
RECONFIGURATION OF HIERARCHICAL TUPLE-SPACES:EXPERIMENTS WITH LINDA-POLYLITHGilberto Matos James PurtiloComputer Science Department and Institutefor Advanced Computer StudiesUniversity of MarylandCollege Park, MD 20742ABSTRACT: A hierarchical tuple-space model is proposed for dealing with issues ofcomplexity faced by programmers who build and manage programs in distributednetworks. We present our research on a Linda-style approach to both con�gurationand recon�guration. After presenting the model used in our work, we describe anexperimental implementation of a programming system based upon the model.

This research is supported by the National Science Foundation under contract NSF CCR-9021222.

1 INTRODUCTIONWhile the speci�cation of the algorithm is usually accepted as a good representation of a sequentialprogram, complex distributed systems are rarely represented using one elaborated model. Thecomplexity of representation of distributed systems lies in the existence of multiple processes,which can be arbitrarily synchronized or completely asynchronous, and whose communicationpatterns are allowed to be dynamically recon�gured during the execution of the program. Themain requirement for a model which can be considered to be simple and easy to use is thestatic structure. The purpose of this paper is to describe one static structure which capturesthe complexity of distributed programming systems. This model of distributed programmingsystems can provide information which can be very useful in the maintenance of software, thusincreasing reusability and productivity in software engineering. This model is based on a simplestatic structure, but it is designed to be able to model any type of distributed applications.In Section 2, after a brief background overview on the tuple space concept, we will de�ne therequirements for a static hierarchical representation of a distributed system. This set of require-ments is geared towards allowing static analysis of the communication patterns in the system,and it imposes certain constraints on the design of a program, but indirect ways for bypassingthese constraints will be discussed in 2.3.The Section 3 contains a discussion of di�erent software manipulation techniques which can besupported by an automatic compile-time analysis of the program, based on the proposed modelfor the system. For this analysis we will isolate several basic types of communication patterns andanalyze the methods for the basic software structure manipulation, such as addition of modules,replacement of modules the merging of complete applications. We will also show how di�erenttypes of sequential programs can be modeled using this representation, and what are the bene�tsof such representation.Section 4 illustrates some practical considerations of the proposed model, based on a DistributedFile Server implementation. Performance of the system is also discussed with a look at thescalability issues for our current implementation and possible improvements.2 TUPLE SPACE TREEThe purpose of this section is to briey review the background of Linda style computing, andthen to introduce our model of hierarchical tuple spaces.2.1 LINDA AND THE TUPLE SPACE CONCEPTLinda is a Distributed Programming Language which is based on the associative communicationconcept, and total dynamic recon�gurability. The communication in Linda consists of tuples,1

which are messages of data without any address information. When a tuple is matched by arequest for receiving a tuple, then the communication is e�ectively performed.Syntax of Linda can be found in detail in [CG89a]. In short, Linda consists of four primitives andsome derived commands. Three main commands handle the communication and one commandcovers the creation of processes. The commands are the following:1. out - (send message)2. in - (receive message)3. rd - (receive message and leave a copy in tuple space)4. eval - (create new process(es))The out command creates a tuple which joins the tuple space and waits for some process toaccept it. The receiving is performed by matching the tuple in the tuple space with the formatand speci�ed values in the receivers request. Message can be deleted from the tuple space or leftin it, depending on the receiving operation. The eval command creates a template which is anactive tuple, a set of requests for computations that should be performed in order to computethe values in the tuple. When all values of the active tuple have been computed, it becomes anormal passive tuple, no di�erent from other messages in the system. Figure 1 shows a simplesolution of the dining philosophers problem using Linda.void main() int philo(int i){ int i,num=5; { int num;out("NUMBER",num); rd("NUMBER",?num);for(i=0;i<num;i++){ for(;;){out("FORK",i); work();eval(philo(i)); in("TICK");if(i>0) out("TICK"); in("FORK",i);} in("FORK",(i+1)\%num);} eat();out("TICK");out("FORK",i);out("FORK",(i+1)\%num);}}Figure 1: Linda Example { This is a Linda solution for the dining philosophers problem modi�edfrom [CG89a].Linda gives complete dynamic recon�guration capabilities. Every process executes some functionand "dies" when the function is computed, and any process can initialize the creation of anew process. The message addressing is emulated by matching the formats and values of the2

message attributes, whose values can be changed dynamically at runtime, thus changing thecommunication pattern. With two derived functions (inp and rdp) which handle conditionalreceiving of messages, Linda is capable of performing any distributed computation.2.2 HIERARCHY OF TUPLE SPACESThe concept of tuple space, as used in Linda, represents a global associative shared memoryused for communication. Instead of explicit addressing, associative communication uses theformat of the message and its content to match arriving messages with requests. When thematching is successful, the message is forwarded to the process which sent the request. Thistype of communication has implicit addressing based on the content of the message which makescomplex communication patterns easy to implement.Tuple space is a very simple, yet powerful, concept for modeling distributed programs, but itdoesn't support the creation of large systems because all the processes in the system have accessto one tuple space containing all the messages (see example 2). Dividing the global tuple spaceinto disjunct subspaces allows the programmer to direct the communication of processes in thesystem to particular subspaces. Any subspace which is reachable only from a certain subset ofprocesses in the system can be considered to be their local tuple space, while the rest of thesystem can reach it only indirectly through communication with some of the local processes.Isolating a part of the system in this way is used extensively in object oriented programming andabstract data types.Access to more than one tuple subspace is necessary for some of the processes, because otherwisethe system would be divided into isolated subsystems. Message addressing requires the tuplesubspaces to be organized according to their accessibility to the processes in the system. Hier-archical organization of tuple subspaces from local to global level allows the introduction of asimple static structure for modeling the system; a simple structure for this hierarchical model isa tree which has tuple subspaces as nonleaf nodes and processes as leaves. The root of the tuplespace tree is the global tuple subspace, which is accessible to all the processes in the systems; allthe other nodes are local tuple subspaces which allow access only to processes which are theirdescendants.Tuple space tree has a very simple addressing scheme which is used for directing messages totuple subspaces for matching; In addition to the tuple attributes, the process needs to specifythe number of levels that the message should climb towards the global tuple subspace. Staticaddressing of the message allows compile-time checking to �nd all the processes that can po-tentially communicate through a given tuple subspace. Allowing the compile-time checking ofcommunication between processes is su�cient reason for making static message addressing a re-quirement in this model. Methods for removing the need for run-time tuple space addressing willbe addressed in 2.3.Creation of new processes in Linda is done transparently to communication, by making an activemessage which requires the creation of new processes which will compute the values in the tuple.3

The tuple space tree requires specifying where are the processes going to be executed and whereto send the message after it is computed; Restricting the creation of processes to the local tuplesubspace of the calling process removes the need to specify for each process in the active tuplewhere it should be executed, and allows static checking of processes which can be created withina tuple subspace. Methods for reducing non-local process creation to local will be discussed later.

4

void main() int philo(int i, char *tick, *fork){ int i,num=5; { int num;out("NUMBER",num); rd("NUMBER",?num)for(i=0;i<num;i++){ for(;;){out("FORK1",i); work();out("FORK2",i); in(tick);eval(philo(i,"TICK1","FORK1")); in(fork,i);eval(philo(i,"TICK2","FORK2")); in(fork,(i+1)\%num);if(i>0) out("TICK1"); eat();if(i>0) out("TICK2"); out(tick);} out(fork,i);} out(fork,(i+1)\%num);}}The dining philosophers problem has a very simple solution in Linda, but making it slightlymore complex illustrates the problems with duplication of messages. Suppose we want to addanother set of philosophers and another table for them. The synchronization of both groupsshould be done independently and no messages should be shared by both groups. This meansthat the groups use di�erent sets of messages which can't be matched. One way to use di�erentmessages is to replicate the code for the philo function with di�erent values for messages, but thisduplicates the source, and makes later changes in the code harder. A better solution is passing thedescriptors of messages as formal parameters, but this method makes the communication hard toanalyze. Problem lies in the fact that we are putting structural information about the applicationinside the messages in a desorganized way, and this implied structure can't be extracted from thesource code at compile time.Figure 2: Linda solution for 2 groups of philosophers2.3 RESTRICTIONS OF THIS MODELThis model explicitly divides the tuple space into disjunt subspaces, where the set of processesthat can access any tuple subspace can be found at compile time. This information is speciallyuseful in work with complex systems, when it is hard to remember all the types of messages inthe system or any of his parts. The restrictions that are introduced in the description of themodel are required in order to make the model simple and static, even though it represents adynamically recon�gurable system. This model of distributed programing systems also has inmind higher performance of communication due to the smaller size of the tuple spaces.Restricting the process creation to the local tuple subspace is important because it enables thestatic analysis to �nd all the potential processes in any given tuple subspace, and process cre-ation remains structure independent. This requirement doesn't really disable any inter-subspaceprocess creation, but only requires that the creation be requested by a message to a local process.When many requirements for inter-subspace process creation exist in the system, the creation-5

request messages will introduce too many communication dependences in the system. Such partsof the system should be considered for maintaining in one local tuple space, where the pro-cess creation would be handled directly; additional analysis should be performed to �nd out ifrestructuring can improve the situation.The requirement for static message addressing is necessary for enabling the compile-time analysisof communication in the system. The constraints which are introduced by this requirement are notcritical, and they shouldn't even show up except when applications written using some di�erentmodel are being implemented according to this one. If some communication commands in thesystem had a variable address �eld, they could potentially establish communication through anylevel of tuple spaces and compile-time checking would be unable to determine the processes whichwill use any particular message format in a given tuple space. This would require a conservatveapproach in the estimation of the set of processes and the resulting set would have to be biggerthan in the case of static addressing. Another problem with the dynamic message addressing isthat the program would have to be written having in mind a particular tuple space tree, whichwould severely limit the possibilities of recon�guration of the tree.Substitution of dynamic by static message addressing can be done in two simple ways. One waywould be to merge the involved messages into one tuple space, and then address the messagesstatically. This may require adding some synchronization mechanizms for di�erent processesor adding selection values to messages in order not to introduce unwanted message matches.Second way is to separate a dynamically addressed communication command into a series ofstatic commands which are activated according to the value of the addressing variable. In case ofa recon�guration of the tuple space tree, the static addresses can be changed at the source levelto satisfy the new tree structure.This enables the compiler to make a precise estimation of the processes which will send or receivemessages of a certain format to any tuple space, and which could therefore communicate duringthe execution.3 SOFTWARE MANIPULATIONSThe model just introduced has a number of important simpli�cations for the application structurewhich allow for signi�cant increase in clarity of programming, and easier analysis. Both of theseaspects are important for the maintenance and continued development of a complex softwaresystem.The following analysis will demonstrate how some simple methods can help the programmer todetect the parts of the application which he needs to change or just check for correctness, aftersome previous change. As in the previous chapters modules will refer to sets of processes whichhave a local tuple space, although it can consist of one process which doesn't necessarily use thatlocal tuple space. 6

The analysis is based on the afore mentioned constraints on the recon�guration, and on thestatically addressed associative communication. There are several types of dataows in the ap-plication, which are interesting to us because of the di�erent methods for adding or deletingsome processes which access them. The authors of [CG89b] claim that parallel programs canbe done using a small number of process types which communicate through the tuple space.Our idea is that the number of communication patterns should also be limited. Having a smallnumber of communication patterns enables us to make rules for changes on every pattern. Thefollowing list should be su�cient to capture all complexities of distributed programs. Since asequential program can in theory do everything that a distributed one can, then a distributedprogram with limited types of communication is also able to do everything as ones with unlimitedcommunication.1. Asynchronous communication of multiple processes.Any number of processes is allowed to read or write messages at any time, and the orderof messages is not important.2. Synchronized one-one communicationThis type of communication exists between two processes, when each process sends a mes-sage, and then waits for the response from the other process. Nonrecursive procedure callscan be modeled using this type of communication.3. FIFO Communication with multiple processes.In general this type of communication requires synchronization on the writing and readingend because messages need to have some ordered identi�cation, and processes need to readand increment the identi�cation before performing the read or write operation. The numberof processes which are accessing this message ow is allowed to vary during the computation.4. Other types of communication which usually encompass some implicit synchronization.These patterns should be analyzed more carefully to see how the synchronization is per-formed, and how the desired change in the structure of the application would interfere withthe existing synchronization pattern. Reduction to some of the previous patterns shouldbe possible, which will make this analysis complete.Some of these communication patterns already have some kind of explicit process synchronization,while for others it is implied or nonexistent and unnecessary. These di�erences in the communi-cation patterns will result in di�erences in the software manipulation operations , depending onthe types of communication that they have to interfere with.� REPLACEMENT OF A MODULEWhen something is to be changed inside one module, it can be done without any regard tothe system if the change concerns only data which will not interfere with communicationor synchronization of any other process. In such cases we are dealing with changes in thedata processing within the module, and no external changing is required. The checking is7

necessary on all of the modules which can get the data from this module, and use it todetermine the control ow, if it can a�ect communication.If some of the communication interfaces is to be changed, then the checking has to includethe synchronization of the speci�c dataow, and the message values. For the case of asyn-chronous communication and FIFO synchronized communication, change in this modulecan only raise problems if it is the only module on the read or write side. On the otherhand if the module has a 1-1 synchronized communication with some other module, then achange in this interface requires a change in the respective interface in the other module.� ADDITION OF A MODULEAddition of a new module in the proposed representation is pretty straightforward basedon the static tuple space addressing. When the module is speci�ed and the internal andexternal data dependencies are speci�ed, it can simply be plugged into all the dataows,and then a simple checking routine can determine if some synchronization needs to beadded. Adding a new process any of the multiprocess communication patterns doesn'trequire creation of new synchronization, but it may require the module to be adaptedto the synchronization requirements of the interface. Adding a new process to the 1-1synchronized communication will probably require some changes in the other two modules,in order for the communication to work correctly.The above analysis requires that the new module has access to all of the communicationlinks it needs, but it doesn't have to be true in the structure of the application. Some of thecommunication interfaces can be in two di�erent subtrees of the structure, and no processfrom any of the local levels can access both of these interfaces. This requires moving at leastone of these interfaces, to some tuple space which is common ancestor for the current tuplespaces, which doesn't have any conicting interface already. Only after this the new modulecan be linked to both of these interfaces. The movement of the interface will inevitablyrequire a change in all modules that access it, and it consists of a static change of addressingfor the given interface, and possibly for other interfaces which are used for synchronizationover the �rst interface.� MERGING OF TWO APPLICATIONSThe simplest conceptual way of merging two applications is to add a new level of globaltuple space, and then to link them through it. This kind of linking requires some of theinterfaces in the applications to be changed and addressed to the new tuple space, or evenmore probably it will require the addition of new modules which will do the communicationthrough the global level, and at the same time communicate at the non-global levels withthe existing modules, thus providing themselves as local interfaces which can be transparentto the rest of the application.Another way of merging two applications is to add one application as a module to theother. This requires that the added application gets adapted to the interfaces to whichit is to be connected. This merge operation can be done in a cleaner way if instead ofthe whole application , one module is added with the correct interfaces , and then themodule is replaced by the whole application. Again some local processes can be added tothe application to provide the global interface instead of changing existing modules.8

3.1 REPRESENTATION OF SEQUENTIAL PROGRAMSSequential programming languages can also be modeled according to the proposed structure, andtheir representation according to this model can facilitate their evolution towards distributedsystems. The transformation of sequential into distributed programs can be divided in threemain phases: structure generation, structure linking and synchronization. In this transformationprocedures will be transformed into processes, and variables into messages. All the processes willbe synchronized for only one active process at any time.1. Structure GenerationThe creation of the tuple space structure is performed according to the hierarchy of variablesand procedures in the original program. This process can be tied to any or both of thehierarchies in the program.2. Structure LinkingAfter the creation of the structure, functions and variables from the original program arelinked to the nodes of the structure, according to the rules used for creating the structure.3. SynchronizationIn order to make the procedures into processes, they have to be initialized independently,and then wait for a procedure request to arrive in form of a message. After their operation is�nished, procedures send a message with the results, and unblock the caller function whichwas waiting for that message. If the procedure calls can be recursive, then the messagesneed to carry the identi�cation of the call, and creation of additional processes has to beimplemented.4 EXPERIMENTAL RESULTSA series of experiments has been implemented using the proposed model of distributed appli-cations. These experiments have provided us with valuable insights into the e�ectivness of thismethod in implementation of complex distributed systems. The experiments have also shown thatexplicit partitioning of the tuple space is a powerful method for optimizing the execution time ofdistributed programs with associative communication. One implementation of a distributed �leserver will be discussed in order to provide the reader with a practical view of this methodologyon a slightly more complex problem than the dining philosophers which have been used so far.4.1 DISTRIBUTED FILE SERVERAn implementation of a distributed �le server is a good example to illustrate some characteristicsof the proposed model and to perform some performance tests. This read only �le server consistsof one process working as catalog and several servers which can be placed on physical �le servers.The users view the �le server as one entity to which they can send their requests without knowing9

anything about the �le mapping. All the �le requests are received by the catalog, and he decidesto which �le server to send them. The local �le servers create a new process for every �le thathas to be transmitted, which enables parallel serving of any number of requests. Figure 5 givesa dataow diagram of this system.The tuple space is used for both communication and information storage in this system. The"�les" are stored as sets of tuples, and local �le servers read them and send them to the users.The tuple space is partitioned into three subspaces, two of which are local for the �le serversand are used for storage, and one which is global and used for communication between users andthe �le server system. The data transfer protocol which is used in this example consists of onemessage specifying the length of the �le, which is followed by the necessary number of messagescontaining one record of the �le. For simplicity reasons, the user processes are created in thelocal subspaces for servers, but they only communicate with the server through the global tuplespace. Because of the static message addressing requirement, it is possible to determine that userprocesses can't interfere with the state of the local tuple spaces even if they are using messagesof same format for communication, as is the case in this example.4.2 IMPLEMENTATION TOOLSThe implementation of the described system was done using two basic tools, which were chosenbecause their complementary strengths could be appropriately combined to enhance the overallperformance of the package. The associative communication and the dynamic recon�gurationwere provided by a local Linda implementation. The Polylith software bus was used to providestatic communication between the Linda modules, and to allow multiprocessor and multiarchi-tecture work.Our Linda system is a single processor, multiprocess implementation of all the Linda de�nedfunctions on a subset of message formats. The constraint to single processor has been chosenbecause it allows the communication to be performed by high speed channels, such as messagequeues. The constraint to a subset of formats was driven by the desire to lower the cost ofmessage matching while maintaining as much as possible the linda expressivness. Both of theseconstraints are not serious in the sense that they preserve all the dynamic recon�guration andassociative communication requirements of Linda. The matching of messages in this system isperformed by one server process, which communicates directly with all the clients.The Polylith system [Purt] contains a set of procedures which allow statically con�gured com-munication between processes running on one or more processors which are not necessarily of thesame architecture. The statically addressed communication in Polylith doesn't put high require-ments to the communication protocol, and it is therefore simple and very e�cient. The Polylithsystem is used in this system as a base for transparent implementation of the Linda system onmultiple processors, thus resulting in a very powerful multiprocessor implementation of Linda.The structure of a distributed system de�ned by the hierarchical structure of the tuple space, isimplemented using Linda and Polylith as illustrated in Figure 6. Each tuple subspace is served10

by one Linda system, while Polylith provides the communication between the Linda servers atadjacent levels. Without loss of generality, the Linda subsystems are divided into three types,leaves, intermediate subspaces, and global subspace. The only di�erence between them is inthe types of underlying communication they use because the leaf level is the only level withlocal recon�gurable processes, while intermediate and global tuple servers only accept messagesthrough polylith from other tuple servers. Addition of client processes to the intermediate levelscan be accomplished by adding local leaf tuple servers as their clients.The communication in this system is performed by indirect connections through the tree, andnot by direct addressing to the destination server or process. This puts an additional load on theperformance of the system, but it still shows improvements over simple linda implementation.Since one of the requirements of this model is static addressing of messages to tuple subspaces,it is possible and desirable to implement this system using direct connections which would resultin additional performance improvements.4.3 PERFORMANCE CONSIDERATIONSOne of the biggest reasons for low e�ciency of associative communication systems is the messagematching process which has to compare the format and some attribute values for all the messagesand requests in the tuple space. The cost of this operation tends to be linear in the number ofmessages with matching format. The static message addressing and tuple space partition resultin less potential matches of messages and requests, thus lowering the overall processing cost forthe application. The explicit division of the tuple space which is done in the �le server examplereduces the size of the tuple spaces, which lowers the processing time for the tuple matching.The �le server was tested for time in three di�erent implementations, two of which were withpartitioned tuple space while the third was the control example executing on a single tuple space.All three implementations were identical in terms of the Linda code being executed and had thesame communication load to the tuple space. The partitioned tuple space implementations di�eronly in the number of processors, one executes on a single processor, while the other is distributedover 4 processors. In the distributed example, the three tuple servers and respective processeswere on the same processor, and another processor was used for the Polylith bus control process.On Sun Microsystems Sparcstations, total CPU time for the single tuple space application wasdetermined to be 35 seconds, while the three tuple server processes in the partitioned applicationtook 30 seconds CPU time executing on a single CPU. This shows that the partitioning of tuplespace in this case gives almost 20% improvement in performance of the communication system.This speedup doesn't take into account the overhead which is spent on sending messages throughPolylith, and the Operating System overhead for handling all the processes in the system. TheCPU time which was used for the communication between these tuple servers can be estimatedbased on the time that the Polylith bus server was active. The bus server used 14 seconds of CPUtime, and most of that time was due to communication because routing in the system is trivialwith just 3 modules. From the available data, we estimated that half of that CPU time wasrequired for the tuple servers to send their messages, which would reduce the message matching11

CPU time to less than 50% of the single tuple space implementation. The wall clock time forthe execution of both examples was approximately the same with small oscillations, around 90seconds.The multiprocessor implementation was identical to the single processor system, and the di�er-ence in communication cost was very small because the execution took place on several localprocessors. The wall clock time for this implementation was 30 seconds, which means that thispartition of the tuple space gave very good load balancing on the tuple spaces. The sum of CPUtimes for the tuple servers in this case is 21 seconds which is an almost 50% speedup over thesingle tuple space implementation. This time still includes some communication overhead, whichis likely to lower the e�ective tuple space processing time to under a half of the original time.4.4 SCALABILITY OF THE APPLICATIONAs mentioned before, this model of distributed applications is very appropriate for changes inthe application, with special accent on replication of parts of the application. As an illustrationof this aspect of the tuple space partitioning we will replicate the Distributed File Server withinone application, and show what kind of timing results were obtained.The structure of this application is very simple and derived from the original sructure by addinga new global level of tuple space which will not be used, and whose only utility is to be a dummyroot for a tree. Each of the File Servers is replicated as a separate subtree, and their executionis still identical to the original example.The only change in the source for this application has to do with the tuple space tree structurespeci�cation and initialization functions. There the two subtrees have to be made descendantsof the dummy global tuple space, and the application is ready to execute.This application has been distributed over 7 processors,so that every tuple server with his clientprocesses was given a single processor, and the Polylith Bus control process was alone on oneprocessor. Since all the other processes were replicated and distributed over the network, only thePolylith control process remained as the bottleneck for this communication intensive application.Nevertheless, this bottleneck contributed with only a 30% increase in the wall time for theexecution.5 CONCLUSIONIn this paper we �rst gave a set of experimental structured distributed systems, which illustratethe potential simple methods of doing some maintenance or development work on the structureddistributed applications which obey to certain constraints. A proposed structure with a set ofconstraints is then discussed in more detail, with methods for performing some basic operations.This set of operations is based on a relatively small set of communication patterns, which we12

consider to be able of modeling any other pattern. Furthermore, we hope to de�ne a methodwhich will be able to create applications using only these communication patterns, which wouldgive the basis for further development based solely on these communication patterns.It is our belief that these methods can be incorporated into a software development system,which would then be able to help the programmers on two distinct levels. Automatic placementof interfaces in di�erent tuple spaces , together with the maintenance of coherence with the staticaddressing at the source level, could be performed as a background activity without involvingthe programmer. The interactive part would be in charge of detecting potential communicationor synchronization dependencies in the structure, and the programmer would be warned of them(grammar?) in order to check them and change them if necessary.This model of Distributed Programming Systems can also contribute to increased performance,because it detects the communications which can be executed concurrently, and therefore paral-lelism of the system is improved. Another way of increasing the performance is by the detectionof processes which should be physically close together in order to use the communication in themost optimal way.The generality of this approach enables it to model any type of software, and furthermore itcan be naturally enriched by adding the necessary rules for some speci�c systems (functionallanguages, sequential languages). We hope that the use of this method can have great impact onthe software development and also on reusability because it makes it much easier to analyze anyprogramming system, which is necessary for reusing if it doesn't have a strict speci�cation.BIBLIOGRAPHY[CG89a] Carriero, N., Gelerntner, D. Linda in Context. Communications of the ACM,(April 1989), vol. 32, no. 4.[CG89b] Carriero, N., Gelerntner, D. How to Write Parallel Programs: A Guide to the Perplexed.ACM Computing Surveys, (September 1989), vol. 21, no. 3.[Purt] Purtilo, J., The Polylith Software Bus, To appear, ACM TOPLAS. Currently avail-able as University of Maryland CSD Technical Report 2469, 1990.
13

tuplespace global void main(){ { int i,num;tuplespace local1 rd(0,"NUMBER",?num);{ for(i=0;i<num;i++){init_process main(); out(0,"fork",i);init_tuple("NUMBER",5); eval(0,philo(i));} if(i>0) out(0,"tick");tuplespace local2 }{ }init_process main();init_tuple("NUMBER",7);}};Division of the tuple space into subspaces allows the replication of philosopher "parties" providedthat each one is communicating through a di�erent subspace. Implementation requires the explicitspeci�cation of the structure of tuple spaces (�g) which will allow the analysis of communicationin the system. The source code of the application can remain the same as in (�g) with theadded address information for all the communication commands. In this case all messages go tothe local tuple spaces so the only addition is the 0 as the �rst parameter. The init process andinit tuple commands specify the state of the tuple space and the processes which should initializethe system. This alows us to introduce position speci�c information without di�erent versions ofsource code. Figure 3: Solution with partitioned tuple spacevoid work() tuplespace global{ {in(1,"TICK"); init_tuple("TICK");talk(); tuplespace local1;out(1,"TICK"); tuplespace local2;} };Figure 4: additional improvement with partitioned tuple spaceIn example 1, we created two groups of philosophers where each group has its own table wherethey need to get syncronized. When they all work together, only one philosopher can talk atany particular time. Using the tuple space tree concept, these philosophers can be synchronizedthrough a separate tuple space which is ancestor to both local tuple spaces. Synchronization ofall philosophers can be done by taking a single tuple from the tuple space, and the name of thistuple can be \TICK", the same that is used for the local tuples. Static addressing makes thesemessages di�erent and they can't possibly be interchanged.14

CATALOG

SERVER 1

SENDER

SENDER

SERVER 2

USER

USER

USER

USER

directory

MERGE
 AND
SPLIT

create
process

create
process

length
and data

length
and data

requests
requests

Process is implied
by associative
communication

files1

files2

LOCAL 1

LOCAL 2

Figure 5: Distributed File Server15

POLYLITH

 GLOBAL TUPLE SPACE

LOCAL TUPLE SPACE 1 LOCAL TUPLE SPACE 2

USERS, FILE SERVER 2
USERS, FILE SERVER 1,
CATALOG Figure 6: Structure of the Application

16

