time system using the strategic approach to response guarantees.2.2 The Tactical Approach to Real-Time GuaranteesTo avoid these problems of strategic scheduling, some researchers have focused on \tac-tical" approaches that rely on the computational tasks themselves to manage their resourceusage. These tactical methods are exempli�ed by any-time algorithms [9, 41, 65], whichcan be halted at any time to yield a result, possibly with reduced precision, con�dence, orcompleteness. Any-time algorithms provide an on-line, dynamic method for guaranteeingthe timeliness of a result, but the quality of the result may be sacri�ced. For example, inthe Puma domain, an any-time algorithm might be used to incrementally re�ne the robot'sestimate of the position of a part arriving on the conveyor belt. When the time allotted tothe any-time algorithm expires, another process could revise the robot's motion based onthe resulting position estimate. However, the accuracy of the position estimate would behighly dependent on how much time was actually allocated to the any-time algorithm.To clarify the relationship between AI and the tactical real-time systems approach, it ishelpful to focus closely on tactical systems as implemented by any-dimension algorithms .The any-dimension algorithm concept is simply a generalization of the any-time approach,yielding a description of a larger class of tactical algorithms that can provide performanceguarantees along dimensions describing resource usage and/or solution quality, rather thanjust time. Note that we are not claiming that any-dimension algorithms are a new method,but rather that this particular form of algorithm description is useful. The following sub-sections develop the concept in detail, showing how both real-time and AI methods canbe mapped into any-dimension algorithms. We will use the any-dimension concept to ouradvantage in Section 2.3, where it will provide leverage on both describing and attackingthe problems of combining real-time and AI.2.2.1 Any-Dimension AlgorithmsThe most important feature of an any-time algorithm is the fact that it guarantees touse only a bounded amount of time, by performing iterative computations that can return aresult any time they are halted. Of course, time is not the only resource that may be limitedfor a system: other bounded resources might include memory and non-computational phys-ical features like sensors and actuators. We can generalize the any-time concept to provideguarantees on other dimensions by noting that any-time algorithms have two crucial ele-ments: an iterative computation that produces intermediate results, and a terminationcondition that monitors the time and halts the iteration when the deadline is reached. Soan any-dimension algorithm is composed similarly of an iterative computation and a ter-



10do { new_result = compute_next_result_from(best_result_so_far);best_result_so_far = best_of(best_result_so_far, new_result);}until termination_condition(); /* threshold on resource/quality */return(best_result_so_far);Figure 2.1: Pseudo-code for a generic any-dimension algorithm.mination condition that may keep track of any measure of an algorithm's performance, andwill halt the iterative computation when some threshold on that measurement dimension isreached. Figure 2.1 illustrates a generic any-dimension algorithm in pseudo-code.There are two basic types of any-dimension algorithms, distinguished by the nature oftheir termination conditions. These conditions may perform thresholding tests on measuresof either resource usage or output quality.2.2.2 Any-Resource AlgorithmsAny-resource algorithms are the most obvious generalization of any-time algorithms,having a termination condition that tests for some maximum resource usage:boolean termination_condition (){ return(resources_used >= max_resource_threshold);}Any-resource algorithms can guarantee that they will not exceed a maximum level ofresource usage. As another example of an any-resource method, consider a scenario in thePuma domain where the system's planning process has no hard deadline, but the system haslimited memory. An any-memory algorithm would be useful in this situation, because theplanning algorithm could require exponential amounts of memory as it constructs and storesalternative partial plans. If the planner writes beyond the free memory, it might corruptcritical control data and cause a catastrophic failure. An any-memory planning algorithmwould monitor the available memory and, when memory ran low, the algorithm would haltand return the most-recent partial plan. Thus an any-memory algorithm guarantees thatthe system will not exceed the available memory capacity.We can qualitatively represent the results of this type of algorithm by the resource/qualitytradeo� graph in Figure 2.2a, where the shaded area represents the possible places that theany-resource algorithm will terminate (i.e., the types of results it will produce). Becausewe have cast the termination condition as a synchronous monitor within the iterative loop,it will only check the resource usage after each iteration1. As a result, the algorithm mayovershoot the resource threshold (Rt) by up to the maximum amount of resources used1In this discussion, we are not concerned with alternative, asynchronously-monitored termination condi-tions that might rely on interrupts to halt the iterative computation [55].
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Resource(a) Simple any-resource algorithm. (b) Simple any-quality algorithm.Figure 2.2: Termination regions for simple any-dimension algorithms.during any single iteration of the computation (Ru). Thus Figure 2.2a shows that a simpleany-resource computation will be halted at some point when the resource usage is betweenRt and Rt +Ru.Note that an any-resource algorithm may fail to terminate if it never consumes enoughresources. While this is not possible if the resource dimension is time (and there is a �nitethreshold, or deadline), with other resources it is possible for an iterative algorithm tocontinue executing without consuming additional resources. For example, a simple beam-search algorithm may traverse an arbitrarily large search space with a �xed maximummemory usage, and thus, if cast as an any-memory algorithm, it might never terminate.Unlike strategic scheduling methods, which must be given information about the totalavailable resources and resource requirements, any-resource algorithms can make perform-ance guarantees even when resource limits and needs are changing or unknown when thealgorithm starts. Any-resource algorithms dynamically adjust their resource usage to avoidexceeding some maximum level that may be determined outside of the algorithm. Thusany-resource algorithms are particularly appropriate for tasks where multiple computationsmay be competing for resources; the any-resource algorithms will automatically avoid over-taxing resources. Any-resource algorithms, and particularly any-time algorithms, are suitedto real-time domains because they can provide 
exible computations guaranteed to meetdeadlines and other resource limitations. Unfortunately, any-resource algorithms do notprovide any control over their output quality; whenever an any-resource algorithm's re-source threshold is reached, it returns the current result, which may have less-than-optimalprecision, con�dence, completeness, or other quality measures. If result quality is critical,any-resource algorithms are inappropriate.



122.2.3 Any-Quality AlgorithmsAny-quality algorithms can make output quality guarantees. While similar to an any-resource algorithms in that they iteratively compute intermediate results, any-quality al-gorithms di�er in that their termination conditions are speci�ed by a desired minimum levelof result quality, rather than a maximum level of resource availability:boolean termination_condition (){ return(quality(best_result_so_far) >= min_quality_threshold);}Figure 2.2b shows the termination region for the resulting any-quality algorithm. Aswith any-resource algorithms, an any-quality algorithm may never terminate if the per-formance pro�le of the iterative computation never crosses the quality threshold (Qt). Thisobservation clari�es the value of \monotonic-improvement" any-quality algorithms: if theiterative computation always improves its result quality, then the iteration can be guar-anteed to terminate for any �nite Qt. As a speci�c example, many iterative numericalmethods [6] are any-precision algorithms. An iterative numerical method continually re-�nes its estimate for the solution to a problem until the precision of its estimate is knownto be beyond a certain level. In the Puma domain, such an iterative method might alsobe used to re�ne the estimate of an arriving part's position until its precision reaches somefraction of a centimeter. The algorithm would continue running until it achieved that levelof accuracy, as opposed to the any-time methods discussed above, which terminate whena deadline is reached. If absolute part locations are critical to the robot's task, then anany-precision algorithm would be appropriate, while if the task has hard deadlines, anany-time algorithm might be better. In general, while any-resource algorithms match thegoals of resource-constrained real-time systems, any-quality algorithms match the satis�cingbehavior of many AI methods.Just as any-resource algorithms cannot guarantee output quality, a fundamental weak-ness of any-quality algorithms is that they cannot guarantee limited resource usage. Byde�nition, any-quality algorithms must consume resources until they achieve the desiredquality threshold.2.2.4 Combinations of Any-Dimension AlgorithmsWe have noted that a simple any-dimension algorithm has the disadvantage of beingunable to control its performance along more than the single dimension speci�ed in itstermination conditions. One approach to �xing this weakness is to combine multiple ter-mination conditions using conjunction and disjunction to yield more interesting algorithmicbehavior. Disjunctive (or) combinations of any-dimension methods lead to a guarantee thatcrossing one threshold or the other will yield a result. For example, in the Puma domain,combining any-time and any-con�dence conditions might be the most appropriate methodfor building plans to deal with various types of parts under time pressure; the resultingalgorithm would work on each planning problem until it either found a result in which ithad su�cient con�dence, or until the time allotted to that problem expired.



13Disjunctive combinations of thresholds are actually quite common. A simple any-qualityalgorithm will run until its result reaches the quality threshold; if the threshold is too high,the any-quality algorithm may never terminate. Thus, most implementations of any-qualityalgorithms also include an alternative, resource-based termination condition, so that theywill terminate even if their original quality threshold is never reached. For example, anany-precision algorithm might also have a condition that will terminate the algorithm aftera certain number of iterations, regardless of the precision that has been reached at thattime.Similarly, a simple any-resource algorithm will run until it has consumed the allocatedresources, even if the algorithm �nds an optimal (highest quality) result before the resourcesare exhausted. To avoid this waste of resources, most any-resource algorithms also includea termination condition specifying an acceptable quality measure. For example, a searchalgorithm might have a termination condition checking for both a deadline and for the goalof the search. If the goal is reached before the deadline, the algorithm terminates andreturns its result even though it could have used more time.In general, a disjunctive combination of an any-quality and an any-resource algorithmcan be implemented using the form:boolean termination_condition (){ return( (quality(best_result_so_far) >= min_quality_threshold) ||(resources_used >= max_resource_threshold) );}The termination graph for this disjunctive form is just the union of the previous twographs, as illustrated in Figure 2.3a. The algorithm will return a result either when itachieves su�cient quality or when it reaches the band of maximum allowable resourceusage. This form of algorithm will not fail to terminate as long as some progress is beingmade along either the quality or resource dimension. This is the reason that disjunctivecombinations are quite common: they will de�nitely terminate, and they provide intuitivelydesirable results| they continue running until they achieve a result of su�cient quality, oruntil their resources are consumed, whichever comes �rst. Note that the decision as towhich termination condition (quality or resource) will be the deciding factor is not madeuntil the algorithm actually runs; thus, this is not a simple prioritization mechanism.The notion of conjunctive (and) combinations of any-dimension methods is also desir-able in certain cases, because it leads to guarantees over multiple dimensions. For example,combining any-con�dence and any-precision conditions would lead to results with guar-anteed precision and con�dence: the algorithm would continue until both thresholds arereached. Given the mapping described earlier between di�erent any-dimension methodsand the goals of AI and real-time systems, such conjunctive combinations might seem topoint the way to a uni�ed approach to real-time AI. However, if we try to conjoin ter-mination conditions on both resource and quality dimensions, the results are not clearlyde�ned. A conjunctive combination of an any-quality and an any-resource algorithm can
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y(a) A disjunctive combination. (b) A conjunctive combination.Figure 2.3: Termination regions for combined forms of any-dimension algorithms.be implemented using the form:boolean termination_condition (){ return( (quality(best_result_so_far) >= min_quality_threshold) &&(resources_used >= max_resource_threshold) );}This conjunction results in the undesirable termination pattern shown in Figure 2.3b.The conjunctive combination algorithm terminates only if the desired level of quality isachieved at the same time the resource consumption reaches the speci�ed limits. A con-junctive algorithm would never terminate if it reached and exceeded its quality thresholdbut never used up the threshold quantity of resources (i.e., if the performance pro�le shootsup but never crosses Rt). In this case, the results are similar to the behavior of a pure any-resource algorithm: it runs until the resource bound is reached. Likewise, and perhaps evenworse, the conjunctive algorithm may also never terminate if the algorithm uses resourcesbeyond the threshold Rt before the quality bound is reached (i.e., the performance pro�lecontinues to the right, even past Rt+Ru, while remaining below Qt). The problem with thiscase is that the algorithm does not terminate even though it has utilized all of the allocatedresources| this might lead to unexpected failures, as the algorithm tries to continue usingresources. The algorithm will only terminate when it has both achieved su�cient qualityand used up all the allocated resources.This type of conjunction is problematic in realistic systems, because the region beyondthe Rt + Ru boundary is ill-de�ned. For example, a conjunction of any-time and any-precision algorithms will not necessarily obtain both guaranteed precision and guaranteed



15timeliness. What happens if the time threshold (deadline) is reached before the precisionthreshold? The deadline indicates that all the allocated resource (time) has been consumed.If the algorithm terminates it fails to achieve the desired precision, but if it continues it willviolate the resource threshold. Thus there is a fundamental restriction on conjunctive com-binations: they cannot be applied to any-resource algorithms, because resource thresholdsrepresent maxima.2.3 Any-Dimension Algorithms and Real-Time AIThe inability to build conjunctions of any-resource and any-quality algorithms is at theheart of why real-time AI is so elusive. Real-time systems require resource-usage guarantees;they must produce a result \by the right time." AI, on the other hand, is concerned withsolution quality: a chess program should make good moves, an autonomous vehicle shouldturn in the correct direction to avoid a collision, etc. So AI systems are designed to \do theright thing2." Together, real-time AI systems must \do the right thing, by the right time."But we have shown that, with tactical any-dimension algorithms, guarantees on resourceusage and output quality cannot simply be conjoined. The only way around this problemis to alter the termination condition so that it is no longer in an unacceptable form. Oneapproach to doing this is to map one dimension threshold onto another, reducing the con-junctive any-dimension algorithm to testing a single dimension. For example, if we canconvert a termination condition expressed in a quality dimension into an equivalent min-imum level of resource usage, then we know that reaching the minimum resource thresholdwill ensure also passing the minimum quality threshold. Figure 2.4 illustrates this mappingoperation. Note, however, that now we not only have our usual maximum resource thresholdfor the any-resource algorithm, but we also have a minimum resource threshold to capturethe any-quality dimension. In Figure 2.4, the algorithm's termination must be restricted tothe shaded area. To meet the quality requirement, we have to guarantee that at least theminimum quantity of resources will be available for the algorithm. Unfortunately, a tacticalany-dimension algorithm cannot make such a guarantee.However, recall that strategic approaches can guarantee resource availability by schedul-ing tasks before they run. The next logical step, then, is to try to combine the advantageousfeatures of both strategic and tactical methods to yield a new, combined approach that suc-cessfully addresses the requirements of real-time intelligent control in dynamic domains.Given an any-resource algorithm with both minimum and maximum resource require-ments, one approach is to use a strategic method to schedule enough of the resource to assurethe minimum threshold, and then to employ a tactical method beyond that to dynamicallytake advantage of additional resources at runtime. This is essentially the approach taken byLiu et al. [43] in the \imprecise computation" method. In this paradigm, an algorithm is di-vided into mandatory computations that are required to reach a minimal quality threshold,and optional computations that incrementally improve the result and can be interruptedat any time. The imprecise computation scheduler builds schedules that allocate at leastenough time for all the mandatory computations. Excess time is scheduled for optional2By \the right thing," we mean the best choice given the system's limited knowledge and resources.
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Figure 2.4: An example performance pro�le, showing how a quality threshold can bemapped to a minimum resource threshold.computations.While the imprecise computation approach has the advantage of balancing strategicand tactical considerations to assure minimum quality within resource bounds, it does notprovide any method for dealing with the problems that arise when resources are so scarcethat all mandatory computations cannot be scheduled. In this over-constrained situation, anintelligent system must make tradeo�s between the level of output quality it will guaranteeand the resource usage it schedules. For example, the system might use load-sheddingmethods [19, 35, 44] to drop or postpone some mandatory task, leaving resources availablefor the rest. Or, if alternative methods are available for accomplishing a particular task,the system might attempt to schedule lower-cost methods that will produce a lower-qualitysolution [19, 47]. When making these tradeo�s between solution quality and resource usage,an intelligent system should use principled methods to decide what it will accomplish.One approach to dealing with over-constrained systems is to make no guarantees of min-imum quality, but instead strive to perform \as well as possible" with the given resources.Dean and Boddy's work on \deliberation scheduling" [9] uses decision-theoretic methodsto build task schedules that optimize a measure of overall system utility (output quality).The various problem-solving methods that a system might need to run in some situationare cast as any-time algorithms. The deliberation scheduling problem is then to decide howlong each competing any-time algorithm should be run. Dean and Boddy assume that aperformance pro�le, like the one in Figure 2.4, is available for each system task, and thatthese tasks are interruptible, restartable, and completely independent, so that the totalsystem utility is simply the sum of the utility levels achieved by individual tasks. Giventhese assumptions, a scheduling algorithm can maximize system utility by running, at eachmoment, the task with the largest expected gain in utility. In over-constrained systems, theany-time algorithms will continue to guarantee output timeliness, but output quality willbe sacri�ced as much as necessary to meet the deadline.Thus, while imprecise computation assures minimum solution quality given minimal



17xguess = initial xguess;while (abs(xnew { xguess) > .01)f xguess = xnew;xnew = xguess { F(xguess) / Fprime(xguess);g (a) Newton's method.initial xguessF 1 10 20x2 7 10 11ex � 1 4 13 23e25x � 1 27 252 502(b) Iterations to achieve .01 precision.Figure 2.5: Showing the di�culty of mapping precision to time for Newton's root-�nding method.resources, deliberation scheduling commits to doing as well as it can given no assumptionson resources. Both approaches assume that the system is given a �xed mapping betweenthe output quality (utility) dimension and the resource usage (time) dimension. There aretwo fundamental problems with this assumption. First, such mappings may be di�cult orimpossible to derive, because the performance of most algorithms is highly dependent onthe particular problem to which the algorithm is being applied. For example, Liu et al.[43] describe an any-time implementation of Newton's method for �nding the roots of afunction F . Unfortunately, as illustrated in Figure 2.5, the number of iterations this methodrequires to achieve a result with speci�ed precision is highly dependent on both the domain(the function F ) and the internal state of the system (the initial guess for the root value).Because the precision threshold cannot be mapped onto the time dimension, the root-�ndingcomputation cannot be cleanly separated into mandatory and optional parts based on timealone.The second major di�culty is that, even if an individual algorithm's output qualitycan be accurately characterized by a �xed performance pro�le, tasks are not independentin realistic domains; the utility of a particular computation depends on other task com-putations. In the Puma domain, the utility of running a computation to decide whetherto pick up a part is dependent on whether the routine that locates parts has been run.Furthermore, the utility of the part-locating routine is a�ected by the fact that its resultswill be used to decide about moving the robot. These routines have high utility when usedin conjunction, in a particular order, but low utility otherwise.
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TACTICAL STRATEGICFigure 2.6: CIRCA revisited: combining strategic and tactical methods.2.4 CIRCA RevisitedThe CIRCA approach to real-time AI combines features of both strategic and tacticalmethods, as shown in Figure 2.6. Together, the AIS and Scheduler act as a strategiccontroller for the RTS, building and scheduling reactive behaviors with known resourcerequirements. Within the AIS, tactical methods are used to actually build the reactiveplans: these methods may sacri�ce the quality of the plan in response to resource limita-tions. The AIS essentially performs the same task as deliberation scheduling, deciding whattasks should be executed by the RTS at any time. Unlike deliberation scheduling, CIRCA'sAIS does not require performance pro�les and iterative tasks, and is capable of buildinguseful guaranteed task schedules even when tasks have very complex interactions and de-pendencies. Deliberation scheduling is able to analytically derive an optimal schedule givenperformance pro�les; CIRCA requires less precise information and performs a search for adesirable task schedule that yields acceptable output quality within given resource bounds.CIRCA implements this search by iterating over a loop that �rst has the AIS plan a setof tasks to meet a given output quality threshold, and then runs the Scheduler on thosetasks to see if they can all be successfully run given the system's limited resources. Inessence, this process corresponds to choosing a point along the performance pro�le (for theoverall system, not a single task) that is above the quality threshold, and then using theScheduler to check if that point is also below the maximum resource usage threshold (e.g.,point A in Figure 2.4). Failure to produce a schedule is an indication that the chosen setof tasks, while providing su�cient output quality, requires too many resources (e.g., pointB in Figure 2.4). This iterative process of choosing a set of tasks to achieve a given levelof output quality and then checking their resource usage with the Scheduler can be viewedas an any-quality algorithm: the iteration will continue until a feasible schedule of tasks isfound that exceeds the desired quality threshold. Because this generate-and-test techniquedoes not rely on explicit knowledge of the form of the performance pro�les for each task, itis more widely applicable than the deliberation scheduling technique.The RTS executes the reaction plans built by the AIS and Scheduler. In addition to theschedule of tasks that must be guaranteed to meet their deadlines, the AIS can also send



19the RTS a list of \if-time" or \best-e�ort" tasks, that should be run only if unused resourcesbecome available. Viewed from a high level, the RTS functions as a generalized form ofimprecise computation: the guaranteed tasks represent mandatory computation, and theif-time tasks are optional computations. However, while the imprecise computation methodspeci�es that optional computations are any-time algorithms that will improve the qualityof the mandatory computations they follow, CIRCA's if-time tasks need not be incremental,and they may have little or no relation to the tasks they follow. If-time tasks are simplythose tasks which the AIS/Scheduler decided were desirable, but which could not be �t intothe schedule of guaranteed tasks.Thus, CIRCA combines aspects of both strategic and tactical methods in addressingreal-time intelligent control problems. In the next chapter, we provide a more detailed viewof CIRCA, and compare the architecture with several closely-related systems.



CHAPTER 3OVERVIEW OF CIRCAWe assume that the system CIRCA controls will inhabit an environment in which, to sur-vive and achieve its goals, the systemmust respond actively to various types of inputs. Someof those responses will maintain the system's safety, and some will help achieve other systemgoals. Within this type of environment, CIRCA is designed to make guarantees about itsperformance based on the fundamental restriction that the system has limited sensing, pro-cessing, and actuating resources. A direct consequence of this bounded rationality [73] andbounded reactivity [56] is that the system usually cannot simultaneously guarantee all therequired reactions to input stimuli that may ever be required to achieve its goals. CIRCA'ssolution to this limitation has two elements. First, the system divides its overall task intosubtasks that only require selected subsets of the system's possible reactions. CIRCA dy-namically builds short-term control plans that are guaranteed to implement those subsetsof reactions. As the agent pursues di�erent subtasks, the appropriate reactions change, andnew control plans are derived. Thus the system never tries to simultaneously implement allof the reactions required for the overall task.CIRCA's second way of dealing with resource limitations is to gracefully degrade itsguarantees. If a subtask still requires more reactive responses than can be guaranteed, thesystem can leave less-important reactions unguaranteed. CIRCA's guarantees are based onworst-case execution times, so when guaranteed reactions use less time than they have beenallotted, the system can use the remaining time to execute unguaranteed reactions. ThusCIRCA creates two classes of reactions (guaranteed and not) so that it can guarantee thetimeliness of some reactions rather than none. We will discuss the value of these guaranteesin Section 3.4, after presenting more details on CIRCA.3.1 Control PlansCIRCA's control plans take the form of cyclic schedules of simple test-action pairs(TAPs). Each TAP is essentially an annotated production rule consisting of a test expression(or precondition), an action expression to evaluate if the test returns true, data about thesensing and actuating resources the TAP requires, and worst-case timing data on how long ittakes to test the precondition and execute the action. During the process of building controlplans (to be discussed in detail in Chapter 5), individual TAPs are automatically generatedby composing primitive descriptions of actions and tests. The planning process also assigns20



21TAP place-rectangle-in-box:TEST (and (part-status in-gripper) (part-type rectangle)):ACTION (place-rectangle-in-box):RESOURCES (overhead-camera arm):TEST-TIME .2 [seconds]:ACTION-TIME 2.5 [seconds]:MAX-PERIOD 11.2 [seconds]Figure 3.1: An example TAP from the Puma domain.each TAP a maximum period, �xing the longest time interval allowed between invocationsof the TAP. A control plan (TAP schedule) is guaranteed to execute its component TAPsat least as frequently as their maximum periods require.Figure 3.1 shows an example TAP generated automatically for the Puma robot task.The TEST speci�es that the TAP is executed only if the robot has grasped the part, andknows that the part is rectangular. If these conditions are true, the robot places the partinto the box. Testing and executing this TAP takes a maximum of 2.7 seconds (TEST-TIME+ ACTION-TIME), and the AIS' planning process has determined that it must be run at leastevery 11.2 seconds (MAX-PERIOD) to guarantee that the current part will be processed bythe time the next part arrives (thus avoiding failure).To facilitate our discussion, we introduce a functional notation for referencing featuresof a TAP � . The function test(�) refers to the TAP's test expression, and action(�) refersto the action the TAP implements. We use wcet(test(�)) to refer to the worst-case exe-cution time of the TAP's test expression, and likewise wcet(action(�)) for the worst-caseexecution time of the TAP's action. These are the values represented by the TEST-TIMEand ACTION-TIME slots in the TAP structure. The worst-case execution time for the wholeTAP is thus wcet(�) = wcet(test(�))+wcet(action(�)). The best-case and actual executiontimes are similarly referenced by the functions bcet(�) and et(�). We introduce these lasttwo notations only for the discussion in Chapter 4; CIRCA does not represent or reasonabout them.In addition to the cyclic schedule of guaranteed TAPs, a control plan may also includea list of unguaranteed or \best-e�ort" TAPs. These TAPs implement reactions that aredesirable, but cannot be guaranteed due to the system's bounded reactivity. If the testexpression of a guaranteed TAP in the schedule returns false, then an unguaranteed TAPmay be executed in the time scheduled for that guaranteed TAP's action.3.2 OperationsCIRCA's operation can be viewed as a pipeline in which control plans are derived in theAIS, scheduled in the Scheduler, and then executed on the RTS. These three operations canoccur simultaneously on di�erent control plans, so that while the AIS and the Schedulerare cooperatively developing the next control plans, the RTS is executing the previouscontrol plan and maintaining system safety. However, data 
ow is not strictly unidirectional



22through the pipeline: feedback information can 
ow from the RTS and Scheduler to theAIS, so that changes in the world can a�ect the generation of control plans. For example,the arrival of a part of an unfamiliar type will cause the RTS to temporarily stack the parton the table and notify the AIS. In response, the AIS will develop a new plan for packingthe new type of part into the box.CIRCA's primary architectural feature is the separation of real-time and non-real-timesubsystems. The RTS and AIS serve di�erent purposes within the system, and their inter-action must be carefully controlled. The RTS is responsible for executing control plans ina completely predictable fashion, so that their execution matches the model used by theAIS and Scheduler. The RTS meets this criterion for TAP execution because it has noother function; it simply loops over the cyclic schedule of TAPs, testing and executing themrepeatedly. Even communication into and out of the RTS is encapsulated within TAPs,so that all RTS activity is scheduled explicitly (see Section 6.2). Thus control plans thatmake guarantees in the modeled world are executed accurately, and the model guaranteesare equally valid in the real world.The AIS and Scheduler, on the other hand, perform the complex, unpredictable reason-ing required to develop guaranteed control plans, and the performance of these subsystemsmust not interfere with the RTS' predictable execution. To achieve this isolation, each con-trol plan executed on the RTS is designed both to achieve a short-term goal and to ensuresystem safety throughout the range of environmental states that are anticipated duringand after the accomplishment of this goal. The e�ect of the latter criterion, which will beexplained in detail in Chapter 4, is to allow the RTS to keep the system safe while the AISand Scheduler try to build the next control plan; the planning operation is not constrainedto meet domain deadlines.The planning processes of the AIS can be divided into two main levels: the planningthat builds control plans (TAP schedules) to accomplish some short-term goal, and thehigher-level abstraction planning, that decomposes long-term goals into short-term goalsfor which control plans will be built. Most of the work on CIRCA's AIS has focused on theplanning processes that reason about a world model to build control plans; the model andplanning methods are described in detail in Chapter 4 and Chapter 5.TAP control plans can easily implement sequential behavior, such as the series of actionsrequired for the Puma to pick up a part from the conveyor, move to the box, and place thepart in the box. The TAPs for each action are simply built with tests that are activatedby the postconditions of previous TAPs in the sequence. Longer-term sequential behavioris achieved by downloading new control plans to the RTS. For example, if the Puma mustmove full boxes onto a second conveyor, the set of control reactions required for that taskmight form a separate TAP schedule, downloaded to the RTS when a box is �lled1.In a less-repetitive domain such as mobile robot navigation, this type of sequentialactivation of control plans is even more intuitive. For example, a mobile robot might begiven one control plan that moves it along a hallway to a doorway, another plan to movethrough the doorway into a room, and another to perform some task once at a workstation1This example raises the obvious possibility of caching and reusing TAP schedules| we expect that thisapproach could provide signi�cant bene�ts, but for now we have focused on how to produce these schedulesin the �rst place.



23in the room. These separate control plans would each use the robot's limited sensors,processors, and actuators in di�erent ways during the di�erent phases of operation. Thesystem would transfer between control plans only when the mobile robot was in a safe(halted) state, so there would be no hard deadlines dictating the time by which each controlplan must be built.3.3 Control-level vs. Task-levelThe dichotomy between CIRCA's real-time and non-real-time subsystems relies on thedistinction between two classes of goals: control-level goals and task-level goals. CIRCA isdesigned to guarantee its control-level goals via the predictable execution of the RTS. Task-level goals, on the other hand, are achieved on a best-e�ort basis; that is, the system triesto achieve task-level goals when possible, but if time pressure or other restrictions makethis impossible, the system is still considered successful. In real-time systems terminology,control-level goals correspond to hard deadlines. Frequently, control-level goals are relatedto system safety. For example, in the Puma domain the system has a control-level goal ofpreventing arriving parts from falling o� the end of the moving conveyor belt, because partsmay be fragile or explosive, and thus dropping them is considered a catastrophic failure.Task-level goals can be violated (or not achieved) without such drastic results. For example,the Puma system is given a task-level goal to stack arriving parts in the box. However, ifthe emergency light goes on during that operation, it is acceptable for the system to quicklyplace the part on the table (instead of in the box) and respond to the emergency. In thisexample, it is acceptable for the system to not achieve its task-level goal, and no deadlineis given.We can also conceive of task-level goals that have deadlines, but those deadlines mustbe \soft" or negotiable. Task-level deadlines frequently result from commitments to otheragents, while control-level deadlines are often derived from physical relationships betweenan agent and its environment. For example, a mobile robot may have a deadline for a task-level goal of arriving at some location, but missing that deadline may only require the agentto renegotiate a rendezvous with another agent at some later time. The same mobile robot,however, will have control-level goals to avoid collisions, and the actions that achieve thosegoals must always meet their deadlines, or the robot may be damaged. Accordingly, CIRCAalways gives priority to scheduling and guaranteeing actions that achieve control-level goals.The distinction between task-level and control-level goals is made automatically byCIRCA, based on its analysis of the domain model, resource limitations, and prioritizedgoals speci�ed by the system designer2. Examining this information, CIRCA can derivedeadlines for the actions which achieve the various goals, and can try to maximize thenumber of goals it will achieve given its bounded reactivity. CIRCA may also dynamicallydecide that it does not have the resources required to guarantee that it will achieve all ofits control-level goals. In that case, the system can make performance tradeo�s which mayleave some control-level goals unguaranteed, treating them essentially the same as task-levelgoals. Thus control-level goals are those that the system should try to guarantee, but this2Currently, our implementation only deals with two priorities: critical and not.



24may not always be possible.Linking control-level goals to system safety is a crucial concept, because it shows howthe RTS and AIS can be truly isolated. Since the AIS and RTS run on separate processors,the AIS' reasoning is largely separated from the system's actual interactions with the en-vironment. The only way the AIS' processing a�ects the world (directly, not through theRTS) is in the fact that it takes up time| that is, while the AIS is building a controlplan, the world \keeps going." However, even this e�ect can be factored out because theRTS continues interacting with the world, enforcing the guarantees on control-level goals.If those guarantees ensure the system's safety, the RTS can continue keeping the systemsafe for an inde�nite amount of time while the AIS generates the next control plan.CIRCA's unguaranteed TAP list provides best-e�ort reactions that are not guaranteedto meet any deadlines, but may run when the system has extra time available. UnguaranteedTAPs typically achieve task-level goals, and in tightly constrained circumstances they willalso provide best-e�ort attempts to achieve control-level goals. In the degenerate case whenall reactions are best-e�ort because the system lacks the resources needed to guarantee any,CIRCA behaves just like most other reactive systems, executing as fast as it can, with noreason to believe this speed will meet the demands of its environment. In the followingsection, we explain why CIRCA's automatically guaranteed control performance is superiorin many ways to unguaranteed control.3.4 The Value of GuaranteesOne main bene�t of providing control-level guarantees is the a priori knowledge of thesuitability of the control system; if CIRCA can build a guaranteed control plan, we maycon�dently use that plan in situations where failure is not acceptable. If CIRCA cannotprovide a guaranteed control plan, this is an indication that the system does not havesu�cient resources to cope with its control-level goals in the environment. In that case,CIRCA has the ability to modify its high-level plans or goals to try to build an acceptableplan. For example, the system could alter the way it decomposes a long-term goal intoshort-term goals, so that the timing constraints on di�cult processes are relaxed. In thePuma domain, the system might allocate more time to the process of packing parts into thebox by slowing down the conveyor belt. The key point is that CIRCA is aware of its owncapacity to deal with a speci�c combination of goals and environment. This is analogousto the cognizant failure stressed by Gat [21]. Guaranteed control plans also play a crucialrole in isolating the unpredictable performance AIS from the rigid, real-time guarantees ofthe RTS, as discussed above.Of course, CIRCA's guarantees are based on several assumptions about the generallyuncertain, unpredictable real world. However, there is no way to build a control systemwithout such assumptions: all systems are designed with certain environments in mind, andif they can be proven to manage the speci�ed environments, that is only for the better. Theuncertainty inherent in the real world makes no di�erence for this argument. To paraphraseStankovic [76], the fact that the system may not function correctly or that the world maydi�er from our environment model with a nonzero probability does not give us license to



25increase the odds of failure by not trying to guarantee performance.Consider this didactic example: we must transmit vital digital information across a net-work, and we can use either a simple one-shot transmission or an error-correcting protocolthat is guaranteed to correct all known types of errors. Ignoring e�ciency (or cost), theerror-correcting protocol is clearly the preferable choice, because it has a performance guar-antee that the one-shot transmission lacks. This guarantee has value despite the fact thatwe acknowledge that the protocol is only guaranteed to work for known errors. In fact, wecan never hope to do better. The task as given is to transmit over a particular network,and the error-correcting protocol has been optimized for that task.To determine the net value of performance guarantees, we must also examine their twofundamental costs: the one-time cost of making the guarantee and the recurring cost ofpotentially low utilization. In the case of the error-correcting protocol, these costs mightbe represented by the time-consuming process of coding the protocol, and the decreasedtransmission bandwidth available while using the protocol. By both of these measures theerror-correcting protocol costs more, but it may be worth the cost to ensure that we reallycan transmit the information correctly. If the survival of the Space Shuttle depends on thetransmitted data, the complex protocol is de�nitely worth these costs.One confusing issue is 
exibility: is a guaranteed system less 
exible than an unguar-anteed system? Not necessarily| 
exibility and utilization are traded o� in guaranteedsystems. A complete guaranteed system is maximally 
exible because it must deal with allpossible occurrences. This guarantee leads to lower utilization when the environment doesnot exhibit all of the worst-case behaviors that must be monitored. On the other hand,a system may guarantee to handle only some of the possible occurrences, and in return itcould have higher utilization. The 
exibility/utilization tradeo� is not unique to guaranteedsystems; it is a feature of all bounded-resource systems. The tradeo� is clari�ed by the factthat guarantees provide a stricter de�nition of 
exibility: a guaranteed system's 
exibilitycan be seen as the fraction of the possible worlds the system is known to be capable ofhandling. By that de�nition, an unguaranteed system can only establish 
exibility throughtesting.In sum, CIRCA's guarantees are only as good as its environment model, and its controlplans do incur higher costs than other plans that do not deal with all possible environmentaloccurrences. On the other hand, CIRCA's control plans have known properties such ascorrectness and timeliness that can be used in a priori analyses, which may in turn lead tomodi�cations in the system's plans and goals. We postulate that, in many complex controltasks, the advantages of guaranteed performance outweigh its costs.3.5 Summary of the CIRCA ApproachThe concepts and goals of CIRCA can be characterized in several useful ways, providingdi�erent viewpoints on the architecture. Each of these viewpoints is valid, but each stressesdi�erent aspects of the approach:� CIRCA as a real-time AI system. CIRCA's goal is to be \intelligent about real-time," as opposed to being \intelligent in real-time." That is, CIRCA's AI processing



26is not constrained to meet deadlines. Instead, the RTS is responsible for executingreactions that are guaranteed to meet the domain's hard deadlines, while the AISexecutes less-predictable search algorithms that address task-level problems withouthard deadlines. The reactive plans executed by the RTS are built speci�cally torestrict the progression of world states so that failure is avoided and the state of theworld remains within the range of the plan's applicability. In other words, the RTSwill prevent failure and keep \stalling" the domain until a new plan is downloaded.Thus CIRCA is able to apply unrestricted AI methods to di�cult task-level problemswhile also guaranteeing control-level responses that will meet deadlines.� CIRCA as an any-completeness method. CIRCA meets the demands of real-time control within a bounded-reactivity system by guaranteeing that it will producea precise, high con�dence response in a timely fashion to a limited set of inputs. Inother words, the architecture can sacri�ce completeness of attention in order to achieveprecision, con�dence, and timeliness in its responses to environmental changes that itdoes observe.� CIRCA as an introspective system. The key to CIRCA's performance guaran-tees is its ability to introspect on its own performance, recognizing its own resourcelimitations and the resource needs of the reactive TAP plans it is generating. TheAIS can be viewed as reasoning about a �xed meta-level of the RTS; while the RTSexecutes the TAP schedule to decide what to do next, the AIS plans the next sched-ules for the RTS. In addition, the AIS itself has meta-level capabilities that allow it tointrospect on its own deliberative behavior. For example, the AIS can recognize whenit is taking a long time to generate plans, and may decide to simplify its planningprocess as a result.� CIRCA as an automated system designer. Traditionally, real-time systems havebeen designed by humans, who are given detailed characterizations of how the real-time system needs to interact with the environment. CIRCA is a �rst attempt atautomating the entire process of building a real-time system, from planning tasks, toderiving their constraints, to scheduling them, and �nally to executing them predict-ably. By automating this entire design and implementation process, CIRCA is ableto dynamically and 
exibly develop and modify its real-time behavior in the face ofchanging goals, capabilities, and/or domains.Figure 3.2 shows a 
owchart mapping the steps of a traditional control system designprocess to related portions of the CIRCA approach. Beginning in the upper left of the�gure, the designer (human or automated) is given a speci�cation of the system tobe controlled; in the case of CIRCA, this speci�cation has three parts: a set of initialworld states, a set of state transitions that describe how the world can change, and aset of agent capabilities, describing how the agent can change the world. The outputspeci�cation describes the desired behavior; for CIRCA, the speci�cation includesboth goals of avoidance (to stay out of some undesirable situations) and goals ofachievement (to attain some desirable situations). Chapter 4 describes the CIRCAworld model in detail.



27The design phase of the process builds a tentative control system; CIRCA buildsa TAP control plan using the planning methods described in Chapter 5. The nextphase of the design process is to verify that the proposed control system meets thespeci�cations; CIRCA veri�es the logical correctness of a control plan when it is built,based on the world model, and the Scheduler veri�es that the plan can be executedsuccessfully by the RTS, as described in Chapter 6.Following the dashed arrows in the 
owchart, it is also possible for the design orveri�cation phase to fail, indicating that some modi�cations must be made to theinitial design or the speci�cations. Such modi�cations are essential to automatingthe overall design process, for two reasons. First, because heuristics are used togenerate designs, the initial proposed design may not actually meet the speci�cations.A mechanism must be available to modify the planning process (or some other systemaspect) so that a di�erent design is heuristically generated and tested. Second, becauseCIRCA is intended to control an autonomous agent with bounded resources, it is notpossible to ensure that the agent will always have su�cient resources to accomplishevery task that might arise. Essentially, there are too many possible combinations ofinput and output speci�cations to enumerate. As a result, CIRCA must dynamicallyconsider how to apply its limited resources to best achieve its goals, possibly bypreferring some goals over others, by changing plans, or by making other modi�cationsto the planning process or speci�cations. This requirement distinguishes CIRCA'sapproach from a more traditional design process, in which the goal is only to designa system that meets the �xed input and output speci�cations. In contrast, CIRCAmay actually have to modify the I/O speci�cations of its control system design, whenfaced with resource limitations.CIRCA has two ways of recognizing when modi�cations are necessary: the plannermay fail to produce a plan, or the Scheduler may be unable to build a feasible schedule.In response to these conditions, CIRCA can make modi�cations to an individualcontrol plan, or to the state transition or goal speci�cations used to derive controlplans. These modi�cations allow the system to make performance tradeo�s to accountfor overconstraining domains, and are described in detail in Chapter 7.3.6 Comparison to Related WorkHaving presented a general description of CIRCA's approach to real-time AI, we are nowin a position to compare this approach with several closely-related agent architectures. Wewill focus largely on the architectural division of responsibilities in these systems, as wellas the types of performance guarantees they can provide, and thus how well they addressreal-time control issues. There are three main approaches to developing intelligent real-timecontrol systems: embedding an AI system within a real-time system, embedding real-timereactive elements within an AI system, and using cooperating reactive and deliberativesystems.
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Figure 3.2: A 
owchart showing the stages of real-time system design.3.6.1 Embedding Intelligence in a Real-Time SystemThe most straightforward approach to real-time AI is to embed intelligence within areal-time system, so that the AI mechanisms are required to meet deadlines| the goal isto be \intelligent in real time." One way to accomplish this is to simplify an AI system'sknowledge-base and inference mechanism so that it responds to all inputs within a boundedtime [36, 40]. Unfortunately, this approach engineers out of the AI system the high-variancesearch and unpredictability which distinguishes AI techniques from simple algorithms. Ina sense, when a system with these limitations can always solve a problem, that problem isno longer in the realm of AI.Several other, less-restrictive approaches have been used to embed AI methods withinreal-time systems. These approaches variously rely on real-time operating systems, constant-cycle-time circuits, or any-time algorithms to enforce guaranteed, predictable execution.CROPS5CROPS5 is a C-based parallel implementation of the OPS5 production system [60].The production system is encapsulated within an \AI server" program that runs under areal-time operating system, allowing the production system to run only when other, guar-anteed real-time control tasks are not using the processor. The AI server thus isolatesthe potentially high-variance CROPS5 problem-solving from the real-time tasks. In theCROPS5 architecture, the problem-solving mechanism does not explicitly control the guar-anteed real-time tasks. Instead, the production system has separate tasks to perform, andthe goal is to ensure that they will also be completed on-time despite running within thebest-e�ort AI server.Research on CROPS5 has focused on reducing the variance in its processing time, usingboth enhanced context-switching mechanisms and structuring of the problem space. Whileperformance guarantees have been veri�ed by hand for the system, it does not yet includeinternal mechanisms for reasoning about its own timeliness or problem-solving capacity.The system does not reason about a model of agent/environment interactions to create itsown performance guarantees.



29SubsumptionThe subsumption architecture [5] consists of numerous small �nite state machines (\mod-ules") running in parallel with no shared memory, connected by simple message-passingchannels. The modules are \reactive" in that they maintain little or no internal state,and rapidly produce outputs in direct response to inputs, with a minimum of inferencing.These systems do not perform the lookahead (or internal simulation of actions) that classicalplanning implies; instead, they essentially act as a parallel set of situated-action rules thatrecognize an input and produce the associated output immediately. Subsumption systemsincorporate hierarchical control by having higher level modules alter the input or output oflower level modules. By inhibiting or enabling the output of di�erent modules, a high-levelmodule can activate a subset of desired behaviors in much the same way as CIRCA choosesreactions to guarantee.The processor-per-behavior approach assumed by subsumption su�ers from obvious scal-ing problems, and also wastes computing power, since many behavior processors may notbe active at all times. Our approach is based on the assumption that, as we extend therange of situations that our system is prepared to encounter, the necessary behaviors willbecome too numerous to allocate each to a separate processor. CIRCA's Scheduler moduleaddresses this problem by scheduling TAPs for the single-processor RTS.Other systems [8, 75] have made provisions to activate only subsets of reactive beha-viors implemented on a single processor. However, these systems do not reason about theresources required for each set of behaviors, and do not use advanced AI techniques tocontrol the set of activated behaviors3. CIRCA's resource allocation and scheduling arecrucial to the system's 
exibility, extensibility, and e�ciency. Furthermore, by explicitlyreasoning about time and resources, CIRCA is able to provide guaranteed performance,which reactive systems cannot. Reactive systems simply run as fast as they can, and thusthey are only \coincidently real-time" [36].Finally, since purely reactive systems lack the ability to learn and to form complexsymbolic plans or expectations, they have little of the power we associate with intelligentsystems [26]. Essentially, all of the inferencing and uncertainty associated with intelligentbehavior has been engineered out of these systems. We might consider them to be conveni-ent, powerful formulations of traditional control systems, rather than intelligent real-timecontrol systems.Rex/GappsResearch into the formal relationship between a system's internal model of the worldand the real world has been fruitfully implemented in the Rex/Gapps system [63, 64]. Rexis a language used to describe digital machines that can be viewed as reactive systems.Rex programs are compiled into automata descriptions (usually implemented on a generalpurpose computer) that perform a constant-time mapping between inputs (sensors) andoutputs (actuators). The theory underlying Rex has been used to show that the informationstored within a Rex machine can have a �xed relationship to the true state of the world.3Although Connell and Viola [8] are on a similar track: they use a human to make the decisions.



30Thus Rex machines provide predictable execution and support the types of performanceguarantees enforced by CIRCA's RTS.Gapps [32, 33] is a system for compiling declarative descriptions of agent behaviors intoRex machines. Gapps takes as input the agent's top-level goal and a set of goal-reductionrules that describe how to transform goals into smaller goals or Rex-machine primitives.Because Gapps compiles this input into a static Rex machine, it generates large reactivesystems that exhibit goal-directed behavior but do not perform lookahead planning, search,or adaptation. Rex/Gapps is used to specify an agent's control mechanisms directly, as in arobot programming language. CIRCA, on the other hand, plans those control mechanismsautomatically given a description of goals, primitive capabilities, and the environment.Any-Time AlgorithmsAny-time algorithms (as discussed in Chapter 2) have recently become popular in boththe AI and real-time communities. Some high-variance AI methods can be cast as any-time algorithms, which are then able to make timeliness guarantees because they can beinterrupted at any time. However, the quality or correctness of the result returned aftera deadline-driven interrupt cannot be guaranteed. Thus any-time algorithms may sacri�ceprecision, completeness, or other quality measures for timeliness, while CIRCA strives toguarantee both quality and timeliness. Furthermore, by reasoning explicitly about its goals,capabilities, and deadlines, CIRCA can trade o� the guarantees it chooses to enforce whenconstrained by limited resources.The \imprecise computation" paradigm [41] is a modi�cation of the any-time methodin which some minimum amount of processing is guaranteed, so that the algorithm willalways produce a result with a minimally acceptable result. CIRCA uses this techniquewhen generating TAP plans (see Section 5.3.1), where a minimally acceptable plan achievesonly the control-level goals.PRSCIRCA's AIS includes some mechanisms derived from the Procedural Reasoning System(PRS) [23, 31], which itself has features making it suited to real-time applications. Ingrandand George� have shown that, given certain assumptions about event frequencies and theform of the system's procedural knowledge, PRS can be guaranteed to notice (or beginreacting to) every world event within a bounded time. This guarantee is based on the factthat PRS processing is highly interruptible. However, \noticing" an event is distinguishedfrom responding to the event. PRS does not make guarantees that it will respond to anevent by a certain deadline, because it does not (yet) have the ability to reason internallyabout its own level of reactivity. PRS cannot focus its attention and ignore unnecessarysensor information completely; instead, the world model is constantly updated. Thus thesystem's response to a particular event can be arbitrarily interrupted by the arrival of otherevents, and the response to those events can delay the initial processing.It is possible to limit PRS' inferencing capabilities and make guarantees about overallresponse time [31]. This approach leads to a complete embedding of the AI system within



31the real-time application environment [57], and requires either low utilization or engineeringout the high-variance AI processing.The guarantees that PRS makes are external to the system's operation: it does notintrospect on its abilities. PRS also does not plan in the sense of reasoning about an envir-onment and the appropriate actions; instead, it chooses how and when to invoke procedural\knowledge areas," which are themselves partial plans.3.6.2 Embedding Reactivity in an AI SystemOther research projects have taken the opposite approach, embedding real-time capab-ilities within an AI system. These systems use a set of designated reactions which bypassthe normal invocation mechanisms, leading to faster response times.For example, the Soar system [39] is an enhanced production system that structuresall deliberate activity as search. Searches are conducted in problem spaces characterizedby current states, goal states, and operators to move between states. Soar productionsencode knowledge about what decisions to make in di�erent situations. To make a decision(choosing what goal to pursue, operator to apply, etc.), Soar tries to match and �re allof its productions repeatedly, until no new productions match. The decision is then madebased on all the knowledge retrieved from the production �rings. If the productions do notprovide enough knowledge to make a decision, the system recursively subgoals to solve theproblem of \making the decision." The integrated Soar learning mechanism (\chunking")builds new productions that summarize the search performed to solve problems.From a predictability perspective, Soar's 
exible decision-making approach has the dis-advantage that arbitrarily large amounts of subgoaling and production matching may occur.To avoid subgoaling, Soar encodes one type of reactive knowledge as productions that indic-ate particular operators must be selected in a given situation [37]. However, this reactiontechnique still incorporates the uncertain delay associated with �ring all productions untilquiescence and then making the decision to implement the chosen operator. Recent workby Doorenbos [12] has shown signi�cant performance improvements for Soar's matchingphase with very large numbers of rules (> 100; 000), but the match time can still rise asthe number of productions increases. Even if the match time was a known constant, theprocess of �ring productions repeatedly until quiescence is still an uncertain computationsubject to scaling with the size of the knowledge base.An even faster but less-controlled form of reactive knowledge can be implemented byproductions that directly create motor commands when they are matched and �red, inde-pendent of the post-quiescence decision mechanism. This approach eliminates much of thepotential for the interference of unpredictable search, but also moves the reactions belowSoar's level of introspection| the system cannot inspect or modify its productions directly,and thus such reactions would be outside of its direct control.CIRCA addresses the issues of matching cost and iteration by choosing the subsets ofreactive knowledge it will test during each cycle of the RTS. These choices prevent CIRCAfrom displaying the completely opportunistic behavior of general pattern-directed invocationmethods, but they are necessary to cope with restricted resources and bounded reactivity.The choice of TAPs also has the e�ect of focusing the system's attention on features which



32are deemed important, eliminating the assumption that all changes in the world are detectedby the sensor system [38]. By planning and reasoning about sequences of its own reactions,CIRCA can provide guarantees on its overall interactions with the environment, in additionto individual reactive behaviors.One signi�cant advantage of the Soar approach is that the bene�ts of automatic learning(a major focus of Soar research) are shared by both the deliberative and reactive processing.When Soar solves a problem, it chunks the result in a new production so that, in the future,the result will be immediately available. CIRCA's planning operations and the constructionof reactive control plans might be viewed as the chunking of deliberation into reactive form,although that form is not a uni�ed representation of knowledge as in Soar. Currently,CIRCA does not store these \learned" reactions beyond their use by the RTS, but a case-based approach to plan retrieval could certainly be integrated easily into CIRCA's AIS.3.6.3 Cooperative SystemsCIRCA demonstrates an alternative to the embedded approaches, using separate, con-current AI and real-time subsystems to cooperatively produce the desired performance.Several recent projects have taken similar approaches, with a variety of di�erent areas offocus.ERE/RAPsHanks and Firby [26] are combining a transformational planner [27] with an executionmodule based on Reactive-Action Packages (RAPs) [15]. Each RAP is a separate entity thatpursues a goal, possibly with multiple methods, until that goal is achieved. In pursuing agoal, RAPs can process global world model data and execute actions that change the modeland/or the outside world. RAPs can also place new RAPs on the execution queue andsuspend themselves, implementing sequential and hierarchical control. The description ofthe combined system [26] notes that sensing actions must be explicitly included withinRAPs, so that data examined by the RAPs is up-to-date. CIRCA's TAPs make this evenmore clear: sensor data is acquired by individual TAPs, and the fact that sensor databecomes outdated is explicitly represented by the TAP frequency requirements stating howoften the sensing TAP must run.The RAP interpreter, running on a single computer, acts as a dynamic, non-preemptivemultiprocessing scheduler, choosing the next RAP to run from a queue. This is signi�cantlydi�erent from CIRCA's approach, in which the Scheduler builds a static schedule o�-linefrom the execution system. Since RAPs are non-interruptible and their hierarchical compu-tational complexity is not restricted, the RAP-based control system is not able to providetimeliness guarantees. Also, the strategic planning and RAP execution subsystems sharea global world model; this shared resource could lead to contention problems that wouldunpredictably delay the subsystems. CIRCA avoids shared data for this reason, relyinginstead on message passing and interrupts.Hanks and Firby note that the RAP structure provides a useful representation whichcan be used by the planner for reasoning about execution, and, without translation, by the



33execution system for the actual control of operations. CIRCA's TAPs provide exactly thesame shared representation. However, Hanks and Firby focus on meta-control problemslike deciding when to continue lookahead planning and when to interrupt a current plan toinstall a new one. We focus instead on establishing the predictable mechanisms which willallow such policy decisions to be rigidly enforced.AuRAArkin's Autonomous Robot Architecture (AuRA) [4] includes a reactive execution sub-system and a hierarchical planner that determines which reactive \schemas" are active. Aworld modeling subsystem controls AuRA's stored knowledge, providing an interface thatavoids shared-memory assumptions. AuRA's reactive schemas are essentially formulas forcalculating vector �elds that describe the robot's desired motion for a particular behavior.For example, an obstacle-avoidance schema outputs a navigation vector moving the ro-bot away from the obstacle. The vectors from di�erent active schema are combined viavector summation and normalization. This technique is an elegant method of \commandfusion," the combining of simultaneous control commands from multiple sources. CIRCAdoes not address command fusion directly; in fact, since TAPs are executed sequentially,there is never an opportunity to combine commands. However, the conditions that de-termine which TAPs �re may be seen as preempting command fusion, choosing instead asingle TAP to implement the desired combinations of commands. While CIRCA's methodis less intuitive in some cases, AuRA's vector fusion is overly simplistic, because it may notalways be desirable to merely sum commands. Sometimes one command should completelyoverride another, and magnitude may not be a su�cient expression of that priority. Or,the con
uence of two conditions triggering two schemas might warrant a response that doesnot resemble the sum of the individual responses. For example, cooking on a stove mightprompt a response \stay near the stove," while a �re would trigger \move away from the�re." How can the magnitudes of those responses be arranged to coordinate with the overalldesirable response to a stove �re, that might be \move closer to the stove to turn o� thegas." For problems beyond simple numerical navigation, vector �eld formulas and vectorsummation are not su�cient reactive mechanisms.AuRA also includes a \homeostatic control" subsystem that monitors the internal con-ditions of the execution subsystem, allowing changes in the execution subsystem to a�ectthe planning process. CIRCA can provide similar fault-tolerant functionality, as will bediscussed in Section 6.3.5. AuRA does not address the timeliness or resource restrictionsthat are the focus of our architecture.TCASimmons' Task Control Architecture (TCA) also combines reactive and planning sys-tems [70, 72]. The architecture itself provides for a central control module, a set of dis-tributed task-speci�c processing modules, message-passing between modules, and a taskrepresentation (\task trees") that coordinates planning and execution. The central controlmodule maintains the task trees that represent the system's plans, and issues messages to



34task modules as the task trees are traversed. In response to these messages, task modulesmay implement task-speci�c planning operations, sensing strategies, or motor control. Con-straints among task tree branches can restrict the central module's processing of the tree,making the system wait for completion of one task module operation before initiating thenext. Task trees may also include polling monitors that periodically check to make suresome condition is true in the world (by querying a task module), as well as interrupt-drivenmonitors by which task modules can alert the central control module.TCA thus provides the ability to overlap or interleave distributed planning and execu-tion, and its monitors yield some reactive capabilities. However, the central control modulerepresents a severe bottleneck through which all messages must pass. For example, there isno direct pathway between a sensing module and a motor control module. Since the centralcontrol module can become involved in updating arbitrarily large task trees, its performanceis uncertain, and TCA cannot provide the timeliness guarantees required for hard real-timecontrol tasks.Although TCA does not provide execution-time guarantees, it does reason about itslimited sensor capabilities, and is intended to derive sensing parameters (such as frequency)from a causal explanation of the sensing behavior and environment. This correspondsdirectly to CIRCA's reasoning about TAP parameters. However, although sensing monitorsare under the control of a central AI system, the reactive elements of TCA which attemptto keep the system safe are outside the system's control [71]. In contrast, CIRCA reasonsexplicitly about its ability to remain safe by activating selected sets of reactions, and thusCIRCA can take into account its own bounded reactivity in building plans and choosingcourses of action.ATLANTISMiller and Gat have developed the three-layer ATLANTIS system [53], in which thebottom layer provides a subsumption-like reactive controller and the top layer is a deliber-ative planner and world modeller. In between, the sequencing layer turns on and o� setsof reactive behaviors, much as CIRCA runs di�erent TAP schedules. The sequencing layeractually does more, since it also maintains a task queue similar to the RAP interpreter, andsequences these tasks when it is interrupted or detects that the previous task is �nished.ATLANTIS does not address the resource reasoning or guaranteed performance objectivesof CIRCA.DR/MARUTIHendler and Agrawala [30] are integrating an enhanced Dynamic Reaction (DR) systemand the MARUTI operating system to implement guaranteed real-time reactive reasoningin a manner very similar to CIRCA's guaranteed TAP schedules. The DR system setsup asynchronous monitor processes to check conditions on speci�c world model features:signals from these monitors drive changes in reactive activities. The MARUTI operatingsystem provides explicit support for scheduling hard real-time tasks on distributed systems,guaranteeing the execution of jobs that are accepted. By using MARUTI to schedule and



35execute the reactive elements of DR, the combined system can make performance guaranteessimilar to those CIRCA provides for its control-level goals.Higher levels of planning have been added to the DR model using the notion of abstrac-tion: the reactive system reasons about detailed information in very small units of time,while higher levels of reasoning use more abstract data and larger time scales [29]. Complexreasoning is implemented by reactive elements that are triggered by abstract informationin the world model. The enhanced DR model thus attempts to smoothly integrate reactivereasoning and higher-level reasoning within a single processing model, unlike the abruptdistinction CIRCA makes between task-level and control-level goals. While this integrationis desirable, it blurs the notion of guaranteed execution, because it is not clear which react-ive elements must be guaranteed and which not. By separating the AIS and RTS, CIRCAavoids this issue but must carefully limit the communication between the subsystems toavoid jeopardizing its performance guarantees.DR/MARUTI currently does not reason about its scheduling requirements: it does notgenerate them, and it cannot revise them if su�cient resources are not available. However,Hendler and Agrawala have expressed interest in methods for internally deriving the schedul-ing requirements of the system [30], much as CIRCA reasons about TAP requirements.They discuss the need to increase the 
exibility of DR/MARUTI so that it may includenon-real-time jobs, just as CIRCA provides the unguaranteed TAP list. They also note thata \context-switching" approach might be used to switch between predetermined reactiveschedules based on environmental data. This is precisely the way in which CIRCA operatescontinuously: it builds TAP schedules o�-line from the execution unit (in the concurrentAIS) and the RTS executes each schedule when the environment has reached the appropriatepoint in the plan.Universal PlansSchoppers' research on the automatic generation of Universal Plans (UPs) [66, 67] re-sembles our work, with the notable exception that CIRCA relies on a restricted world modeland emphasizes timeliness issues. UPs are generated without considering precisely whichworld states are possible and which are not; UPs specify reactions for all states of the world,possible or not. This approach has the advantage that it makes no assumptions about thesuccess of its own actions or the behavior of the external world. However, lacking thoseassumptions, UPs cannot provide any performance guarantees. CIRCA's control plans canbe viewed as \partial Universal Plans," in the sense that they specify reactions, as neces-sary, for all possible worlds. The possibility of a world state, of course, is dependent on theworld model assumptions.We have described how CIRCA's control plans are intended to maintain the system'ssafety while also making progress towards its task-level goals. Schoppers [69] has recentlydiscussed how UPs can similarly keep a system safe through stable \closed-loop dynamics."This concept of stable closed-loop control requires that, given sensed data within somebounds (input), the controlled system will produce world behaviors (output) within somebounds. CIRCA reasons explicitly about its ability to meet or alter those bounds, as well asthe metric timing information required for guaranteed performance. UPs do not yet handle



36this type of metric information or the introspective reasoning required to internally verifyor alter system goals.RSLyons et al. [45, 46] are investigating the Robot Schemas (RS) plan representationwith many of the same goals as our work on CIRCA. In the RS model, robot plans arerepresented as concurrent communicating processes. RS provides operators to composelarger systems from various combinations of processes. These composition operators arecapable of representing on-line decision-making, concurrent actions, sequential actions, andpreconditions. The RS model can be used to represent both the capabilities of a controlsystem and its environment, just as CIRCA represents both. Rewrite rules describe theevolution of RS systems, and these rules can be used to derive proofs that systems willmeet their goals [46].RS research began by describing static, hand-coded robot control systems. An executionenvironment is now being developed to allow the system to run its schemas with predictable,guaranteed timeliness [45]. A planning technique has also been proposed [45], in which aconcurrent planning process incrementally modi�es the reactive schemas running on theexecution system. A major advantage of this approach is that it avoids CIRCA's behaviorof building plans from scratch following every change of goal or other environmental feature.RPL/XFRMWhile RS uses a process-based representation for plans, McDermott is investigating avery general Lisp-like Reactive Plan Language (RPL) [49, 50] as a basis for both planningand execution. The XFRM system [51] includes a planner that incrementally modi�es anRPL program to improve its performance on given tasks.On the positive side, the 
exibility of RPL gives tremendous representational power.The converse, of course, is that any planner that can automatically modify such code mustinclude complex mechanisms for reasoning about program structures such as variables,loops, and conditionals. Furthermore, XFRM does not generate RPL plans given goalsand a description of the environment; instead, it modi�es pre-built plans provided by thesystem designer, that are assumed to already have some reasonable level of competence.McDermott has noted that it is very di�cult to encode a new domain in XFRM because ofthe large amount of a priori plan knowledge which must be given to the system, and alsobecause of the di�culty of hand-coding plan critics that can recognize and �x problemswith RPL code. The RPL representation is so 
exible and powerful that simply reasoningabout the meaning of a program is an AI task unto itself.3.6.4 Comparison SummaryMost of the systems described above are Turing complete| they can each implementalmost any functionality we can specify. Thus the real issue in comparing these systems isnot their absolute computational capacity, but how \naturally" each system's capabilitiesmatch with a speci�c type of problem. CIRCA has been speci�cally tailored for the demands



37of real-time intelligent control domains, while many of these related systems were designedfor di�erent problems. Thus it is not surprising that CIRCA provides a unique combinationof features, as shown in Table 3.1. The features relevant to our concern with real-timeintelligent control include:Predictable reaction time: Is there a �rm bound on the time that the system will requireto begin reacting to an event? If not, the system is not suited to hard real-timedomains.Predictable response time: Is there a �rm bound on the time that the system will re-quire to �nish reacting to an event? If not, the system is not suited to hard real-timedomains.Introspection and guarantees: Can the system reason about its own capabilities tomake guarantees on its own performance? If not, the system lacks the power torecognize overconstraining situations where performance tradeo�s may be necessary.Planned performance tradeo�s: Can the system make decisions about trading o� thegoals it will pursue? This 
exibility is required in overconstrained domains where allthe initial goals may not be possible.Parallel deliberation and reaction: Can the system react to the environment while alsodeliberating about future behaviors? If not, the system may become bogged downin highly dynamic environments where it must use all of its resources on short-termreactions.Unrestricted search-based planning: Is the system capable of performing the high-variance search-based deliberation tasks characteristic of AI?Incremental plan modi�cation: Can the system incrementally improve its plans, ratherthan rebuilding them from scratch? This approach may have e�ciency advantages insome situations, particularly if integrated with case-based approaches.Metric time model: Does the system include a metric model of time? If not, the systemmay not be able to reason about hard deadlines.Selective Perception: Does the system choose which environmental features to sense, asopposed to assuming that a complete world description is continuously available? Thisfunctionality is useful when sensing activities are costly or otherwise constrained.Learning: Does the system improve its performance over time? While systems that learnfrom previous (possibly incorrect) performance are not suited to hard real-time do-mains, it is certainly true that learning in general is a useful capability, particularlyfor resource-constrained systems.
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Feature CIRCA PRS UPs RS Soar ATLANTIS GAPPS XFRM Subsumption DR/MARUTIPredictable reactiontime p p p p p p pPredictable responsetime p pIntrospection andguarantees pPlanned performancetradeo�s pParallel deliberationand reaction p p p p p p pUnrestricted searchbased planning p p p p p p pIncremental planmodi�cation p p p pMetric time model pSelective perception p p p p pLearning pTable 3.1: Summary chart comparing system capabilities. p indicates that the system has demonstrated this feature.



CHAPTER 4THE WORLD MODELThis chapter describes in detail the world model that CIRCA uses to build reactiveTAP plans. The model allows the system to represent and reason about both the dynamicenvironment and the system's own actions. We begin by describing the model informally,and then provide a more formal notation to add precision to our discussion. Using thisformalism, we describe the conditions under which portions of the world model can beconsidered \safe." Planning safety-preserving reactions thus becomes a matter of �ndingactions that can be proven to keep the system in such regions of the model space. Afterdetailing the proofs involved in showing that a particular plan can keep a system safe, weshow how CIRCA can safely string together sequences of these control-level plans to achievelonger-term task-level goals.We then discuss several unusual aspects of CIRCA's world model which result fromthe simpli�cations made to accommodate real-time considerations. This chapter concludeswith a brief evaluation of the model's representational power and a �nal summary of theinformation that must be captured in the world model to make real-time guarantees possible.The planning mechanisms that use the world model are described in Chapter 5.4.1 The Informal ViewAn e�cient world model should represent precisely the information necessary to deriveplans, and no more. Since our goal is to derive control plans that are guaranteed to meetdomain deadlines, these plans must be able to succeed even through the environment'sworst-case behavior. Thus the world model we have developed to derive TAP plans is notintended to be a complete, perfect representation of the world's actual behavior; instead,the model represents the world's worst-case behavior, and it is used to build plans thatcan cope with the worst-case. This distinction is extremely important, because it simpli�essome aspects of world modeling and motivates the model form we have chosen.Informally, the world model represents the behavior of the world (including the con-trolled agent) as movement between states via transitions. States contain descriptions ofthe features of the world at some instant, and transitions describe how those features canchange. Ongoing processes in the world are represented by \state-encoding"{ that is, thestatus of a process is considered a feature of the world (a \
uent" [48]), and is explicitlyencoded into the representation of a state. Important changes in process status thus cor-39



40respond to transitions between states. Any passage of time that does not lead to signi�cantchanges in process status is not represented explicitly: essentially, when no transition occursthe world remains in the same state, where that state may indicate that some process is cur-rently occurring. For example, as the robot arm moves towards the box, the status of thisprocess is encoded into the features (robot-status moving-over-box) (robot-positionchanging). Just continuing to move does not lead to a state change, and thus there is noassociated transition. However, when the robot arrives at its destination, the process �n-ishes, the status will change, and the world model will represent this change by a transitionto a new state with the features (robot-status free) (robot-position over-box).4.2 The Formal ViewWe now describe a more formal representation of the world model which will be usefulfor showing precisely how control plans can be proven to guarantee the system's safety. Theformal world model has �ve elements (S; F; TE; TA; TT):1. A �nite set of \states" S = fS1; S2; :::; Smg, where each state Si represents a descrip-tion of relevant features of the world.2. A distinguished failure state F , which subsumes all states that violate domain con-straints or control-level goals (e.g., system survival). The system strives to avoid thefailure state.3. A �nite set of \event transitions" TE = fTE1; TE2; :::; TEng, that represent world oc-currences as instantaneous state changes.4. A �nite set of \action transitions" TA = fTA1; TA2; :::; TApg, that represent actionsperformed by the RTS.5. A �nite set of \temporal transitions" TT = fTT1; TT2; :::; TTqg, that represent theprogression of time. We represent only the signi�cant temporal transitions which leadto state changes.Each transition Ti 2 T = TE [ TA [ TT is a mapping between states; Ti : S ! S. Thefunctions D : T ! S and R : T ! S determine the domain and range of a transition;Ti : D(Ti)! R(Ti).Figure 4.1 shows an abstracted representation of a small portion of the graph model forthe Puma domain. Solid single arrows represent event transitions TEi, dashed single arrowsrepresent action transitions TAi, and double arrows represent temporal transitions TTi. Toobtain a reasonably compact example, many states and transitions have been omitted fromthis diagram, and even the state descriptions include only 7 of the 11 features used inthe actual domain model. State A in the �gure represents the world state in which therobot is idle, no parts have yet appeared, and there is no emergency alert. The solid singlearrow from state A to state B represents the event transition indicating that a new parthas arrived on the conveyor. The dashed arrow from state B to state C represents the startof a planned sequence of action transitions that have been planned to pick up the part andplace it in the box. Within that sequence, state E represents the world state in which the



41robot has picked up the part from the conveyor and is moving to place it into the box. Thedouble arrow to state G represents the continuation of that process until the robot reachesits destination. When the robot arrives over the box, the control system senses that stateand halts the motion process, as represented by the dashed arrow to state H.The solid single arrow from state E to state J represents the possibility that the emer-gency light may go on while the robot is in motion1. From state J , the double arrow tostate F (failure) represents the deadline for reacting to the emergency and pushing thebutton. The dashed arrows to states K, L, and M represent the planned actions to avoidthat failure, quickly halting, placing the part on the table, and moving to push the button.Note that we have modeled these three actions (stop-moving, place-part-on-table, andpush-emergency-button) as atomic| no event can intervene. Before we can explain whythis is necessary, we must �rst clarify the semantics of state transitions.4.3 State TransitionsAt any particular time, the world is considered to occupy a single state in the model,conceptually marked by a unique token w. The token moves instantly along a transitionfrom its domain state to its range state when the transition \�res." A transition may �reany time the token is in its domain state and the transition is \enabled." When the tokenenters a new state, the transitions out of that state are enabled for some interval of timefollowing the transition into that state, as indicated by the function enabled : T�< ! f0; 1g.The functions min� : T ! < and max� : T ! < represent the endpoints of the enabledinterval as the minimum and maximum delays after the state is entered. So if t0 is the timeat which w enters state Si, and Ti is a transition leading out of Si (i.e., D(Ti) = Si), thenenabled(Ti; t) = 1 for all times t such that t0 +min�(Ti) � t � t0 +max�(Ti).The di�erent types of transitions have di�erent general forms for their enabled intervals,as shown in Table 4.1. Since event transitions represent asynchronous and instantaneousexternal events, which may occur any time the world is in their domain state, their min� iszero and theirmax� is in�nity. Both event transitions and temporal transitions are modeledas uncertain; i.e., they may never �re. This feature prevents the system from buildingplans that depend on external events or unguaranteed processes for the accomplishmentof control-level goals; such dependencies would prohibit any performance guarantees. Thisis the reason the push-emergency-button action (among others) must be an atomictransition, rather than a state-encoded process; we must guarantee to push the button toavoid a control-level failure, so the action must itself be guaranteed.Temporal transitions, by de�nition, represent the passage of time, and the signi�cantstate changes that can occur as processes continue. Temporal transitions have a min�determined by the rate at which the corresponding process is running. In the example ofFigure 4.1, the min� for the temporal transition from state E to state G depends on howfast the robot is moving, as well as how far it has to move. In this case, the transition'smin� represents the earliest possible time the robot could ever arrive over the box (and1We have omitted other instances of the same event that may occur, for example, from state B andstate C.
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Figure 4.1: An abstracted portion of the world model for the Puma domain. For clarity, many states, state features, and transitionshave been omitted.



43Transition Type min� max�Event 0 1Temporal > 0 1Action bcet(�) P (�) + wcet(�)Table 4.1: Enabled interval de�nitions.
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(TAP period)Figure 4.2: Deriving the min� and max� for an action transition implemented bya periodic TAP.thus enter state G).Action transitions represent the intentional activity of the RTS, and thus can have morerigorously de�ned temporal behavior. In particular, since an action is implemented by aTAP running with a �xed period, we can compute values for the minimum and maximumdelay between the time the world enters a state and the time the TAP �res, sensing that stateand executing the action. We assume, as a worst case, that a TAP's tests take a \snapshot"of the world when they are �rst run and spend the rest of et(tests(�)) processing thatcaptured data. We also assume that the TAP's actions do not actually a�ect the worlduntil the very end of et(actions(�)). Thus the minimum delay between entering a state andcompleting a relevant TAP's actions is bcet(�), as illustrated in Figure 4.2. In the �gure,the upper time-line shows the occurrence of an event that moves the world from state Xto state Y. Below that, the min� case is illustrated by a TAP whose tests begin just asthe new state is entered. Below that example, another periodic TAP is shown just missingthe state transition (its tests started just before the event). In that case, the TAP will notcorrectly sense the new world state until its next invocation, and thus the action transitionimplemented by that TAP has a max� = P (�) + wcet(�), where P (�) is the period of theTAP.



444.4 Proving SafetyGiven this understanding of the dynamics of the world model, we are now in a positionto lend rigor to the notion that some control plans can \cope" with the world. First wewill de�ne the goal of a control plan as keeping the world restricted to a particular subsetof states, and then we will show how that goal can be provably achieved.We de�ne an \event-closed" set of states SEC � S as a set of states for which everyevent transition from every state in the set leads to a state that is also in the set. That is,8TEi 2 TE j D(TEi) =2 SEC _ R(TEi) 2 SEC. In other words, instantaneous events cannotmove the system out of the event-closed set of states; only actions and temporal transitionscan leave the event-closed set. In the example of Figure 4.1, the entire graphed set of statesfA � �Mg is event-closed. Note that, in the complete Puma world model, this set is notevent-closed because the emergency-alert event transition might lead out from some ofthe states where it is not shown here. For the purposes of this discussion, we will consideronly the states and transitions shown in the �gure.An event-closed set of states with no events leading to the failure state is called a \safe"set of states (8TEi 2 TE j D(TEi) =2 Ssafe _ (R(TEi) 2 Ssafe ^ R(TEi) 6= F )). Note that asafe set of states can still lead to the failure state through temporal transitions (i.e., it ispossible that 9TTi 2 TT j D(TTi) 2 Ssafe ^ R(TTi) = F ). These temporal transitions tofailure correspond exactly to violating the hard real-time domain constraints: if the systemfails to react to a state before a hard deadline, then in the worst case it will enter thefailure state via a temporal transition. By \waiting too long" to react, the system fails.In the context of real-time computing, this is known as a timing failure. Looking again atthe example in Figure 4.1, the entire graphed set of states is also safe, because the onlytransitions to the failure state F are temporal transitions.The de�nition of a safe set of states is not particularly restrictive, since it only prohibitsevent transitions to failure and event transitions that lead out of the set. The formerrequirement is necessary because no system can guarantee to avoid failure if it has no timeto react to an event before failure occurs. The latter requirement is intended to allow thesystem to use action transitions to keep the world within the safe set, never moving to astate from which failure is possible via an event transition. In essence, the existence of asafe set of states only constrains the environment such that an agent must always have someminimum time to react before a failure occurs.Finally, we can de�ne a \safely-controlled" set of states SSC as a safe set which also hasno temporal transitions to failure or out of the set (i.e., 8TTi 2 TT j D(TTi) =2 SSC_(R(TTi) 2SSC ^ R(TTi) 6= F ) ). The goal of a control plan is to ensure that the world remains in asafely-controlled set of states, so that failure can never occur. This is analogous to a stableclosed-loop control policy [69] which is known to restrict the operation of a controlledsystem to a desirable range of states. In our running example, if we could show that theactions stop-moving, place-part-on-table, and push-emergency-button all are knownto occur before the respective temporal transitions to failure, then the failure states couldbe removed from Figure 4.1, and that set of world model states would be safely-controlled.To show formally how a control plan can make a safe set of states a safely-controlledset, we now introduce a simple set of correctness-preserving model transformations. These



45transformations prune out unreachable states [18], and thus allow us to prove safety prop-erties by showing that certain control plans can restrict the world so that no failure statesare reachable.4.5 Model TransformationsWe must �rst de�ne the concept of reachability in our world model. We representreachability, or the possibility of the world entering a given state, as a predicate reachable :S ! f0; 1g, where reachable(Si) = 1 if 9Ti 2 T; 9Sj 2 S j reachable(Sj) ^ D(Ti) =Sj ^R(Ti) = Si. This recursive de�nition merely says that a state is reachable if there is atransition to that state from another reachable state. We ground the recursion by de�ninga set of initial world states I � S such that 8Ii 2 I j reachable(Ii) = 1. For any initialstate Ii, the transitive closure of reachability from that state yields RIi, the set of all statesreachable from that initial state. In general we do not distinguish among possible initialstates, and thus when we speak of the set of reachable world states we mean the union ofthe reachable sets from each initial state: RI = [Ii2IRIi.The \correctness" of a world model is determined by how accurately it represents thebehavior of the world. In our case, the model is intended to represent all of the worst-case possible behaviors, so the set of all reachable world states RI is the crucial factor indetermining the correctness of our model. If the world model predicts exactly the samestates that are possible in the real world, it is most correct. If the model predicts thosecorrect states plus some additional states, the only problem is ine�ciency because thesystem may plan actions to account for states that can actually never occur. However, ifthe model fails to predict some possible world state, the system may not plan a necessarycontrol action, leading to failure during plan execution. Thus the model transformationswe use preserve the model's correctness by never removing model states unless those statescan never be reached.The �rst, most powerful transformation simply involves removing transitions that arepreempted; that is, transitions which can never �re because some other transition will always�re �rst. In terms of our representation, a transition Ti preempts another transition Tjif max�(Ti) < min�(Tj). Since events have min� = 0, nothing can preempt an event.Temporal transitions have non-zeromin�, and thus we can design action transitions (whosemax� depends on the frequency we choose for the corresponding TAPs) that will meet thepreemption criterion. A preempted transition never becomes enabled and thus can never�re, so it can be removed from the graph model without a�ecting the correctness of themodel.Two other simple transformations complete the required set. First, it is obvious thatany non-initial state that has no transitions leading into it is unreachable, and thus can beremoved from the model without a�ecting correctness. Finally, all transitions leading out ofstates that are unreachable can also be removed, since they will never �re either. Table 4.2summarizes the conditions for these model transformations.By propagating the preemptive e�ects of planned control actions into the removal ofstates from the world model, these transformations show how control plans can force the



468Si 2 S � I; 8Ti 2 Tpreempted(Ti) � 9Tj 2 T jmax�(Tj) < min�(Ti)unreachable(Si) � R(Ti) 6= Siunfireable(Ti) � unreachable(D(Ti))Table 4.2: Conditions for removing world model states and transitions.world to remain within a safely-controlled set of states. Control plans that meet thiscriterion are called \complete" control plans, and they guarantee that the system will avoidfailure.Beyond this, however, complete control plans also provide one other feature critical toCIRCA's operation. We have previously noted that resource restrictions generally makeit impossible to produce a single control plan that will guarantee safety and achieve alltask-level goals. Thus CIRCA breaks task-level goals into steps and tries to build completecontrol plans for each step. It is essential that these control plans guarantee to avoid failureand also guarantee to avoid moving out of the safely-controlled set of states for which theywere planned, so that the system can continue running a complete control plan for anindeterminate amount of time without risk of violating its control-level goals. Thus theAIS can utilize unpredictable or high-variance AI techniques to build control plans, becausewhile it is building one, the previous control plan is running on the RTS and keeping thesystem safe.It should be noted that the model transformation method described above is not a verypractical method of automatically deriving complete control plans, because it involves enu-merating the entire state space of the world model, and then progressively pruning outundesirable regions of that state space with planned actions. The enumeration requiredat the start of this process is impractical in any reasonably complex domain, because ofthe combinatoric explosion that results from trying to describe the entire world in eachworld model state. For example, the eleven-feature description we typically use for thePuma domain has 5120 possible combinations of feature values. Instead of building a rep-resentation for each of these combinations and then pruning many out, we instead use aforward-chaining method to simultaneously derive control plans and build up the repres-entations of the reachable world states. The implementation details of this process aredescribed in Chapter 5.4.6 Transitions between Safely-Controlled SetsThe conceptual goal in restricting the world to a safely-controlled set of states is that,while the RTS executes the reactive TAPs that keep the world in that set of states, theAIS will work on building a TAP plan for the next useful set of model states. When thenew plan is prepared, it is downloaded to the RTS and the world can progress into the newsafely-controlled set of states.To ensure the safety of the system even during this transfer between safely-controlled
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Safely-controlled set X

B Action A

Safely-controlled set Y
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Figure 4.3: The state overlap required for a transfer between safely-controlled sets ofstates.sets of states, the sets must satisfy a simple criterion: they must overlap, as illustrated inFigure 4.3. In this case, the two sets X and Y share the state S. The RTS is initially givena TAP plan that keeps the world restricted to the X set of states, on the left. When anew plan is available for the Y set of states, and the world is in state S, then the RTS cantransfer control to the new TAP plan, which will execute the action A to progress into thenew set of states.Chapter 6 includes additional details on exactly how this transfer of control is accom-plished in our prototype implementation. From the modeling perspective, however, animportant point to note is that, because the transfer state2 is shared by the two sets, bothof the corresponding TAP plans are capable of handling the world and avoiding failure fromthat state. Thus when the TAP plan for set Y is �rst executed on the RTS, it is has beenplanned to cope with the current state S.There cannot be any event transitions from the shared state to a non-shared state,because that would prevent the system from being sure that the transfer of control to thenew TAP plan is accomplished in a state for which the new TAP plan is prepared. Temporaltransitions from the shared state to a non-shared state are acceptable if they return to the�rst set of states (as illustrated by the transitionB in Figure 4.3). However, if such temporaltransitions exist, CIRCA must ensure that they are preempted by an action transition inthe new TAP plan. That is, the action A must preempt the temporal transition B toensure that, once control is transferred to the new plan, the world does not slip back intothe previous set of states.2The overlap and transfer may occur in multiple world states; for simplicity, we have illustrated only asingle overlap state.



484.7 Choosing Safely-Controlled SetsResource limitations are the primary motivation for dividing a long-term goal into aseries of shorter-term plan steps: if a system has su�cient resources to continually ob-serve, reason about, and react to all of the possible world situations it will ever encounterwithout missing any deadlines, then focused attention is not necessary. However, most real-istic domains do not provide su�ciently vast resources, particularly if the domain requireshigh-variance AI methods. CIRCA is designed to deal with resource-limited domains byrestricting its reactive attention to the states reachable within a safely-controlled subset.Therefore, the choice of exactly how the overall world state space is divided into safely-controlled sets is very important.One simple approach to the problem of partitioning the overall state space into usefulsafely-controlled subsets is to incrementally decrease the size of the subsets, as necessary.The system could begin by trying to guarantee the entire set of goals over the entire statespace. If such a plan is possible, resources are not a problem. More likely, the \universal"plan [66] will not be feasible, and the system will have to decide how to decompose theoverall space, de�ning a useful set of intermediate goals that a TAP plan can achieve,and then pass control on to the next TAP plan. This iterative decomposition can continue,trying to build TAP plans for smaller and smaller sets of subgoals, until �nally an acceptabledecomposition is found.The choice of exactly where in the state space to make the transfers between TAP plansis partially constrained by the conditions described above in Section 4.6. We have not yetdeveloped stronger guidelines for this choice. It seems clear, however, that the partitioningof the state space into safely-controlled sets must be guided by heuristics. One promisingidea is to de�ne partitions between safely-controlled sets by �nding planned actions thatlead into time-constrained situations.For example, consider a simple domain in which a mobile robot, equipped with an arm,is moving through an o�ce to pick up an object from a table. The robot must avoidcollisions with the walls and other obstacles. At a very coarse level of abstraction, thedomain might be represented by the world model sketched in Figure 4.4. An initial planmight have the robot move towards its destination and, at the same time, move its arm intoposition to grasp the desired object. However, when the arm is extended to grasp the object,the e�ective radius of the robot is increased, so that it may collide with obstacles that arefarther away from the robot body and sensors. If we consider that the obstacle detectionroutines have some limited range at which they detect looming obstacles, it is clear thatthe robot will have less time to react to avoid collisions when its arm is extended. Thus,the temporal transition to failure from state E has a shorter min� than the transition fromstate D, where the arm is retracted. If we suppose that the system does not have su�cientresources to guarantee the higher reaction rate to avoid collisions from state E , then thisparticular plan (and division of the space into subsets of states) is not feasible.However, the planning system may recognize this problem, seeing that the action ofextending the arm leads to the excessively time-constrained state E . A simple solution isto postpone the action of extending the arm until after the robot reaches its destination, sothat the robot's e�ective radius remains as small as possible while it is moving. The state
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Figure 4.4: A simple mobile robot domain world model.



50space will be transformed to separate the resource demands associated with moving therobot from the resources needed when the arm is extended. Then, if necessary, these twoparts of the action plan (moving and reaching) can be separated into di�erent TAP plans,with the transition between them occurring after the robot has moved to its destination.This approach to transforming the state space into safely-controlled subsets joined by anaction corresponds to the intuitive notion of sequencing behaviors that cannot be safelyperformed at the same time. The key to this transformation is using the world model torecognize that the extend-arm action leads to states that cannot be handled, and thusthat changes to that portion of the plan will be useful.4.8 Relationship to Petri-Net ModelsIt is useful to compare this type of state-based model with models based on Petri Netsand their variations [61]. In Petri Net models, \places" represent the status of world features,and transitions connect places, representing the way features can change. Multiple tokenscan be spread among the places, and the complete state of the modeled world at any instantis de�ned by the distribution of those tokens, known as the \marking" of the net. Thus,in Petri Nets, the set of world states that can be reached from any initial world state isrepresented by the set of net markings that can be reached from an initial marking. Incontrast, each state of our world model is a complete description of the world, and the setof world states that can be reached from an initial state is represented by the set of modelstates reachable from that initial state. In other words, the explicit state enumeration ofour world model makes the set of reachable world states extremely easy to recognize.This feature is desirable because, as we have just shown, reachability is the key toproving safety. In the process of building the world model, it is trivial for the AIS torecognize when a failure state is reachable, because it will actually create a state with the(failure T) feature. Thus, while building the world model, the AIS can immediately planactions to avoid failures. Planning for a world model represented as a Petri Net would beconsiderably more di�cult, because the e�ects of actions on the reachability of particularworld states are much harder to determine. In e�ect, our state-based world model tradesthe storage space cost of enumerating world states against the computation time cost ofdetermining reachability in a more compact Petri Net model.4.9 Worst-Case Simpli�cations: Uncertainty, Determinism,and TimeBecause our world model need only represent the worst-case behavior of the environ-ment, several potentially complex representation issues are simpli�ed. For example, a greatdeal of research has been focused on methods for explicitly representing and propagatinguncertainty about the likelihood of various events. Our world model has no need of thatinformation: any possible transitions between world states must be included in the worldmodel, no matter how improbable they are, because in the worst case they just might occur.However, if the system eventually does need to make compromises because it cannot guar-



51antee all of its control-level goals, then having information on the likelihood of various statesleading to failure might help the system make intelligent choices about which control-levelgoals can best be left unguaranteed.Similarly, uncertainty about the world's initial state is not explicitly represented. In-stead, the initial world features speci�ed by the AIS are assumed to match a set of initialmodel states I , and control plans must be built to deal with all of the states reachable fromeach of those potential initial states.As for uncertainty about information from sensors during runtime, the system is re-quired to be able to su�ciently distinguish the current world state whenever an action hasbeen planned. This minimal capability is required by any system claiming guaranteed per-formance. Note that this does not mean that the precise, complete world state must bedetermined for action (because some subset of world features may be su�cient to determinethe appropriate action| see Section 5.3.2), nor does it mean that the control system mustbe able to perfectly track the progression of states in the environment [63]. In fact the sys-tem never needs to know the world's state if it does not need to take any action; thus, theworld can traverse many transitions but cause no change in the control system. The RTS'internal representation of the world can become quite outdated, but only in non-criticalways.For example, while the robot arm is responding to an emergency alert, the next part mayarrive on the conveyor belt. However, the system may not immediately recognize this event,because it is in the middle of the actions responding to the emergency. These emergencyresponse actions are scheduled at a higher frequency than the actions that deal with arrivingparts. The response latency and the resulting temporarily \out-of-date" internal state ofthe RTS are non-critical because, even if the system had seen the new part immediately,it would have had to continue the ongoing reactions to avoid a timing failure from theemergency. In the process of building the control plan, the AIS has already examined thissequence of events and has guaranteed that the control plan functions correctly.We have described the world model transitions with unique range states, but this doesnot mean that the world or the model must be deterministic. Transitions can easily specifymultiple range states, as shown in the example pickup-part-from-table transition inFigure 4.5. Here, the results of picking up a part o� the table have been abstracted to showthat, after the action, the table may still have a (di�erent) part on it, or it may have nomore parts on it. This nondeterminism helps the system avoid the state enumeration thatwould be associated with counting the actual number of parts that might have been queuedon the table. This type of abstraction will be discussed in more detail in Section 5.4.5.The important point to note here is that the nondeterminism does not add any new sortof complexity to the world model; because all possible states must be handled, it matterslittle how those possible states are reached.As we have seen, the worst-case criterion also removes the need for any detailed rep-resentation of time. Complex temporal logics have been developed for reasoning about therelationships between asynchronous external events, simultaneous actions, and the regularpassage of \wall clock" time [3, 10, 27, 48, 77]. So far the only timing information we haveshown for our world model is the simple worst-case values needed to recognize preempted
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E1Figure 4.6: A world model subset showing the representation of potentially simultan-eous events.transitions. There is no need to explicitly represent or reason about the di�erent possibleorders of events or actions, because all of those orders are considered equally likely (in theworst case).Instantaneous events allow our model to represent simultaneity, but they do so by enu-merating sequences of states that can occur without the passage of time. For example,in Figure 4.6 we see that event transitions E1 and E2 are both applicable to state A. Acomplex temporal world model might include constraints on the ordering of those events,but that information is of no use to us because the worst case may include any order ofoccurrence, even simultaneity. Note that the possibility of E1 and E2 occurring simultan-eously is explicitly represented by state C: since the events have min� = 0, state C can beentered at the same instant state A is entered.4.10 Dependent Temporal TransitionsThe world model has one di�culty with its minimalist representation of time: depend-encies between temporal transitions. To illustrate the problem, Figure 4.7 repeats a portionof the Puma domain shown earlier. Beginning with the event emergency-alert enteringstate J , the robot has ten seconds to push the emergency button before failure occurs,as represented by the temporal transition to failure. We can see that taking the neces-sary actions stop-moving and place-part-on-table does not remove the threat of failurefrom the emergency condition. Thus state K and state L still have temporal transitionsto failure. The di�culty is that the minimum time until failure along these transitions is



53no longer ten seconds, because the emergency began in state J , and some amount of timepassed before we halted and moved to state K. Thus the real minimum time to failure fromstate K depends on the sojourn time in state J . We call this situation a dependent tem-poral transition, and it complicates the process of reasoning about the world model, as weshall see. However, dependent temporal transitions are still manageable because the worst-case min� for a dependent temporal transition is easy to determine: if TTj is dependent onTTi leading out of state Si, then min�(TTj) = min�(TTi)�max�(TAij), where TAij is theaction taken to move between states Si and Sj . In the �gure, the temporal transition fromstate K has min� = 10 minus the worst-case execution time of the TAP implementing theaction from state J to state K.4.11 Action LoopsMixing action transitions and temporal transitions can lead to one type of pathologicalsubgraph called an action loop. In an action loop, actions join a cycle of states without anyintervening events or temporal transitions. For example, Figure 4.8 shows an action loopthat the system might propose while building a plan for the Puma problem. In the �gure,the system has planned to halt in state D, transitioning to state E . But it has also plannedthat, once in state E , it will immediately resume motion. There are two problems withthis action loop. First, the loop can lead to a timing failure because each time the worldloops back into state D, the time remaining until failure is not the original ten seconds, butdepends on how long it has been since the emergency alert �rst occurred. CIRCA has noway to recognize when the loop has been executed many times and failure is imminent.The second problem with action loops is that they accomplish nothing. In many classicalplanning systems, an action loop might have a valid purpose because the representation ofstates is incomplete, and thus side-e�ects are possible. In our complete state representation,side-e�ects do not exist, so looping back into a previous state means that the world is exactlythe way it was (except for the wall-clock time). Thus a sequence of actions leading out of astate and then back into that same state will not accomplish any goal. Note that a loop ofstates including event or temporal transitions is quite reasonable, because these transitionsrepresent environmental behaviors that may move the world away from desired states, andthe system should plan actions to restore those goals.4.12 Predictive Su�ciencyFigure 4.9 shows how \inappropriate" TAP actions may be executed if an event occursbetween the time a TAP senses the world state and performs its actions. In some casesinappropriate actions do not matter, and in some cases they can lead to catastrophic failure.Consider an example in which a TAP is used to detonate explosive charges that will demolisha building. Sensors have been installed on the building's doors to make sure that nobodyis in the building when it is destroyed. But, as in Figure 4.9, someone might enter thebuilding just after the sensors are checked, and before the explosives detonate. Since eventsare instantaneous and asynchronous, the system itself cannot prevent this type of failure.
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TAP Figure 4.9: An inappropriate action.If failure may result from an inappropriate action, we must ensure that the sensors have\predictive su�ciency." That is, a sensor reading must indicate both that a particularcondition exists, and that it will continue to exist long enough for the response action tooccur (wcet(�) in the worst case).In the demolition example, one solution is to place a ring of sensors several metersfrom the building, so that people entering the building will �rst pass through the perimetersensors. We can then interpret the actual information returned by the sensors (\nobodyhas crossed the perimeter") to mean that \nobody could enter the building in the nextK seconds." The semantics of the sensor data are altered by adding domain knowledge(the perimeter distance and maximum human speed) to yield predictive information, orknowledge about possible future states.Formalizing and implementing techniques by which CIRCA can reason explicitly aboutthe need for predictive su�ciency is one area of ongoing research; Appendix D presents moredetails on this topic. Currently, CIRCA does not explicitly reason about predictive su�-ciency, and thus it cannot detect or plan to prevent potentially inappropriate actions. Thesystem designer is responsible for ensuring that predictive su�ciency holds when necessaryto avoid such problems.4.13 Representational PowerAlthough many aspects of CIRCA's world model representation are fairly common,these aspects have been carefully combined to include precisely the information requiredfor building real-time control plans. The representation of world states by simple lists of



56feature/value pairs is a powerful method essentially equivalent to �rst-order predicate logic,with the accompanying restrictions. For example, meta-level knowledge (i.e., knowledgeabout knowledge) is not rigorously supported by this representation. It is possible to de�nea state feature that indicates that some other state feature's value is known (e.g., thefeature/value pair (know-F T) could mean we have a valid value for the feature F), butthe meta-level linkage between the two is not supported directly by the representationor inferencing mechanisms; instead, the system designer is responsible for building RTSprimitives that would maintain the appropriate relationship between (know-F) and F.CIRCA does not yet implement a general meta-level operator which would take a �rst-order predicate (feature) as an argument, and return the status of the system's knowledgeof that feature.Pure logic also lacks the ability to represent metric values and time. The AIS worldmodel has addressed time representation in an unusual fashion, using only worst-case timingvalues for the duration of temporal transitions and for transition min� values. This rudi-mentary representation of time supports only one temporal relation between transitions:preemption. However, as only worst-case behaviors are of interest in building a real-timeplan that is guaranteed to achieve its goals, preemption (and thus the ability to avoid failure)is the only crucial aspect of time that must be modeled. More complex relations, such as theoverlapping-interval relations de�ned by Allen [3], are not available to the control-planningworld model3.Because the AIS must enumerate all possible world states, continuous-valued variablesare a problem: if all their values are possible, the state space is in�nite. In general,however, this limitation has proven quite reasonable, because the TAPs that are beingplanned provide only a very discrete-valued type of service: either a TAP is �red, or itis not. Making this decision does not require the full power of continuous variables. Es-sentially, making this boolean decision is simply a matter of applying a threshold to acontinuous value. That numeric operation can be abstracted by the system designer (whois encoding the world model) to yield a discrete variable (state feature) suited for use in theworld model, even if the actual implementation of the TAP primitive on the RTS will usecontinuous variable computations to derive the value of the discrete feature.For example, in the Puma domain, there is no need to include in the world model astate feature representing the distance to a part arriving on the conveyor belt, and then usethat continuous-valued feature to decide whether the robot can grasp the part. Instead, theabove thresholding technique can be applied to derive a related, boolean variable indicatingwhether the part is in range. The abstraction away from the continuous-valued, physicalmodel makes the state space feasible.This type of abstraction has a parallel e�ect on the representation of the world modeltransitions. Rather than including a transition that speci�es the mathematical changes tocontinuous-valued state features, transitions can simply specify what possible changes to thediscrete-valued abstract features are possible. For example, again in the Puma domain, thetransition that indicates that a new part may arrive is not represented as a mathematical3Although it should be noted that such powerful techniques have been used by the AIS in the higher-levelplanning mechanism, when non-worst-case timing considerations may be of interest.



57function of conveyor speed and part separation. Instead, a simple temporal transition isused to show that, after the last part arrives, the next part may arrive after some minimumdelay. That delay may be automatically computed by the higher-level AIS mechanisms, orit may be �xed by the system designer.The AIS world model implements a very simple form of uncertainty representation vianondeterministic transitions: there is no explicit knowledge of probabilities or other biasin uncertainty. The motivation for this simplicity is, again, the need for guaranteed real-time control plans. To make true guarantees, the system must consider all possible worldbehaviors, no matter how unlikely. Therefore, measures of uncertainty have no use, atthat simple level. However, as we move beyond the simplest model of CIRCA's operation,and investigate its ability to make performance tradeo�s, it is clear that a more explicitunderstanding of the relative likelihood of di�erent events would be useful in deciding whattypes of tradeo�s should be made. In Chapter 7 we will discuss the performance tradeo�sthe AIS can make, and postulate some motivations for these tradeo�s, based on uncertaintyinformation that the world model currently does not include.The AIS makes an additional assumption that the world model descriptions are com-plete: all features of the world must be represented explicitly, and likewise all possiblechanges to state features must be represented as transitions. These completeness require-ments are needed to ensure that the AIS is able to reason about all possible sequences ofevents in the environment, so that all worst-case behaviors can be predicted and plannedfor. If completeness is not possible, the system can still build plans, but they will onlybe guaranteed to deal with the modeled portions of the environment's true state space.See Section 3.4 for more discussion of the meaning of guarantees based on partial models.Section 7.2 illustrates some of the results of operating with an incomplete world model.4.14 Summary of Agent/Environment Characterization forGuaranteesIn this chapter we have described CIRCA's world model; in the process, we have identi-�ed critical pieces of information that an agent needs to model in order to make guaranteesabout its performance in its environment. These characteristics of agent/environment in-teraction that an intelligent, 
exible agent must be able to model include:� Features of the world relevant to the agent, including failure conditions.� Possible external events, and how they move the world to new states.� Transitions that are caused by the passage of time, including the minimum time untilthe transition can occur in the worst case (min�).� All sensing primitives, including their worst-case execution times; sensors must havepredictive su�ciency (as discussed in Section 4.12).� All action transitions, including their worst-case execution times; actions and sensingprimitives must be guaranteed to succeed.



58� The set of possible initial states, which must all be safe (or else the agent could failbefore it ever begins).� The actions that preempt temporal transitions, to keep the system in a safely-controlledset of states.These requirements are not speci�c to CIRCA's approach to real-time AI; any systemseeking to make similar real-time response guarantees must have this information. Forexample, any system that is attempting to guarantee the timeliness of its behaviors mustalready have some guarantee that its primitive actions (or some combination of them) willsucceed. If primitives are not guaranteed, then it does not matter whether the systemdecides to act in time, because the action it takes might not a�ect the environment in thedesired way. Similarly, if an agent hopes to avoid failing due to delays, it must be assuredthat it can take an action between an event and a temporal transition to failure; no systemcan make safety guarantees in a world with instantaneous transitions to failure.In the context of CIRCA's approach to making guarantees with limited resources, we canalso add one more requirement on the agent/environment interactions: it must be possibleto partition the state space into safely-controlled sets of states for which the system hassu�cient resources. In other words, the RTS is given a control plan that uses limitedresources to deal with the contingencies that may arise in a limited set of situations, andwe must therefore ensure that the world can be restricted to those handled situations.Intuitively, this means that the domain must a�ord the opportunity for \stalling" or cyclingbehavior, where the agent can remain safe by continuing to execute a �xed, limited set ofreactions while the AIS is generating the next control plan. For example, a mobile robotcan halt and wait for instructions, and remain safe from obstacle collisions with a relativelysimple set of reactions. Likewise, in the Puma example, the robot can stack unknown partson the table, still avoiding failure while it waits for details on how to pack those parts.If this type of task decomposition is not possible, and remaining safe in the environmentrequires an agent to be continually monitoring for all possible situations, then there is noneed for CIRCA's intelligent resource allocation mechanisms.



CHAPTER 5THE AI SUBSYSTEM IMPLEMENTATIONIn developing a prototype implementation of the CIRCA architecture, we have focusedon three main contributions of the design. First, the prototype system includes a carefullycrafted subsystem interface designed to bridge the gap between the uncertain performance ofthe AIS and the rigid constraints of the RTS. Second, the prototype AIS includes a planningsystem which develops TAP plans to provide control-level guarantees based on the graphmodel described in Chapter 4. Third, when resource restrictions make ideal performanceimpossible, the prototype AIS has several strategies for reducing resource requirements,trading o� the various dimensions of performance against each other.In this chapter we examine the implementation details of the prototype AI subsystem,paying particular attention to the control-level TAP planner, which constitutes the mainbody of the CIRCA code development. The performance tradeo� methods used by the AISare described in Chapter 7, in the context of evaluating the prototype system's capabilities.5.1 Overview of the AISThe design of the prototype AIS is motivated by several operational requirements:� Representation: The AIS must be able to represent and reason about descriptions ofthe system's environment, descriptions of its primitive capabilities, multiple task-leveland control-level goals, long-term plans, and TAP plans.� Reasoning: As described in Chapter 3, the AIS is responsible for reasoning aboutthe overall CIRCA system's operations, so it must consider both its own activities andthe behavior of the RTS and Scheduler. Thus the AIS must have meta-level reasoningcapabilities allowing it to perform deliberation and planning at levels above the basedomain level.� Communication: To send TAP schedules to the RTS and receive feedback inform-ation, the AIS must have mechanisms for I/O. CIRCA is intended to operate in dy-namic environments where goals may change and feedback information may requireTAP plan modi�cations, so the AIS should be able to respond to feedback informationby modifying its problem-solving behavior.59
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Figure 5.1: Conceptual schematic of the prototype AIS.In the prototype implementation, illustrated in Figure 5.1, the deliberative processingused to build TAP plans is implemented separately from the more general, higher-leveldeliberative mechanisms used to build long-term plans, make performance tradeo�s, andcontrol the communication processing of the AIS. The TAP planner is a code module thatis simply invoked by the higher-level processing mechanism, which is cast as an interpreter.After describing the interpreter in the next section, we describe the TAP planner and itsrepresentations in Section 5.3.5.2 The AIS InterpreterThe main purpose of the AIS interpreter is to build long-term plans to achieve the sys-tem's goals, and then break those plans into sequences of subtasks that can be implementedby TAP plans. The interpreter then invokes the TAP planner module with the appropriategoals and domain description, so that it generates a TAP plan that will achieve the goalsof each subtask.The problem-solving state of the AIS interpreter is stored in a dynamic set of datastructures called tasks, where each task structure includes information describing a problemto be addressed. For example, when a feedback message from the RTS is waiting on theAIS' socket queue, the AIS represents the required task of reading in that message by anRTS-msg-task structure whose status slot is set to 'waiting.The AIS interpreter processes these tasks by running Lisp code structured into Know-ledge Sources (KSs) that are similar in form to those of a blackboard system [58]. EachKS has a set of class-constrained variables, a parameterized precondition expression, andan action expression that is executed if the KS is actually \�red." For example, the simple



61KS read-in-RTS-msg:VARIABLES ((RTS-msg-task-p ?task)):PRECONDITION (eq (status ?task) 'waiting):ACTION (read-in-RTS-msg ?task)Figure 5.2: The simple read-in-RTS-msg KS.read-in-RTS-msg KS is shown in Figure 5.2. The VARIABLES declaration binds the ?taskvariable to a task structure of the appropriate class. The PRECONDITION expression teststo make sure that the incoming message is in the correct state, and the ACTION expressioninvokes a procedure to read the message in from the socket.To determine which KSs are applicable to the current problem-solving state, the KSvariables and preconditions are matched against the task structures via a unique Retenet [17] implementation. The Rete implementation allows the preconditions of each KS toapply arbitrary Lisp tests to the KS variables, allowing very powerful expressions describingwhen di�erent KSs are applicable. The KS precondition is formed from either a singleexpression or a list of expressions that are implicitly conjoined. The Rete system invokesthe Lisp interpreter on each of the conjuncts using (eval), and retains partial matchinformation to speed the match process. The 
exibility of this precondition representationincurs the cost of relatively slow execution: Rete systems using more restricted preconditionlanguages can be highly optimized.The interpreter mechanism that chooses the next KS to �re is drawn almost directlyfrom the PRS architecture [23, 31], and bears little resemblance to a blackboard's agendamechanism. Figure 5.3 shows a slightly simpli�ed version of the Lisp code for the prototypeAIS interpreter. Each cycle of the interpreter �nds the set of KSs whose preconditionexpressions are true in the current problem-solving state (the \set of applicable KSs" orsoak), and then asserts the value of the current soak into the Rete net, essentially makingthe problem-solving state represent the fact that the system is considering executing thoseKSs. This new assertion may cause new, meta-level KSs to match in the Rete net. Themeta-level KSs are responsible for choosing which KS to �re from the soak matched in theprevious interpreter cycle.Figure 5.4 shows an example meta-level KS that chooses which lower-level KS to �re for aparticular task, based on a global strategy variable (that some other KSs can manipulate).When any KSs match at the meta-level, the interpreter removes the previously assertedsoak from the Rete net and asserts the value of the new (meta-level) soak to be exactlythe set of newly matched, meta-level KSs. Again, new KSs may match against this assertion,forming a meta-meta-level. In this way, the interpreter can climb an arbitrary number ofmeta-levels. When no new meta-level KSs match, the system executes a single KS, chosenrandomly from the soak of the previous reasoning level.The prototype AIS interpreter di�ers from PRS in the relatively unstructured form ofour KSs, and the lack of an architectural \intentions" structure. In the prototype AIS,�ring a KS simply means running some block of Lisp code. A PRS Knowledge Area (KA),on the other hand, is a structured representation of the set of plans to achieve a goal.



62(defun AIS-interpreter ()(assert-initial-world-model)(setf *soak* (get-all-matched-KSs))(while T(assert *soak*)(setf *new-soak* (get-new-matched-KSs))(cond ((and (null *soak*) (null *new-soak*)) ;; Stop if no KSs matched.(return))((null *new-soak*) ;; If no meta-level KSs(execute-KS (random-choice *soak*)) ;; matched, fire one from(unassert *soak*) ;; last soak.(setf *soak* (get-all-matched-KSs)))(T (unassert *soak*) ;; Else, go to meta-level.(setf *soak* *new-soak*)))))(defun bootstrap-AIS ()(setup-signal-handlers)(catch 'terminate(setf *soak* (get-all-matched-KSs))(while T(catch 'interrupted(AIS-interpreter)))))Figure 5.3: The prototype AIS interpreter.KS strategy-choice:VARIABLES ((task-p ?task) (soak-p ?soak)):PRECONDITION (get-KSs-for-task ?soak ?task):ACTION (let ((task-KSs (get-KSs-for-task ?soak ?task)))(execute-KS (random-choice(get-KSs-for-strategy task-KSs *strategy*))))Figure 5.4: The strategy-choice meta-level KS.



63When a PRS KA is chosen by the interpreter described above, it is merged into the PRSintentions structure, which represents the cognitive commitments of the system. The KAis then executed at some later time, as the intentions structure is traversed by the PRSexecution phase (which has no parallel in our implementation). Cognitive commitments arerepresented in our system by task objects, which are manipulated by KSs in the same wayas other tasks, rather than by architectural mechanisms.5.2.1 Interrupt HandlingAlthough the AIS is never constrained to meet deadlines, we would like it to respondquickly to changes in goals or RTS feedback, so that it allocates its deliberation resources tothe most important current task. Because the AIS interpreter may invoke complex, time-consuming processing that would make its worst-case response time unacceptably long, itis built to be interruptible. The interpreter installs two customized signal handlers in itsLisp environment, to handle timeouts and communication interrupts.TimeoutsTimeouts are used to limit the amount of AIS processing that is committed to any par-ticular task whose problem-solving methods may have uncertain or high-variance processingrequirements. The AIS can run this type of task with a limited time allocation by �rst fork-ing o� (in the true Unix sense) a simple timer process that will send a SIGUSR1 signal to theAIS Lisp process after a �xed amount of time (set by the AIS). The AIS invokes the taskprocessing after forking the timer. If the task processing takes too long, the forked timerwill send the signal, and the AIS will be interrupted. The signal handler for the timeoutsignal creates a new timed-out-task structure, adds it to the Rete net, and then passescontrol back to the base-level AIS interpreter using a (throw 'interrupted) call (see the(catch 'interrupted) in Figure 5.3). This has the e�ect of terminating the processing ofthe current KS and giving the AIS interpreter the opportunity to re-examine the state ofthe system, deciding whether to execute the interrupted KS again or deal with the timeoutin some other manner, possibly by making compromises that simplify the required taskprocessing.For example, the process of building a TAP plan is implemented by a KS that keepstrack of its progress in a set of global state variables. If the TAP-planner KS is interrupted,it can resume processing on the next KS execution at (nearly) the same point at which it wasstopped, by examining this global state (for more details, see Section 5.3). Alternatively,other KSs may intervene and alter some aspect of the TAP planner's state, so that theplanning operation will be simpli�ed or altered entirely. Several examples of these sorts ofchanges, and the resulting performance tradeo�s, will be discussed in Chapter 7.Communication InterruptsFeedback data from the RTS can arrive at unpredictable times and may indicate high-priority changes in the environment which require the AIS' attention. Thus we would likethe AIS to be interrupted by feedback from the RTS. However, because the RTS runs



64on a di�erent processor, it cannot send an interrupt or signal directly. Instead, the AISmust make special provisions to handle incoming messages from the RTS. When the AISinitializes, it opens a socket on a known port address for the RTS to connect to. The AISalso forks o� a simple communications subprocess (comm), written in C, which also opens asocket for the RTS. When the RTS is initialized, it connects to both the AIS and the commsockets. Whenever the RTS sends a message to the AIS over their socket link, the RTSalso sends a short \wakeup" message to the comm process. comm simply loops repeatedlyaround a test that waits for that wakeup message, and then sends SIGUSR2 to the AIS Lispprocess1. In response, the appropriate AIS signal handler will create a RTS-msg-taskwith a status of 'waiting, meaning that there is a message waiting to be read in from theRTS. As with timeouts, the signal handler then throws back to the interpreter, which canchoose whether to read in the message from the AIS socket or leave the message waitingwhile the AIS performs other, more important task processing.This somewhat complex arrangement has the e�ect of allowing the AIS to remain highlyalert to incoming RTS feedback without constantly polling its sockets. This means that thecode used in KSs need not be strictly limited in runtime, or interspersed with polling calls.However, because the normal interrupt handlers do not return control directly to interruptedKSs, the KSs do need to be written carefully when they make changes to stored information.To maintain a consistent processing state, some KS operations must be atomic| that is,they must either be run to completion, or not be started.Critical sections of KS code that must be atomic are built as \monitors," protected frominterrupts by calls to (begin-monitor) and (end-monitor). The (begin-monitor) callsimply replaces the signal handlers with modi�ed versions that return to the interruptedKS after setting a global 
ag indicating that an interrupt has arrived. The (end-monitor)call restores the original signal handlers and also calls the appropriate signals handlers ifthe global interrupt 
ags have been set during the preceding monitor code.Remaining interruptible gives PRS and our AIS the useful ability to perform arbitrar-ily complex computations within a KS while also attending to ongoing world events. Inparticular, Ingrand and George� [31] have shown that, given certain reasonable assump-tions about event frequency and KS precondition complexity, the prototype AIS will noticeevery event that generates an interrupt. While our AIS has the ability to implement ar-bitrarily complex processing during both the matching and execution of KSs, the currentexperimental domains have only used limited procedures that do meet the requirements forbounded reaction time. However, the Lisp and Unix basis for the AIS makes rigid responsebounds impossible.5.2.2 Existing Knowledge SourcesBecause the main focus of this work has been on building guaranteed TAP control plansusing the world model described in Chapter 4, the knowledge built into the AIS interpreterhas not been extensively developed. The current KSs for the Puma domain are used largelyto manage and interleave the processing of feedback messages from the RTS with invocations1The comm process can send a signal to the AIS because it is running on the same processor, unlike theRTS.



65of the TAP-planning KS and the process of downloading new TAP plans to the RTS. KSsto automate the performance tradeo�s described in Chapter 7 are under development.In the previous prototype implementation of CIRCA, which was applied to a mobilerobotics domain, the AIS interpreter played a much larger role. In that domain, a HeathkitHero 2000 robot navigated through hallways under the control of TAP plans, and the AISplanned paths and built TAP plans to implement the appropriate navigation strategies.That version of the AIS had KSs to incrementally form hierarchical navigation plans, givena building map, a destination, and the current location of the Hero. It also had KSs thatimplemented a primitive form of interval temporal reasoning capable of propagating orderinginformation. These KSs allowed the system to prioritize the hierarchical decomposition ofpath plans, so that TAP plans were generated �rst for the earlier portions of the plannedrobot path.The AIS also had KSs that implemented two forms of performance tradeo�s when thedomain was overconstrained. If the AIS recognized that collisions with obstacles werepossible because of limitations on the robot's sensing speed, a KS could slow down therobot's forward motion until safety could be assured. Alternatively, a KS could sacri�cethe guarantee on the TAP which used a sonar sensor to check the distance to the walls,making sure that the robot was moving down the middle of the hallway. By removingthat TAP from the list of required TAPs, the sensing needs of the system were reduced,and obstacle collisions could be avoided. However, because the wall-checking TAP was onlybeing executed in a best-e�ort fashion, the robot was no longer guaranteed to avoid collidingwith walls.Overall, the prototype AIS interpreter has proven to be a very 
exible platform forcontrolling deliberation, particularly because of the ease with which the system climbs tometa levels to decide among competing processing demands. The interrupt mechanismsallow the system to remain alert while still implementing complex planning functions. Theuse of arbitrary Lisp code in both the preconditions and actions of KSs makes it possible toimplement complex KS behaviors without the contortions imposed by less-
exible repres-entations. On the other hand, this also means that automatically parsing KS preconditionsis di�cult, and the AIS Rete implementation is not particularly fast.5.3 The TAP PlannerThe main use of the AIS interpreter in the Puma domain is to coordinate invocations ofthe TAP planner module, which instantiates and reasons about the world model (describedin Chapter 4) to develop TAP control plans. The TAP planner essentially performs thedesign phase shown in the Figure 3.2 
owchart of automated real-time system design inSection 3.5. Our goal here is to describe the unusual features necessary to build real-timecontrol plans using our model of agent/environment interactions. We describe algorithmsthat successfully implement these features, but we do not contend that these are the moste�cient or novel mechanisms possible.From the description of the world model in Chapter 4, we might derive a simple approachin which the entire world model state space is enumerated and then actions are planned



66to reduce the graph to a safely-controlled subset. Of course, the immediate objection tothis approach is that it involves generating and storing a complete enumeration of the statespace, which is exponential in the number of world features. Furthermore, since planning asingle action can make large sections of the world model's entire graph unreachable, muchof that enumeration might be wasted.Therefore, we have developed an algorithm that dynamically interleaves the construc-tion of the world model and the planning of control actions. The control plans (TAPschedules) that are run on the RTS are developed by �ve processing phases, outlined belowand described in more detail in the following sections.In the �rst phase (planning actions), the AIS is given a description of the goals thata particular TAP plan should achieve, a description of the possible transitions in the worldmodel, and a set of initial states. The planner builds up a list of actions that will achieveits goals and will also restrict the agent to a safely-controlled set of states surrounding theinitial states, by making failure states in the world model unreachable and by preventing theworld from leaving the safely-controlled set of states. This planning phase actually buildsand manipulates the world model states on-the-
y, as it is planning actions and simulatingtransitions. Associated with each planned action is a list of the states to which that actionmust be applied and the associated temporal transitions which it has been planned topreempt.In the second phase of processing (minimizing tests), the AIS attempts to maximallygeneralize the preconditions for each action, so that as few tests as possible are necessaryto decide when to apply the action. The third phase (planning sensing) builds TAPsthat perform the tests using selected sensing actions. The fourth phase (assigning TAPperiods) chooses TAP periods so that they will always preempt their associated temporaltransitions, and the �nal phase (scheduling TAPs) invokes the Scheduler to build a cyclicTAP schedule that meets all of the TAP timing requirements.These processing phases do not operate in a purely feed-forward manner; rather, con-trol and information can 
ow back from later phases when problems are detected in thedeveloping TAPs. For example, when phase three runs to plan sensing actions it may �ndthat the sensing actions required to test a particular planned action's preconditions are socomplex and time-consuming that the action can never preempt the temporal transition itwas designed for (i.e., wcet(tests(�)) + wcet(actions(�)) > min�(Tt)). This condition wasnot detected earlier because the sensing actions cannot be planned until the second phasehas minimized the set of feature tests required. Since the temporal transition is no longerpreempted, the world model is no longer safe, and the system must backtrack to choosedi�erent sensing actions or even di�erent actions altogether.To allow control (backtracking) to propagate between these di�erent processing phases,we have implemented them in a state machine with global, explicit state storage, as il-lustrated in Figure 5.5. The action planning and postprocessing phases are cast in theform of individual functions for each decision process| every decision made by the systemmaps to a function call. The main loop of the system chooses which decision function torun next based on a global mode variable. Each decision function computes its decision,pushes the alternative choices for that decision onto a choice-stack, sets the mode variable



67(defun run-TAP-planner (&aux result)(do-until (equal *mode* 'end)(setf result(case *mode*(plan-action (plan-action))(check-intermediate-plan (check-intermediate-plan))(generalize-tests (generalize-tests))(assign-sensors (assign-sensors))(build-taps (build-taps))(schedule-taps (schedule-taps))))(if (null result) (backtrack-all))))Figure 5.5: The main loop for the AIS TAP planner.to select the next decision that should be run, and returns a boolean indicating whetherbacktracking should be initiated. For example, the basic action-planning decision functionlooks at the world model state currently being examined, chooses an action to apply tothat state, pushes the alternative actions onto the choice-stack, and returns T. Or, if thereare no more action alternatives for the current state, the function returns NIL, indicatingthat backtracking is required. Backtracking a�ects the world model, the choice-stack, andthe stack that maintains the state of the decision loop (including the current mode and thecurrent world model state). If the system tries to backtrack o� the end of the choice-stack,this is an indication that the planner has failed to �nd a plan, and some modi�cations tothe design speci�cations will be necessary, as diagrammed in Figure 3.2.By casting the main processing loop in this form, we have made the system highlymodular, so that additional decision processes (like postprocessing phases) can be addedeasily. The explicit state of this implementation also has an advantage over recursive imple-mentations, because in this formulation it is fairly easy to interrupt and resume the TAPplanner.5.3.1 Planning ActionsBecause the world model state space is exponential in the number of world features, theAIS mechanisms that build TAP plans are actually given a much more compact representa-tion of the world. The input to these mechanisms is divided into three types of information:transition descriptions, initial state descriptions, and goal descriptions. Transition descrip-tions are simple production rules that detail the changes the world can undergo, much likeSTRIPS operators [59]. Figure 5.6 shows example rules from the Puma domain. Notethat the preconditions and postconditions need not fully specify all features of the statesto which the transitions apply. These descriptions are implicitly generalized by the lack ofcertain feature speci�cations. Action transition descriptions also include information abouttheir worst-case execution times and the required actuator resources.Initial state descriptions currently must specify all features of the world, as illustrated



68EVENT emergency-alertPRECONDS: ((emergency nil))POSTCONDS: ((emergency T))TEMPORAL emergency-failurePRECONDS: ((emergency T))POSTCONDS: ((failure T))MIN-DELAY: 30 [seconds]ACTION push-emergency-buttonPRECONDS: ((robot-status free) (part-in-gripper nil))POSTCONDS: ((emergency nil) (robot-position over-button))RESOURCES: (arm gripper)WCET: 3.5 [seconds]Figure 5.6: Example transition descriptions given to the AIS.in Figure 5.7. Recall that each TAP plan is being built to achieve some goals that arepart of a longer-term sequence of steps determined by the AIS interpreter. Thus the AISchooses the initial state description and goal description for each TAP plan according to itsposition in the long-term plan. In the future, it might be useful to allow the AIS to specifyonly partial initial state descriptions, indicating that the new TAP plan might be startedin any of several states achieved by the previous TAP plan. It would be straightforwardto have the TAP planner enumerate the set of possible initial states I before beginning theplanning process.Goal descriptions do not usually specify the entire state of the desired world: in fact,many describe just a single feature (such as (part-in-box T)). These partial descriptionsare not expanded into an explicit set of acceptable states; instead, the AIS uses the descrip-tions as litmus tests for states which it generates on-the-
y, as detailed below.The Planning AlgorithmGiven this input information, the AIS dynamically constructs the graph model andthe plan of actions together in a single depth-�rst search process, essentially similar to aforward-chaining STRIPS planner [59]. This process operates on a stack of states (the state-stack), examining each state in turn and planning actions that achieve goals and preempttemporal transitions that lead to failure. The 
owchart in Figure 5.8 illustrates the planningalgorithm.To initiate the processing, each of the completely speci�ed initial states is pushed ontothe state-stack. Then, as long as the stack is not empty, the AIS pops a state o� thestack and considers it the current state. If the current state is unreachable2, the AIS willignore it and pop the next state o� the stack. If the current state is reachable, the AIS2A non-initial state on the stack may become unreachable if actions are planned to preempt every temporaltransition leading into that state, and no event or planned action transitions lead into that state.



69INITIAL-STATEFEATURES: ((failure nil)(emergency nil)(know_type_of_conveyor_part nil)(know_type_of_table_part nil)(part_in_gripper nil)(conveyor_status free)(robot_status free)(robot_position over_table)(part_on_table nil)(part_on_conveyor nil)(part_in_box nil))GOALS: ((part_in_box T)(part_on_conveyor nil)(part_on_table nil)(part_in_gripper nil))Figure 5.7: Example initial state and goal descriptions given to the AIS.�nds all the event transitions and temporal transitions that apply to the current state. Theapplicable transitions are simulated by substituting their postconditions into the currentstate description, yielding either new states that have not been examined yet or statesthat have already been processed (i.e., states for which actions have already been planned).New states are pushed onto the state stack, while old states are simply updated with theinformation that they have a new source state. The AIS then �nds all the acceptable actiontransitions that could be taken from the current state. If there are no temporal transitionsto failure from the current state, then all action transitions that apply to the current stateare acceptable, including the null action NO-OP. If there are any temporal transitions tofailure, only action transitions that can be implemented quickly enough to preempt thefailure are considered acceptable. The AIS chooses from amongst the acceptable actionsthe one that leads to the best next state, as determined by a heuristic scoring function(described below in Section 5.3.1). The other acceptable actions are retained on the choice-stack, so that the next-best alternative will be chosen if the system later backtracks to thispoint in the search.Chronological backtracking is initiated when one of two conditions is satis�ed. First, thesystem backtracks when it detects an action loop (see Section 4.11). Whenever a plannedaction leads to a state Sold that has already been processed, the system searches for actionloops by looking back recursively along the action transitions leading to the current state,checking to see if any originated at Sold . The second condition for backtracking is therecognition that there are no remaining action choices for the current state. In that case, itis clear that the planner has found an unavoidable failure| either there are no acceptableactions to preempt a temporal transition to failure from the current state, or the system
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71must have explored all possible worlds beyond this state and backtracked to reach this state,otherwise NO-OP would be a choice.By running the planning process until the state-stack is empty, the AIS simulates outall of the paths the world might feasibly take while the agent is controlled by a particularset of action transitions. More importantly, that set of action transitions is dynamicallyde�ned as the AIS works, in response to the recognition that a failure state is reachable.The basic action-planning algorithm terminates when no failure state is reachable. Usingchronological backtracking to consider every acceptable action at each state, the AIS canperform a complete search of the set of action plans.ComplexityWe noted in Chapter 1 that the complexity of some environments may make it imprac-tical to enumerate all possible situations. This is one of the arguments frequently usedagainst ad hoc real-time systems that are simply tested exhaustively to demonstrate thatthey meet hard deadlines [76]. How, then, does CIRCA's enumerative world modelingtechnique di�er?The most important di�erence is that the AIS does not enumerate the entire domainstate space. As discussed earlier, the AIS' high-level planning explicitly divides long-termgoals into shorter-term subgoals, which are then separately implemented by control plans.This restricted context means that the state space of the control planner is not the entireset of states the system and world can ever enter.Furthermore, the planner avoids enumerating even this restricted space because, whileit is generating the world model, it is also generating the plan of actions. Each time anaction is planned, it restricts the world's behavior and thus prunes out states that the AISnever even considers. In the Puma domain, one of the problem variations has a completemodel space of over 5100 world states. To build a complete control plan that guaranteesall control-level goals and also achieves the task-level goals, the AIS only enumerates 330unique states. The �nal plan restricts the world to a safely-controlled set of 158 possible(reachable) states. For a problem in which the world is described by eleven di�erent features,and eight actions are planned for 144 di�erent states, the size of the space actually searchedseems quite reasonable.In general, any system making guarantees must somehow ensure that those guaranteeshold for all possible worlds. This requires either an exponential enumeration of states orsome dependency information that allows the system to extend guarantees made for onestate to other states without examining the others individually. Recent work by Godefroidand Kabanza [24] illustrates one way in which such dependency information can reducesearch spaces; their results allow a system to examine only a single ordering of independentactions, rather than enumerating all possible orderings. These results are not immediatelyapplicable to CIRCA, because their world model does not include external events. Thisomission simpli�es the concept of action independence to a condition on the action descrip-tions. In the CIRCA model, this condition alone is not su�cient to determine if actionsare independent: by enabling or disabling event transitions, an action can a�ect anothereven if its description includes no overlapping terms. We are actively investigating ways of



72deriving independence conditions in CIRCA's model of agent/environment interactions.However, the most important point to remember is that the planning done by CIRCA'sAIS is isolated from the real-time domain deadlines. The AIS does not need to meetdeadlines while producing control plans, so the complexity of the planner is decoupledfrom the agent's interactions with the world. In fact, the complexity of planning is oneof the fundamental motivations for CIRCA's distinction between the AIS and RTS: thehigh-variance search for plans to achieve goals must be isolated from ongoing, real-timeinteractions with the environment.Incremental ImprovementCurrently, the systemmakes only a crude distinction between control-level and task-levelgoals. All control-level goals must be achieved, or the system backtracks. If some task-levelgoals are not achieved by a control plan, the system may still consider the plan acceptable.In the future, we may add more information so that the system can make intelligent decisionsabout risk-taking in the pursuit of task-level goals. This information might include criticalityratings for goals and event probabilities, so that the system could compute the utility ofguaranteeing di�erent subsets of control-level goals. In general, however, our initial focus onguaranteed behavior has led us to ignore such di�cult information; we have concentratedinstead on developing a system that can make rigid, complete guarantees within the scopeof its limited knowledge. Given that most rigorous capability, we can easily modify thesystem so that it can forgo various goals when necessitated by resource restrictions [57].With the action-planning algorithm described above, we can derive every possible actionplan that guarantees to avoid control-level failure. What we really want, if possible, is a planthat guarantees the control-level goals and also either guarantees or at least makes possiblethe task-level goals. To �nd those plans, we have formed the action-planning algorithm asan imprecise computation [41, 54] that will continue generating new plans until no moreare available, or until a plan that achieves all of the task-level goals is found. In the currentimplementation, a plan is considered to achieve a task-level goal if any state satisfyingthat goal is reachable. The decision function check-intermediate-plan, illustrated inFigure 5.9, is placed in the loop shown in Figure 5.5, to be run after the plan-action phaseruns out of states to plan for. If the current plan does not achieve all of the control-levelgoals, and does not make the task-level goals at least reachable, the decision function returnsNIL and the system backtracks to �nd a better plan. A more restrictive criterion might testto make sure that task-level goals are reachable from all states in the world model, or thatthe control plan always drives the system towards the task-level goals.If the AIS decides, based on task-level time pressures, that it needs to produce the nextcontrol plan quickly, it can interrupt the planning loop of Figure 5.5 and use the currentacceptable plan stored in *stored-plan*. If the AIS has more time available, it can continueproducing plans for as much time as is convenient, and then use the best plan stored sofar. In this way, the AIS can itself implement an any-time planning algorithm [9, 65]. Thisfeature is useful because, although achieving control-level goals is never dependent on timelyresponses from the AIS, achieving non-critical, task-level goals may be. For example, in thePuma domain, the system implements the control-level goal of making sure that nothing



73(defun check-intermediate-plan ()(let ((plan (find-all-planned-actions))(states (remove-if-not #'state-is-reachable-p (find-all-states)))(goals-done 0))(dolist (goal *goals*) ;; Count goals that are reachable.(if (any #'state-has-feature-p states goal) (++ goals-done)));; If current plan did better than stored, or have none stored yet,;; store this one. Stored in global as a list (plan goals-done).(if (or (not *stored-plan*) (> goals-done (second *stored-plan*)))(setf *stored-plan* (list plan goals-done)))(cond ((= goals-done (length *goals*)) ;; If all goals reachable,(setf *mode* 'generalize-tests) ;; move on to next phaseT) ;; and don't backtrack.(T nil)))) ;; Else, backtrack for new plan.Figure 5.9: A decision function implementing an incremental improvement method.falls o� the conveyor belt by (in the worst case) putting the part it is currently holdingdown on the table. The control plan must also be able to stop the conveyor when the tableis full. When that happens, the robot will continue to satisfy its control-level goals (eveneasier with the conveyor stopped!), and no catastrophes will occur. However, the faster theAIS �gures out how to pack the parts sitting on the table, the faster the system will achieveits task-level goal of generating a packed box.The Scoring HeuristicThe scoring function used to choose actions is the only heuristic knowledge currentlyused by the TAP planner. The scoring function performs a recursive N -step lookahead,�nding and returning a value corresponding to the best state reachable in N transitionsfrom the current state. Based on this analysis, the control-level planner chooses to perform,for each state, the action which leads to the best scoring state. Note that backtracking maylead the system to make alternative choices if the initial choice leads to a failure.To �nd the score for a transition applied to a given state with x-step lookahead, thescoring function simulates the proposed transition to build a description of the resultingstate. The function then derives and saves a score for the value of that state. If x > 0,the function then �nds all the transitions which may apply to that state, and recursivelycalls itself to �nd the score for each of those possible transitions when applied to the newstate, with x� 1 steps of lookahead. The results from those recursive calls are saved, andthe function returns the best score of among all those saved. If x = 0, no recursive calls aremade, and the function simply returns the score of the state resulting from the applicationof the transition.



74The current heuristic scoring mechanism considers several factors. First and foremost,the scoring function expresses preferences for states based on how completely they satisfythe system's control-level and task-level goals. Since control-level goals are de�ned to bethose which the system is trying to guarantee, they are weighted as more important thantask-level goals. In fact, we consider violations of control-level goals to be equivalent torisking the safety of the system, and thus a violation of any single control-level goal isconsidered worse even than a violation of all the system's task-level goals.The planner may choose an action that leads into a state from which a temporal trans-ition leads to failure. Clearly, the longer the min� of that temporal transition to failure,the easier it will be to avoid failure by taking another action. Thus the scoring function alsoexpresses a preference for states which have the longest possible delays until failure occurs.To guide the system towards choosing the shortest path to success, the scoring functionalso takes into account the number of transitions which must be traversed to reach a statewith a desirable set of features. At each level of recursive lookahead, which corresponds tofollowing an additional transition, the scoring function adds a small penalty to its resultingscore, so that the value of a particular state is degraded partially by the \distance" separ-ating it from the current state, as measured by the number of transitions between them. Inthe future, a more useful measure of the cost of a transition path might take into accountthe associated delays as well as the cost of the agent's actions.One �nal consideration is necessary to choose correct actions in the Puma example.The representation of the Puma domain is encoded at a fairly high level of abstraction,to avoid excessive detail and the accompanying state-space explosion. We will discuss thistopic more fully in Section 5.4; for now, it is su�cient to note that we do not want thedomain model to include a feature that would be subject to \counting." That is, a domainfeature expressing how many parts are in the box, or how many parts are on the table,would be a very unfortunate choice, because it would lead to a potentially in�nite (or atleast very large) search space, as the planner would have to reason about a complete set ofworld states where one part was in the box, and another set where two parts were in thebox, etc.So instead, we encode the world with a boolean feature that simply indicates whether apart is in the box or not. And the goal, in such a domain, is to achieve states where (part-in-box T) holds. But now consider what happens when the planner reasons about stateswhere the robot has already placed a part in the box, and it is now processing another part.The goal (part-in-box T) already holds, so there is no scoring di�erential to encouragethe system to place the new part in the box as well.To deal with this sort of di�culty, CIRCA also allows the system designer to designaterepeat goals. These are goals which it is valuable to achieve again, even if they are alreadytrue. With this consideration added to the scoring function already described, the TAPplanner is able to choose intuitively correct actions in all situations that arise in the Pumadomain (given su�cient lookahead). In the current domain implementations, a lookaheadvalue N of four is su�cient to allow the planner to always choose the correct action.



755.3.2 Minimizing TestsBecause an action may be useful in several world states, we do not build up completeTAPs with sensing requirements as soon as an action is planned: if the action applies toseveral states, we would end up with multiple TAPs implementing the same action withdi�erent, but probably similar, tests. This would make the scheduling operation muchharder. Instead, we wait until all of the actions have been planned, and we have a fulldescription of their sets of domain states. Then, in the second phase of processing, the AISattempts to maximally generalize the preconditions for each action, so that as few tests aspossible are necessary to decide when to apply the action. This phase is especially crucialwhen actions are applied to several states: the minimization phase can eliminate the needto test some speci�ed features if the omission of those tests will not allow the action to beapplied to a state for which it was not planned.The test minimization process is essentially equivalent to the minimization of switchingcircuits [34]. Each action can be considered separately as a circuit whose minterms are thefeatures of the states for which it has been planned. All states that are not reachable inthe world model are considered \don't-cares," because it does not matter whether the �naltesting expression includes their features or not; they can never occur.For example, in the Puma domain, the planner initially plans to take the action push-emergency-button in 54 states, each of which has eleven features. After minimization, theaction is associated only with tests for ((emergency T) (part-in-gripper nil)). The newtests do not check all eleven state features 54 times each, so they will take much less time toexecute. Of course, with only those two preconditions, the resulting TAP will match manymore than the originally planned 54 world states. However, the minimization algorithmhas determined that none of those additional matching states are reachable, and thus theydo not matter. Note that the minimization phase can even remove preconditions thatare required to execute the action. In this example, the push-emergency-button actiontransition description in Figure 5.6 included the precondition (robot-status free), butthat precondition was removed during minimization because it is not needed to distinguishthe 54 planned states.The general test minimization problem is NP-complete, so we have avoided using acomplete algorithm. Instead, the minimization phase is implemented using the heuristicID3 program3 [62], which is given the states for which an action has been planned aspositive examples and all the other planned (possible) states as negative examples. ID3incrementally builds a decision tree to distinguish the positive examples from the negativeexamples. While this approach does not guarantee an optimally small decision tree, it yieldsreasonable results with very little processing.5.3.3 Planning SensingOnce the action preconditions have been minimized, the AIS plans sensing actions toimplement the TAP test expressions. To plan sensing actions, the AIS examines descriptionsof the system's sensors that include what world features the sensor detects and its worst-case3Marcel Schoppers suggested this approach.



76SENSOR overhead-cameraDETECTS: (type-of-conveyor-part type-of-table-part robot-position)WCET: .1 [seconds]V-SENSOR robot-status?DETECTS: (robot-status)P-WCET: .02 [seconds]USES: ((overhead-camera 1)(moving? 1))Figure 5.10: Example sensor and virtual sensor descriptions.execution time. Figure 5.10 shows two example sensor descriptions.The �rst example describes a physical sensor in the system, the overhead camera thatreturns information about part shapes and the position of the robot. The second exampledescribes a \virtual sensor," a software construct that may access several physical sensors(and/or several readings from a single sensor) and combine their values. In the example,the virtual sensor robot-status? combines single readings from the camera and anothervirtual sensor (moving?) to determine the robot's status. The worst-case execution timefor the virtual sensor is determined by adding the time needed to access the componentsensor values to the worst-case processing time, indicated by P-WCET.Virtual sensors can also access the limited RTS world model, which is essentially a setof storage locations that hold status information. For example, the virtual sensormoving?accesses an RTS storage location to determine whether the robot is currently moving. Theactions that start and stop motion set the value of this storage location. No physical sensorreadings are required, and thus the moving? virtual sensor executes very quickly.One of the areas in which CIRCA is currently being extended is the automatic assign-ment of additional internal storage locations to bu�er physical sensor readings that will beuseful to future precondition tests. If a physical sensor reading is fairly costly to acquireand its value is known to persist for a su�cient time, then several actions that test thatvalue in their preconditions could instead access the stored result of a single physical sensorexecution. This automatic planning of the use of internal storage to avoid excessive sensingcould greatly enhance the system's e�ciency, allowing the AIS to produce TAP schedulesfor domains which would otherwise be too demanding.Some systems may have multiple sensors capable of detecting a particular world feature,and some sensors may detect multiple world features. Thus the task of assigning sensorsto action preconditions is a covering problem, involving �nding a minimal set of sensingactions that will test all the preconditions. The AIS can solve this problem via a depth-�rstsearch process over all the possible covering sets. Each covering set would be checked tomake sure that, when combined into a TAP, the resulting worst-case execution time doesnot exceed the min� of the temporal transition the action has been planned to preempt. Ifit does, the system would backtrack to try the next possible covering set of sensing actions.If no set of sensing actions can be built that will yield a su�ciently short TAP, then thebacktracking propagates back to the previous processing phases, and the system would



77search for a di�erent control plan.The sensor-planning functionality, as described above, has not been fully implementedin the Puma domain, but could be easily added to the modular TAP planning loop asanother decision function. The search-based sensor-planning function would operate inmuch the same manner as the action-planning function, choosing a sensor mapping on eachinvocation, and backtracking by simply returning NIL.The sensor-planning phase has been implemented in the Puma domain in a slightlysimpli�ed form. The simpli�cation retains the essential purpose of the sensor-planningconcept, which is to allow CIRCA to map abstract world model state features to di�erentreal-world features. For example, the world model feature know-type-of-conveyor-partindicates whether CIRCA knows how to pack the particular shape of the current part onthe conveyor into the box. Because the set of \known" part shapes changes over time,as CIRCA derives packing methods for more and more parts, the precise meaning of theknow-type-of-conveyor-part feature changes over time. This change must be propagatedinto the TAPs executed by the RTS, so that the TAPs act appropriately and use the newpacking methods. Thus the mapping of this world model feature to actual tests of real-worldfeatures must change.During the sensor-planning phase, the AIS currently uses an association list to mapworld model features to combinations of detectable, real-world features. The associationlist essentially bypasses the search processing that might otherwise be used to performsensor planning. The association list can be changed by the same KSs that derive newknowledge for the system, such as the KSs that �gure out how to pack new part shapes.For example, when the system is �rst introduced to the Puma domain it is only told howto pack square parts into the box, so the sensor-planning phase maps a TAP preconditionof (know-type-of-conveyor-part T) into the test (type-of-conveyor-part 'square).Likewise, a TAP precondition of (know-type-of-conveyor-part nil) is mapped to (not(type-of-conveyor-part 'square)). After the system has seen a rectangle arrive and hasdeveloped a new packing method for both squares and rectangles, the association list ischanged so that the abstract feature is mapped to a di�erent expression: (or (type-of-conveyor-part 'square) (type-of-conveyor-part 'rectangle)).Thus this feature-mapping mechanism is useful for translating abstract domain descrip-tions into more realistic, dynamic conditions on the environment. This type of variablesensor planning is crucial both to implementing abstract descriptions of the environment,and to the 
exible use of multiple sensing modalities.5.3.4 Assigning TAP PeriodsOnce the sensing actions have been chosen, the complete set of TAPs is built and theirworst-case execution times are available. In the �nal phases of processing, the AIS assignsperiods to the TAPs and builds schedules that meet those periodic constraints. AssigningTAP periods is largely a trivial task, except for TAPs that deal with dependent temporaltransitions. For other TAPs, the preemption equation described earlier shows that eachTAP's period should be just less than the corresponding temporal transition's min� minusthe TAP's worst-case execution time.
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A1 A2 A3

X Y Z

T T1 T T2 T T3Figure 5.11: Example actions dealing with dependent temporal transitions.For TAPs dealing with dependent temporal transitions, the problem is complicated bythe dependencies between TAP periods. For example, Figure 5.11 shows a chain of temporaltransitions where TT1 is the initial temporal transition applicable to stateX , and the actionsA1 and A2 do not remove the cause of the temporal transition. Thus dependent versionsof the temporal transition apply to the succeeding states Y and Z. As presented earlier, itis easy to compute the minimum delays until the dependent transitions are enabled:min�(TT2) = min�(TT1)� P (�A1)� wcet(�A1)min�(TT3) = min�(TT2)� P (�A2)� wcet(�A2)= min�(TT1)� P (�A1)� wcet(�A1)� P (�A2)� wcet(�A2)where �A1 and �A2 are the TAPs that implement the respective actions. In the generalcase, where n actions are needed to end the chain of dependent temporal transitions, wesee that min�(TTn) = min�(TT1)� n�1Xi=1 [P (�Ai) + wcet(�Ai)]We also know that, for the preemption condition to hold for the �nal action An thatterminates the chain, we must have min�(TTn) > P (�An) + wcet(�An).Substituting, we see thatmin�(TT1) > nXi=1 [P (�Ai) + wcet(�Ai)]This equation essentially shows that the min� of the initial temporal transition mustbe long enough to accommodate all TAPs invoked in the dependent chain. Rearranging theequation to solve for the periods, we havenXi=1 P (�Ai) < min�(TT1)� nXi=1 wcet(�Ai)In other words, the sum of the TAP periods must be less than the total slack timeremaining in the original temporal transition when all of the TAPs use their worst-caseexecution time. Unfortunately, we cannot solve this equation alone for the TAP periodsbecause there are n free variables and only one independent equation. Thus additional con-straint equations must be added. We synthesize those constraints based on the observation



79that scheduling periodic tasks is easier if their utilization is low; that is, if their executiontimes are relatively small compared to their periods. To keep each TAP's utilization low,the choice of each TAP's period should be in
uenced by the length of the TAP's execution.For example, assigning a short period to a complex, costly TAP will leave little slack timebetween its invocations for the other TAPs to run. Thus longer TAPs should be given longerperiods, and shorter TAPs can be given shorter periods without leading to excessively highutilization. To achieve this e�ect, we can distribute the total slack time among the TAPperiods in proportion to each TAP's worst-case execution time:P (�Ai) < wcet(�Ai)Pnj=1wcet(�Aj) 24min�(TT1)� nXj=1wcet(�Aj)35So, for chains of states with dependent temporal transitions, the system adds up the totalworst-case execution time for the TAPs in the chain, subtracts that from the min� of the�rst temporal transition in the chain, and divides the remaining slack time proportionallyamong all of the TAPs. This distribution has the e�ect of making each TAP have the sameutilization.Unfortunately, the intuitive motivation for this equal-utilization strategy is not entirelyaccurate: it is not always best to have TAPs with equal utilizations, particularly when TAPsmay have widely-varying worst-case execution times. For example, consider two TAPs, Aand B, with worst-case execution times of 10 and 100 milliseconds respectively. Supposethat these two TAPs are required to preempt a dependent temporal transition chain withmin�(TT1) = 500 milliseconds, as described above. Using the equal-utilization strategy,TAP A would be assigned a period of (10=110) � (500 � 110) � 35 msec4. However, it isimmediately obvious that this will not lead to a feasible schedule, because wcet(B) > P (A).No schedule will ever be possible if this condition holds, because any invocation of TAP Bwould immediately imply that TAP A had missed its deadline.Therefore, it is clear that every TAP must have a period that is at least greater thanthe maximum worst-case TAP execution time (wcet(TM)) that will be scheduled. We canincorporate that requirement into our period assignment strategy by pre-allocating at leastthat much time to each TAP period:P (�Ai) < wcet(TM) + wcet(�Ai)Pnj=1wcet(�Aj) 24min�(TT1)� nXj=1wcet(�Aj)� n � wcet(TM)35For the example TAPs, this results in setting P (A) = 100+ (10=110) � (500� 110� 2 �100) � 117 and P (B) = 272. These period assignments lead easily to the simple feasibleschedule AB.While this simple two-TAP example works well, experiments have shown that, whenmore TAPs are being scheduled, the TAP periods may still be assigned so that shorter TAPshave periods that are too short to allow enough other TAPs to execute between invocations.Thus it has proven useful to increase the pre-allocation of time to all TAPs above andbeyond the required wcet(TM). The amount of this increased allocation is determined by4Note that we truncate the actual computed value to maintain the required inequality.



80multiplying wcet(TM) by a value greater than one. For the Puma domain, a multiplicativefactor of 1.2 has provided the best performance, although experimentation was limited toa few scheduling problems.While this approach to assigning TAP periods is designed to make scheduling the TAPsas easy as possible, other considerations might usefully in
uence the period-assignmentphase. For instance, if the various states in the chain have di�erent levels of desirability, itmight be preferable to bias the TAP periods so that the system spends more time in thepreferred states. In the example of Figure 5.11, if an event led from state Y to a highly-valued new state, it might make sense to increase the period of �A2, so that the system mightremain in state Y longer, giving more time for the bene�cial event to occur. Improved TAPperiod assignment algorithms could prove a vital area of future work, of particular interestto scheduling and real-time systems researchers, who usually assume that these periods arepre-determined.5.3.5 Scheduling TAPsIn the �nal phase of generating TAP control plans, the AIS sends the accumulatedinformation about the TAPs to the Scheduler module. The Scheduler tries to build a cyclicschedule that runs TAPs at least as frequently as their periods require. Chapter 6 providescomplete details on the scheduling algorithm currently implemented. If the Scheduler cannotbuild a successful schedule to guarantee all the TAP timing constraints, it will return afailure message to the AIS. At that time, the AIS may backtrack to generate a di�erentproposed TAP plan, or it may make other alterations to its world model to trade o� someaspect of its performance, in an attempt to relax the scheduling constraints that made aTAP schedule impossible to �nd.5.4 DiscussionOur goal in developing CIRCA's AI Subsystem was not to build the \ultimate planner,"but rather to investigate the requirements for building guaranteed real-time control plans.As a result, the AIS implementation we have developed is not highly optimized. Instead,we have focused our attention on the reasoning and representation capabilities that allowthe prototype AIS to build plans with well-understood temporal behavior. The followingdiscussion of the AIS' TAP planner is thus focused on describing the assumptions, strengths,and weaknesses of the system's representations and reasoning mechanisms.To begin this discussion, it will be helpful to examine CIRCA's approach to the repres-entation and reasoning issues in a common domain called the Wesson Oil Problem.5.4.1 Cleaning Up the Wesson Oil ProblemResearch into reactive systems has just begun to develop a set of standardized problemswhich can be used to compare systems. From the perspective of intelligent real-time control,one of the more interesting new benchmarks is the Wesson Oil Problem (WOP), as describedby Gat [21, p. 40]:



81The name derives from a television commercial for Wesson Oil in which ahousewife is frying chicken (in Wesson Oil, of course) when one of her childrensuddenly falls down and has to be taken to the hospital. However, before goingto the hospital the housewife turns o� the stove...The action of turning o� the stove... is an example of a clean-up procedurewhich is executed when a high-priority task (taking the kid to the hospital)interrupts a low-priority task (frying chicken).Gat discussed the Wesson Oil Problem to motivate the need for clean-up procedures inhis reactive ALFA language. Using a mechanism similar to the Lisp unwind-protect, he wasable to protect low-priority tasks so that, when interrupted, a specially-tagged procedurewas run to clean up their activities. This mechanism was used solely by hand-coded reactiveplans.Gat also noted that, ideally, cleanup procedures should be conditional on aspects of theworld other than simply the fact that a low-priority process is interrupted. His example:\If a stranger walks into your kitchen with a gun, turning o� the stove before running foryour life may or may not be the right thing to do."CIRCA's approach to this problem is unique in two ways. First, CIRCA does notsimply permit users to design cleanup procedures, CIRCA actually automatically plans themitself. Second, CIRCA's planned cleanup procedures are fully context-sensitive; CIRCAwill build di�erent reactions to deal with the injured child and the invading stranger. Todemonstrate these advantages, we now describe in detail CIRCA's reasoning about theWOP, as illustrated in Figure 5.12.State A represents the initial state, where the housewife is peacefully cooking and thechild is uninjured. The oil-ignites temporal transition to failure (state F) indicates that, ifthe stove is left on too long, the oil will overheat and catch �re. For now we will ignore thisproblem, and consider what happens if the world follows the child-falls event transitionto state B. Reasoning about that state, the TAP planner will �nd there are two applicableactions: either the housewife can leave the kitchen to help the child, or she can turn o� thestove. Looking ahead to the subsequent states, the scoring function will �nd that state C,following the leave-kitchen action, still has a temporal transition to failure, while state Dfollowing the turn-o�-stove action, does not. Therefore, the scoring function will preferthe latter option, and CIRCA will plan a TAP that implements the turn-o�-stove actionimmediately after the child is hurt. Thus CIRCA has automatically planned a cleanupaction to preserve the system's safety.To demonstrate that the cleanup action planning is context-sensitive, consider thestranger-arrives transition from state A to state G. In this case, the (emergency T)world feature is used to represent the armed stranger's threat, and the short min� of thestranger-shoots-housewife temporal transition to failure indicates that the situation ishighly urgent. Reasoning about this situation, the TAP planner will again project thetwo possible actions leave-kitchen and turn-o�-stove. Presumably, the threat from thestranger is so dire that the housewife will not have time to turn o� the stove (or else thissituation is no di�erent from the previous case). Thus, the planner will recognize that itcannot choose the turn-o�-stove action, because then failure would be possible due to the
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Figure 5.12: The Wesson Oil Problem world model.
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 HOUSEWIFE-POSITION   IN-KITCHEN
 STOVE-STATUS   ON
 CHICKEN-STATUS   COOKING
 CHILD-STATUS   OK
 EMERGENCY   NIL

 HOUSEWIFE-POSITION   IN-KITCHEN
 STOVE-STATUS   OFF
 CHICKEN-STATUS   WELL-DONE
 CHILD-STATUS   OK
 EMERGENCY   NIL

 HOUSEWIFE-POSITION   IN-KITCHEN
 STOVE-STATUS   ON
 CHICKEN-STATUS   WELL-DONE
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FAILURE
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 HOUSEWIFE-POSITION   IN-KITCHEN
 STOVE-STATUS   ON
 CHICKEN-STATUS   COOKING
 CHILD-STATUS   HURT
 EMERGENCY   NIL

oil-ignites

turn-off-stove

CB

A

stranger-arrives

oil-ignites

food-cooks

D

child-fallsFigure 5.13: A portion of the modi�ed Wesson Oil Problem world model.stranger �ring. Therefore, the planner will eliminate that possibility and choose to leavethe kitchen instead.Thus CIRCA's planning behavior results in two di�erent TAPs, one that detects ap-propriate situations to turn o� the stove, and one for leaving the kitchen. CIRCA hasautomatically derived reactions that clean up ongoing processes, but only when appropri-ate. While this example has demonstrated the strength of the CIRCA approach to planningsituated cleanup actions, it also reveals a limitation of the world model and the represent-ation of transitions.5.4.2 The Transition RepresentationWe noted above that the oil-ignites temporal transition from state Ameans that failuremay occur if the stove is left on too long. With just that transition represented, CIRCAwould plan to turn o� the stove immediately, thus preventing the �re. However, the stovemust be left on for some period of time, in order to cook the chicken. An intuitive way torepresent the required cooking time would be to use a temporal transition, as shown in themodi�ed domain fragment in Figure 5.13. Unfortunately, this representation does not havethe desired e�ect in the current CIRCA implementation. We would expect the food-cookstransition to preempt the oil-ignites transition, because of the respective min� labels of5 minutes and 10 minutes. However, the current semantics of temporal transitions do notallow this: a temporal transition is not guaranteed to occur, so it cannot preempt any othertransition. Thus the scenario shown in Figure 5.13, if actually given to CIRCA, wouldstill result in a plan to turn o� the stove immediately from state A, because otherwisethe failure due to �re would always be possible. CIRCA cannot yet represent non-atomictime-consuming activities that are guaranteed to occur; all guaranteed activities must beprimitives, as discussed earlier in Section 4.3.Another limitation of the current representation for world model transitions is the in-ability to include situation-dependent e�ects| the postconditions of a transition cannotcontain variables referring the results of the precondition tests. For example, suppose thatpicking up a part from the table in the Puma domain leads to di�erent loads on the robot



84ACTION pickup-partPRECONDS: ((part-in-gripper nil) (part-in-reach T) (part-shape ?ps))POSTCONDS: ((part-in-gripper T) (arm-load (weight-from-shape ?ps)))RESOURCES: (arm)WCET: 2 [seconds]Figure 5.14: An illegal transition, containing parameterized postconditions.arm, depending on the part's shape. Figure 5.14 shows how we might like to representsuch a transition, where the postcondition value of arm-load is determined by the bindingof the part-shape variable ?ps in the preconditions. CIRCA cannot yet deal with suchtransition forms, in part because they simply hide state space complexity| the parameter-ization allows the single representation of Figure 5.14 to act as many di�erent transitions,depending on the binding of the ?ps variable. CIRCA currently forces the system designerto enumerate those transitions manually; separate transitions would need to be encoded foreach possible value of ?ps. Extensions to the AIS planning algorithm to handle parameter-ized transitions are relatively straightforward, but the RTS and TAP execution mechanismswould require considerable modi�cation to allow the dynamic speci�cation of variables thatare bound during the tests of TAPs and used during the actions.5.4.3 The TAP RepresentationThe TAP representation was developed primarily as a simple model for reactive beha-viors which could be automatically generated by CIRCA's reaction planning system. Assuch, it is not a fully-developed robot programming language like RPL [50] or ALFA [20],designed for humans building complex programs. Instead, the TAP mechanisms implementa \programmable production system," where the primitives used by the TAP \productions"are de�ned by arbitrary, user-produced C code (or, in an earlier version of the RTS, in Lisp).The RTS TAP execution environment provides only the IF--THEN conditional construct, aswell as the boolean functions AND, OR, and NOT.On the positive side, this simplicity means that it is easy for the AIS planner (or anothersystem implementation) to build and manipulate TAPs that are directly executable by theRTS. Their structure is very simple, and there are no complex language elements (such asscoped identi�ers) which would make parsing or altering the TAPs di�cult. For example,the test-minimization phase discussed in Section 5.3.2 was implemented using generic ID3code with the addition of a very simple �lter that modi�es the ID3 test-tree output to theTAP test format.Another bene�t of TAP simplicity is predictable behavior: because they have essentiallyonly two activity modes (either the action is executed or it is not), they provide a basisfor plan guarantees without complex reasoning about arbitrary programs. All the planningsystem needs to understand is whether or not the TAP will be executed. Likewise, thisaspect leads to simple TAP timing characteristics that make it easier to account for areaction's resource usage, and easier to implement if-time TAPs. If arbitrary programming



85constructs were allowed in the representation of reactions, the RTS might not be able todetect when a reaction is not going to use all of its assigned resources, and an if-timereaction may proceed. With TAPs, the boundary between test and action portions givesthe RTS a simple indication of when to check the current resource usage and possibly �reif-time TAPs.On the negative side, the same simplicity limits the power of the representation. Explicitloops, variables, ELSE clauses, and other common programming constructs are not available.However, it is important to note that the functionality of many of these constructs can beimplemented at both higher and lower levels of the architecture. Loops, for example, can beimplemented at a higher level by multiple TAPs or at a lower level by C-coded primitives.In fact, CIRCA frequently automatically builds loops of TAPs that will maintain somedesired set of states. ELSE clauses can also be implemented by multiple TAPs checkingcomplementary preconditions, or by C primitives with their own conditional branching.At issue, then, is not really absolute representational power of the TAPs executed by theRTS, but the balance between representational power at the planned-reaction, interpreted-code level and at the compiled level. At the C level, almost any programming constructsare possible. Those C constructs are compiled into primitives, which are then dynamicallyinvoked by the TAP interpreter.5.4.4 AIS Complexity and Abstraction for Domain EncodingAlthough we argued in Section 5.3.1 that the world model planner will not enumerate theentire state space, it is unfortunately true that even the smaller set of \possible" world modelstates is still exponentially complex. For example, the Puma domain was originally encodedwith separate state features indicating the shape of the parts held in the gripper, arriving onthe conveyor, and last placed on the table. A NIL value for one of these features meant thatno part was present in that location. When these three state features had only one possiblenon-NIL value (i.e., only parts of one shape were possible), the corresponding world modelcontained 330 possible states. Adding another possible part shape did not simply doublethe state space size, because of the need to enumerate each of the possible combinationsof part types on the table, in the gripper, and on the conveyor. The resulting exponentialgrowth of the enumerated state space is illustrated by the two graphs in Figure 5.15.If we consider just the three part-shape features and their initial two possible values,we see there are 23 = 8 possible combinations of values. Given the enumerated state spacesize of 330, we can see there are about 330=8 = 41:25 states enumerated for each possiblecombination. If we use that scaling factor to project the number of enumerated states forlarger numbers of possible part shapes, the results match quite closely with the experimentalresults. For example, if there are three possible values for the part shape features, we projectthat there will be 41:25 � 33 = 1114 states; the actual state space contained 1294 possiblestates.This exponential growth of the state space is highly undesirable because the time tosearch for control plans, while isolated from the real-time deadlines of the environment,nevertheless a�ects the speed with which the system can achieve its long-term goals. Forexample, while the AIS builds a TAP plan that can pack a new type of part, the RTS may
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� � � �(a) Possible states. (b) Reachable states.Figure 5.15: The exponential growth of the world model state space.have to halt the conveyor belt if it has �lled up the table (bu�er) capacity. In that case, theslow planning system is delaying achievement of the system's long-term goal of �lling boxes,although the RTS is still guaranteeing the control-level goals of avoiding failure. In otherwords, while CIRCA does isolate the planner from the environment's control-level deadlines,there are still longer-term, non-critical timeliness concerns that motivate the desire for asystem which builds plans more rapidly.One way to address this type of exponential explosion is to use abstraction| we canreduce the enumeration of part-shape features by using more abstract values for thosefeatures. In the Puma domain, this approach was easily implemented by de�ning twoabstract classes of part shapes: KNOWN and UNKNOWN. The system is assumed to have alreadyderived a part-packing strategy for all KNOWN parts, while UNKNOWN parts must be put onthe table until a suitable algorithm is derived. With these changes, the part-shape featureshave only three possible values, and the state space is reduced to 826 enumerated states,no matter how many di�erent actual part shapes are possible. The state space in this caseis smaller than the previous three-value case (1294) because the system does not know howto put UNKNOWN parts in the box. In the previous case, the box could be packed with twoof the three \types" of parts (all but NIL), but the abstraction allows only one of the threetypes (KNOWN) to be packed.Abstraction has the additional bene�t of reducing the complexity of the transitions forthe domain. In the Puma example, the original encoding method required separate trans-itions that applied to each of the individual part shapes, so that there was a pickup-square-from-table action transition, a pickup-triangle-from-table transition, etc. With the useof abstraction, these can all be compacted into a single pickup-part-from-table action



87transition, leaving the planner fewer transitions to match against.5.4.5 Indexical Features and LoopingAnother technique similar to abstraction proves useful in domain encoding to avoidenumeration problems that might result from individuating speci�c objects in the envir-onment. As we shall see in a moment, the use of indexical features (or variables) [1] andnondeterminism also has advantages in the representation of repetitive agent behaviors.Consider the problems that would arise in the Puma domain if the AIS planner attemp-ted to reason about and distinguish between individual parts in its environment: i.e., if itassigned names to arriving parts and had to reason individually about square21, rect-angle13, etc. Clearly the system would have to know all the possible parts that mightarrive ahead of time, or else it would need the ability to generate new names as it postu-lates the arrival of new parts, and the state space would be in�nite (what would stop itfrom continuing to postulate new part arrivals?). Even if the set of arriving parts is �nite,the state space would still be vast, since each state would have to specify the position ofeach named part.We have already seen the solution to this problem: rather than individuating parts,we must encode the environment using indexical features, which refer to objects by theirrelationship to our agent. For example, in the Puma domain there is a feature representingwhether or not a part is held in the robot's gripper, but the speci�c name or identity of thatpart is never established. The only important information, from the agent's perspective,is the part's relationship to the robot. Thus indexical features abstract away from theidentity of objects, but they do so in a slightly unusual fashion. For example, if square21is held in the robot's gripper, it will be a�ected by the actions referring to part-in-gripper(and CIRCA will never give it a name like square21). Later, that same part might bea�ected by actions referring to part-on-table. Thus the mapping of individual objects totheir \classi�cation" by indexical features is dynamic, changing as objects move throughthe world.Indexical methods are frequently described in the control of reactive systems, but theiruse in planners is less common. CIRCA's combination of indexical variables and non-deterministic transitions leads to a uniquely powerful approach to planning repetitive andlooping behaviors. Normally, planning looping behaviors (such as the Puma task of packingparts, hammering a nail, or driving a screw [52]) causes problems for planners because theyreason about individual objects, and cannot recognize that they are building loops. For ex-ample, in the Puma domain, if a non-indexical planner �rst plans to deal with square21 bypicking it up, moving it over the box, and packing it in the box, each of those operators willhave variables bound to the speci�c object (square21) being a�ected. If the planner laterplans to perform the same actions on rectangle14, the actual representation of the planoperators will be di�erent, because the variable bindings will be di�erent. So recognizing aloop would require mapping back to general operators and comparing at that level. Even ifthis is done, it is still di�cult to see how the planner would know when to look for a loop:when should it invoke the mapping and comparison functions, and on what portions of thecurrent plan?



88ACTION hammer-blowPRECONDS: ((arm-raised T) (in-gripper hammer))POSTCONDS: ( ((arm-raised nil) (nail-flush T)) ;; Either done((arm-raised nil) (nail-flush nil)) ) ;; or not yet.RESOURCES: (arm)WCET: .5 [seconds]Figure 5.16: A simple nondeterministic transition that can be used to builddynamically-terminated plan loops.Using indexical variables solves at least part of the problem in recognizing loops, be-cause operators are not specialized with variable bindings. In our Puma example, we planactions that deal with part-on-conveyor and part-in-gripper| separate operators arenot planned or created for individual parts, and the fact that all arriving parts are pickedup by the same repeated action is not derived by some inspection of the plan, it is alreadyrepresented explicitly in the single planned operator.We will see in a moment how CIRCA addresses the other part of the loop-planning prob-lem: actually representing the loop. But �rst, we note that CIRCA's use of nondeterministictransitions also provides leverage on the problem. When a traditional planner is building alooping behavior, it may have particular di�culty deriving the termination conditions forthe looping operator. If the loop has some known number of required repetitions, a simplecounter can be used (as in NOAH). But what if the loop termination condition is dynamic,and cannot be precisely determined before run-time? Suppose, for example, that the task isto hammer a nail into a board, and uncertainty in the wood's density and the nail's shapedoes not allow us to predict exactly how many hammer blows will be required. How can atraditional planner with �xed, deterministic operators represent this? The e�ects of eachhammer blow are not really certain; either the blow may �nish the task by pushing the nail
ush, or it may leave some part of the task undone, requiring additional repetitions. CIRCAhas no trouble representing this uncertainty, as shown by the transition in Figure 5.16.Planning a repetitive behavior in CIRCA is equally simple, as illustrated by the worldmodel for the simple nailing domain, shown in Figure 5.17. In state B, when the hammer-blow action transition is applicable, the planner will project forward both of its possiblesets of postconditions, and will recognize that it may lead to the desired state C, where(nail-
ush T) holds. Thus the operator will be chosen correctly to accomplish the task.Projecting forward the other branch of the nondeterministic postconditions, the plannerwill also realize that the action transition may loop back onto state A, which the plannerhas already considered. Since the planner has already selected an action for that state, nofurther planning is necessary. Thus CIRCA can easily plan looping behaviors with dynamictermination conditions that are determined only at run-time.The looping itself, the repetition, is inherent in all the control plans that CIRCA builds,because they are implemented not as traditional sequential plans but as reactive TAP
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action: 

sense state,
hammer-blow

action: 
sense state,
raise-arm

NAIL-FLUSH   NIL

ARM-RAISED   NILARM-RAISED   T

NAIL-FLUSH   T

ARM-RAISED   NIL

NAIL-FLUSH   NIL

B CA Figure 5.17: The nailing domain world model, demonstrating nondeterministic trans-itions and looping.plans. The RTS continually loops over the schedule of TAPs, repeatedly testing theirapplicability conditions and executing their actions whenever appropriate. Thus, if a worldmodel contains a loop (i.e., the planner thinks the world may re-enter a state it has been inbefore), the TAP form of the control plan already ensures that the state will be recognizedand appropriate action taken, if necessary. The planner does not need to perform anyadditional reasoning to accommodate repeated behaviors.5.5 Summary of AIS FeaturesIn sum, our AIS implementation satis�es the functional requirements useful for intelli-gently designing and controlling a real-time system, as presented in Section 5.1. The AISincludes the following features:� Flexible, Lisp-based Knowledge Sources.{ Unconstrained precondition expressions.{ Unconstrained action expressions/routines.� A multiple meta level interpreter.� Interrupt-driven input.� Automatic reaction plan generation from a description of world model, goals, andcapabilities.� Automatic, heuristic TAP test minimization.� Automatic TAP period assignment.� Automatic mapping of abstract world model features to sensing primitives.We have presented implementation details of these mechanisms, and we have describedguidelines for using the representations and algorithms e�ciently. In particular, we havefocused on the use of abstraction in domain modeling to combat both state-space explosionand related problems with planning loops and counting domains.



CHAPTER 6THE SCHEDULER & REAL-TIME SUBSYSTEMIMPLEMENTATIONSIn this chapter we describe the prototype implementations of the Scheduler module andthe Real-Time Subsystem (RTS). We provide detailed descriptions both to clarify preciselythe way CIRCA is intended to operate, and to demonstrate the practicality of meeting thefunctional constraints imposed by the architecture.6.1 The SchedulerIn the �nal phase of generating TAP control plans, the AIS sends the accumulatedinformation about the planned TAPs to the Scheduler module. The Scheduler tries tobuild a cyclic schedule that runs TAPs at least as frequently as their periods require. Inthe current implementation, the RTS can run only one TAP at a time, and TAPs are notinterruptible, so the Scheduler does not need to consider TAP preemption.The CIRCA diagram of Figure 1.1 showed the Scheduler as a separate entity from theAIS, communicating over explicit links. For ease of development and experimentation,those links have been simpli�ed to simple procedure calls within the AIS; the Scheduleris currently implemented in Lisp within a KS run by the AIS interpreter. The main costof that simpli�cation is that the scheduling process can no longer be performed in parallelwith other deliberative processing. In the Puma domain, this has little or no e�ect, sincethe scheduling process is much less time-consuming than the TAP planning.The Scheduler uses a modi�ed deadline-driven scheduling algorithm [42, 78] to builda TAP schedule. This algorithm speci�es that, each time the system can choose whichTAP to run, it should run the available TAP with the earliest deadline. To derive a cyclicschedule with this mechanism for choosing the next TAP to run, the Scheduler simulates theoperation of a dynamic scheduler, incrementing a time counter and deciding which TAPsto run as simulated time passes. After the simulation has progressed far enough that allof the TAPs that must be scheduled have been invoked at least once, the Scheduler beginsscanning the trace of the simulation, attempting to extract a loop of TAP invocations whichmeets all TAP timing requirements. The maximum possible loop size is equal to the leastcommon multiple of the TAP MAX-PERIODs.If the Scheduler cannot build a schedule that guarantees all the TAP timing constraints,90
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5Figure 6.1: A simple example of how pure deadline-driven scheduling can produceundesirable, lengthy schedules.it will return a failure message to the AIS. At that time, the AIS may backtrack to generatea di�erent proposed TAP plan, or it may make other alterations to its world model to tradeo� some aspect of its performance, in an attempt to relax the scheduling constraints thatmade a TAP schedule impossible to �nd. Chapter 7 will discuss those tradeo� methods indetail.6.1.1 Modi�ed Deadline-Driven SchedulingThe simple deadline-driven criterion for selecting the next TAP to run is optimal inthe sense that, if any schedule is possible, this method will produce one. However, giventhe scheduling problem posed to CIRCA's Scheduler, the deadline-driven algorithm doesnot produce particularly e�cient schedules. As a simple example, consider the problemof scheduling two TAPs, A and B, where A has a runtime of 4 seconds and a maximumperiod of 10 seconds, and B has a runtime of 5 seconds, with a maximum period of 50seconds. If we use the trivial deadline-driven algorithm, the schedule of TAPs will have11 invocations of TAP A, followed by one invocation of TAP B, and then repeat thatpattern, as illustrated in Figure 6.1. This schedule is perfectly acceptable because it meetsthe frequency requirements for both of the TAPs. However, it is clearly not the shortestschedule that meets those requirements. In fact, the very simple schedule composed ofalternating invocations of A and B also meets the requirements, and it is much shorter.This short schedule length is a major advantage from the CIRCA perspective, because theScheduler is simulating this scheduling process forward to generate the appropriate loop ofTAPs. The longer the loop, the longer it takes to generate, and the more resources thatcomputation consumes. Therefore, we have modi�ed the basic deadline-driven algorithmso that it will tend to produce shorter, more compact schedules. The modi�cations do notalter the optimal nature of the Scheduler: in the worst case, the Scheduler will essentiallyuse just deadline-driven scheduling.The primary change to the scheduling algorithm is the addition of a second \level" ofscheduling priorities, used to schedule TAPs that would not necessarily be chosen by the



92deadline-driven criterion, when slack time is available. Slack time is de�ned as the timebetween the current instant in the simulated schedule, and the latest possible start timeof the TAP TDD chosen by the deadline-driven criterion. Essentially, this slack time is theamount of time available for other processing, before the system de�nitely must run TDD.If other TAPs can be found which �t within this slack time, they can be scheduled to runbefore TDD. Therefore, the Scheduler �rst �nds TDD, then �nds the set of \feasible" TAPswhose runtimes will �t in the consequent slack time. If none are available, TDD is chosento run next. Otherwise, to maintain a \fair" distribution of invocations of the TAPs, theScheduler chooses to run the feasible TAP which was least-recently invoked in the scheduleso far. This has the e�ect of producing a modi�ed round-robin e�ect, rotating the privilegeof a slack-time invocation among the feasible TAPs. This is not a perfectly fair round-robin,because at each scheduling point di�erent sets of TAPs may �t within the slack time of thecurrent TDD.With these modi�cations to the TAP selection criterion, the Scheduler is able to producethe second schedule shown in Figure 6.1. At time 0, the simple deadline-driven criterionindicates that TDD is TAP A, because its deadline is 10, while TAP B has a deadline of50. However, because A's runtime is 4, there are 6 seconds of slack time before it must beinvoked. Since B's runtime of 5 �ts in that slack time, the system selects B to run �rst.At the next scheduling point, time 5, TDD is A again, but this time only 1 second of slacktime remains, B will not �t, and A is selected1. At this point, since both A and B havebeen scheduled, the system will begin scanning for acceptable loops in the schedule so far,and the simple loop BA meets all constraints.As an example of how the Scheduler can fail, consider what would happen if TAP B hada runtime of 7 seconds. At time 0, the deadline-driven criterion would select TAP A, andnow B would not �t in the slack time, so A would be scheduled. This would continue asshown in the upper schedule of Figure 6.1 until time 44, at which time B would be selected.However, at this point the invocation of B would �nish after its deadline of 50, and theScheduler would recognize this error condition.Actually, this simple example can easily be recognized as unschedulable without anyforward simulation. If we consider any single invocation of TAP A, we can see from itsperiod and runtime that there will be at most 10� 4 = 6 seconds of time available for otherTAPs between the required invocations of A. Thus the seven-second runtime of B in thisexample makes it impossible to ever schedule these two TAPs together. More generally, itmust always be that case that, for any two of the N TAPs being scheduled, the sum of theirruntimes (worst-case execution times) is less than either TAP's period.6.1.2 The If-time Server TAPIf the Scheduler is able to produce a TAP schedule that includes all of the TAPs thatmust be guaranteed, it is possible that there are enough slack resources in the RTS to alsoguarantee some of the if-time TAPs. Putting if-time TAPs into the guaranteed schedulecan have the bene�cial e�ect of speeding CIRCA's reactions.1Actually, even if B did �t it would not be selected here; the TDD TAP is included in the least-recently-runround-robin, so A would be selected.



93One way to achieve this bene�t would be to iteratively include additional if-time TAPsin the list of TAPs being scheduled, increasing the number until the Scheduler �nally fails.At that time, the last successful schedule could be retrieved, and it would provide someof the if-time TAPs with guaranteed, scheduled invocations. The main problem with thissimple iterative approach is that it does not share the bene�ts of the slack time evenly overthe if-time TAPs: it is not \fair." Whichever if-time TAPs actually get scheduled receivethe full bene�t of being guaranteed, while the remaining if-time TAPs may never be invokedat all, because they remain on the if-time list.To avoid this di�culty while still taking advantage of possible slack resources, we haveimplemented an \if-time server" TAP, which tries to fairly distribute the available slack timeamongst all of the if-time TAPs. Instead of scheduling individual if-time TAPs when slackresources are available, the AIS builds an instance of the if-time server TAP and passes itto the Scheduler with the guaranteed TAPs. When executed by the RTS, the if-time serverTAP performs its own round-robin over the if-time TAPs. On each invocation, the serverTAP executes the if-time TAP pointed to by its round-robin pointer, and then incrementsthat pointer to the next if-time TAP. The overhead of the server TAP is extremely small,because it only increments that single pointer.The if-time server TAP could also implement a more complex method of choosing thenext TAP to run. For example, the server could use priorities assigned to TAPs, andmaintain a multi-level priority queue similar to an operating system. Or, the server TAPcould be given additional knowledge of the domain and the constraints between TAPs, andselect appropriate TAPs to run based on that information. There are two constraints on thissort of more complex server. First, the overhead of the server would be increased by thiscomplexity, consuming more of the available slack time. Second, the additional knowledgeof priorities or other information must be derived and built into the server TAP. For now,the round-robin server provides a low-overhead, low-information alternative that distributesslack time as evenly as possible.The server TAP is able to invoke any of the if-time TAPs because the AIS builds it witha worst-case execution time set to the maximum of the worst-case execution times of allof the if-time TAPs. Deciding on a MAX-PERIOD to assign to the server TAP is somewhatmore di�cult. Ideally, the if-time server TAP would be given a period that would causeit to be invoked frequently enough to use the slack resources, but not so frequently as tomake a schedule impossible. Since it is not possible to directly determine this value, wehave implemented a simple iterative heuristic to try to optimize the MAX-PERIOD assignedto the if-time server TAP.As a starting point, the server TAP is assigned a MAX-PERIOD equal to the period ofthe �rst schedule produced (containing just the required TAPs, without any if-time serverTAP). Thus if all other scheduling constraints are met, the server TAP will be invoked onceper cycle through the new TAP schedule. If the Scheduler is able to produce a successfulschedule with these constraints, the AIS then decreases the server's period by some amount(currently by 25%), and repeats the scheduling process. This iteration terminates when theScheduler fails, and the last successful schedule is restored and used. If the initial serverTAP MAX-PERIOD assignment does not result in a feasible schedule, the AIS can also increase



94the value iteratively for a few cycles, until a successful schedule is produced.6.1.3 DiscussionWe have shown how the Scheduler is able to produce cyclic schedules of TAPs that canbe shorter than those built by simple deadline-driven scheduling, and how the if-time serverTAP can allow the system to make guaranteed utilization of slack time. It is importantto note that our modi�cations to the deadline-driven algorithm take e�ect only when theschedule utilization is fairly low; when the utilization is high, slack time is minimized and thesecond level of scheduling is never possible. As a result, our modi�cations alter the Schedulerperformance for low-utilization domains, but in worst-case, high-utilization domains theyhave no e�ect, and the system defaults to pure deadline-driven scheduling.Experiments using these mechanisms on hundreds of variations of the Puma domain(involving di�erent goals, part arrival rates, emergency alert rates, etc.) have shown thatthe Scheduler produces e�cient, short schedules very quickly, or else rapidly recognizesthat a particular set of TAPs is not schedulable. Most Puma domain schedules consist ofbetween 15 and 35 TAP invocations, and are generated in well under a minute.However, in the worst case, the Scheduler might have to construct a schedule as longas the maximum possible loop size, equal to the least common multiple (LCM) of theTAP MAX-PERIODs. While this does not pose a problem for many hand-crafted real-timesystems, in which the task periods are carefully arranged to be simple multiples of eachother, the automatically-generated TAP periods created by CIRCA are not so convenient.For example, in one version of the Puma domain, the maximum possible schedule loopfor ten TAPs includes at least 1042 TAP invocations2. Thus the implementation of theScheduler within an interruptible KS is a good choice; the AIS can use a timer interrupt tomake sure that the Scheduler returns a result within a reasonable amount time, as describedin Section 5.2.1. If the timer interrupt halts the Scheduler, then the AIS might decide thatsome modi�cations are necessary to the planned TAPs to make the scheduling processingeasier.For example, the AIS might decide to use a heuristic method for reducing some ofthe TAP periods so that they have a smaller LCM, thus making the worst-case schedulemuch shorter. By only reducing periods, not increasing them, this sort of modi�cationretains or improves upon the response-time guarantees that motivated the original periodassignments. However, while the worst-case schedule may be shorter, the schedulability ofthe set of TAPs is also decreased; shorter TAP periods mean higher utilization, making itmore di�cult to �t all the TAPs into a schedule. Furthermore, there is no obvious heuristicfor choosing how much to decrease the TAP periods to achieve a useful LCM. Currently,this modi�cation has not been implemented.2As it turns out, the successful schedule loop for that example required only 21 TAP invocations.



956.2 The Real-Time Subsystem (RTS)The RTS was originally prototyped in Lisp, and has since been re-implemented andenhanced in C. Both versions have the same basic functionality, but the C version providesincreased speed, e�ciency, and predictability.The main program loop of the RTS is shown in C-like pseudo code in Figure 6.2. TheRTS begins by initializing numerous variables and communication links and then loading abootstrap TAP schedule. The bootstrap schedule is designed to read in a new TAP scheduleas soon as possible from the AIS. After that initialization, the RTS simply executes thecurrent TAP schedule as long as the run-current-schedule 
ag is set. If that 
ag isturned o� by a TAP, that indicates to the RTS that a new schedule has been read in,and the RTS will drop out of its TAP-execution loop just long enough to install the newschedule. Switching to a new schedule is merely a matter of adjusting several pointers, suchas the pointer indicating the current TAP within the schedule being executed.Within the TAP-execution loop, the RTS runs through the guaranteed TAP schedule,evaluating the test expression for each TAP and �ring those TAPs whose tests return true.If a guaranteed TAP does not use all of its allocated worst-case execution time, the RTSuses the resulting slack time to search for and invoke one or more of the unguaranteed, if-time TAPs. The decision to look for additional if-time TAPs to execute takes into accountthe overhead of the RTS processing time itself.The pseudo-code of Figure 6.2 is simpli�ed in several ways from the actual C code.One major di�erence is that the TAPs for the current schedule are not kept in a linkedlist, as implied in the pseudo-code. Instead, the RTS is built with two large pre-allocatedarrays of TAP structures. At any one time, one of those arrays holds the TAPs currentlybeing executed and the other array may be loaded with the TAPs for the next schedule.The switch-to-new-schedule() routine simply swaps the array pointers used by the TAPexecution and TAP downloading routines.The primary motivation for this TAP array mechanism is to avoid replicating the TAPstructures. A single TAP schedule may contain many invocations of each TAP, particularlywhen the TAP periods are diverse. If the TAPs were stored as a linked list (as they werein the Lisp-based RTS), then each invocation of a TAP would correspond to a replicationof the TAP structure. This would be very ine�cient, since the data within the replicatedstructures would be completely identical, except for the pointer to the next TAP. The arraysystem avoids this problem, because TAPs are represented independently from the TAPschedule; each TAP is only stored once. Another pre-allocated array is used to hold theschedule, which is now represented as simply a list of indices into the TAP array. Figure 6.3illustrates the actual details of the implemented storage scheme. The array mechanismavoids a potentially large amount of data replication that might result from an ine�cientmethod of storing TAPs. In the earlier version, this data replication not only used storagespace ine�ciently, it also slowed down the communication of TAP schedules to the RTS;each TAP in the schedule was transmitted to the RTS in order, so the replication waspropagated over the communication channel as well. The use of pre-allocated arrays andschedules represented by array indices avoids this ine�ciency, and also avoids the time costof allocating a new TAP structure each time a TAP is downloaded.



96initialize_rts();load_bootstrap_schedule();while (!halt){ while (run_current_schedule){ start_tap_time = current_time();if (execute_test_expression(cur_tap)) execute_action(cur_tap);cur_tap = cur_tap->next;end_tap_time = current_time();slack_time = cur_tap->wcet - (end_tap_time - start_tap_time);while (slack_time > rts_iftime_overhead){ start_tap_time = current_time();if ( cur_iftime_tap->wcet < slack_time - rts_iftime_overhead&& execute_test_expression(cur_iftime_tap) )execute_action(cur_iftime_tap);cur_iftime_tap = cur_iftime_tap->next;end_tap_time = current_time();slack_time -= end_tap_time - start_tap_time;}}switch_to_new_schedule();} Figure 6.2: Pseudo-code for the RTS main loop.
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Figure 6.3: The array-based storage scheme for TAP schedules.



97char buffer[BUFFER_LENGTH];int buffer_position;void get_new_schedule(){ int read_length, end_of_message;read_length = read_socket_message(AIS_socket,buffer+buffer_position,MAX_READ_LENGTH, &end_of_message);buffer_position += read_length;if (end_of_message){ parse_new_schedule(buffer);buffer_position = 0;new_schedule_ready = 1;}} Figure 6.4: The get-new-schedule function.6.2.1 Downloading a New TAP ScheduleFrom just the main RTS code loop of Figure 6.2, it is not clear how the RTS ever getsa new TAP schedule. The approach is simple: the TAP schedule itself includes a TAP thatexecutes the get-new-schedule function, illustrated in Figure 6.4. This function causesthe RTS to read in a new TAP schedule from the AIS, as part of the processing of the currentschedule. Therefore, by building this TAP into the schedule, the AIS actually determineshow often the RTS is checking to see if a new schedule is available. When the AIS expectsthe environment to be highly dynamic and challenging for the RTS, it can cause the RTSto spend less time checking its input communication bu�ers, by increasing the maximumperiod of the get-new-schedule TAP.The get-new-schedule function is crucial to the guaranteed performance of the RTSbecause it reads in the new TAP schedule incrementally. Each time there is data waitingfrom the AIS, the RTS will read in a constant amount (MAX_READ_LENGTH) of the newschedule from the AIS. This has the e�ect of interleaving the downloading of the nextschedule with the execution of the current schedule, avoiding unpredictably long periods inwhich the RTS is involved in communication. All incoming communication is broken upinto �xed-size packets whose processing is explicitly scheduled.When the AIS has sent a complete new TAP schedule, it terminates the message tothe RTS with a special 
ag character (`#'). The read-socket-message() function detectsthis character and sets the end-of-message 
ag, indicating that the schedule has beencompletely read into the RTS input bu�er. At that time, as shown in Figure 6.4, the RTSparses the new TAP schedule all at once. This non-incremental behavior is not desirable,but proved easiest to implement with available automatic parser generators. Extensions to



98TAP switch-to-new-schedule:TEST (schedule_ready T):ACTION (run_new_schedule):MAX-PERIOD 0 ;; An if-time TAP.:TEST-TIME .0005:ACTION-TIME .005Figure 6.5: A simple TAP used to transfer control to a new TAP schedule.more powerful, incremental parsers should be completely straightforward. The grammar ofthe TAP schedule download language is described in Appendix B, which also includes anexample schedule download message. Once the new TAP schedule is completely downloadedand processed, the global new-schedule-ready 
ag is set.6.2.2 Transferring Control to a New TAP ScheduleSwitching control to the new TAP schedule is somewhat complex, because the systemmust continue to ensure its safety during and after the switch. From the graph modelviewpoint, the system must only switch to a new schedule when the world is in a stateshared by the models used to generate both the old and new schedules, as discussed inSection 4.6. The world states accounted for by the new schedule must include at least onestate that is also reachable with the old schedule. If the new schedule completely subsumesthe old, then the switch can occur at any time.This is most often the case in the Puma domain, where the AIS is usually simply addingmore capabilities to the TAP schedules by deriving new part-packing methods. As a result,the new TAP schedules can handle all of the same world states as the old schedules, andmore. For these simple transfers, the TAP illustrated in Figure 6.5 is su�cient to accomplisha switch to the new schedule, using the RTS primitive functions illustrated in Figure 6.6.The TAP simply tests to see if a new schedule has been completely received, and, if onehas, it resets the run-current-schedule 
ag. The RTS then terminates the TAP executionloop, performs several pointer swaps, and immediately returns to executing the new TAPschedule, as shown in Figure 6.2. Thus the transition between TAP schedules is extremelyrapid, and can be subsumed by the execution time requirements of the switch-to-new-schedule TAP without great cost.In other domains, it is more likely that the AIS will have to decide on one or more statesfrom which it will switch to the next plan phase, and download TAPs to detect when theworld is in one of those states and a new TAP schedule is available. For example, in amobile robot domain each TAP schedule might be used to implement a distinct phase of apath plan, and the transfer of control between plans should only be accomplished when therobot has reached the end of one TAP plan's path region. The world states possible oncethe robot has reached the end of the �rst TAP plan's path are presumably shared with theTAP plan for the next path region. In that case, the transfer TAP's test expression might bemodi�ed to read something like: (and (robot-status at-destination) (schedule-ready



99int schedule_ready (){ if (new_schedule_ready) return(T);else return(NIL);}void run_new_schedule (){ run_current_schedule = 0;}Figure 6.6: RTS primitives used in transferring control to a new TAP schedule.T)).When building a TAP plan Pi, it is possible that the AIS will not be able to decideahead of time which world model states are appropriate for the transfer of control to thesubsequent TAP plan Pj . In that case, the AIS can still implement a safe transfer by usinga combination of the methods described above. First, the AIS builds into the current TAPplan Pi the simple switch-to-new-schedule TAP, so that Pi will transfer control to a newschedule as soon as it is downloaded, with no other conditions required. Then, once theAIS has derived the subsequent TAP plan Pj and the appropriate states in which a transfershould be made from Pi to Pj , the AIS downloads to the RTS a slightly-modi�ed copy ofPi, in which the trivial switch-to-new-schedule TAP is replaced by a TAP that transferscontrol only when it detects the appropriate states3. The RTS can swap in this new planwithout risk, because the new plan completely subsumes the current plan Pi. Finally, theAIS can download the new plan Pj , and the transfer will be accomplished in the appropriatestates.6.2.3 Feedback to the AISCommunication out of the RTS to the AIS is also accomplished only within TAPs,as illustrated in Figure 6.7. The unknown-part-arrived TAP detects when unknown-shaped parts arrive, and noti�es the AIS that a new part-packing plan is required. TheTAP includes an explicit message-sending function, notify-AIS, whose execution time isincluded in the ACTION-TIME for the TAP. Similarly, the I/O time required to communicatewith the sensors and actuators is included in the timing characteristics of the TAPs thatuse those channels. Thus all communication into and out of the RTS is scheduled explicitlywithin TAPs, avoiding unpredictable I/O delays.This scheduled communication not only allows the RTS to behave predictably, it alsogives the AIS control over the amount of feedback data which the RTS sends to the AIS,allowing a dynamic �ltering similar to that used by Guardian [28]. If the AIS needs to keep3This more-complex test expression will increase the transfer TAP's worst-case execution time. Eitherthe original switch-to-new-schedule TAP can be scheduled with extra time, or the schedule can be re-generated with the new parameters, or the transfer TAP can be made an if-time TAP.



100TAP unknown-part-arrived:TEST (type_of_conveyor_part unknown):ACTION (notify_AIS unknown-arrived):MAX-PERIOD 0 ;; An if-time TAP.:TEST-TIME .0025:ACTION-TIME .04Figure 6.7: A feedback TAP that detects when unknown-shaped parts arrive andnoti�es the AIS.close track of an environmental feature, such as the state of the Puma-domain emergencyalert light, or the charge-status of a mobile robot's battery, it can build a TAP that willsend the value of that feature back to the AIS as frequently as necessary. Or, if the AIS onlyneeds to be noti�ed of rare failures or undesirable events, it can plan less-frequent feedbackTAPs. If some feedback information is optional, the AIS could plan if-time TAPs to sendthe data only if the RTS is not busy performing other, more important tasks.There are two signi�cant research issues related to such feedback TAPs:� How does the AIS decide which world model states to select for feedback TAPs?� How does the AIS decide what information the feedback TAPs should return to theAIS?Neither of these issues has yet been fully addressed. However, we have begun investigatingpreliminary approaches to these problems.When to Send FeedbackFeedback TAPs appear to be useful in two general situations. First, the AIS mightwant to be noti�ed of any type of progress in the system, to ensure that the TAP plans areachieving their goals. For example, the AIS might like to be noti�ed when each new TAPplan takes control, so that it can monitor the progress of the plans. The need for this typeof feedback is outside the limits of the world model used for TAP planning: the world modeldoes not represent the state of the AIS' knowledge. Since our focus has been on planningTAPs using the world model, we have not investigated general progress-monitoring feedbackTAPs.We distinguish this general need for progress reports from the second type of feedback,used to report that a TAP plan has encountered some problem which might prevent it fromachieving all its goals. For example, when a part of unknown shape arrives, the RTS mustput it on the table, and it cannot pack that part into the box until a new TAP plan isprovided. This means that the RTS will not be able to achieve its (part-on-table nil)goal. In terms of the world model used for TAP planning, the system has reached a dead-endstate. That is, the world has now entered a state from which there is no way to reach anyideal state achieving all the system's goals. Note that this does not mean a control-level



101goal will be violated: if the system has guaranteed all of its control-level goals, there is norisk of catastrophe. Only the achievement of task-level goals can become jeopardized in thisway. This characteristic can be used by the AIS to automatically recognize situations inwhich feedback TAPs should be executed by the RTS to alert the AIS.We have implemented a preliminary module for detecting dead-end states in the worldmodel and building feedback TAPs for them. The current version successfully locates themany dead-ends in the Puma domain (including all the states in which an unknown-shapedpart has already been placed on the table). In practice, the only problem with this approachis that it results in too many noti�cation messages to the AIS: after an unknown part hasarrived, every world state is a dead-end.We are beginning to investigate two approaches to solving this problem. The simplestapproach is to make the feedback TAP \one-shot," so that it sends a single message tothe AIS and then disables itself. This is a practical, simple approach but clearly not ideal,particularly because it is outside the scope of the world model's representation.The second approach is to detect the move into the dead-end region, notifying the AISon that transition and not otherwise. This approach shows promise for limiting the numberof feedback messages to the AIS and keeping the representation and motivation for thatlimitation within the bounds of the world model. This approach might lead to a TAP likethe one illustrated in Figure 6.7, detecting when the unknown-shaped part �rst arrives,because after that the current TAP plan can never maintain all of its goals.What Feedback to SendA signi�cant research issue that has not yet been addressed is how the system decidesexactly what information should be returned to the AIS. For example, in the Puma-domainexample above, it is clear that the AIS needs to know more than simply that an unknown-shaped part has arrived; the AIS also needs to know something about the shape of the newpart. One possible solution is to have the RTS send back to the AIS all the information ithas about the domain, including the shape information it extracts from a camera image orother sensor modality. This approach is certain to provide all the necessary information tothe AIS, but it is tremendously ine�cient. The RTS may have a great deal of sensor dataavailable, and one of its purposes is to isolate the AIS from that complexity.An alternative approach would be to have the AIS reason about what features distinguishthe feedback-triggering world model state from the similar states in which feedback is notrequired. In the example scenario, the AIS has planned a feedback action for the arrivalof unknown parts, but the similar arrival of known parts is dealt with by other plannedactions. Thus a comparison of the respective world model state descriptions would revealthat the feedback-trigger state di�ers in the (type-of-conveyor-part unknown) feature.The AIS must then associate that feature with the related sensor information and decidewhat should be sent as feedback.



1026.3 Discussion: The RTS Really is Real-TimeWe have stressed that CIRCA combines the ability to run arbitrarily complex, unpre-dictable AI methods with guaranteed, predictably real-time performance of critical controltasks. It is trivial to prove that CIRCA's AIS is capable of implementing very complexalgorithms: the system is clearly Turing complete, since it incorporates arbitrary Lisp code.Therefore, to completely justify our claim of combined real-time and AI, we must show thatthe RTS really can provide predictable, guaranteed real-time performance, and that theRTS guarantees are truly isolated from the AIS.This seems an appropriate time to reiterate the fact that the goal of real-time systems isnot to be \fast," but to be \predictably fast enough." That is, a real-time system must beknown to operate at a rate su�cient to meet the demands of its environment. Since mereprocessing speed is easily varied by using di�erent computer hardware, the most importantaspect of real-time systems is actually predictability.To show that CIRCA's RTS is truly predictable, and thus that it provides a suitableexecution environment for TAPs implementing real-time reactions, we will examine thepossible sources of unpredictability in the system, including communication delays, contextswitching, and dynamic memory. We will describe how the RTS avoids unpredictability indealing with each of these potential problems.6.3.1 Communication and InterruptsFrom an architectural standpoint, the I/O mechanisms of the RTS are perhaps its mostimportant features, because they provide the crucial isolation of the predictable perform-ance of the RTS from the uncertain operations of the AIS and Scheduler. Unboundedcommunication delays are avoided by making all socket I/O calls nonblocking using �xed-maximum-length operations. Calls to socket-read, for example, are made with a limitedinput bu�er size to be �lled, and they return immediately no matter how much (or howlittle) data is available on the connection. Calls to socket-write return immediately afterputting a limited amount of data onto the connection, whether or not the receiving end hasgotten that data yet. Therefore, given a real-time operating system with well-understoodsystem calls having bounded behavior themselves, the communication in and out of theRTS is incapable of causing unexpected delays, and the RTS remains fully predictable evenwhile communicating with the AIS.Unlike many systems which attempt to ensure real-time performance through rapidresponse to interrupts, the RTS does not accept any interrupts. As discussed above, theRTS is expected to have TAPs that explicitly check for all important conditions as quicklyas necessary. In a sense, we have moved the polling loop out of the interrupt hardware andinto the software RTS, so that the AIS and Scheduler can reason explicitly about the formand frequency of that loop. Moving the polling loop decreases its frequency, since manyprocessor instructions are involved in running each TAP. For example, the pSOS+ real-time kernel can provide interrupt service in 6 microseconds (see Section 6.3.7), while thefastest possible TAP schedule can only respond in about 70 microseconds (see Section 6.4)4.4Interestingly, when running under Unix, the response time using polling in the RTS is much faster



103However, moving the polling loop to software increases the architecture's ability to controland predict the responses of the system. If the RTS accepted interrupts, it would bevery di�cult to make any guarantees about its performance, since the system would haveto account for the many unpredictable aspects of interrupt-driven systems. For example,lower-priority interrupt handlers could never be guaranteed, since higher-priority interruptswould preempt and override their behaviors. Furthermore, incoming interrupts might belost if they arrived during the handling of equal- or higher-priority interrupts. Becauseof these and other problems, interrupt-driven systems are less suited to predictability andguarantees than the polling behavior of the RTS.6.3.2 Dynamic Memory AllocationBecause new TAP schedules are downloaded from the AIS and are not known a priori ,the RTS must have the ability to dynamically allocate storage for the new TAP structuresand schedules. This allocation is performed within the get-new-schedule TAP that readsin and parses a new schedule, and it is therefore fully scheduled. The maximum amountof memory that may have to be allocated in a single get-new-schedule TAP invocationis determined by the maximum size message that the TAP can read in from the AIS.Naturally, the host computer's operating system must provide a predictable system call toimplement the allocation, and the system must be provided with enough memory for thetask. If a suitably guaranteed operating system primitive is not available then the RTScould be implemented to preallocate a large amount of memory before bootstrapping, andthen allocate that memory itself in a bounded, predictable manner.To avoid running out of memory for allocation, the RTS should also deallocate memorythat was allocated for TAPs used by schedules that are no longer being run. There areseveral ways to implement this functionality, in order to spread the cost of deallocationin di�erent ways. If the cost of deallocation is su�ciently small, the code which readsin a new schedule can deallocate the memory allocated to the TAP schedule which waslast running (not the one that is currently running). In the current implementation, thismethod is available but is not necessary, because the TAP schedules we have investigated arenot large enough to tax the several megabytes of available memory; even the larger Pumadomain schedules use less than 2500 bytes of memory per schedule, so the AIS would haveto send at least 400 new schedules to use up a single megabyte of RTS memory. However,memory preservation could prove crucial for larger-scale TAP schedules, and distributingthe cost of deallocation across the multiple invocations of the get-new-schedule TAP maybe useful.An alternative would be to avoid deallocation completely unless the AIS deems it neces-sary. The AIS could either model and keep track of the amount of memory the downloadedTAP schedules will have consumed, or it could have the RTS run a TAP speci�cally designedto watch for low-memory conditions and notify the Scheduler and AIS if such a situationarises. The AIS would then download TAPs which would include memory deallocation op-erations (and the Scheduler would be sure of not building schedules larger than the availablethan using interrupts, because of the expensive Unix context switch. The interrupt response time on theUnix-based RTS host machine was measured at 25000 to 90000 microseconds!



104RTS resources). The advantage of this approach is that it allows the system to avoid all ofthe overhead of deallocation when the overhead is not absolutely necessary. A disadvantageof this approach is that, because deallocation is put o� as long as possible, it may lead totemporarily unacceptable performance degradation when the system must suddenly spendmuch of its time deallocating and reorganizing memory.In many ways, these approaches parallel the methods used for dynamic memory andgarbage collection in Lisp. The main di�erence is that the RTS does not have a di�culttask in discovering which memory elements are no longer used: any allocated memory notbeing used by the current TAP schedule (or the schedule currently being downloaded) isunused, and may be deallocated. As a result, incremental deallocation is actually quitesimple and fast for the RTS. In fact, since the pointers to the last-run schedule are availablewhile a new schedule is being read in, it is trivial to recognize and deallocate those memorylocations before allocating new memory for the new schedule. However, if we put o� thedeallocation inde�nitely, the RTS will have to implement some new functionality to keeptrack of old schedules and their memory allocations, for later deallocation on demand. Thusincremental deallocation is much simpler for the RTS, and has the advantage of spreadingthe overhead more smoothly over the system's operations.TAPs themselves may perform dynamic allocation of memory, if that allocation is con-sidered as a resource consumption by the Scheduler, and thus is known to cause no problems.In the current implementation, TAPs could perform allocation because the C primitives theyinvoke have that ability, but we have found no use for this mechanism (yet). In the Pumadomain, for example, proper use of indexical variables avoids the need to \gensym" a newsymbol or variable for each instance of a block (as discussed more fully in Section 5.4.5).6.3.3 Context SwitchingOnce a new TAP schedule is input to the RTS, the system must perform a contextswitching operation to begin executing the new schedule. As described in Section 6.2,the RTS implements this capability in an extremely e�cient and completely predictablemanner. The context switch is accomplished by a TAP action which sets the 
ag run-current-schedule to FALSE, making the inner RTS loop terminate. Falling out of thatloop, the RTS performs several pointer swaps to make the relevant array variables pointto the new schedule arrays (guaranteed TAPs, if-time TAPs, and schedule of TAPs), anda series of variable initializations to make the RTS read the next incoming schedule intothe unused arrays. Thus the context switch does not require any looping or other complexcomputations, and has bounded time and resource requirements. In fact, these resourcerequirements are included within the speci�cation of the RTS primitive which triggers thecontext switch, so that even the time used outside of the TAP loop, in the context switchcode, is predicted and scheduled.6.3.4 Shared ResourcesContention over shared resources is another potential source of unbounded delays.However, this poses no di�culty for the RTS because all resource usage is scheduled within



105ACTION push-emergency-buttonPRECONDS: ((robot-status free) (part-in-gripper nil))POSTCONDS: ((emergency nil) (robot-position over-button))RESOURCES: (arm gripper)WCET: 3.5 [seconds]Figure 6.8: The push-emergency-button action transition.TAPs (including the context switch time noted above). TAPs which require resources otherthan time (such as a TAP that requires the Puma gripper) will automatically include teststo make sure that those resources are available, unless the AIS has determined that thesetests are redundant and unnecessary, based on its simulation of the possible world states(see Section 5.3.2).For example, consider the simple push-emergency-button action transition descrip-tion shown in Figure 6.8. The preconditions specify that the robot must be free (i.e., notbusy) and its gripper must be empty. After the planner determines the 54 states for whichthis action is appropriate, the resulting TAP has the simple tests: (and (part-in-grippernil) (emergency T)). Note that the TAP does not bother testing the robot-status fea-ture, despite the fact that the robot (a resource) is actually required for the TAP's action.The test generalization phase has determined that this test is unnecessary, because any timethis TAP is executed and the gripper is not holding anything, then emergency alerts arethe most important priority{ the robot will not choose to do anything except respond tothe emergency. Contention for resources is automatically avoided, because only one actionis planned for each possible world state.6.3.5 Additional Sources of UncertaintyIf the RTS allows TAPs to execute loops or recursive functions, it must be sure that thoseprogram structures will still have a predictable worst-case performance. Therefore, althoughthe system does not restrict the structure of RTS primitives, the user is required to specifya worst-case processing time for each primitive. If looping or recursion is involved, theuser may ensure bounded resource usage either by using any-time algorithm methods (seeSection 2.2.2) or by otherwise limiting the worst-case number of iterations or recursions thatwill occur. This does not preclude programming structures whose termination condition isdetermined at run-time; a worst-case bound must always be available, but the primitivesare free to use less than that amount of time.Faults in processing hardware, software, I/O devices, sensors, or actuators might lead tounpredictable performance by the RTS and the devices it controls. The RTS does not yetmake any provisions to deal with such faults: it is currently assumed that lower-level fault-tolerant mechanisms are available to detect and correct all possible faults. However, thedesign of CIRCA has been tailored for future extensions in which fault-tolerance issues canbe addressed through the use of \homeostatic" [4] or internal-state monitoring and controlprimitives. The RTS could execute TAPs which examine the state of its execution envir-



106onment to detect all types of faults and implement short-term, control-level workaroundsfor intermittent or temporary system failures. Longer-term faults would trigger feedbackcommunication to the AIS and Scheduler, which would then modify their models of thecapabilities of the RTS and the system it controls, to represent the faulted component.With this modi�ed world model, the AIS and Scheduler would then automatically buildnew control plans that account for the faults in the system, and CIRCA as a whole wouldbe cognizant of its faults and able to make rigorous statements about its behavior despitethose faults. Of course, the immediate real-time response to faults would remain the re-sponsibility of the RTS: the system's behavior immediately following a fault would only beguaranteed if the AIS had predicted the problem and scheduled a TAP to at least preventany potential control-level failures.For example, suppose that one of a mobile robot's obstacle-detecting sensors fails, andthe RTS is able to detect this failure during the execution of a monitoring TAP. The TAPcould then send a message to the AIS indicating that the sensor is permanently unavailable.Furthermore, because the AIS has predicted that this problem might occur, the RTS willhave TAPs that switch to an alternate sensor or perhaps implement some other actions (suchas halting the robot) that will prevent the system from failing by colliding with obstacles.When the AIS builds the next control plan, it will never try to invoke the failed sensorbecause of the modi�ed world model, so the fault will be taken into account. The AIS willstill build plans as usual, and will still attempt to make performance guarantees, given its(now more-restricted) resources.The usefulness of this type of internal monitoring and feedback is one of the motivationsfor keeping the CIRCA Scheduler module a separate entity from the AIS, so that it may betied more closely to the RTS than in the current implementation. Because the Schedulerreasons about resources available to the RTS in building TAP schedules, it is a good locationfor detailed information about faulted system components. That information may have adirect e�ect on scheduling TAPs, as well as planning and building them.As with all fault-tolerant systems, this approach would still be subject to overloadand failure in the presence of an excessive number of faults, or faults in unprotected systemcomponents. In a sense, this approach to building fault-tolerant control plans is no di�erentthan the normal CIRCA planning process, which considers that various occurrences in theworld may lead to unacceptable failure. The basic CIRCA planner derives TAPs that detectundesirable situations where failure is impending, and prevents the failure from occurring.Fault recognition and handling are essentially the same problem, so CIRCA's methodsfor planning and recognizing its ability to handle di�erent domain deadlines are equallyapplicable to recognizing its ability to handle di�erent faults.6.3.6 The Real Problem: UnixAs noted earlier, the current RTS implementation runs under Unix, and therefore issubject to the vagaries of that operating system's scheduler. The complexity of the Unixscheduling scheme, as well as the large number of servers and other processes on a Unixmultiprocessing system, make it essentially impossible to guarantee any service rate or com-putation speed for a given task. Therefore, running under Unix, the RTS cannot actually
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���������Figure 6.9: Timing behavior of a cursor-tracking TAP, showing the unpredictabilityintroduced by Unix.enforce real-time guarantees in a rigorous fashion.To illustrate the problem, Figure 6.9 show the timing behavior of a simple cursor-tracking TAP used in an Xwindows-based demonstration| the TAP checks to see if thecursor has moved in the demo window, and if it has it redraws a circle around the cursor.The graph shows two primary bands of timing values, one near 5000 microseconds (whenthe cursor did not move) and two bursts of timing values near 12000 microseconds, cor-responding to two periods of cursor movement when the TAP's action was executed, usingan additional 7000 microseconds to draw the circle. Interspersed among these clear char-acteristics are several outlying timing values that result from spurious Unix interrupts anddelays. For example, the timing values over 15000 microseconds near the 100th invocationare the result of high-priority disk accesses that were audibly occurring during this test.After brie
y reviewing the steps taken to avoid some of the problems of Unix, we willdiscuss the potential for porting the current RTS to the pSOS+ real-time executive kernel.Ideally, the RTS would be executed on a dedicated processor which would not be sharedwith other tasks, thereby making the service rate for the RTS process constant. Unixallows multiple processes to share a singe processor using a 
exible priority-based schedulingalgorithm, so we execute the RTS with the highest possible user-task priority, in an e�ortto make sure that it is scheduled to run as frequently as possible. Still, system tasks suchas disk and network I/O take precedence, and the RTS may be interrupted and idled for



108potentially lengthy amounts of time (on the order of milliseconds) when these I/O demandsare high. If the Unix machine is heavily loaded, it is also possible that the interruptedRTS task could be swapped out of main memory onto disk{ this would result in extremelylong delays when resuming execution of the RTS. While this event is highly unlikely onthe current workstations with 16 or more megabytes of memory5, the RTS still takes theprecaution of telling the Unix kernel on startup to avoid this \swapping out" behavior.6.3.7 Porting the RTS to pSOS+The real solution to these problems with Unix would be to port the RTS to a platformrunning a real-time operating system, which could provide guaranteed CPU allocationsfor the RTS. During the main development phase of the current CIRCA prototype, wedid not have access to any suitable computing platforms that were set up to control real-world or simulated devices. Therefore, we have not actually implemented the RTS on areal-time kernel. However, we have analyzed the feasibility of that task by comparing theprogramming features of the pSOS+ real-time executive [74] with the requirements of thecurrent RTS implementation.The pSOS+ kernel provides a fairly complete set of operating system primitives whichall have completely predictable, bounded execution time. In addition, the kernel providesvery fast and predictable context switching and interrupt response times. Running on aMotorola 68020 at 25MHz, pSOS+ requires 6 microseconds to respond to an interrupt, and19 microseconds to switch contexts to a new task. The current RTS design does not adhereto the philosophical orientation of pSOS+ , which advocates building real-time applicationsbased largely on separate, interrupt-driven tasks. However, the predictability of the pSOS+system makes it well-suited to supporting the RTS polling mechanisms as well.Each of the operating-system-related sources of uncertainty discussed above is addressedby a feature of the pSOS+ development system. For example, pSOS+ provides �xed-timememory allocation and deallocation primitives that would ensure that the RTS processinginvolved in building a new TAP plan is predictable. Likewise, pSOS+ supports standardsocket communication methods, and non-blocking sockets can be set up as described above,to avoid unpredictable communication delays. The pSOS+ scheduling mechanism is pre-emptive and rigidly priority-driven, so that the highest-priority task is always running onthe processor. Therefore, there would be no danger of a pSOS+-based RTS being swappedout unexpectedly, since the RTS could simply be speci�ed as the highest-priority task.In sum, pSOS+ is an appropriate environment for an implementation of the RTS whichwould provide the completely predictable performance required to enforce CIRCA's guar-antees. Modi�cations to the current RTS code would be minimal, primarily surroundingthe use of sockets and other system calls such as system clock accesses.5The RTS occupies about 550 kilobytes of memory.



1096.4 RTS Performance MetricsAlthough the absolute speed of the RTS is unimportant, it is certainly true that wewould like the RTS to be fast relative to its environment. Therefore, when consideringthe domains to which the current CIRCA implementation is applicable, it is important toconsider the speed of the RTS, and the overhead involved in its processing.For that reason (and not to show that the RTS is \real-time"), we provide severalmeasures of RTS performance, running on a Sun SPARCstation IPC. As noted above,this Unix machine does not provide truly predictable performance, so we characterize RTSperformance by average values, rather than worst-case values. In the worst case, the RTSresponse time may occasionally be orders of magnitude slower than the average value,because of operating system context switches and interference from other tasks running onthe host computer.To measure the absolute speed and overhead of the RTS implementation (compiledwith optimization enabled), we ran several hundred thousand iterations of a trivial TAPconsisting of a test that always evaluates to T and a no-op action. The average time toexecute each iteration of this TAP was approximately 70 microseconds. Over several runsof this test, the results varied on the order of plus or minus 5 microseconds, depending onthe other loads running on the machine.To factor out the execution time of the trivial test and action functions, and thus derivethe actual overhead of the TAP selection, execution, and monitoring code, we also timed asimple sequence of the same test and action functions used in the trivial TAP. The test andaction code took approximately .5 microseconds to execute. The time used by the trivialTAP is thus negligible, and the overhead of the RTS mechanisms can be considered to beapproximately 70 microseconds per TAP invocation. The maximum possible frequency ofTAP execution is therefore approximately 14200 TAPs per second.Within the 70 microseconds of RTS overhead time, at least 56 microseconds (or 80%) isused up by the two gettimeofday() system calls used to time the execution of each TAPto decide whether slack time is available for if-time TAPs. Clearly, minimizing the cost ofsuch system calls should be a major goal of real-time operating systems development forapplications in which timing information is required. In fact, the pSOS+ system discussedabove provides much faster constant-time access to clock services, requiring 15 microsecondsto get the current time on a 20MHz 68020.Similar RTS tests were used to measure the overhead involved in the code that looksfor an if-time TAP to execute when slack time is available. This code also contains twogettimeofday() calls, to record the amount of time used by the process of �nding andexecuting an eligible if-time TAP. This code, very similar to that which selects a guaranteedTAP, also required about 70 microseconds.Based on individual timings of the TAP schedule downloading process for schedules ofseveral di�erent sizes, the overhead cost of reading in and parsing the new schedule is about30 microseconds per character. Thus the time used by the get-new-schedule TAP oneach invocation can be easily controlled by varying the number of characters it will read in.For most of the experiments in this dissertation, the TAP was allowed to read in up to 500characters per invocation, limiting its run-time to approximately 15 milliseconds.



110These �gures for RTS performance should not be misinterpreted to indicate that ourexample applications have run at a rate of thousands of TAPs per second; rather, theselow overhead �gures are meant to show that, in our example domains, the domain-speci�cprocessing required for TAP tests and actions is the dominant factor, and far outweighsthe RTS overhead. For example, in the simulated Puma domain, each primitive that mustcommunicate over a socket with the simulator requires nearly .04 seconds to execute, sev-eral orders of magnitude longer than the RTS overhead. In the Xwindows demonstrationdomain6, the fastest-response domain we have investigated, the RTS executes on the orderof 20 TAPs per second (although, as described in Section 7.1.1, this rate is much slowerthan necessary, in order to make the user interaction have more obvious e�ects).Absolute speed measures of the RTS implementation are useful only as a guideline inchoosing domains to which this system may be applied. The RTS we have described canrun hundreds or thousands of TAPs per second at best, and thus it is not suited to domainsrequiring nanosecond response times. However, for many domains in which the system willcontrol physical devices such as robots, the speed of the current RTS implementation ismore than adequate, because the slow domain speeds and the inertial e�ects of mass makecontrol frequencies above 10 to 100 cycles per second unnecessary. Likewise, applicationsrequiring communication with sensors or human users have limits on the required interactionfrequencies that should be within the current RTS' capabilities.

6Described fully in Section 7.1.1.



CHAPTER 7EVALUATION: TRADEOFF METHODSThe goal of evaluating CIRCA is not to demonstrate quantitative improvements overthe performance of traditional AI, reactive, or real-time systems. We do not wish toshow that CIRCA runs faster than previous systems, or uses less memory, or other suchimplementation-dependent measures. Rather, our goal is to show that CIRCA provides per-formance capabilities that are fundamentally, qualitatively di�erent from those previouslyavailable.We have already proven that CIRCA combines the ability to run arbitrarily complex,unpredictable AI methods with guaranteed, predictably real-time performance of criticalcontrol tasks. One particularly interesting aspect of CIRCA's introspective nature is that itperforms its own plan evaluation and veri�cation; that is, if the Scheduler and AIS are ableto build a complete TAP schedule, then CIRCA guarantees all of its control-level tasks, andno external performance proofs are necessary. Assuming that the system is given correctdescriptions of its primitive capabilities and the environment, CIRCA automatically derivescorrect, fully-scheduled control plans whose behaviors are well-understood.Thus, if the system is given su�cient resources to guarantee all of its goals, there is verylittle to evaluate. Instead, our evaluation of the CIRCA implementation and its collectivebehavior will focus on the system's abilities when resources are overconstrained. By reas-oning explicitly about its own guaranteed behaviors, CIRCA is able to make \conscious"tradeo�s along performance dimensions which have been inaccessible to previous intelligentcontrol systems. This ability is fundamentally di�erent from other systems which base theirperformance tradeo�s on estimates or experimentation. Because CIRCA is able to expli-citly and accurately reason about its own predictable performance, it can not only recognizeoverconstraining domains, it can also analyze the potential e�ects of various changes to itsgoals or plans.To demonstrate the CIRCA tradeo� mechanisms and show how they provide qualitat-ively unique performance, this chapter describes the results of several experiments in whichCIRCA makes di�erent performance tradeo�s, automatically yielding behaviors tailored tothe available resources. Note that these tradeo� methods are not heuristics themselves;they can be implemented by simple procedures making bounded changes to the CIRCAdata structures describing the world model, the current control plan, etc. Furthermore, thee�ects of those changes are well-understood; CIRCA can explicitly reason about the impactof applying its various tradeo� methods on the system's performance. However, choosing111



112which tradeo� method to apply in a particular situation remains a heuristic decision wehave not yet addressed.The experimental data in the following sections was produced using several variationsof the basic Puma domain, as detailed in each discussion section. The complete descriptionof the basic Puma domain is listed in Appendix E, including the timing values used for eachof the RTS primitives.7.1 Tactical Tradeo�s by the RTSAs discussed in Chapter 2, CIRCA is designed to implement both tactical and strategicperformance tradeo� methods, by combining the strengths of the real-time subsystem andthe AI subsystem. Tactical, run-time tradeo�s are the responsibility of the RTS, whichdynamically adjusts its use of resources to meet the current state of the world. In thissection, we will demonstrate two ways the RTS implements these tradeo�s.7.1.1 Tradeo�s via If-time TAPsThe if-time TAPs executed by the RTS can allocate resources that only become availableat run-time. To demonstrate the if-time TAP capacity for dynamic tradeo�s, we performedtailored experiments in the simple \bouncing box" domain, shown in Figure 7.1. Thisdomain provides an interactive, highly visual, and intuitive illustration of the if-time TAPmechanism. In this graphical simulation domain, the CIRCA control system is responsiblefor meeting two hard deadlines. First, the system must bounce the left, �lled box aroundthe graphics window, moving the box a small amount at least once every .05 seconds. Thissimple, regular task emulates many types of \heartbeat" real-time tasks that do not varyover time. The second real-time task is more dynamic: whenever the mouse-controlledcursor is moved in the window, the control system must track its motion by drawing acircle around it, at least once every .05 seconds. This task has the visual e�ect of producinga circle that smoothly tracks the cursor motion. The cursor-tracking task represents adynamic, unpredictable load on the system which may vary at run-time between requiringno resources (when the cursor is not moving) and requiring some �xed maximum amountof resources (used to draw the circle). To take advantage of the resources that may thusbe made available at run-time, the domain also includes an optional task of bouncing therightmost box, drawn hollow to distinguish it from the box which must be bounced regularly.The complete domain description given to CIRCA is listed in Appendix E.By implementing the optional box-bouncing operation as an if-time TAP, CIRCA is ableto take advantage of the dynamic nature of the environment. Figure 7.2 shows how manyiterations of the individual TAPs for each task were executed under varying loads of cursormotion, created by a human user moving the mouse for varying amounts of time.As shown in the graph, when the cursor was not moving at all, the optional box-bouncingTAP was executed nearly as many times as the mandatory, real-time box-bouncing TAP1.1There are actually slightly fewer if-time TAP executions because occasional Unix delays decrease theamount of slack time available below the amount needed for the if-time TAP. See Section 6.3.6 for more.
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114However, as the amount of cursor motion increased, the cursor tracking TAP used up itsallocated time more frequently, and the optional box-bouncing TAP was able to use slacktime less frequently. At the extreme, when the cursor tracking TAP was executing on everyiteration, the optional TAP was completely shut out, and received no execution resources atall. Thus if-time TAPs can implement a form of any-resource algorithm (see Section 2.2.2),using as much resource (here, computation time) as available, but providing no guaranteedperformance quality (here, the if-time box stops entirely when the cursor is moving toomuch).It is interesting to note that the primitives used in this domain are much faster thanactually necessary to meet the deadlines assigned. We added arti�cial delays to the primit-ives and chose the relatively long deadline timings for two reasons. First, the longer timingvalues reduce the relative magnitude of the timing variations introduced by Unix (see Sec-tion 6.3.6). Second, the slower primitives make the user's interaction (changing the mouseposition) have more signi�cant e�ects on the behavior of the system. If the primitives areused without added delays, the RTS can execute several hundred TAPs each second, soonly a small percentage of the cursor-tracking TAPs will ever be executed to actually trackthe cursor (because Xwindows does not update its readings of the cursor position quicklyenough).7.1.2 Tradeo�s via Planned BehaviorsThe RTS can also implement dynamic performance tradeo�s simply by executing thereactive plan sent to it by the AIS. This plan itself may specify how to make tradeo�s inbehaviors based on conditions that can only be determined when the plan is being executed.Each step of a reactive TAP plan is conditioned on various tests, and some planned processesthat are initiated by TAPs may be interrupted, halted, and resumed, whenever necessary.These interruptions are planned behaviors, implemented as separate TAPs, but their e�ectis to make the RTS dynamically assign resources (such as the Puma arm) to di�erent tasksdepending on the environment.To demonstrate this capacity in the Puma domain, we disabled the conveyor belt andinitialized the simulation with four parts already queued on the table, waiting to be packedin the box. The conveyor was eliminated to avoid the complicating e�ects of newly-arrivingparts. Both the TAPs performing the packing operations and the TAPs that respond to theemergency alert light were put onto the guaranteed TAP schedule. This does not mean thatthe entire packing sequence was guaranteed to succeed, but rather that the several TAPsrequired for that sequence were de�nitely being executed periodically, as opposed to in anif-time manner. This has the e�ect of isolating the planned behaviors implemented by theTAPs from the complicating dynamic e�ects of the if-time mechanism. So, in this modi�eddomain, the Puma must try to pack the waiting parts into the box, but that behavior maybe interrupted by emergency alerts. To demonstrate the long-term tradeo� behavior ofthese planned TAPs, we varied the arrival rate of alerts, and measured the e�ect of thatparameter on the total time required to pack all of the waiting parts.Each time an alert arrived, the Puma would have to make sure its gripper was empty (byputting back down a part, if it had already picked one up from the table), and then move to
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�(a) Full data set. (b) Zoomed-in portion.Figure 7.3: Trading o� packing parts for emergency responses.push the emergency button. Once the button was pushed and the emergency cancelled, itwould immediately resume the process of picking up and packing the parts from the table.As shown in Figure 7.3, the RTS behaved as expected, packing the parts more quickly whenfewer alerts arrived during the packing task. The zoomed-in graph in Figure 7.3b showsthat there was considerable variation in the actual amount of time required for the packingtask given any particular number of interrupts. This variation is the result of the di�eringcosts of responding to interrupts that occurred during various phases of the part-packingplan| if the interrupt occurs before the robot has picked up a part, the response time canbe faster, and the part-packing will be resumed more quickly. If a part is already beingmoved towards the box and the interrupt arrives, the robot must move back over the tablestacking area, put the part down, and then push the button.This example clearly illustrates the system's ability to make tradeo�s in run-time per-formance based on planned reactive behaviors. Because the system is able to interrupt theongoing execution of the part-packing series of reactions, in order to respond to the more-urgent emergency alert, it trades o� the timeliness of achieving the task-level goal of �llingboxes for the timeliness of responding to control-level emergencies and preventing failure.7.2 Strategic Tradeo�s by the AIS: Being Intelligent AboutReal-TimeGiven the truly predictable, real-time performance of the RTS demonstrated in Sec-tion 6.3, CIRCA's major innovation is its ability to reason about, design, and adjust thatreal-time performance based on its analysis of the domain: that is, CIRCA is \intelligent



116about real-time." To illustrate and evaluate this capability, we have designed a numberof experiments that show how CIRCA can respond to constraints on its environment andits resources by making explicit, intelligent tradeo�s in the behaviors it implements on theRTS.CIRCA currently has several ways of recognizing that the domain is overconstrained,and that the system cannot guarantee all of its control-level goals. During the action-planning phase, CIRCA may �nish a complete search of the space of possible reaction plansand �nd that there are no suitable plans that can prevent failure. In that case, the TAPplanner will essentially backtrack o� the top of its stack, and the AIS interpreter can trapthis error and recognize the problem. Or, if the AIS spends too much time trying to builda TAP plan or schedule, it may time-out and be alerted by the timer interrupt describedin Section 5.2.1. Finally, the TAP planner may come up with a set of desired TAPs whichare then rejected as unschedulable by the Scheduler. This is the most common way ofrecognizing an overconstrained domain: a suitable TAP plan exists, but it cannot all beguaranteed. At this point, the standard TAP planning method would backtrack to make adi�erent choice and produce a modi�ed TAP plan. Alternatively, the AIS might decide tomake a tradeo� instead, somehow easing the scheduling problem to make the current TAPplan more acceptable.In response to any one of these signals that a particular domain is proving di�cult,CIRCA may make one of several tradeo�s. The following sections describe the tradeo�methods that have been implemented on the prototype CIRCA system. The tradeo� meth-ods are generally cast as either alterations to the world model used for planning TAPs, or aschanges to the TAPs themselves. For each of the main tradeo� techniques, we �rst providedetails on the type of changes being made to the system, and a general description of theexpected e�ects. We then describe experimental results from an example application of thetradeo� method, and we generalize these experimental results to examine the broader issuesrelating to the tradeo�s, including what types of information are required, and when eachparticular tradeo� might be appropriate.7.2.1 Ignoring a Temporal Transition to FailureWe have identi�ed and implemented several methods by which the AIS can modifyits world model to account for resource limitations, so that it builds TAP plans that makevarious types of performance tradeo�s. These modi�cations correspond to the various typesof transitions (temporal, event, and action) used in the model structure. We begin bydescribing the planning-time tradeo�s achieved by simply deleting or ignoring one or moretemporal transitions that lead to failure in the world model. This corresponds to the plannernot even considering that some ongoing process will ever lead to failure. As a result, theTAP that was planned to preempt that temporal transition to failure (TTF) may be a�ectedin several ways. In the following material, we will examine in detail one example of thetypes of performance tradeo�s that result from simply ignoring a TTF. The experimentalresults for this �rst example are particularly lengthy because we describe several aspectsof the domain that initially interfered with the desired behavior. We then outline severalother possible outcomes, but do not investigate them in depth because they represent minor



117variations.One Possible Result of Ignoring a TTFIf the AIS ignores a TTF from a particular state, it is possible that the AIS will stillchoose the same action for that state, but that the action will no longer be preventing afailure. Because the action is not preempting a TTF, it will be implemented by an if-timeTAP. Thus, ignoring a TTF can have the net e�ect of moving a TAP from the guaranteedlist to the if-time list, making the scheduling problem easier. However, performance willsu�er because the system no longer guarantees to execute the a�ected TAP.Assuming that the relaxation of the TAP scheduling requirements due to ignoring theTTF makes a schedule feasible, this change to the world model e�ectively voids the guar-antees that CIRCA was previously trying to ensure. The system will no longer guaranteeto avoid the failure led to by the ignored TTF. However, because in this case an action wasplanned even without the TTF, the system will still avoid failure whenever the if-time TAPimplementing the planned action is able to �re and preempt failure.In the Puma domain, for example, the AIS might decide to ignore the possibility of apart falling o� the conveyor, perhaps because it is highly unlikely that the part will reallyfall. As a result, when examining a state in which a part is waiting on the conveyor, the AISwill no longer be required to plan a pickup-part-from-conveyor action to avoid failure.However, the action will still be planned because it is useful in achieving the system's goals:the robot must pick up the part in order to pack it in the box, which satis�es the goal(part-in-box T).Schedulability E�ects of Ignoring a TTFFigure 7.4 shows the e�ect on schedulability for a range of arrival rates for emergencyalerts and parts. If the arrival rates match a point below the lower, \normal plan" curve,then the system can build a schedule that will guarantee to both avoid emergency failuresand prevent parts from falling o� the conveyor. The form of this curve illustrates thetradeo� that the scheduling mechanism can make between tasks; when the emergency rateis relatively high, the system will still build a schedule, as long as the part arrival rate issu�ciently low that the Scheduler can allocate more resources to the tasks that respond tothe alert. Conversely, when the emergency rate is lower, the system can deal with a fasterrate of arriving parts. If the arrival rates match a point above the lower curve, then thesystem cannot build a schedule that will guarantee to avoid both emergency failures anddropping parts. However, if the system ignores the part-falls-o�-conveyor TTF, then itcan build guaranteed schedules for all of the instances below the upper line, the maximumrate of emergency alert arrivals that can be handled with the given primitives. The partarrival rate is no longer critical to the scheduling problem, because the pickup-part-from-conveyor TAP, with a period determined by the part-falls-o�-conveyor TTF, is nolonger being scheduled and guaranteed.



118

 


 Plan ignoring part failures
� �

 Normal plan

|
1.0

|
1.0

|
1.1

|
1.2

|
1.3

|
1.4

|
1.4

|
1.5

|
1.6

|
1.7

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

|2.2

|2.4

|2.6

 Part Arrival Frequency (parts/minute)

 E
m

er
ge

nc
y 

A
rr

iv
al

 F
re

qu
en

cy
 (

al
er

ts
/m

in
ut

e)





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


���� �

� � � � � � � � � � �

� � � � � � � �

�

� �Figure 7.4: The improved schedulability achieved by ignoring a TTF.Performance E�ects of Ignoring a TTFTo illustrate the non-guaranteed nature of the resulting behavior, we implemented thistradeo� method in the Puma domain, increasing the rate of emergency alerts and partarrivals so that the original plan of actions is not schedulable. The AIS then removesthe part-falls-o�-conveyor TTF from the world model, re-plans, and builds a new TAPplan in which the pickup-part-from-conveyor action is implemented by an if-time TAPrather than a guaranteed TAP. We expected that, as parts and emergency alerts arrivedmore frequently, the number of parts falling o� the conveyor would increase, as the systemhad less and less free time to apply to if-time behaviors.Interestingly, our initial experiments with this method of modifying the world modelrevealed an aspect of the resulting behavior which we did not anticipate. Figure 7.5 illus-trates the behavior displayed by the �rst few test runs, comparing the number of failures(due to parts falling o� the conveyor) with the arrival rate of parts. For these experiments,the delay between emergency-alert arrivals was �xed at 25 seconds, and the failure countwas collected after eight parts had arrived and either fallen o� of or been removed from theconveyor. As shown in the �gure, the number of dropped parts is not strongly correlatedwith the rate of part arrivals, although at the higher arrival rates there is a tendency tohave more dropped parts. Still, even at the lowest arrival rate shown, there were instanceswhere many of the arriving parts fell o� the conveyor. The cause of this behavior is not anaberration in the if-time TAPs or some other fault; rather, it is a result of a choice that wasmade during the planning phase.
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Figure 7.5: The non-guaranteed, if-time behavior resulting from ignoring the part-falls-o�-conveyor TTF. Note that circles represent more than one datapoint. The scale was chosen to match later graphs, for ease of comparison.When the planner was no longer required to guarantee that parts would be removedfrom the conveyor before a deadline, the goal of having no parts on the conveyor [(part-on-conveyor NIL)] became equally ranked with another goal, that of having no partsleft on the table [(part-on-table NIL)]. As a result, when the planner chose an actionfor a non-emergency state in which parts are available on both the conveyor and table,neither part was preferred for packing into the box. Using arbitrary ordering informationto resolve this tie, the planner initially chose to pick up and pack the part from the table.With the emergency alert arrival rate set near the maximum possible response rate, thesystem was frequently interrupted by an emergency while trying to pack a part from thetable into the box. It would then replace the part on the table, push the emergency button,and return to the part on the table. This looping behavior, once started, left the systemunable to respond to any subsequently-arriving parts on the conveyor belt. Thus, no matterwhat the frequency of part arrivals, once the system entered this pathological cycle it wasunable to respond to later arrivals. Note that this behavior is not erroneous: the plannerwas explicitly told that it no longer needed to guarantee to avoid dropping parts, by theremoval of the TTF. Thus, without any other preference knowledge, parts o� the table oro� the conveyor are equivalent.To resolve the tie between picking up parts on the table and on the conveyor in a



120more rigorous fashion, we simply employed the repeat-goals mechanism in the planner (seeSection 5.3.1) to add priority to the (part-on-conveyor NIL) goal. This makes pickingup parts from the conveyor yield the extra bene�t of achieving a repeat goal, so the plannerselects that action over picking up a part from the table, when both are applicable.Even with this change in the TAP plan, the system still displays unusual behavior,as shown by the data in Figure 7.6. Observations of the modi�ed TAP plan actuallyrunning revealed another source of 
uctuations in the number of parts dropped. Becausethe emergency alert arrival rate was �xed at a constant value, it was possible for the phases ofthe periodic part arrivals and emergency alerts to match in both bene�cial and detrimentalways. At some times, the arrivals rates would be \in sync," so that the robot would �nishpacking a part just as an emergency alert arrived. Because the RTS did not need to performany cleanup actions (such as putting a part down on the table), the emergency received arapid response, and thus when the next part arrived there was still some delay before thenext emergency could occur. The sharp dip in Figure 7.6 at a part arrival frequency of 5parts per minute is caused by precisely this e�ect: the arrival rate of parts and emergencieswere nearly on harmonic frequencies (12 seconds between parts, about 25 seconds betweenalerts). The relatively short duration of this test (only 8 parts arriving) allowed the systemto remain in the bene�cial portion of the synchronization for long enough to pack almost allof the parts, despite the lower quality of performance achieved at both immediately higherand lower part arrival rates.In other situations, the arrivals could be synchronized in a detrimental way, so thatthe emergency alert would arrive immediately after the robot had just picked up a part.As above, this leads to an extended sequence of actions to respond to the emergency, thussquandering the delay before the next emergency, and making it more likely that the nextpart picked up will also not be packed.As with the previously-described behavior, these synchronization e�ects are not errors|in fact, the detrimental synchronization described above is precisely the sort of conditionused to derive the worst-case performance of TAPs (see Section 4.3). Thus the guaranteesmade by the planner still hold in these situations. Since the planner has given no guaranteethat it will avoid dropping parts o� the conveyor, it is simply doing its best to avoid theseproblems. These results show that it might be very useful for a system to have a wayto recognize and avoid such pathological synchronizations; a small added delay or altereddecision could dramatically alter performance in some cases. For example, if the systemrecognized that it had arrived at the emergency alert button only after a relatively longdelay, and thus another alert might be imminent, it could hesitate near the alert button,ready to respond quickly and then switch to packing parts during the subsequent alert-freeperiod.To nullify the synchronization e�ects and show more clearly that the revised plan per-forms better in less-heavily-loaded situations (when the if-time TAPs can more frequentlypack parts), we modi�ed the simulation environment so that emergency alerts arrived withrandom delays uniformly distributed in the range of 25 to 30 seconds. With this change tothe environment, the system displays behavior more in line with our intuitions, as show inFigure 7.7.
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Figure 7.6: The revised behavior resulting from ignoring the part-falls-o�-conveyor TTF and prioritizing parts arriving on the conveyor.Generalizing Experimental ResultsIn any-dimension algorithm terms, this modi�cation of the world model has traded o�many aspects of the system's performance in exchange for guaranteeing a subset of reactions.The timeliness and completeness of the reactive system's behaviors (i.e., the guarantee thatit will respond correctly, and in time, to all situations) has been lost, because there are somestates for which its reactions are not guaranteed. However, it is notable that the system canstill make guarantees about some of the world states: it can, for example, guarantee that itwill avoid failures resulting from the emergency alert, because the actions preempting theemergency-failure TTF are still guaranteed.Thus this technique of ignoring a TTF in order to reduce the resource requirementsof a particular environment is useful in situations where the resulting loss of guarantees istolerable. There are two reasons that CIRCA might decide this is the appropriate method:1. The TTF to be ignored represents a process that rarely actually operates at its worst-case rate, so in all likelihood the RTS will prevent failures even with an unguaranteed,if-time TAP.2. The failure mode which the TTF leads to may be reconsidered and treated as non-catastrophic. In the Puma example, this would correspond to modifying the part-falls-o�-conveyor transition to lead instead to a non-failure state, possibly distin-
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Figure 7.7: The �nal behavior after ignoring the part-falls-o�-conveyor TTF, pri-oritizing parts arriving on the conveyor, and randomizing emergency alertarrivals.guished by an additional feature such as (part-on-
oor T).Alternative Results of Ignoring a TTFSeveral other outcomes are possible when the AIS chooses to ignore a TTF. For example,it is possible that, by ignoring one TTF from a state, a di�erent temporal transition becomesdominant and still causes the planned action for that state to meet a deadline. In generalthis will mean that the min� for the planned action will be longer, but the TAP will stillneed to be scheduled. The resulting tradeo�s are similar to those above, in that the systemcan no longer guarantee to avoid all types of failures. In this case, however, no TAPsare moved out of the guaranteed list: instead, the MAX-PERIOD of one of the TAPs willbe increased, thus decreasing the desired utilization, and making the scheduling problemeasier.In the Puma domain, for example, the periods of many of the TAPs are constrained byboth the part arrival rate and the emergency arrival rate. Consider, for example, a statein which the emergency light is on, the robot is holding a part, and a part has arrivedon the conveyor belt. An abstracted version of one such state is illustrated in Figure 7.8.Both the emergency-failure TTF and the part-falls-o�-conveyor TTF are applicable
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PART-IN-GRIPPER   T

PART-ON-CONVEYOR   T

EMERGENCY   T

FAILURE

emergency-failure

part-falls-off-conveyor

place-part-on-tableFigure 7.8: Removing a TTF may just alter a TAP's period.to this state. In response to these threats of failure, the planner will build a TAP to placethe part from the robot's gripper onto the table as quickly as possible. If the min� ofthe emergency-failure TTF is fairly long, then it is possible that the tightest constrainton the planned TAP will be derived from the min� of the part-falls-o�-conveyor TTF.Now, if the part-falls-o�-conveyor TTF is ignored because the AIS has decided to make aperformance tradeo�, the same action will still be planned for this state| it is still necessaryto avoid failure due to the emergency-failure TTF. However, now the TAP's MAX-PERIODwill be increased, because it is derived from the longer min� of the emergency-failureTTF.Because this result of ignoring a TTF keeps all the same TAPs on the guaranteedschedule, it is preferable to the previous example in which a TAP was moved to the if-time list. Leaving the TAP guaranteed means that it is still assured of being run at somefrequency, albeit lower than that required by the ignored TTF. In the previous case, thea�ected TAP may never be run at all, if slack time is not available.Another slightly di�erent result is possible if the action that was planned to preempt theignored TTF is also used to preempt some other TTF out of some other state. As above,the min� for the action may be relaxed if the ignored TTF was the dominant, shortestdeadline for which the action was planned. In addition, however, the number of domainstates for which the action transition is planned will be reduced, and the complexity of theTAP implementation may be either increased or decreased.The complexity of the TAP test expression may increase (despite intuition) because ofthe test minimization operation (see Section 5.3.2). The decision tree formed by ID3 maybe more complex if a smaller set of positive cases (states where an action is applicable)is given to the algorithm. With a larger set of positive examples, it is possible that thesystem would be able to �nd a more-general, shorter set of tests which would su�ce. Witha smaller set of positives, it may be necessary to include more feature tests to increase theselectiveness of the TAP. As a result, the exact e�ects of ignoring a TTF in this situation arehard to predict. While the schedulability of the system will generally be improved, becausethe period of the TAP is increased, the potential for increasing TAP tests may o�set thatimprovement. More costly tests may make the a�ected TAP more di�cult to schedule.In the extreme case, ignoring a TTF may cause the planner to completely eliminate oneor more planned actions, thus removing TAPs from the list to be scheduled. If an actionwas only planned originally to preempt failure (or as a \precursor" to that preemption), andwas not instrumental in achieving any other system goals, then the action may be removed



124entirely. For example, if CIRCA ignores the emergency-failure transition in the Pumadomain, it will completely alter the world model and avoid planning the push-emergency-button action. Depending on the frequency of part arrivals, it may also eliminate the needto put parts on the table temporarily, and thus ignoring this one TTF could also removethe stop-moving and place-part-on-table actions from the plan. These latter actionsare precursors that were included in the plan to establish the preconditions of the actionthat was planned to preempt the TTF, and thus they are also unnecessary.While moving a TAP to the if-time list means that, in non-worst-case situations it maybe still executed quickly enough, deleting a TAP altogether provides no such potential.Since if-time TAPs do not use any resources when the RTS is pressed for time, avoidingbuilding if-time TAPs does not save any signi�cant RTS execution-time resources.The only additional bene�t of not building a TAP is that it saves AIS planning time.Because of that e�ect, this tradeo� method can be usefully applied if the AIS has timedout during the planning process because the domain is simply too complex.Summary of Ignoring a TTFWe have seen how the simple world model change of ignoring a TTF can have dramatic,varied e�ects on the overall behavior of a CIRCA system. In particular, this modi�cationof the model can result in the following direct e�ects:� Moving a guaranteed TAP to the if-time list.� Increasing the MAX-PERIOD of a guaranteed TAP.� Increasing or decreasing the complexity of a guaranteed TAP's test expression.� Eliminating a guaranteed TAP entirely.An important feature of this tradeo� method, and of the CIRCA approach in general, isthat the system can introspectively examine the predicted e�ects of a particular tradeo�. Inother words, CIRCA might evaluate the worth of various tradeo� methods by examining theexpected results in the world model. If the AIS considers ignoring a TTF, it can immediatelyrecognize that the failure resulting from that TTF will be possible with the modi�ed TAPplan. In addition, the AIS can examine the new world model and TAP plan to recognizemore detailed aspects of the tradeo�. For example, if the new plan still includes all thesame guaranteed TAPs as the original plan, then the AIS can conclude that the reactionpreviously planned to preempt the TTF is still being enforced, but at a lower rate. If theAIS knows that the worst-case rate of the ignored TTF is rarely achieved, this tradeo�option may be very attractive, because it has exchanged a decrease in one TAP's responserate for the ability to schedule and guarantee the entire TAP set.7.2.2 Ignoring an Arbitrary Temporal TransitionThe intuitive motivation behind ignoring TTFs is that it prevents the system fromconsidering some source of failure, and thus prevents the system from committing resourcesto avoiding that failure. It is also possible to have the planner ignore other temporal



125transitions that do not lead directly to failure, but may still provide opportunities to lowerthe required resource usage.Ignoring non-failure temporal transitions can have most of the e�ects listed above, be-cause it may make some arbitrarily large part of the world model state space unreachable.If, for example, the temporal transition being ignored is the only connection between theinitial states and all of the states for which a particular action is planned, then those stateswill become unreachable and the action will not be planned.Ignoring non-failure temporal transitions can have one additional, even more dramatice�ect on the planner: it may make one or more goals unachievable. If a critical temporaltransition is removed from the world model, there may be no path from the initial states toa goal state. In the Puma domain, if we ignore the arrive-over-box temporal transition,which represents the duration of the process of moving over the box, then there is no way forthe robot to actually pack a part in the box (because it can never achieve (robot-positionover-box)). Thus, ignoring temporal transitions related to the controlled agent's behavioris probably not a very useful approach, as it corresponds to reducing the capabilities of theagent, rather than reducing the environmental constraints or requirements.Since the original motivation for making a performance tradeo� often comes from aninability to schedule guaranteed TAPs, which are generally planned to preempt TTFs,it is frequently more useful to ignore TTFs than other, non-failure temporal transitions.Furthermore, ignoring TTFs is safer in the sense that it cannot make any goals unreachable,because TTFs are never in the path to success.7.2.3 Ignoring an Event TransitionJust as the AIS may decide to alter its treatment of temporal transitions, it may alsochoose to change how it considers event transitions. Ignoring an event transition may havemany of the e�ects described above for temporal transitions: it may cut o� parts of the worldmodel state space, possibly making some goals unreachable. Ignoring an event transitioncan thus reduce the planning time and decrease the number of TAPs planned, allowing thesystem to make guarantees for some subset of desired behaviors which were not previouslyschedulable.As with the above tradeo�s, the AIS would only be motivated to ignore an event if it�nds that its initial attempts at building a plan are unsuccessful, either because the planningis taking too much time, or because the resulting TAPs are not schedulable. Choosing whichevent to ignore will generally be a highly domain-dependent decision, possibly based on thesystem's evaluation of the probability of that event occurring, the bene�ts of ignoring theevent, and the costs of having the event occur when the system has not planned for it.For example, in the Puma domain, ignoring the emergency-alert event transitionprovides a large reduction in the planning time, because many states are eliminated fromthe model| in fact, the state space for our running example is reduced from 330 enumeratedstates and 158 reachable states to 106 enumerated and a mere 58 reachable states. Fur-thermore, a large number of contingency reactions are eliminated from the plan, and thusthe complexity of the TAPs is reduced, and the scheduling problem is eased. Because theemergency alert is no longer of concern, the system is able to react to parts on the conveyor



126belt even more quickly than if the predicted alert rate is very slow (as in the extreme rightedge of Figure 7.4). While the example of Figure 7.4 could handle parts arriving at mostevery 33 seconds, the plan built by ignoring the emergency-alert transition can handleparts arriving every 27 seconds, an 18% improvement in capacity. Of course, the tradeo�is that the system is no longer monitoring the emergency light, and it will not react to analert. If the AIS thinks that an alert is unlikely, or �nds that the cost of failing to respondto an alert is su�ciently low, it may judge that the reduced planning time and improvedpart-packing reaction time are worth the risk involved in ignoring alerts.More generally, we can see that ignoring an event transition can have the desirable e�ectsof reducing planning time and simplifying the scheduling problem. The disadvantage, ofcourse, is that this tradeo�method removes planned contingency actions entirely, as opposedto just moving the relevant TAPs to the if-time list (as ignoring a TTF can do). Becauseevent transitions represent instantaneous events in the world, as opposed to the ongoingprocesses represented by temporal transitions, it seems plausible that the AIS could haveknowledge of event probabilities that would be helpful in guiding the use of this tradeo�method. Ignoring highly improbable event transitions would obviously be a good approach,in order to ensure that the system is least likely to encounter world situations for which itis not prepared. Decision-theoretic methods involving expected utility could also be usedto account for both the probability of an ignored event and the cost of failing to take theoriginally-planned action.7.2.4 Modifying Temporal TransitionsIn addition to these drastic methods involving ignoring various transitions, the AIScan make more subtle, deliberate changes to the duration of temporal transitions to e�ectperformance tradeo�s. The basic approach is to extend a temporal transition to give thesystem more time in which to react and avoid undesirable consequences. For example, theAIS might decide to extend the TTF representing the delay until a part falls o� the conveyor,instead of ignoring that TTF altogether. The duration of the TTF, or the minimum timeuntil failure, can be extended in this example by simply slowing down the conveyor, givingthe Puma more time to pick up an arriving part.While the complex physical modeling required to determine the exact relationshipsbetween the Puma speed and the conveyor rate is beyond the current AIS' abilities, it isable to make relatively simple decisions about which TTF to modify, and how to achievethat modi�cation. The AIS may learn from the Scheduler, for example, that the TAPwhich failed to meet its deadline during scheduling was built to implement the pickup-part-from-conveyor action. The AIS can easily �nd that this action was planned topreempt failure resulting from the part-falls-o�-conveyor TTF. Then, the AIS could �ndthat the min� of this TTF may be extended by having the RTS invoke the action slow-down-conveyor, which also causes the AIS to modify its model of the relevant transitions.This has the e�ect of moving the environmentally-driven resource demands to the left inthe graph of Figure 7.4, so that the given emergency arrival rate can be handled with thedecreased part arrival rate.This type of tradeo� mechanism is useful when the system can alter the environmental



127behavior, as in this example, and also when its own behaviors involve temporal transitionswhose min� values may be altered. For example, an alternative way of dealing with apart arrival rate beyond the system's initial capacity is to increase the speed with whichthe Puma moves between locations, thus decreasing the min� of the temporal transitionarrive-over-box, which represents the worst-case time the robot needs to move over thebox.On the positive side, this approach to making tradeo�s gives CIRCA the ability to�ne-tune its behaviors and the environment to work together well. The very notion thatthe system can modify the behavior of the environment to make it more convenient for itsown goals is relatively uncommon in planning systems, and has recently drawn attentionin work by Agre [2] and Hammond [25]. The way CIRCA uses this technique is perhapsunique in that it is motivated by a strong understanding of exactly what the agent is andis not capable of achieving, and thus why the environmental modi�cations are required inthe �rst place.On the negative side, this approach requires extensive domain knowledge even beyondthe static behavioral information CIRCA already needs. The system must be able to derivea causal mapping between temporal transitions and the parameters that a�ect their dura-tion, and also decide what actions the agent can take to modify those parameters, in theappropriate way. Qualitative physics [11, 16] might prove to be an excellent way to derivethis information.7.2.5 Modifying TAP Implementations (Method Selection)In addition to making changes to the world model in response to resource restrictions,the AIS can also make changes directly to the implemented form of the actions planned inthe world model. In particular, the AIS can make two major types of changes to the TAPsbuilt to implement action transitions. The �rst and most powerful modi�cation is to simplyalter the speci�c primitives used to perform the various tests and action required by a TAP.The sensor planning phase of the TAP-generation process implements this functionality, asdescribed in Section 5.3.3. The AIS may have several di�erent methods for performing anaction (or a test), and it can choose amongst them according to the resources available.This tradeo� method is equivalent to the \con�guration selection" [35], \version selection"[47], and \design-to-time" [19] approaches.For example, suppose that the Puma control system provides the RTS with two dif-ferent types of part-placement operations, a slow, high-accuracy, \�ne-motion" operationand a faster, lower-accuracy, \coarse-motion" operation. This means that the system hastwo possible primitive operators for the place-part-in-box action transition. Using the�ne-motion operator allows the system to place the parts very close together, thus yieldingdensely-packed boxes. But the �ne-motion operator needs four seconds to �nish the place-ment operation. Using the coarse-motion operator requires the system to leave more spacebetween the parts, since the placement is less-certain. As a result, the system will produceless-densely packed boxes, but it can produce them more quickly, because the coarse-motionoperator only needs 2.5 seconds. Thus, in this example, method selection allows the systemto trade o� the quality of its results (the packing density) for the timeliness of its long-term



128and short-term behaviors (the speed of packing whole boxes and individual parts). Giventhe faster coarse-motion operator, the system may be able to guarantee to respond in timeto a higher frequency of emergency alerts than with the slower operator.Experimental Results of Method SelectionTo provide a more quantitative demonstration of this tradeo�, we ran experiments usingthe coarse/�ne operators described above. The �ne-motion operator was de�ned to requireno space at all surrounding parts being placed in the box: essentially, it could achieve 100%packing density with a fortuitous series of part arrivals2. The coarse-motion operator, onthe other hand, required one inch of clearance on all sides of the parts in order to placethem in the box. Naturally, the achievable packing density is lower with this operator, sinceparts necessarily occupy spaces larger than their actual size.Figure 7.9 shows the improvement in response-time achieved by using the coarse-motionoperator, displayed here by the increased rate of emergency alerts and part arrivals thatcan be handled. The upper curve shows the response tradeo�s that can be made usingthe faster coarse-motion packing operator, while the lower curve shows the performancefor the �ne-motion operator used in the rest of the plans discussed in this chapter (andpreviously graphed in Figure 7.4). The coarse-motion operator reduces the time allocatedto the place-part-in-box TAP, and therefore the system can respond in time to morefrequent part arrivals, emergency alerts, or both.However, Figure 7.10 shows the corresponding decrease in performance quality thatresulted from the coarse-motion operator, when applied to 100 trials using randomly orderedarrivals of four di�erent part shapes. On average, the density of the packed box was reducedfrom 70% using the �ne-motion operator to 59% with the coarse-motion operator. In theseexperiments, simulations of the box-packing algorithm were continued until the �rst arrivalof a part that did not �t in the box. The �ne-motion version was able to pack an averageof 45 parts in the box, while the coarse-motion version packed an average of only 26 parts.Thus we can see that the improved schedulability and response time illustrated in Figure 7.9are only achieved at the cost of sti� performance degradation.Generalizing Method SelectionTo use the method selection approach, the system obviously must have alternative meth-ods for implementing feature tests and actions on the RTS. In addition, to make intelli-gent decisions about method selection, the system would require performance informationdescribing the output quality and resource requirements of each method. This informa-tion could be relatively simple, or could be as complex as a full performance pro�le (seeChapter 2). In any case, because method selection retains the consideration of all worldmodel states and does not remove any TAPs from the schedule, it is one of the more subtletradeo� techniques, capable of altering the resource needs of the system without drastic2None of the packing strategies deliberately reorder the parts by placing them on the table and packingthem later. Parts were only put on the table if their shape was unknown, or if the packing operation wasaborted to deal with an emergency. In this experiment, no unknown parts were included.
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� �Figure 7.9: Schedulability variations using di�erent TAP implementations.
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�(a) Density of packed box. (b) Number of parts packed.Figure 7.10: Performance variations using di�erent TAP implementations.



130e�ects on its performance guarantees. Depending on the assortment of di�erent meth-ods available, the method-selection approach can alter almost any quality measure of thereactive system's performance, including precision, accuracy, number of parts packed, etc.7.2.6 Removing TAP TestsThe AIS can also make an unusual type of tradeo� by removing one or more featuretests from the precondition expression of a TAP. Removing an expensive test can makeit easier to schedule the TAP, because the resources required for the precondition will bereduced. However, this modi�cation reduces the state discrimination abilities of the TAP,giving the overall plan decreased con�dence. The AIS is no longer sure that only planned,appropriate actions will be taken by the RTS.This sort of modi�cation is obviously fairly risky, since drastically inappropriate actionscould result. In the Puma domain, for example, the push-emergency-button TAP isoriginally built with the test expression (and (part-in-gripper nil) (emergency T)).If the AIS removes the (part-in-gripper nil) portion, the RTS may �re this TAP andpush the emergency button any time the emergency light is on. If the Puma happens to begrasping a part when the TAP �res, the RTS would obliviously jam the part and gripperinto the emergency button, possibly resulting in damage to any or all of these devices.However, this approach may be useful if the AIS can determine that some expensivetest is not used to discriminate between common states, and is only present in the testexpression for some rare exception. In that case, the AIS may decide that the bene�ts ofremoving the test outweigh the slight risk of taking an inappropriate action.Removing a test may make a TAP apply to either a larger or smaller set of states,depending on how the particular feature test was invoked within the overall test structure.If the removed test is used in a disjunction, the resulting test expression will apply to asmaller set of states, while if the removed test was used in a conjunction, the new testexpression will succeed for a larger set of states.For example, consider the test expression of the stop-moving TAP planned for thePuma domain, shown in Figure 7.11. The original TAP will apply only to states where therobot is moving and either there is a part waiting on the conveyor, or the emergency light isactivated. Its purpose is to interrupt the process of carrying a part to the box, so that therobot can quickly place the current part on the table and respond to either the emergencyalert or the newly arrived part. If the AIS removes the (robot-position changing) test,the TAP is now applicable to a larger set of states; any time a part arrives or the alertlight goes on, the TAP may �re, regardless of whether the robot is actually moving ornot. Alternatively, suppose the AIS removes all the tests of the part-on-conveyor feature.In that case, the reduced test is (and (robot-position changing) (emergency T)),meaning that the TAP now only applies when the emergency light is on. Thus the set ofapplicable states is reduced, since parts waiting on the conveyor will no longer trigger theTAP.The �rst case, where the range of applicability is increased, shows how removing a TAPtest can lead to unplanned but acceptable actions, rather than just disastrously inappro-priate actions. In this case, the system may follow an action loop, taking an action that



131TAP stop-moving:TEST (and (robot-position changing)(or (part-on-conveyor T)(and (part-on-conveyor nil)(emergency T)))):ACTION (stop_moving):MAX-PERIOD 8.84:TEST-TIME .18:ACTION-TIME .02Figure 7.11: A stop-moving TAP for the Puma domain.has essentially no e�ect on the world (see Section 4.11). Any time part-on-conveyor istrue, the system may execute the stop-moving action, even if the robot is already halted.In terms of the AIS world model, this would correspond to an action with identical domainand range states, which therefore has no use. The only cost of such an action loop is theoverhead required to execute the useless action. Note that there is no danger of the systemgetting caught in an in�nite loop, since the RTS will continue cycling over the schedule,testing and executing the other TAPs as well.The second case, removing tests of the part-on-conveyor feature, leads to an inter-esting form of behavior because the system has reduced the number of states in which itwill halt to interrupt the action of moving over the box. This tradeo� has the e�ect ofprioritizing the completion of the packing operations for a part once it has been picked up.To demonstrate the performance e�ects of this change, we tested the resulting plan.Experimental Results of Removing a TAP TestExtensive simulations show, as illustrated in Figure 7.12, that in some situations themodi�ed TAP has the e�ect of increasing the number of parts that are successfully packedinto the box. To understand this e�ect, consider the original plan: when the robot wascarrying a part over to the box, if another part arrived the robot would immediately haltand place the current part on the table, so that it can pick up the part from the conveyor.The revised TAP disables that behavior, so that any time the robot is carrying a part overto the box, the only event that can interrupt the process is an emergency alert. When thepart arrival rate is synchronized so that parts frequently arrive in the middle of the processof carrying the previous part to the box, the original plan will be forced to place more partson the table than the plan with the modi�ed TAP. Thus Figure 7.12 shows that, at 7.5parts per minute, the modi�ed plan packs signi�cantly more parts into the box than theoriginal plan (on average). At both lower and higher arrival rates, the two plans performvery similarly, because the world states a�ected by the change to the stop-moving TAPrarely occur. At lower part-arrival rates, the robot is able to �nish packing most partsbefore the next ones arrive. At higher rates, the parts arrive so quickly that the robot nevereven begins moving them over the box, it just tries to pick them up and put them on thetable as quickly as possible.
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�Figure 7.12: Performance e�ects of removing the part-on-conveyor tests from thestop-moving TAP.This is a somewhat anomalous result, showing somewhat improved performance with apartially-mutilated TAP plan. In general, removing a test from a TAP will result in non-optimal behavior caused by inappropriate actions or the failure to take a desired action.This tradeo� method is clearly most useful when there are some world features thatare quite costly to test, so that eliminating those tests is worth the resulting increase inbehavioral uncertainty. In the Puma domain, testing is relatively fast compared to theduration of the robot actions, so the schedulability of a TAP plan is hardly a�ected byeliminating a small number of feature tests. However, if vision processing or other costlysensing methods were in use, this tradeo� technique might prove very e�ective at decreasinga TAP plan's resource requirements without excessively damaging its performance.As with the earlier tradeo� methods that ignore transitions, one of the most powerfulaspects of removing a test from a TAP is that the e�ects of this change can be consideredin the context of the world model. The AIS could scan over the reachable model statesand check when the modi�ed TAP would be applicable, comparing those occasions with theoriginally-planned states. This would allow the AIS to determine whether the TAP wouldbe applied to inappropriate situations, and whether those applications could lead to seriousproblems. Similarly, the AIS could recognize when the revised TAP would fail to implementa critical transition because it would no longer apply to the appropriate state. Using thiscapacity to project and examine the results of a proposed TAP modi�cation, the AIS could



133make sound decisions about what types of performance tradeo�s would provide a goodmatch of maximum increased schedulability with minimal decreased schedule con�dence.7.3 SummaryIn this chapter we have investigated a variety of ways in which CIRCA can make per-formance tradeo�s in the face of resource limitations. This capability is a fundamentalrequirement for intelligent real-time systems, since the very nature of real-time domainsincludes resource constraints.We have shown that the RTS can implement tactical, run-time performance tradeo�sthrough both if-time TAPs and planned, interruptible behaviors. If-time TAPs allowCIRCA to take advantage of slack time that only becomes available at runtime. Plannedbehavior tradeo�s, on the other hand, are re
ected in the world model, and are thus subjectto the introspective reasoning of CIRCA's AIS.We have also demonstrated several di�erent strategic tradeo� methods that the AIScan use to modify its plans. Table 7.1 presents a summary of the various strategic tradeo�methods we have investigated, showing brie
y how each method can a�ect several importantmeasures of CIRCA's performance:Schedulability: The ease with which the Scheduler can build a TAP schedule meeting alltiming constraints. The application of tradeo� methods is generally motivated by aninability to schedule the desired TAPs for a particular domain.Planning completeness: Does the AIS consider all possible world model states whengenerating the TAP plan? Clearly, if planning completeness is sacri�ced, reactioncompleteness is also.Reaction completeness: Does the TAP plan specify reactions for all of the states thatrequire action? Together, reaction completeness and reaction con�dence lead to per-formance guarantees: if a TAP schedule can be produced that is fully complete andcon�dent, CIRCA guarantees to prevent failures.Reaction con�dence: How certain can we be that the TAP plan will indicate the appro-priate reactions?Reaction quality: A domain-dependent measure of how well the system's reactions dealwith the environment. Example quality measures include precision, accuracy, utility,etc. In the Puma domain, for example, quality might be the number of parts packedinto a single box.The explicit tradeo�s charted in Table 7.1 are a critical feature of the CIRCA approach,allowing the AIS to dynamically, gracefully degrade the guaranteed performance it demandsfrom the RTS. Furthermore, the system has the ability to project the results of these tradeo�methods, as described above. Thus the AIS can decide whether a tradeo� will lead toacceptable performance or not, and it can use this information to guide a search for thebest tradeo� to choose.
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Tradeo� method Schedulability Planning Reaction Reaction ReactionCompleteness Completeness Con�dence QualityIgnore a temporal transition * + +Ignore an event transition * + +Modify a temporal transition * +Method selection * +Remove a disj. TAP test * + + +Remove a conj. TAP test * + +Table 7.1: Comparing the e�ects of various strategic tradeo� methods. Arrows indicate the relative increase or decrease in theperformance characteristics.



CHAPTER 8CONCLUSIONThis dissertation began with the goal of merging real-time computing and AI methods.In pursuit of that goal, we �rst developed a clear view of the various approaches to real-time AI and their di�ering objectives. To facilitate this understanding, we introduced theany-dimension algorithm concept in Chapter 2. This conceptual framework was used toclassify approaches to making performance guarantees, and was also used to understandthe immutable laws limiting the use of iterative improvement methods in pursuit of real-time AI (namely, that simple conjunctions of quality-based and resource-based terminationconditions are not e�ective). The conclusion: purely tactical, on-line methods of makingguarantees, such as any-time algorithms, are not su�cient to provide the guarantees oftimeliness and result quality required by hard real-time domains.In Chapter 3 we presented a review of previous work categorized into three main areas:AI systems embedded in real-time domains, real-time reactions embedded in AI systems,and cooperative real-time and AI systems. Our research on CIRCA epitomizes the �nalapproach, having goals somewhat di�erent than the �rst two approaches. CIRCA doesnot attempt to force its AI methods to meet deadlines; instead, it focuses on isolatingits AI methods from the domain-imposed deadlines, while still maintaining clear lines ofcommunication and control between the AI subsystem and the real-time subsystem. CIRCAcombines aspects of both strategic and tactical methods to build and execute guaranteedreactive plans. As such, a major contribution of this work has been the delineation of theCIRCA subsystem responsibilities, and the way in which those subsystems cooperativelyimplement both performance guarantees and unpredictable AI algorithms.Chapter 4 presented the world model that CIRCA uses to build real-time control plans.This model forms the basis for CIRCA's fundamental conceptual contribution, the notionthat the system's AI methods can be isolated from the domain deadlines by using a setof safety-maintaining control reactions. The characterization of a safely-controlled set ofworld model states represents a unique transfer of the control-theoretic concept of stabilityto the classical discrete AI planning model.In addition to supporting the isolation of real-time and AI in CIRCA, the world modelalso allows the system to implement e�cient reasoning about the worst-case possible behavi-ors of the environment. The world model's minimal representation of time and uncertaintyprovides a sound basis for the derivation of reactive TAP schedules that can enforce guar-antees of safety. As such, CIRCA represents a notable contribution because it internally135



136reasons about and modi�es its set of performance guarantees, as opposed to previous sys-tems having �xed sets of guarantees derived externally.CIRCA thus has a general capability to \consciously" trade o� all of its dimensions ofresource usage and performance. The architecture and the graph model provide a uni�edframework for reasoning about focusing sensing, restricting deliberation, and modifyingperformance parameters such as timeliness, con�dence, and precision. This represents asigni�cant advance in 
exibility over previous systems tailored to reason about a limitedset of performance or resource dimensions.Our research on CIRCA has not been focused solely on the theoretical basis for thesystem's guarantees. We have also developed a prototype implementation of CIRCA, ex-ploring the practical issues in meeting the demands of the architectural design. We havedescribed the development of several unique and powerful software systems that, acting inconcert, address the full range of problems involved in intelligent real-time control. Thesemechanisms include:� The AIS interpreter, which combines the ability to run arbitrary Lisp code withmeta-level reasoning, timeouts, and interrupt-based communication. These facilitiesmake our AIS well-suited to deliberation about real-time systems, because the systemcan not only run classical AI planning algorithms, it can also introspect on its ownperformance and that of the real-time subsystem it is guiding. This allows the AISto provide both deliberation and deliberation scheduling, both long-term lookaheadplanning and alertness to environmental changes.� The TAP planner module, which uses modular decision functions to build reactivecontrol plans based on the world model. The planner implements a simpli�ed temporallogic useful for planning preemptive reactions, and incorporates other special featuressuch as the ability to reason about nondeterministic transitions. The decision functionform makes extensions to the planner straightforward, and the planner's explicit stackallows it to be interrupted and resumed without great cost.� The Scheduler module, which implements algorithms to e�ciently produce cyclicschedules of reactions selected by the AIS. By reasoning explicitly about the timing be-havior of the RTS, the Scheduler sets CIRCA apart from most other AI-based systems,which have no capacity to guarantee timely responses in worst-case circumstances.� The RTS, which provides completely predictable execution of TAPs by using polling,bounded communication primitives, and a low-overhead context-switch scheme. TheRTS also executes if-time TAPs to utilize scheduled time that becomes available atruntime.The prototype CIRCA implementation has been equipped with several methods formaking performance tradeo�s, as discussed in Chapter 7. Experiments have demonstrateda wide range of performance tradeo�s that the system can implement in a self-aware fashion,recognizing the resulting changes in resource requirements and output quality.In sum, we have successfully designed, implemented, and tested the CIRCA approachto combining real-time and AI methods. The current implementation is fairly complex,



137and has not been carefully optimized. However, the system has been applied to severaldomains, and has demonstrated its unique combination of AI methods with guaranteedreal-time reactive plans.8.1 Future DirectionsMany research areas remain open for future expansion of this work on CIRCA, and onreal-time AI in general. The following topics seem well-suited to immediate research anddevelopment:� Predictive su�ciency. In Section 4.12 we introduced the notion of predictive suf-�ciency. Currently, CIRCA does not implement the testing necessary to make surethat conditions of predictive su�ciency hold; the system designer is still responsiblefor those details. However, there is potential to automate this task as well, and al-low explicit reasoning about predictive su�ciency to have impact on the planner'sdecisions. For example, the system might recognize that it does not have the abilityto avoid inappropriate actions from a particular world state (see Section 4.12), andthus it should pursue a di�erent plan. In Appendix D we discuss preliminary ideason adding this capability to CIRCA, and illustrate the application of those ideas toavoiding inappropriate actions and also to automating decisions about caching sensordata.� TAP improvements. The Scheduler currently builds schedules of individual TAPs,which can lead to rather ine�cient behavior, particularly when di�erent TAPs sharemany feature tests. While e�orts to improve the caching of sensed data can helpcombat this ine�ciency, as discussed in Appendix D, this approach will not solvethe underlying problem. Much of the time, individual TAPs are not applicable, andtheir scheduled worst-case execution time is �lled in by if-time TAPs. An alternativeapproach would be to group together TAPs into larger composite TAPs that couldshare the results of various sensing actions and be scheduled as a mutually-exclusivegroup, requiring less time on the schedule and leading to higher average utilizationof that scheduled time. Appendix C discusses more details on the composite TAPapproach, giving examples showing when this approach has advantages, and when itdoes not.� Scheduler feedback improvements. In the prototype implementation, the Sched-uler returns either a successful schedule or nil. We plan to investigate ways in whichthe Scheduler can provide more informative feedback about the cause of a schedul-ing failure, so that the AIS can make intelligent decisions about how to modify theTAPs, the system goals, or the world model. For example, the Scheduler might indic-ate which TAP timing constraints or resource requirements were most restrictive andprohibited a successful schedule. This research has the potential to move towards anew view of scheduling as an iterative negotiation process requiring feedback.� Rational tradeo� motivations. Currently, the AIS relies on human advice todecide which of its several tradeo� methods should be used in a particular situation.



138There is obviously potential to develop more rigorous, automated methods for makingthese decisions. Decision theory holds promise as a principled method for choosingbetween alternative tradeo�s, using the concept of expected utility. To employ decisiontheoretic methods, representations of probabilities and payo�s must be added to theworld model. The payo� information might take the form of a more general set of goalpriorities, as opposed to the binary priorities currently available (critical and not).� Multi-agent considerations. The world model shows how the AIS reasons aboutthe control-level deadlines it must guarantee through the RTS. From one perspective,control-level deadlines can be seen as the results of commitments with the environ-ment (e.g., starting forward motion commits a mobile robot to an obstacle detectionbehavior). Similarly, many task-level, non-critical, or \soft" deadlines can be viewedas resulting from commitments with other agents. For example, a mobile robot'sdeadline of reaching a landmark by a certain time might be based on an obligation torendezvous with another vehicle. In the Puma domain, the robot arm's desire to packparts into boxes stems from its commitments to other agents on the assembly line.These task-level deadlines have no intrinsic source; they only result from commit-ments (implicit or explicit) with other agents. Thus it may be possible to avoid orameliorate violations of such task-level deadlines by re-negotiating the source com-mitment, in order to alter the associated deadline. This would provide an additionalmethod to avoid task-level failure, supplementing the tradeo� approaches discussedin Chapter 7. Investigating this view of task-level deadlines will require examiningissues of modeling other agents' goals and plans, as well as commitments and negoti-ation with those agents. The possibility of negotiating new task-level deadlines alsoreveals tradeo�s between spending time negotiating and altering performance to meetexisting deadlines.



APPENDICESAPPENDIX ATHE PUMA SIMULATORThe Puma simulator runs within the Deneb Robotics Igrip simulation environment, andincorporates a number of unusual features required by that system. Igrip was selected as abasis for the simulator because it provides built-in graphical display capabilities, CAD-likethree-dimensional object design, simulation of linear and angular joint motion, and even anexisting Puma robot model complete with inverse kinematics. Given these existing features,developing the simulation domain for this thesis should have posed little di�culty. As willbe seen, however, various limitations in the Igrip system have made the actual developmentquite time-consuming, and the resulting product is less-than-ideal.To interface the RTS with the Igrip simulation (and also to the real-world Hero robot),Unix sockets were used to communicate robot and sensor commands, as well as their res-ults. The simulator thus includes a command interpreter which parses these incoming RTScommands and executes the appropriate simulation routines. The interpreter is written inIgrip's Graphical Simulation Language (GSL), which allows the user to specify a device'smovements, as well as controlling communication and simulated sensing. Much of the com-plexity of the simulation resides in this Puma command interpreter, as will be describedbelow.The conveyor belt and arriving parts are simulated in a simple but deceptive way: thebelt itself is a static device that does not move, while the parts arriving on the belt areactually programmed devices moving themselves. Each part runs the same GSL program,which varies its behavior based on the unique name of the actual part running the program.The part.gsl program simply looks up the speci�c part's name in a statically-de�ned list,�nds the associated starting position programmed by the user, and moves the part to thatposition when the simulation begins. It then issues a single motion command directing thepart to move at a �xed rate towards the end of the conveyor| the result is a sequence ofparts \marching in step" down the belt. The user can easily specify �xed spacings betweenthe arriving parts, or add in programmed random disturbances.The emergency alert light is also implemented by a simple GSL program which re-peatedly delays for some amount of time determined by a user-controlled random numbergenerator, and then turns on the alert light and sets a global variable indicating an emer-gency is present. This global variable is accessible to all programs running in the simulationenvironment. When the Puma interpreter completes the process of pushing the button, italso resets that global variable and turns o� the graphical alert light display. An emergency139



140failure is considered to have occurred if the global variable is already set when the alertprogram tries to set it (i.e., the Puma did not respond to the last emergency before thenext one arrives).Simulated robot sensors have been implemented in several forms. Initially, the sensorthat detects when a part is available on the end of the conveyor was implemented usingan Igrip ray-casting primitive triggered by the Puma interpreter. An invisible ray wasextended out from the end of the conveyor, and if its intersection with the nearest parton the conveyor was close enough, the part was considered reachable. This process provedquite time-consuming, so a much simpler alternative is now in use. When a part reachesthe end of the conveyor, the move command issued by its instantiation of part.gsl returns,and the part simply sets a global part-on-conveyor variable indicating it has arrived. Thepuma interpreter resets this global after picking up a part. This simple approach also allowsthe system to automatically keep track of the number of parts that arrive and the numberthat \fall" o� the end of the conveyor; if the part-on-conveyor global is already set whenanother part arrives, then the part is considered to have fallen o�, and a global counter isincremented. At the end of a simulation run, the Puma interpreter can print out or returnto the RTS the statistics on emergency alerts and part arrivals, and the associated failures.Similar approaches have been used to implement detection of the arriving part's shape.Rather than simulate a realistic sensor, information on part shape is made available in-ternally by arriving parts, and the Puma interpreter accesses those internal representationsto respond to RTS queries about part shape. While these simpli�cations make the simu-lated sensors unrealistically reliable, they were useful both for achieving su�cient simulationspeed and for getting the Igrip simulation running with a reasonable amount of e�ort. In thenext section, we describe the main issues which made the simulator development non-trivial.Programming ChallengesTwo issues are at the center of most of the interesting Igrip simulator developmentproblems. The �rst is Igrip's inability to interrupt ongoing robot motion; once the simulatoris given a command to move the robot's joints by a certain amount, it will not return controlto the interpreter until that process has �nished. This is a problem because the CIRCAmodel of the Puma domain sensibly includes the possibility of interrupting ongoing, long-term motion processes if the environment dictates that a change of course is necessary. Forexample, the movement of the Puma over the box is modeled by a temporal transition,which may take an indeterminate amount of time. Thus the system must also be able tofollow the stop-moving action transition, so that it can halt and respond to emergencyalerts that may arise during the process of moving over the box.Implementing interruptible motion required convoluted programming using an approachoriginally designed and implemented by Mike Hucka. Essentially, the approach is to splitup robot motion commands into very small movements that can be completed within areasonably small time, which is then taken to be the smallest unit cycle time of the sim-ulation (and thus the minimum time before an interrupt can be processed). In the Pumasimulation, each motion command sent to the interpreter is saved into registers that record



141the number of degrees of motion desired for each of the robot's six joints. On each cycleof the interpreter (every .05 seconds), each joint with a non-zero degrees-to-go register ismoved by a small increment computed from the joint's speed assignment and the cycletime. This rapid, incremental motion yields a relatively smooth-moving graphical display,largely because of the very fast graphics processing of the Silicon Graphics computer it runson. Ongoing motion commands are easily interrupted by simply resetting the degrees-to-goregisters to new values (or zero).The second main problem with the Igrip implementation is more serious, and not easilysolved. Essentially, the timing primitives supplied by the Igrip environment are not accurate(or even consistent), and thus adjusting the timing behavior of the simulator is more anart than an exact science. Timing in Igrip can be speci�ed in several ways; experience hasshown that perhaps the best way is to simply specify a total time requirement for eachrobot or part motion command sent to the Igrip environment. Thus each incremental jointmovement of the Puma is speci�ed to take a certain number of milliseconds, and likewise themotion of parts down the conveyor is assigned a total required time. Unfortunately, whilethese timing values are usually kept relatively consistent (i.e., a three-second motion doestake approximately three times longer than a one-second motion), they are not stronglytied to wall-clock time. That is, a motion command that is assigned for three secondsmay take anywhere from three to �fteen seconds to simulate, depending on the other loadson the simulator. Igrip does not seem to make strong e�orts to link real-world time withsimulation time. While this is �ne for an isolated simulation (and probably even desirable,so that simulations can be run faster than real-time), it is a problem when the simulationis interacting with an external process like the RTS, which is attempting to make reliableguarantees on timely behaviors in the simulation.Extensive experimentation revealed no way to solve this problem directly, so the exper-iments described in this thesis using the Puma simulator have been hand-calibrated. Theactual speed of the simulation depends on the number of parts being simulated on the con-veyor, as well as the rate of sensor accesses and other RTS activity. Thus part arrivals andalert arrivals were adjusted for each speci�c experiment to achieve common rates, withinthe relatively loose bounds possible given the Igrip limitations.All these problems with the simulation environment should be taken into account infuture plans to develop simulations using Igrip| in general, this system seems too slow andinconsistent to be fully e�ective. While the easy access to graphics and inverse kinematicsare a huge bonus, the lack of timing control available to the user makes the �nal simulationsystem almost as di�cult to work with as a real-world robot.
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APPENDIX BCOMMUNICATING WITH THE RTSThe TAP schedules executed by the RTS are sent to it by the AIS over a socket, in aspecial language form described by the grammar shown in Figure B.1. The download beginswith the material de�ning each of the TAPs that will be used in the schedule. Each TAPis made up of a test section, de�ning the set of AND/OR combinations of primitives teststhat should be executed, and an action section, listing the primitive actions that shouldbe performed if the tests return true1. Tests are described by the name of a primitivetesting function that should be executed to yield some result value describing the currentstate of the world, and a testing value against which that result value should be compared.Figure B.2 illustrates an example TAP schedule download message.As each TAP is read in by the RTS, it is assigned a unique integer index correspondingto its position in the list of TAPs. These indices are then used to communicate the actualschedule of TAP executions, following the BEGIN-SCHEDULE keyword. The schedule isthus a list of TAP indices, in the order in which they should be executed. Because of di�eringperiods and the e�ects of the Scheduler, this list may contain many repetitions of each TAPindex. This observation is the motivation for using this index method for communicatingthe TAP schedule: the initial TAP de�nitions are used to form data structures on the RTS,which are then easily and e�ciently referenced by the indices, rather than communicatingmultiple de�nitions of the same TAP for each of its invocations in the schedule.The looping to be performed at the end of the TAP schedule is implicit at the endof the list of TAP indices, tagged by the END-SCHEDULE keyword. The list of if-timeTAPs is communicated in a similar fashion, except that in this case the order of the TAPindices has no signi�cance, and no repetition will be included, because the RTS dynamicallydecides when each if-time TAP will be executed. The # acts as a message terminator,letting the RTS know that it has received the entire TAP schedule download and shouldbegin processing the schedule and making it ready for execution. Currently, the RTS doesincrementally download the new schedule, but it cannot parse/process the new scheduleuntil it has all been received. So the # triggers the parsing processing, whose runtimeactually depends on the length of the new schedule, but is very short in any case. A morecomplex re-implementation in flex (rather than lex) would allow incremental parsing.1Currently, the AIS only plans one action per TAP, and the RTS can only parse one action per TAP.Extensions to the RTS parser for multiple actions are trivial.



143hschedulei !htap-listi BEGIN-SCHEDULE htap-index-listiEND-SCHEDULE hif-time-sectioni #hif-time-sectioni !BEGIN-IFTIME htap-index-listi END-IFTIME j�htap-listi ! htapi htap-listi j htapihtapi !BEGIN-TAP htest-expri ACTION haction-primitivei END-TAP jBEGIN-COMPOSITE htap-index-listi END-COMPOSITEhtest-expri !htesti j(NOT htest-expri ) j(AND htest-expr-listi ) j(OR htest-expr-listi )htest-expr-listi ! htesti htest-expr-listi j htestihtesti ! ( htest-primitivei hvaluei )htest-primitivei ! hidenti�erihaction-primitivei ! hidenti�erihvaluei ! hidenti�erihidenti�eri ! halphai j hidenti�eri halphai j hidenti�eri hdigitihtap-index-listi ! htap-indexi htap-index-listi j htap-indexihtap-indexi ! hintegerihintegeri ! hdigiti hintegeri j hdigitihalphai ! AjBjCjDjEjFjGjHjIjJjKjLjMjNjOjPjQjRjSjTjUjVjWjXjYjZj j-hdigiti ! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9Figure B.1: A pseudo-BNF grammar for downloading TAP schedules to the RTS.Non-terminals are bracketed by h i and alternatives are separated by j.



144BEGIN-TAP (BOX1_BOUNCED NIL) ACTION BOUNCE_BOX1 END-TAPBEGIN-TAP (CURSOR_MOVED_IN_WINDOW T) ACTION MARK_CURSOR END-TAPBEGIN-TAP (AND (CURSOR_MOVED_IN_WINDOW NIL)(AND (BOX1_BOUNCED T) (BOX2_BOUNCED NIL)))ACTION BOUNCE_BOX2 END-TAPBEGIN-SCHEDULE 0 1 END-SCHEDULEBEGIN-IFTIME 2 END-IFTIME #Figure B.2: A simple TAP schedule download from the AIS to the RTS, for thebouncing box domain.Sharing Identi�ersThe grammar of Figure B.1 shows that primitive tests, comparison values, and primitiveactions are communicated to the RTS using standard alphanumeric identi�ers. However,because the RTS is written in C and the AIS is written in Lisp (and runs on a di�erentprocessor), the programs must have some additional mechanisms to ensure that the meaningof these identi�ers is \common knowledge." In other words, when the AIS sends a TAPto the RTS invoking the push-emergency-button action, the RTS must be sure to bindthat identi�er to its routine that performs the appropriate action.Several fancy programming tricks are used to make sure that this binding process isdone correctly, with very little e�ort by the system designer. The goal of these tricksis to make sure that an identi�er used in the Lisp description of a domain (from the �le\trans.lisp") is bound to an RTS primitive (from the �le \primitives.c") with the same name.To get the naming to match up, we use a perl program that parses both \trans.lisp" and\primitives.c," and produces a series of �les that will enable the appropriate mapping.The perl program, parse-trans, makes the RTS implement this mapping by actu-ally de�ning (before compile-time) part of the lexical analyzer used by the RTS to scanincoming messages from the AIS. Parse-trans reads the \trans.lisp" �le and extracts thenames of tests, values, and actions used in the world model description. It then reads the\primitives.c" �le and extracts the names of de�ned C primitive functions. A mapping �le\primitives.h" is generated to automatically map the Lisp test and action names to indices(unique integers). The �le \primdefs.c" is also generated, to initialize (at run time) an arrayof function pointers indexed by the indices de�ned in \primitives.h." Then parse-transbuilds a partial lex source �le \auto.lex" that de�nes the necessary lexical analysis ma-chinery to parse the Lisp primitive names and interpret them as their respective indices,which can then be used by the RTS interpreter mechanism.So, in summary, the RTS' lex-generated parser will translate incoming Lisp test andaction names (identi�ers) into indices, which index the automatically-generated array of Cfunction pointers. To execute downloaded TAP tests and actions, then, is merely a matterof de-referencing the corresponding function pointers.



145For further clari�cation, we now present a short example. Suppose the Lisp �le \trans.lisp"has a transition de�ned as:;; in trans.lisp, user generated(my-make-instance 'temporal:name "emergency-failure":preconds '((emergency T)):postconds '((failure T)))Then parse-trans will recognize \emergency" as a test primitive and build a line in\primitives.h" that gives that name an index:/* in primitives.h, auto generated */\#define EMERGENCY 24Then parse-trans will look for some C code in \primitives.c" de�ning a correspondingprimitive function:/* in primitives.c, user generated */int emergency () /* TIMING: 400 */{ ... }Finding that, parse-trans will make entries in \primdefs.c" that make that primitiveaccessible (note that the timing information is made available, for possible use by the RTS):/* in primdefs.c, auto generated */primitives[EMERGENCY] = emergency;wcet[EMERGENCY] = 400;And �nally, the entry in \auto.lex" will allow the RTS to parse incoming TAPs fromthe AIS that include the string \EMERGENCY":< in auto.lex, auto generated >EMERGENCY parse-prim(24);The main advantage of parse-trans is that it allows the user to make additions to theset of available primitives without ever hand-modifying the lexical analyzer or the #definesmapping names to indices, etc. Adding a new primitive is only a matter of de�ning the Ccode and using it in the Lisp world model transitions, rather than also making all thoseother code modi�cation, which would present too many chances for errors or forgetting toadd one new entry to some �le.
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APPENDIX CCOMPOSITE TAPSConsider three TAPs A, B, and C, scheduled to run sequentially, as shown in Figure C.1a.Suppose that these TAPs have been planned to respond sequentially to some domain event,detected initially by TAP A. After TAP A detects and responds, the plan calls for TAPs Band C to respond, at which time the response will be complete. This type of situationarises in the Puma domain, for example, when the robot is moving a part to the box andthe emergency light activates: a TAP detects the situation and stops the motion, anotherTAP puts the part on the table, and a third TAP �nally makes the robot push the buttonto cancel the emergency.The casual observer might have the impression that, in the worst case, the response timeguarantee that could be made for the completion of that sequence of responses would betests(A)+ tests(B)+ tests(C)+P (where P = wcet(A)+wcet(B)+wcet(C)), as shown inthe hypothetical timeline of Figure C.1b. Unfortunately, this intuitively desirable derivationis not correct.The �rst problem with the timeline is that it ignores the e�ects of if-time TAPs: when if-time TAPs are available, the RTS will execute them as many times as possible to �ll unusedscheduled time. Thus the �rst invocation of TAP A in the timeline will not use up just itstest time: the if-time TAPs may use up the action time as well. Making this correctionto the timeline, as shown in Figure C.1c, we might then postulate that the appropriateresponse guarantee would be 2 � P . However, this response deadline cannot be derived bythe current Planner and Scheduler, and is not necessarily correct.The remaining problem is that this formulation makes assumptions about dependenciesbetween the TAPs. The Figure C.1c timeline assumes that TAP B will execute its actionson its second invocation because TAP A was �red immediately before then. However, theScheduler has no knowledge of the dependencies we have postulated between these TAPs,so it has no way of knowing that, because TAP A �red, we expect the preconditions ofTAP B to hold. Furthermore, there are many cases where sequentially ordered TAPs wouldnot actually �re immediately following one another. In the above Puma example, supposethe TAP that halts the robot before putting the part on the table does so by sending acommand which may have slightly delayed e�ects, so that the robot may still be moving fora few milliseconds after the TAP has completed. In that case, if the preconditions of thesubsequent place-part-on-table TAP require the robot to be not moving, then the testmay return false, and thus TAP B might not �re immediately. In that case, the RTS will
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148have to �nish another cycle of the schedule before the sequence of TAP �rings continues. Asillustrated in Figure C.1d, this means that each TAP in the schedule actually has a worst-case possible response time of wcet(�) + P , as derived earlier (and despite any sequentialconstraints we might derive from the plan). The e�ect of this equation, in the case ofsequential TAPs, is to add a full TAP cycle period to the guaranteed response time for eachTAP in the sequence. In general, for a sequence of TAPs �1; �2; :::�n, the best guaranteethat can be made for the overall sequence response time isnXi=1 (wcet(�i) + P (�i))Thus the best guarantee that can be made for the A{B{C sequence of this example is 4�P .This bound on response time is caused by the individual scheduling of TAPs, so thatregardless of how frequently they are applicable, their full worst-case execution time is al-ways scheduled, and if-time TAPs will use that time if the TAP tests fail. For sequencesof TAPs, it should be clear that this leads to rather ine�cient and frequently unacceptableresponse-time results. For example, consider the Puma domain example above, in whichthree TAPs must �re in a sequence to respond to the emergency alert. Suppose, for sim-plicity, that each of those TAPs requires three seconds to execute, in the worst case (thisincludes the time for robot motion, so it is not a very unrealistic value). With only thosethree TAPs in the schedule, the invocation period for each TAP would be 9 seconds. Thusthe best response that could be guaranteed for the sequence of three TAPs would be 36seconds, despite the fact that only 9 seconds of actual TAP execution is required.Motivated by this observation, we have investigated a method for building compositeTAPs out of individual TAPs, combining their functions in search of greater e�ciency.Building Composite TAPsThe construction of composite TAPs is illustrated in Figure C.2. In Figure C.2a, thethree TAPs from the previous example have been combined into a single TAP which actslike a Lisp cond construct, sequentially running the tests of each TAP until one returnstrue, and then executing the appropriate actions. If none of the TAPs' tests return true,the composite TAP completes, and the RTS may �ll in the unused scheduled time withif-time TAPs, as usual.The worst-case execution time of a composite TAP is determined by the worst-casepath through its component TAPs. In Figure C.2a, the worst-case path involves testingfor TAPs A and B but not executing their actions, and then testing TAP C and executingits actions. Of course, the worst-case path may not always result from executing the lastcomponent TAP's actions. Figure C.2b shows a composite TAP in which the worst-casepath involves executing the second TAP; all other execution paths are shorter, even thoseinvolving execution of a later component TAP's actions.The max-period of a composite TAP C is derived to ensure that each of its componentTAPs �1; �2; :::�n is executed frequently enough to guarantee its required min�. Accordingly,the following equation is used:
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b) Figure C.3: Example TAPs showing that ordering in a composite is signi�cant.The main disadvantage of composite TAPs is that they add to the worst-case executiontime of TAPs that are later in the ordered composite list. As a result, choosing which TAPsto include in a composite can be important, and the ordering of the component TAPs isalso very important. Combining TAPs with time-consuming tests can make it di�cult orimpossible to schedule the resulting composite, even if the individual TAPs can be scheduledseparately. Two trivial examples will serve to illustrate these problems.The example in Figure C.3 shows two TAPs which can scheduled to meet their respect-ive min� requirements separately, but cannot be scheduled if they are combined into acomposite TAP in the wrong order. In Figure C.3a, the TAP with the longer tests (A)has been placed �rst, and as a result the worst-case execution time for the composite pathwhich invokes TAP B is much longer than the TAP B alone. The original schedule wasable to execute TAP B with a period of 9, and therefore could meet a min� requirement ofP (B)+wcet(B) = 9+2 = 11. To meet this min� with the composite TAP, however, wouldrequire a period P = min�(B) � wcetB(C) = 11 � 7 = 4. Since the composite TAP hasa worst-case execution time of 7, there is no way it can be scheduled to run with a periodof 4. However, Figure C.3b shows the opposite ordering, which is feasible, and actually canachieve a shorter period than the individually scheduled TAPs. In this case, because thecostly tests of TAP A are not executed before TAP B, the smaller min� of TAP B can stillbe met.However, proper ordering will not necessarily solve these sorts of problems. Figure C.4shows two TAPs and the two possible composites which can be formed from them. In bothcases (a) and (b), the excessive penalty of executing the �rst TAP's test portion makes thesecond TAP so delayed that it can no longer meet its min� requirements. In Figure C.4a,for example, TAP B is executed second, and its worst-case execution time is expanded from6 (in the individual case) to 11 in the composite. Thus to meet its original min� of 19,the composite would need to be executed with a period of 8. But since the composite has
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APPENDIX DIMPLEMENTING PREDICTIVE SUFFICIENCYIn this Appendix we describe predictive su�ciency in more detail, and present sug-gestions and ideas about how CIRCA could explicitly reason about and use predictivesu�ciency to its advantage.To accurately describe the concept of predictive su�ciency, we must begin with somenotation. We will use a simple temporally-quali�ed modal logic to describe the state ofa control system's knowledge. The logical statement K(p[ti]; tj) indicates that the systemknows, at time tj , that the proposition p holds at time ti. For convenience, we will also usestatements of the form K(p[t�; t�]; tj), indicating that the system knows, at time tj , that pholds continuously over the time interval from t� to t� .A control system's operations can be generally expressed as the acquisition of an obser-vation, the logical deduction of what that observation means about the state of the worldat the time the observation was made, the deduction of the predictions that the observationallows the system to make about the world following the observation, and the selection ofan action based on that knowledge. In our notation, we have:interpretO[ti] �! 8p 2 POi : K(p[ti]; tj)predict�! 8p 2 POp : K(p[tp�; tp�]; tk)select�! a[ta�; ta�]where O[ti] is a sensory observation made at time ti, POi is the set of propositions whichcan be inferred about the world at time ti from the observation, and POp is the set ofpropositions that can be predicted over the respective intervals [tp�; tp�]. These intervalsare the \intervals of predictive su�ciency," during which the observation O is su�cient topredict the value of the propositions POp . The time tj is the time by which the system'sprocessing has derived its knowledge of POi , and the time tk is the time by which the systemknows POp . Following those deductions, the action a is chosen and executed during the timeinterval [ta�; ta�].We use the concept of predictive su�ciency to show how an action can be guaran-teed to be appropriate when it is executed. The key to avoiding an inappropriate action



153is to ensure that the value of the propositions used to choose an action will remain un-changed before and during the action. This can be achieved by making action choicesbased on propositions whose intervals of predictive su�ciency cover the time during whichthe action's preconditions are necessary. More formally, suppose the action a requires aset of propositions Pa to hold during the respective intervals [tpa�; tpa�]. If Pa � POp and8p 2 Pa : (tp� � tpa�) ^ (tp� � tpa�), then the intervals of predictive su�ciency that aresupported by the observation O ensure that the required propositions will hold as necessary.For example, consider an intelligent autonomous vehicle that is waiting at an intersectionfor the tra�c signal to turn green. At some point, the controlling agent will make anobservation con�rming the proposition \the light is green" (POi ). This proposition aloneis not su�cient to justify crossing the intersection, because there is no guarantee that, atthe time tj when POi is known, the light is still green. The knowledge resulting directlyfrom interpreting sensor readings can only describe past states of the world. However, ifthe system knows some information about the domain's dynamic behavior, it can deriveadditional propositions that describe the current and future worlds. In this example, thesystem might know that the tra�c signal will switch to yellow for at least �ve seconds beforeit turns red. So, although the system does not know if the light is still green, it can concludethat, for at least �ve seconds after the light was seen to be green, the light must be eithergreen or yellow and the intersection will be \safe" to cross (POp ). If the agent is sure thatthe time it takes to infer these propositions from its observations and cross the intersectionis less than �ve seconds, it can guarantee that it will never be in the intersection during ared light.Thus the addition of domain modeling information has allowed the system to makeexplicit predictions about the future state of the world, based on stored sensor readings.Given further information about the agent's own performance, these predictions are thenshown to be su�cient to justify certain actions. This example illustrates how predictivesu�ciency can cover the sense/act gap, avoiding inappropriate actions.Avoiding Inappropriate ActionsFigure D.1 shows an example portion of the graph-based world model for the stoplightscenario. The model shows that the stoplight has three main states, Red, Yellow, andGreen, corresponding to its signal colors. In the Yellow and Green states, it is safe forthe agent to cross (\safe2X"), but not in the Red state. In this simple example we haveabstracted out all of the agent's own state except for the indication of whether it has crossedthe intersection or not. The di�erent states of the tra�c signal are connected by temporaltransitions (double arrows) indicating that, as time passes, the signal will transition tosubsequent states. Each temporal transition is labeled with the minimum possible delaybefore the transition occurs, perhaps derived from the agent's previous experience with thistra�c signal. For example, the transition between the Red and Green states indicates thatthe signal will stay red for at least 60 seconds before turning green.If CIRCA is told that the Red state is its initial condition, it will �rst try to plan anaction for that state. Since the state is not safe for crossing, the only applicable action is



154
  2 seconds

- yellow
- across intersection

25 seconds

5 seconds

- green

- Red - Green

- across intersection

- safe2X- unsafe2X - safe2X
- Yellow

60 seconds

no-op

sense state &

3 seconds

cross-intersection cross-intersectionFigure D.1: An abstracted portion of the world model for the stoplight scenario.no-op (shown as a dashed line in Figure D.1). The system then applies its domain rulesand derives the temporal transition leading to the new Green state. Again an action ischosen for the new state, but this time the cross-intersection action is chosen becauseit is applicable (Green is safe to cross) and because it leads to the desired result. So at thispoint CIRCA has planned a simple reaction indicating that, when the light is green, theagent should cross. But the system has not yet shown why this action is guaranteed to beappropriate when executed; it has not yet addressed the sense/act gap, and the possibilitythat the light will change before the cross-intersection action is completed.CIRCA could explicitly address these issues by ensuring that the propositions used tosatisfy the action's preconditions are covered by intervals of predictive su�ciency. Thesystem knows the worst-case execution time of all of its sensing and action primitives, aswell as their combinations. Thus the system knows exactly how long it will take, in theworst case, to detect the green light and cross the intersection (here, three seconds). Tocheck for predictive su�ciency, the system should continue its planning and look for otherdomain processes that may be occurring during the action. In this case, domain knowledgeindicates the temporal transition leading from the Green state to the Yellow state after aminimum of 25 seconds.As noted above, CIRCA does not know how long the light has been green when it isobserved; therefore, in the worst case, it should assume that the temporal transition tothe Yellow state occurs at the same time the system initiates the transition to cross theintersection. This corresponds to the \ghost" action transition in the �gure (the dotted lineleaving the Yellow state), showing that the action may actually be applied to the Yellowstate, leading to a new state where the signal is yellow, but there is now a minimum of onlytwo seconds before a temporal transition leads to a red light state.In this process of looking at transitions out of the Green state for which the action isplanned, CIRCA has shown that, although alternate results are possible, the preconditionof the action (\safe2X") is known to hold for �ve seconds. This is the interval of predictivesu�ciency: seeing a green light allows the system to guarantee at least �ve more secondsof safe crossing time. Because the process of sensing the green light and then crossing the



155street takes no more than three seconds, the interval of predictive su�ciency is long enoughto cover the sense/act gap. Therefore, CIRCA can plan this action and guarantee that itwill only be executed in appropriate situations.When CIRCA continues the planning process and tries to choose an action for the Yellowstate, it �nds that the cross-intersection action is applicable and leads to the desiredstate. However, when the system tries to ensure that the \safe2X" precondition can bepredicted to hold while the action is executed, it would �nd that the transition leaving theYellow state leads to the Red state, which is \unsafe2X." Therefore, since the system doesnot know how much time may have passed in the Yellow state before the state was detected,and the subsequent state does not satisfy the action's preconditions, the action would berejected. In summary, CIRCA could use its explicit understanding of predictive su�ciencyto derive a common rule of thumb used by drivers who glance at a tra�c signal: if the lightis green, go ahead and cross; if the light is yellow, do not start crossing, because the lightmay turn red too soon.Real-Time Response GuaranteesAn interesting feature of this approach to avoiding inappropriate actions is that itrequires no information about how frequently a particular sensory observation is beingacquired| the example said nothing about how often the system checks to see if the lightis green. If the system never even checks to see if the light is green, and thus never takesthe cross-intersection action, it will never perform an inappropriate action. Clearly,this type of proof is only useful for goals that have no deadline. For real-time goals, thatrequire response-time guarantees, this method is not su�cient.Suppose we alter the tra�c signal domain slightly, so that the system is now requiredto cross the entire intersection during the �rst available green light (perhaps because thereis an impatient driver behind the autonomous vehicle). This deadline scenario is illustratedin Figure D.2, showing that if the system has not crossed by the end of the green light, ithas failed.CIRCA recognizes this potential failure when it examines the transitions leading out ofthe Green state, and realizes that it must preempt the temporal transition. That is, CIRCAdecides it must execute some action that will de�nitely occur before the earliest time thetemporal transition to failure can occur. To preempt the transition, CIRCA commits torepeatedly executing the behavior that checks for the crossing conditions, at least frequentlyenough to ensure that the crossing action will be completed before failure can occur.It is fairly obvious that, to guarantee that it will simply detect the �rst Green state,which has a minimum possible duration (min�(POi )) of 25 seconds, CIRCA must testfor the state at least once every 25 seconds. However, detecting the Green state is notsu�cient: the system must be able to �nish crossing before the signal changes to yellow.To provide this predictive su�ciency, CIRCA could rely on its additional knowledge aboutthe frequency with which it will be obtaining sensory information. For example, if the periodof the repeated observations is �(O) seconds, then an observation in which the conditiondoes hold, following an observation in which the condition does not hold, indicates that the
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Figure D.2: An abstracted portion of the world model for the modi�ed stoplightscenario with a response-time deadline.change of state must have occurred in the last �(O) seconds. Therefore, the condition mustcontinue to hold for at least min�(POi )� �(O) seconds.Thus we have a modi�ed interval of predictive su�ciency, based on both knowledge ofthe domain and knowledge about the ongoing performance of the reactive system itself.The AIS could actually reason about the performance of the reactive system it is designingto derive the predictive su�ciency of the observations it plans to make. To guarantee thatevery real-time reaction will be checked and executed before its corresponding deadline,CIRCA must show that the predictive su�ciency of the observations covers the sense/actgap. That is, min�(POi )� �(O) > ta� � ti. In our modi�ed tra�c signal example, we have25 � �(O) > 3, so that �(O) < 22. If CIRCA can guarantee to execute the reaction thattests for Green and crosses at least once every 22 seconds, it can guarantee that it will notfail to cross on the �rst green light.Automatically Allocating Internal StateStoring sensory data in internal state is desirable because a system that caches sensorydata can access that information many times without incurring the high cost of repeatedsensor accesses. However, relying on cached data increases the risk of executing inap-propriate actions or missing deadlines, because it increases the sense/act gap. Predictivesu�ciency thus plays a role in determining when caching sensory data is acceptable. Weare investigating an intriguing approach to automatically planning the use of stored sensorydata in the context of CIRCA's RTS.The �rst line in Figure D.3 shows an abstract representation of a simple TAP schedulethat includes three di�erent TAPs (A, B, and C). CIRCA's planner has determined thatTAPs B and C must be run more frequently than TAP A, so the schedule loop includes twoinvocations of B and C for each invocation of A.Suppose that both TAP A and TAP B access the same sensor to get information aboutthe same world feature. If accessing that sensor is costly, it may be worthwhile to try to
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slack timeFigure D.3: An example TAP schedule and two modi�cations that use memory ac-cesses instead of sensor accesses.minimize sensor accesses, and rely instead on cached sensor readings when possible. To dothis, however, we must know that the added delay between when a sensor reading is actuallyacquired and when it is used (from memory) will not cause problems. This is precisely theknowledge described above: we must know the interval of predictive su�ciency of the sensorreading.Figure D.3 shows two simple modi�cations to the existing schedule that might be used todecrease the number of sensor accesses and rely more on memory. In the �rst modi�cation,the more-frequent TAP B has been modi�ed to store the value that it senses into a memorylocation1. The less-frequent TAP A no longer accesses the sensor, instead relying on thecached values provided by the most recent invocation of TAP B. With these changes, itis clear that TAP A is still using sensor data that is polled at a high-enough frequency:the sensor data is still updated at least once per cycle, so the real-time reaction guaranteesdiscussed in above are preserved. However, there is now a longer gap between the time thedata is sensed and when it is used by TAP A. Thus, to avoid failures due to inappropriateactions, the sensor's predictive su�ciency must cover the time from when it is accessedin TAP B through the time TAP A uses the cached value (the shaded region below theOPTION 1 line).The advantage of making these modi�cations to the TAP schedule is that, becausememory accesses take much less time than sensor accesses, the same set of TAPs will useless time. As a result, CIRCA can use the slack time (the black bar) to either schedulemore TAPs or run the same set of TAPs more frequently.In the second modi�cation option, TAP A stores the result of its sensor access, and the1Because each invocation of a TAP in CIRCA's schedules is a pointer to a single TAP structure, thereis currently no way to modify a single invocation. Thus we cannot (yet) have only the second invocation ofTAP B save the sensor value.



158two invocations of TAP B access that stored value rather than the sensor itself. Clearlythis option can provide greater savings than the �rst, since two sensor accesses have beeneliminated rather than one. Figure D.3 re
ects this improvement in the longer slack timebar following the OPTION 2 schedule. However, this option has correspondingly morestringent constraints which must be met for the system to remain functionally correct. Inthe �rst option, the maximum frequency of sensor accesses for each TAP was not changed,so all the TAPs still could be guaranteed to not miss any conditions they were originallyscheduled to detect. In the second option, the sensor is now only accessed once per cycle,so TAP B is no longer working with information updated at the original frequency2. Thus,to make sure no transient conditions are missed, the system would have to check that themaximum possible frequency of change for the sensed feature is actually lower than thecycle frequency of the entire TAP schedule, rather than the previous (higher) frequency ofTAP B invocations.Furthermore, as with the �rst option, the system must ensure that the predictive su�-ciency of the data spans each of its uses. In this case, the data acquired by TAP A mustbe predictively su�cient all the way until it is used by the second invocation of TAP B, asshown by the shaded bar below the OPTION 2 line in Figure D.3.The increases in e�ciency obtained by these two modi�cation options are only pos-sible because predictive su�ciency allows the system to ensure that its functionality is notchanged; we cannot arbitrarily cache sensor data, because of the increased sense/act gap.Thus, decisions about the use of internal state result from the principled application ofknowledge about the system and the environment in which it is embedded. While informa-tion at higher abstraction levels may generally have longer intervals of predictive su�ciency[22], the explicit representation of predictive su�ciency allows the bene�ts of internal stateto be accrued even at lower levels of abstraction.In sum, predictive su�ciency is a critical concept for embedded agents, because it per-mits a system to make guarantees about its behaviors. We have shown how CIRCA coulduse an implementation of predictive su�ciency to guarantee that it will not execute in-appropriate actions and that it will react to its environment frequently enough to meetreal-time deadlines. A great deal of work remains to be done in implementing this approachand ensuring that all the possible cases of domain interactions are handled correctly.Explicitly reasoning about predictive su�ciency also allows us to break away from themindset that decreasing the delay between sensing and acting is always desirable. Spe-ci�cally, knowing the predictive su�ciency of an observation can allow a system to cachesensory data and maximize the use it gets out of each observation, potentially reducing thefrequency of observation and the resulting overhead. We have shown how CIRCA coulduse this approach to streamline its schedule of reactive behaviors and enhance its real-timeperformance.2In fact, the second invocation of TAP B is redundant and removable if its tests do not access any othersensors or more-recently-updated memory values.
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APPENDIX EDOMAIN DESCRIPTIONS FOR THE AISThe following sections list the domain descriptions provided to the AIS for the examplesused throughout this thesis. All timing values are listed in microseconds.The Puma Robot Domain;;----------- Actions for picking part up and putting in box.(my-make-instance 'action:name "pickup_known_part_from_conveyor":preconds '( (robot_status free)(part_on_conveyor T)(know_type_of_conveyor_part T)(part_in_gripper nil)):postconds '( (know_type_of_gripper_part T)(part_in_gripper T)(robot_position over_table)(part_on_conveyor nil)(know_type_of_conveyor_part nil)):delay 3500000)(my-make-instance 'action:name "pickup_unknown_part_from_conveyor":preconds '( (robot_status free)(part_on_conveyor T)(know_type_of_conveyor_part nil)(part_in_gripper nil)):postconds '( (know_type_of_gripper_part nil)(part_in_gripper T)(robot_position over_table)(part_on_conveyor nil)):delay 3500000)



160;;----------- Moving over box is a process: start, stop, can halt early.(my-make-instance 'action:name "start_moving_over_box":preconds '((robot_status free)):postconds '( (robot_status moving_over_box)(robot_position changing)):delay 20000)(my-make-instance 'action:name "stop_moving_over_box":preconds '( (robot_status moving_over_box)(robot_position over_box)):postconds '( (robot_status free)(robot_position over_box)):delay 20000)(my-make-instance 'action:name "stop_moving":preconds '((robot_position changing)):postconds '((robot_status free) (robot_position unknown)):delay 20000);;----------- This TT shows that process of moving over box may eventually;; succeed (after at least 2 seconds).(my-make-instance 'temporal:name "arrive_over_box":preconds '((robot_status moving_over_box)(robot_position changing)):postconds '((robot_position over_box)):delay 2000000)(my-make-instance 'action:name "place_known_part_in_box":preconds '( (robot_position over_box)(robot_status free)(know_type_of_gripper_part T)(part_in_gripper T)):postconds '( (part_in_box T)(part_in_gripper nil)(know_type_of_gripper_part nil))



161:delay 4000000);;----------- Just putting part on table takes less time:(my-make-instance 'action:name "place_known_part_on_table":preconds '( (robot_status free)(know_type_of_gripper_part T)(part_in_gripper T)):postconds '( (part_on_table T)(know_type_of_table_part T)(robot_position over_table)(part_in_gripper nil)(know_type_of_gripper_part nil)):delay 2000000)(my-make-instance 'action:name "place_unknown_part_on_table":preconds '( (robot_status free)(know_type_of_gripper_part nil)(part_in_gripper T)):postconds '( (part_on_table T)(know_type_of_table_part nil)(robot_position over_table)(part_in_gripper nil)):delay 2000000);;----------- Note the various nondeterministic postconditions: after;; picking up a part off table, may be known, unknown, or;; no parts left on table.(my-make-instance 'action:name "pickup_known_part_from_table":preconds '( (robot_status free)(part_in_gripper nil)(know_type_of_table_part T)(part_on_table T)):postconds '( ((part_on_table T)(know_type_of_table_part T)(robot_position over_table)(know_type_of_gripper_part T)(part_in_gripper T)



162)((part_on_table T)(know_type_of_table_part nil)(robot_position over_table)(know_type_of_gripper_part T)(part_in_gripper T))((part_on_table nil)(know_type_of_table_part nil)(robot_position over_table)(know_type_of_gripper_part T)(part_in_gripper T))):delay 3000000);;----------- Events for arrival of parts on conveyor.(my-make-instance 'event:name "known_part_arrives":preconds '((conveyor_status free)):postconds '( (part_on_conveyor T)(conveyor_status busy)(know_type_of_conveyor_part T)))(my-make-instance 'event:name "unknown_part_arrives":preconds '((conveyor_status free)):postconds '( (part_on_conveyor T)(conveyor_status busy)(know_type_of_conveyor_part nil)));;----------- After a part has arrived and conveyor goes busy, it can;; become free again after some delay (for next 'part slot';; to arrive) and then the event of a part arriving can occur.(my-make-instance 'temporal:name "conveyor_moves_to_next_slot":preconds '((conveyor_status busy)):postconds '((conveyor_status free)):delay 50000000);;----------- Failure by part falling off conveyor if not processed;; before next part arrives.(my-make-instance 'temporal



163:name "part_falls_off_conveyor":preconds '((part_on_conveyor T)):postconds '((failure T)):delay 50000000);;----------- Emergency alert stuff...(my-make-instance 'event:name "emergency_alert":preconds '((emergency nil)):postconds '((emergency T)))(my-make-instance 'action:name "push_emergency_button":preconds '( (robot_status free)(part_in_gripper nil)):postconds '( (emergency nil)(robot_position over_button)):delay 3500000)(my-make-instance 'temporal:name "emergency_failure":preconds '((emergency T)):postconds '((failure T)):delay 25000000);;----------- Definition of goals.(setf *goals* '((part_in_box T)(part_on_conveyor nil)(part_on_table nil)(part_in_gripper nil)))(setf *repeat-goals* '( (part_in_box T) ));;----------- Definition of initial state.(setf *initial-states* (list(my-make-instance 'state:features '((failure nil)(emergency nil)(know_type_of_conveyor_part nil)(know_type_of_table_part nil)(part_in_gripper nil)(conveyor_status free)(robot_status free)(robot_position over_table)(part_on_table nil)



164(part_on_conveyor nil)(part_in_box nil)))))The Bouncing Box DomainBox 1 is the left box requiring guaranteed, real-time service. Box 2 is the if-time box,which does not lead to failure if it is not serviced by a deadline.;;----------- Actions for bouncing boxes(my-make-instance 'action:name "bounce_box1":preconds '((box1_bounced nil)):postconds '((box1_bounced T)):delay 10000)(my-make-instance 'action:name "bounce_box2":preconds '((box2_bounced nil)):postconds '((box2_bounced T)):delay 10000);;----------- Boxes should be bounced every few cycles: i.e., they become;; unbounced quickly.(my-make-instance 'temporal:name "box1_notbounced":preconds '((box1_bounced T)):postconds '((box1_bounced nil)):delay 100)(my-make-instance 'temporal:name "box2_notbounced":preconds '((box2_bounced T)):postconds '((box2_bounced nil)):delay 100);;----------- It is critical to bounce box1 before some deadline...(my-make-instance 'temporal:name "box1_failure":preconds '((box1_bounced nil)):postconds '((failure T)):delay 400000);;----------- Action to draw a circle around the mouse-driven cursor.



165(my-make-instance 'action:name "mark_cursor":preconds '((cursor_moved_in_window T)):postconds '((cursor_moved_in_window nil)):delay 12000);;----------- Cursor can move as an instant event.(my-make-instance 'event:name "cursor_moves":preconds '((cursor_moved_in_window nil)):postconds '((cursor_moved_in_window T)));;----------- If don't track cursor before some time, failure...(my-make-instance 'temporal:name "cursor_failure":preconds '((cursor_moved_in_window T)):postconds '((failure T)):delay 900000);;----------- Define the task-level goals.(setf *goals* '((box2_bounced T)(event_not_processed nil)));;----------- Define the initial state.(setf *initial-states* (list(my-make-instance 'state:features '((failure nil)(cursor_moved_in_window nil)(box1_bounced nil)(box2_bounced nil)))))
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