
A FRAMEWORK FOR DYNAMIC RECONFIGURATIONOF DISTRIBUTED PROGRAMSChristine R. Hofmeister James M. PurtiloComputer Science DepartmentUniversity of Maryland, College Park, MD 20742ABSTRACTCurrent techniques for a software engineer to change a computer program are limited to static activities | oncethe application begins executing, there are few reliable ways to recon�gure it. We have developed a generalframework for recon�gurating application software dynamically. A sound method for managing changes in arunning program allows developers to perform maintenance activities without loss of the overall system's service.The same methods also support some forms of load balancing in a distributed system, and research in softwarefault tolerance. Our goal has been to create an environment for organizing and e�ecting software recon�gurationactivities dynamically. First we present the overall framework within which recon�guration is possible, then wedescribe our formal approach for programmers to capture the state of a process abstractly. Next, we describeour implementation of this method within an environment for experimenting with program recon�guration. Weconclude with a summary of the key research problems that we are continuing to pursue in this area.This research was supported by a grant from the National Science Foundation, contract NSF CCR-9021222.An earlier and shorter version of this paper appeared as \Dynamic Recon�guration of Distributed Programs,"Proceedings of the 11th International Conference on Distributed Computing Systems, pp. 560-571, 1991.1 OVERVIEWCapabilities for managing dynamic software recon�guration | changes to the implementation of a running pro-gram | are increasingly in demand. Users of highly-available systems must perform maintenance on softwarecomponents in-place; managers may discover the need to instrument some application only after it has beenplaced in operation; and both users and managers alike may desire to relocate parts of a running program inorder to improve its performance (e.g., the task could be relocated from a local workstation to a remote super-computer when executing the computationally demanding portions of a program.) Whereas techniques for staticcontrol of application programs have been available for years | under the software engineering label con�gurationmanagement | dynamic techniques have not been widely addressed.We view a software application as being a system of interoperating processes, where each process is implementedby one module, i.e., a collection of individual data and program units. Module interfaces that are bound to oneanother represent communication channels between the processes. These communication channels, or bindings,together with the modules themselves, comprise the application structure. The application's geometry describeshow this structure is mapped onto a heterogeneous distributed architecture. Within this distributed applicationframework, programmers need reliable techniques to manage three general types of changes:1. Module implementations. The system's overall structure remains the same, but a user may requirealteration to one of the individual modules. For example, experimenters may wish to replace some program

unit with another that implements a di�erent algorithm, in order to study the impact on performance atrun time; system administrators may wish to replace or repair device drivers without loss of service; andsoftware engineers, responsible for enhancing a long-running program, may need to extend an application'sfunctionality without losing persistent state within the executing program.2. Structure. The system's logical structure (also called either the modular structure or the topology) maychange. The bindings between module interfaces may be altered, new modules may be introduced, andother modules may be removed. Of course, structural changes may in turn require alterations to theimplementation of modules, as described above. Users may introduce entirely new capabilities to an existingapplication.3. Geometry. The logical application structure may remain �xed, but the mapping of that structure ontoa distributed architecture | that is, the geometry | may change. Geometric recon�guration is useful forload balancing, software fault tolerance, adaptation to changes in available communication resources, andrelocation of processes in order for them to access guarded resources.Our research provides a coherent framework for considering all three forms of recon�guration in the presence ofheterogeneity, as would be required for the sample applications cited above. First, we motivate the various formsof dynamic recon�guration that programmers need, and describe other work towards providing such capabilities.Then we describe our approach to solving a key subproblem, that of capturing the state of an executing taskso that it may be re-established elsewhere or in other forms. Our prototype environment for demonstrating andexperimenting with dynamic recon�guration is then described, after which we conclude with a summary of theadditional research problems that we continue to pursue.2 MOTIVATIONThis section presents a concrete example to motivate the recon�guration problem. The example, a distributedversion of the well-known dining philosophers problem, will help us describe the requirements for a dynamicrecon�guration system, and also describe the many scienti�c problems that must be solved in order to obtain thebene�ts of recon�guration.The dining philosophers problem is a resource allocation problem in which mutual exclusion must be preservedand resources must be allocated fairly. The resources in this case are forks, each of which is shared between apair of philosophers. The group of dining philosophers is seated around a circular table with a single fork betweeneach pair (Figure 1, left). Each diner thinks for a while, then gets hungry and tries to eat. In order to eat, adiner must have exclusive use of its two adjacent forks, so no neighboring philosophers can eat at the same time.After eating, the diner returns to thinking, thus beginning the cycle again.Our implementation of this problem uses the decentralized algorithm developed by Chandy and Misra [4]. Thedetails of this algorithm are not critical to our purpose here, so we show only the pseudo-code for a diner in Figure2. Our original example has four diners, each a separate process, passing forks and requests for forks on bindingsbetween two diners (Figure 1, right). Because the algorithm is decentralized, the protocol for sharing forks iscontained in each diner, and is based entirely on its own local state.We illustrate this problem in terms of an existing distributed programming system, POLYLITH [15]. In orderto run this example on a heterogeneous network using POLYLITH, the user needs to provide a simple descrip-tion of the application's modular structure, in terms of a module interconnection language (MIL). Once thatis done, POLYLITH is responsible for packaging and invoking processes, and for coercing data representation,synchronization, and marshalling of data during communication.Figure 3 shows the MIL declaration necessary for the user to implement this distributed application. By providingthis text to the POLYLITH packaging system, the user's C source �les would be accessed and compiled, thenlinked with automatically generated network stubs (i.e., procedures that intercept the call in the local process andperform a remote procedure call through the network; this activity is described in detail in [15].) The user could2

eatingthinking

hungry

hungry

Christine

Jack

Liz Jim

right left

right

left

rightleft

right

left

Figure 1: The Dining Philosopher problem.then directly execute this application, as POLYLITH is responsible for invoking the executables and establishing acommunication channel between the tasks. All the user sees is that the application works `as expected.'We can now describe each of the possible forms of recon�guration in terms of this example:1. Module implementations. An example of individual module recon�guration is to replace one of thediners with a verbose diner, one that displays detailed information about its activities. Whereas the originaldiner says only whether it is eating, thinking, or hungry, the verbose diner also provides information aboutthe forks and requests for forks. In order to perform this replacement without losing the fair allocation andmutual exclusion properties of the application, the old diner's state information must be used to initializethe verbose diner.2. Structure. One way to change the structure of this application is to add a new diner. Again, in or-der to preserve the mutual exclusion properties, the new diner must be initialized with appropriate stateinformation. But in this case the new diner's initial state is based on the state of its two future neighbors.3. Geometry. An example of geometric recon�guration is to move a diner from its original host to anotherhost. If both hosts are of like architecture and operating system, then the migration is a straightforwardengineering operation. However, heterogeneity defeats existing migration techniques. To deal with thisproblem, we use the same technique as for changing a module implementation: we capture the diner's statebefore removing it, then use that state information to initialize a new version created on the target machine.Throughout these changes, the user should see no interruption of service | the program must continue to `meetspec' except possibly for timing constraints, which we do not address in our research at this time.Kramer and Magee describe a formalism that characterizes precisely when a distributed program may be recon�g-ured, and in what way; furthermore, they describe an experimental implementation in Conic [11]. Their approachfocuses upon changes that are primarily either creation or deletion of nodes, plus connection establishmentand removal between those nodes. Their work is compelling, and our research is inuenced by it as we focus uponthe next questions: how can persistent state contained within the process be exposed for transmission to another3

initialize diner state to HUNGRY;initialize left fork state;initialize right fork state;main() fif (status is special) set initial values so that graph is acyclic;while (1) fupdate left fork state;update right fork state;if (HUNGRY and conditions are right) start EATING;else if (done EATING) start THINKING;else if (done THINKING) become HUNGRY;gg Figure 2: Pseudo-code for diner.c.service "diner" : {implementation : { binary : "/world/Users/crh/diner.out" }algebra : { "STATUS=($S)" }client "left" : { string } returns { string }function "right" : { string } returns { string }}orchestrate "diners" : {tool "Jim" : "diner $S=special"tool "Christine" : "diner $S=regular"tool "Liz" : "diner $S=regular"tool "Jack" : "diner $S=regular"bind "Jim left" "Christine right"bind "Christine left" "Liz right"bind "Liz left" "Jack right"bind "Jack left" "Jim right"} Figure 3: MIL declaration for Dining Philosophers.process? At what points during a program's execution can its state be reliably captured for later restoration?And how can this all proceed transparent to source programs, written in arbitrary languages? Section 3 will beginto address these questions.3 RECONFIGURATION FRAMEWORKOur objective is to provide a robust framework for dynamically recon�guring a distributed application, even whenthe execution environment is itself diverse and heterogeneous. We focus on mechanisms that are external to theapplication program, not internal; that is, we are interested in changing the application based on requests fromoutside the currently-executing program, whether initiated by the user or another program. Focusing on internalmechanisms would be too restrictive, in that all possible future con�gurations would have to be anticipated andrepresented in the initial software source, hence denying us from incorporating new software components that didnot exist at initiation time. (A good example of a system that provides only internal recon�guration is NIL, withits later implementation called Hermes [17].) 4

There are a large number of activities that must be coordinated before a user can begin to capture and manipulatethe state of a running process. Any environment to support general dynamic program recon�guration in thepresence of heterogeneity must meet the following requirements:� Users need an easy way to con�gure and invoke a (possibly distributed) application.� Users must have a notation for identifying the program components or attributes that they wish to recon-�gure. They must be able to name both individual modules and aggregates of modules composed into astructure.� Users must be able to visualize the current state and geometry of a running program. There can be noreliable way for users to recon�gure a program if they do not understand what processes are currently beingemployed and where they are running.� Especially because of the presence of heterogeneity of architectures and languages, programmers need areliable way to coerce the representation of data that is transmitted during both normal communicationand any recon�guration.� The execution environment must ensure programmers that all communication between processes can becontrolled by the external agent responsible for recon�guration. If processes are allowed to communicate bya private channel, then a subsequent recon�guration involving one of the processes may fail to update alldependencies | as a result, a module may �nd itself trying to access a non-existent resource.� Similarly, any recon�guration mechanism in the execution environment must ensure that all informationcharacterizing a process is captured and represented. This includes state information that is cached on behalfof the process in the underlying operating system. The primary example of this type of information is thetable of open �le descriptors that the operating system maintains for each process. The ideal behavior wouldbe for all such kernel-based information to be adapted during migration, transparent to the application'sexecution (except for possible di�erences in performance). For homogeneous distributed systems, thenthere is strong evidence from other projects (such as Charlotte [1]) this ideal can be achieved. However,this objective is unlikely to be met in highly diverse distributed systems, especially when the developer isnot given the freedom to adapt the operating system | our objective is to provide recon�guration withoutrequiring modi�cation of the underlying operating systems.� The execution environment needs a way to mark some of the processes as non-relocatable, recognizing thatsome modules must necessarily act as guards to private resources. For example, access to the �le systemwould most reasonably be handled by incorporating one non-relocatable process. It will still be possibleto replace such a guard, but only when the developer is able to design the module so that it can later beupdated; only the designer can make decisions about how to re-establish, say, access to a �le that mighthave been changed externally during the recon�guration step.Our approach to meeting the above requirements is to build upon the existing POLYLITH software interconnectionsystem [15]. POLYLITH already provides users with an environment for easily constructing large (and possiblydistributed) applications for use in heterogeneous execution environments. For these reasons, POLYLITH is anatural starting point for investigating how applications might later be recon�gured.The POLYLITH bus organization satis�es our requirements concerning coercion of data's representation in aheterogeneous system. The bus already manages data transformation during normal communication; therefore,by showing how to capture the state of an executing process into a reasonable data structure (by techniques tobe discussed), then this same coercion mechanism serves equally well in the relocation of process state to otherhosts.The bus abstraction also helps us assure programmers that processes do not communicate by private channels.All modules built using the POLYLITH system will only communicate via the bus. The bus protocol noti�eseach process of its symbolic name, but never passes it an `absolute' name for other modules. Since, by design,5

no application component communicates directly with other modules, these components cannot be a�ected byrecon�guration of other modules. Once a new incarnation of some module has been invoked, the bus will simplydirect subsequent communication to the new version, abandoning the old version. It is possible for programmersto devise an application that defeats this principle, but one must try very hard to do so.All requirements for a recon�guration environment that have been discussed so far can be met by extendingthe POLYLITH interconnection system. However, our remaining requirement is by no means the least: how tocharacterize the state of an executing process so that it may be either altered or relocated? Moreover, how can weprovide this capability at the minimum cost to programmers? Can it even be provided completely transparent tothe application source code? Can it be provided without loss of run-time performance? The �rst of these questionsis addressed in Section 4, where we describe the method abstractly. The latter questions can only be addressedexperimentally, which is why we have constructed a set of extensions the POLYLITH software interconnectionsystem. These extensions provide a workbench for us to build and study the recon�guration of distributedapplications.4 ADT FORMULATION OF PROCESSOur approach to recon�guration of individual processes is based on formulating them in terms of abstract datatypes (ADTs): recon�guration of a software process is performed using an abstract characterization of the com-ponent, to be captured at run time. This idea contrasts with previous approaches to migration in homogeneoussystems [1, 5], because those methods relocate a process by moving its actual representation in the operatingsystem, not an abstraction. The actual representation is architecture-dependent, and for this reason these ap-proaches do not directly apply to a heterogeneous computing system. The only object of study in previous workis the binary representation of a process; moreover, there is no framework available for users to even name acomponent that they wish to be recon�gured. In contrast, our approach is based on having a way to extract theabstract state of a process independent of its host architecture. This abstraction can then guide the subsequentinvocation of a comparable implementation of that task.The problem then is to �nd how to characterize the process state abstractly at run-time. To accomplish this weuse a generalization of the approach to transmission of ADTs that was presented in [8]. In Herlihy's work, twonew operations, encode and decode, are added to the ADT, and the developer provides a suitable implementationof these operations for each host. When the ADT is to be transmitted, these new accessors are used by the systemto extract the internal state of the data type into an external representation that can be shared among all validimplementations of the data type.Such a transmission scheme is e�ective for the usual formulations of ADTs found in most applications. However,it alone is not su�cient for our use in recon�guration. Each instance of an ADT that we wish to transmit is nota passive datum to be operated on by an application at its leisure | the process has a thread of control and willchange its state rapidly. Worse yet, the necessary state information is not contained just within the executableimage, but rather is cached on its behalf of the process within the CPU registers, program counters and many OSdata structures. The ADT transmission scheme must be generalized to account for this dispersed process state.In our approach to modeling processes as instances of a process ADT, each source module de�nes an `abstracttype,' and each executing process corresponds to an implementation of that type. The process run-time structurescharacterize the value of that instance, and therefore the state can be extracted at execution time via a suitablerepresentation function. Recon�guration begins when some agent within the application framework stops normalactivity and causes a process to invoke its representation function, divulging a characterization of its state in anexternal format. This can be used by an inverse representation function to parameterize the invocation of anyother valid implementation of that same ADT.For purposes of this paper, programmers must provide representation functions for modules manually, and all ofour examples of the use of our enhanced POLYLITH system are presented as such. We now present details con-cerning the environment we have constructed for experimenting with recon�guration. First, Section 4.1 describes6

PRIMITIVES FOR SYNCHRONIZING RECONFIGURATIONmh hold cap (&hcap,applname) Get capability for holding interfaces and/or objects in application applnamemh edit hold (&hcap,NULL,obj,iface) Hold interface iface of module objmh edit hold (&hcap,NULL,obj,NULL) Hold module objmh hold (&hcap) Apply all holds speci�ed in &hcapmh rlse (&hcap) Release all holds speci�ed in &hcapPRIMITIVES FOR ALTERING MODULESmh obj cap (&ocap,obj) Get capability to module objmh obj cap (&ocap,NULL) Get capability to a new modulemh edit objattr (&ocap,"add",attrib,val) Insert or replace value of speci�ed attribute for module &ocapmh edit objattr (&ocap,"del",attrib,NULL) Remove speci�ed attribute from module &ocapmh edit if (&ocap,"add",iface) Add speci�ed interface to module &ocapmh edit if (&ocap,"del",iface) Remove speci�ed interface from module &ocapmh edit ifattr (&ocap,"add",if,attrib,val) Add or replace value of speci�ed attribute for interface if of module &ocapmh edit ifattr (&ocap,"del",if,attrib,NULL) Remove speci�ed attribute from interface if of module &ocapmh chg obj (&ocap,"add") Add module &ocapmh chg obj (&ocap,"del") Remove module &ocapmh objstate move (&ocap1,if1,&ocap2,if2) Induce module &ocap1 to divulge its state via if1; forward it to &ocap2 if2PRIMITIVES FOR ALTERING BINDINGSmh bind cap (&bcap,applname) Get capability for altering bindings in application applnamemh edit bind (&bcap,"add",obj1,if1,obj2,if2) Add a new binding between interfaces obj1 if1 and obj2 if2mh edit bind (&bcap,"del",obj1,if1,obj2,if2) Delete binding between interfaces obj1 if1 and obj2 if2mh edit bind (&bcap,"cpo",obj1,if1,obj2,if2) Copy messages queued for interface obj1 if1 to interface obj2 if2mh rebind (&bcap) Apply all binding changes speci�ed in &bcapFigure 4: Polylith Recon�guration Primitivesthe extensions to POLYLITH needed to support our experimental activities. Then Section 4.2 describes the use ofthese extensions for the ADT framework portrayed above.4.1 RECONFIGURATION PRIMITIVESThe extensions to POLYLITH were intended to support experimentation with recon�guration tasks. They allowus to suspend communication between modules during recon�guration, alter the structure of the application, andtransfer state information from one module to another. The recon�guration can be initiated by any module of theapplication, or by a third party. All recon�guration changes are accomplished by invoking a series of POLYLITHprimitives; these are described in Figure 4. The three groups of recon�guration primitives use the same approachto applying changes: �rst get a capability for applying the change (mh hold cap, for example), next make a seriesof edits to describe the change (mh edit hold), then apply the change atomically (mh hold).The �rst group of primitives provides synchronization for recon�guration by holding interfaces or modules atthe application level. When a hold is applied to an interface, the module attempting communication over thatinterface is blocked. Similarly, a held module is blocked upon attempting any POLYLITH bus service. An additionalparameter to mh edit hold (which we do not describe here) indicates whether unread messages will be moved toanother interface.Purely structural changes (adding or deleting modules, and changing bindings) can be done without any support7

Jim

Jack

Liz

Christine

Jim

Jack
Christine

Liz

Liz
Christine

Jim

Jack Liz

verbose_diner.c

(1) (2) (3)Figure 5: Replacing a diner with a verbose diner.from within the modules' implementations. But many recon�guration changes involve changes at the modulelevel, either to replace the implementation of the module, or to move the module to another host. These module-level changes require the module's participation in capturing its process state. The mh objstate move commandinduces the old module to encode its state, then manages the transfer of state from old to new. Because POLYLITHcontrols the application con�guration, it manages the application-level changes of creating, moving, or removingmodules and adjusting bindings between them. Thus the modules need only local knowledge of their own behavior,and have no global knowledge of any other module in the application.Module Implementations. In Section 2 we described a scenario where one of the diners is dynamicallyreplaced with a verbose diner. Here we give the details of this recon�guration activity. The replacement isaccomplished by creating a new verbose diner module, copying the state from the old diner to the new, bindingthe verbose diner into the application, and removing the old diner (Figure 5).The recon�guration events, shown in Figure 6, begin with acquiring access to the old diner and creating a newdiner. The BINARY attribute speci�es the implementation of the new diner as a verbose diner, and the STATUSattribute indicates how the new diner should initialize its state.Next the old diner is told to divulge its state on interface encode. It complies then blocks inde�nitely. The olddiner's state is sent to the decode interface of the new diner, which is not yet active. This accomplishes the statetransfer from the old module to the new, except for messages that may be queued for the old diner. These queuedmessages are copied to the new diner in the rebinding phase: here the old module's bindings are removed, bindingsfor the new module are added, and queued messages are copied from the old to the new. The binding changesare described with a series of mh edit bind commands, and applied atomically with the mh rebind command.Applying the binding changes atomically simpli�es the recon�guration task, both by reducing the number of stepsrequired and by making it easier to reason about the recon�guration. Notice that we did not need any mh holdprimitives in this scenario: the old module blocks after encoding its state, e�ectively holding itself. But themodules bound to this old module can continue sending messages to it, and without atomic rebinding, we wouldhave to hold both ends of each binding destined for replacement.Now that the state of the old diner and its bindings has been copied to the new diner, the old module is deleted andthe new one is started up. The sequence of events for this example may look daunting, but the task of replacing amodule by one with the same interfaces can be standardized, and we have written a generic replacement routinethat takes care of all these details, requiring only the names of the module and the new implementation. We have8

mh_obj_cap (&old,diner); /* get access to old diner and create new */mh_obj_cap (&new,diner);mh_edit_objattr (&new,"add","BINARY","verbose_diner.out");mh_edit_objattr (&new,"add","STATUS","clone"); /* get state from old diner and send it to new */mh_objstate_move (&old,"encode",&new,"decode"); /* remove bindings for old diner */mh_bind_cap (&bcap,NULL);mh_edit_bind (&bcap,"del",&old,"right", right_neighbor,"left");mh_edit_bind (&bcap,"del",right_neighbor,"left",&old,"right");mh_edit_bind (&bcap,"del",&old,"left", left_neighbor,"right");mh_edit_bind (&bcap,"del",left_neighbor, "right",&old,"left"); /* add bindings for new diner */mh_edit_bind (&bcap,"add",&new,"right", right_neighbor,"left");mh_edit_bind (&bcap,"add",right_neighbor,"left",&new,"right");mh_edit_bind (&bcap,"add",&new,"left", left_neighbor,"right");mh_edit_bind (&bcap,"add",left_neighbor, "right",&new,"left"); /* copy messages in transit */mh_edit_bind (&bcap,"cpo",&old,"left", &new,"left");mh_edit_bind (&bcap,"cpo",&old,"right", &new,"right");mh_rebind (&bcap); /* start up new diner and remove old */mh_chg_obj (&new,"add");mh_chg_obj (&old,"del"); Figure 6: Recon�guration events for replacing a diner.not yet discussed the old and new diners' participation in this replacement scenario; the details of capturing andrestoring their process state are given in Section 4.2.Structure. The example we gave in Section 2 of a structural change was to add a diner to the application.This is done by creating a new diner, binding it into the application, and giving it an appropriate initial state.One approach to initializing the new diner is to wait until its future neighbors reach some known state theninitialize the new diner accordingly. Our approach is instead to initialize the new diner with a composite of itstwo neighbors' states, as shown in Figure 7. The shaded portion of the initial application con�guration (left)corresponds to the state we are capturing. This shaded portion is duplicated to arrive at the �nal con�guration(right). The advantage of this approach is that the new diner can be added immediately, without waiting for theapplication to reach some predetermined state.The sequence of events in this recon�guration scenario are shown in Figure 8. The new module looks just likethe other diners, except for its NAME and STATUS attributes. In this example we use the state of two modulesplus the state of the binding between them to initialize the new diner; this composite state must be consistent,meaning that it must reect a correct application state. The mh objstate move primitive must be invoked foreach neighbor, and there is no guarantee that the two diners will divulge their state at the same time. Thus wemust freeze that portion of the application by holding the a�ected interfaces as speci�ed in the two mh edit holdcommands, which are applied atomically when the mh hold is invoked.In addition to removing the existing (bi-directional) binding and adding two new ones, the binding changes includecopying queued messages to the appropriate interface of the new diner. Whereas in our prior example applyingthe binding changes atomically was critical, in this example, because the interfaces are being held, the atomicity isnot important. We know that mutual exclusion and fair allocation have been preserved because the new module'sinitial state is consistent with each of its neighbors' states, its diner state of HUNGRY is compatible with all forkstates, and after initialization it follows the same protocol rules as all other diners.9

right
fork
state

left
fork
state

diner
state

right
fork
state

left
fork
state

diner
state

right
fork
state

left
fork
state

diner
state

right
fork
state

left
fork
state

diner
state

right
fork
state

left
fork
state

diner
state

right
fork
state

left
fork
state

diner
state

right
fork
state

left
fork
state

diner
state

right
fork
state

left
fork
state

diner
state

right
fork
state

left
fork
state diner

state
HUNGRYFigure 7: Adding a new dining philosopher.mh_obj_cap (&new,left_neighbor); /* create the new diner */mh_edit_objattr (&new,"add","NAME",newname);mh_edit_objattr (&new,"add","STATUS","composite");/* hold right side of left neighbor and left side of right neighbor */mh_hold_cap (&hcap,NULL);mh_edit_hold (&hcap,NULL,left_neighbor,"right");mh_edit_hold (&hcap,NULL,right_neighbor,"left");mh_hold (&hcap); /* remove binding between left and right neighbors */mh_bind_cap (&bcap,NULL);mh_edit_bind (&bcap,"del",left_neighbor,"right",right_neighbor,"left");mh_edit_bind (&bcap,"del",right_neighbor,"left",left_neighbor,"right"); /* bind new diner to neighbors */mh_edit_bind (&bcap,"add",left_neighbor,"right",newname,"left");mh_edit_bind (&bcap,"add",newname,"left",left_neighbor,"right");mh_edit_bind (&bcap,"add",newname,"right",right_neighbor,"left");mh_edit_bind (&bcap,"add",right_neighbor,"left",newname,"right");/* copy messages in transit when hold was applied */mh_edit_bind (&bcap,"cpo",right_neighbor,"left",newname,"left");mh_edit_bind (&bcap,"cpo",left_neighbor,"right",newname,"right");mh_rebind (&bcap); /* get state from neighbors and send it to new diner */mh_objstate_move (left_neighbor,"right_fork_state",newname,"right_fork_state");mh_objstate_move (right_neighbor,"left_fork_state",newname,"left_fork_state");/* start up new diner and release neighbors */mh_chg_obj(&new,"add");mh_rlse (&hcap); Figure 8: Recon�guration events for adding a diner.10

Geometry. The third and �nal scenario described in Section 2 is to move a diner to another host. Thisrecon�guration is almost identical to replacing a module with another implementation; the di�erence is thatinstead of changing the BINARY attribute, we change the MACHINE attribute to specify a di�erent host name. ThePOLYLITH platform, designed to accomodate heterogeneity, handles all underlying details.These �rst two recon�guration scenarios demonstrate two di�erent ways of synchronizing recon�guration activities.In the �rst example (as well as the third), synchronization is accomplished by blocking the old module after it hasdivulged its state, then altering the binding and copying messages in transit atomically. In the second scenario,synchronization is achieved by holding the interfaces of the two modules that will divulge state information. Thiskeeps the modules and the binding between them in the same state: each module is free to execute until it triesto communicate on the held interface, and any messages in transit when the hold occurred are copied to the newbindings.4.2 CAPTURE/RESTORE PROCESS STATETo support recon�guration we must be able to characterize the state of an executing process and capture thatstate. Our ultimate goal of automatic capture of process state requires that we �ll in the abstract representationof the process state without explicit help from the process. If we do not use semantic information about theapplication to selectively preserve only data that is relevant to the process state, then all data must be captured.This includes static variables from the data area, dynamic variables from the stack, programmer-allocated datafrom the heap, �le descriptor and signal handler information stored by the operating system, and such things asprocess priority and cumulative cpu time.The other major aspect of process state capture and restore deals with the execution thread. The �rst issue isdetermining when during execution we can capture su�cient state information to allow the process to restart;when is the process in a recon�gurable state. If the abstract state capture does not explicitly include the programcounter, then the only recon�gurable states are program states where execution could safely resume at thebeginning of the program. In this case the execution thread is captured implicitly, with an implicit value of 0(the beginning of the program, for purposes of discussion here). A second issue is that when the process stateincludes the program counter, capturing and restoring the thread of execution may entail capturing and restoringthe activation record stack, so that procedure/function returns and non-local data references can be handledcorrectly in the resumed process.Kramer and Magee de�ne a recon�gurable state as one in which all modules involved in the change are quies-cent: they will not initiate any new communication, and have provided all services needed for other modulesto reach their quiescent state [11]. They prove that this quiescent state is reachable for all modules involvedin a recon�guration. However, the communication between modules is limited to certain types of interactions,primarily rpc-type interactions. Because we do not restrict the types of interactions between modules, we cannotguarantee that in any application all modules will be able to reach a recon�gurable state. It is possible to writean application where a module would be prevented from reaching its recon�gurable state because it depended oninteraction with another module already blocked in its recon�gurable state.Our �rst two recon�guration scenarios present distinctly di�erent approaches to capturing and restoring state.In the �rst example, where the module is being replaced, we capture and restore the full state of the module,including the program counter. In the second example, we capture the partial state of two di�erent modules,and do not capture the program counter. But in intializing the new module, we use the two partial states andappropriate default values to create a composite state.Figure 9 shows what we add to diner.c and verbose diner.c in order to support state capture and restorationfor both recon�guration scenarios. (When comparing this to Figure 2, the amount of new code may seemsubstantial; but while we abstracted away all details of the original algorithm, we included the details of therecon�guration aspects.) To support replacement, our approach is to have the module provide encode and decodeoperations to capture and restore its own process state. Ultimately, these could be generated automatically whenthe module is compiled, but for now we rely on encode and decode operations provided by the programmer.11

initialize diner state to HUNGRY;initialize left fork state;initialize right fork state;reconfig requested = 0;catch reconfig() fif (left fork state is requested) send left fork state on interface left fork state;if (right fork state is requested) send right fork state on interface right fork state;if (encode is requested) reconfig requested = 1;gmain() fif (status is special) set initial values so that graph is acyclic;else if (status is composite) freceive left fork state on interface left fork state;receive right fork state on interface right fork state;gelse if (status is clone) receive diner state, left fork state, and right fork state on interface decode;signal(SIGHUP,catch reconfig);while (1) fupdate left fork state;update right fork state;if (HUNGRY and conditions are right) start EATING;else if (done EATING) start THINKING;else if (done THINKING) become HUNGRY;if (reconfig requested) fsend diner state, left fork state, and right fork state on interface encode;block;ggg Figure 9: Recon�gurable version of diner.c.During recon�guration, the mh objstate move(&old,"encode",&new,"decode") command �rst binds the �rstmodule's encode interface to the new module's decode interface, then signals the �rst module to divulge its state.The diner module has been prepared to receive that signal with procedure catch reconfig() (Figure 9), andbecause the encode operation was requested, it turns on a ag, reconfig requested. The purpose of this ag is todelay the encode operation until the diner reaches a recon�gurable state. After returning from the signal handler,the diner continues normal execution until it reaches the bottom of the main while loop, where it performs theencode operation and blocks. By delaying the encode operation, we have in e�ect de�ned the process state toinclude the program counter, with its value set to the end of the loop.Because this diner's encode interface is temporarily bound to the new diner's decode interface, the process stateis sent to the new diner. Recall that the �nal recon�guration steps are to remove the old diner and start up thenew. The new diner has a STATUS attribute of clone, so when it is started up, its �rst action is to perform thedecode operation. Since the program counter was at the end of the main while loop when the state was captured,we don't bother with an explicit goto the end of the loop, we just allow execution to resume at the beginning ofthe loop.In the second recon�guration scenario, the mh objstate move(&left neighbor,"right fork state",newname,"right fork state") commandbinds the two right fork state interfaces together, and signals the left neighborto divulge its right fork state. A similar command is directed to the right neighbor. Upon receiving the signal,12

each diner sends its fork state immediately, then resumes normal execution. The new diner, with a STATUS ofcomposite, begins by getting each fork state from the appropriate interface. Its initial diner state is de�ned tobe HUNGRY, since this state is compatible with any combination of fork states.Our experiences to date are that use of the POLYLITH bus organization does not necessarily result in performanceloss compared to a manually constructed version of the same distributed application. Using the POLYLITH recon�g-uration techniques described here, the cost of replacing bindings is insigni�cant, and the cost of creating or deletingmodules reduces to the cost of creating or deleting processes in the underlying operating system. For replacinga module, in addition to the creation/deletion cost incurred, there is a cost in capturing/transmitting/restoringprocess state, which is heavily dependent on the size and complexity of that state. In the recon�guration scenar-ios presented in this paper, the abstract process state is fully described by a few boolean variables, so the costof capturing, transmitting, and restoring the process state is negligible. It is important to note that the entireapplication need not be suspended for a recon�guration; we can hold just the a�ected portion of the application,allowing the rest to proceed with its normal processing.5 RELATED WORKOnly parts of this spectrum of capabilities have been addressed in the past. Geometric recon�guration (butonly between processors of like architecture and operating systems) has been considered in the form of processmigration, e.g. [5, 1]. More recent research provides some recon�guration of system structure, e.g. [3]. The mostimportant previous work in this area is the formalism exposed within the Conic system [11].Our approach is based upon the software bus abstraction as currently implemented in the POLYLITH system [15].This project is related to a large body of previous technologies. Much work has been done in primitive datarepresentation in the presence of heterogeneity. For example, our approach bene�ted from review of previousexperiences with Courier. Sun Microsystem's XDR is a similar approach, as is UTS, a `universal type system'internal to the MLP (Mixed Language Programming) system [7]. More abstractly, transmission of abstract datatypes (ADTs) is presented in [8]; Herlihy's ADT transmission mechanism inspired our work on capturing andtransmitting the state of an executing process.POLYLITH's previous focus was on simple data structures for interfaces. This stems from a design principleestablished early in the project, that any instance of a su�ciently rich data type deserves to be given its ownmodule (and hence can be packaged in its own process space in appropriate environments). The POLYLITHlanguage binds the instance's accessors into those modules using it, and thereafter those modules transact capabilityto that instance, rather than `attening' it for transmission. This approach is very similar to that shown in [9],where a call by object-reference method is described in detail.Structure-oriented languages were used to control a distributed programming environment in several earlierprojects, notably CLU [12] and MESA [19]. Both support distributed programming by coupling their nota-tion with their supporting systems. Each of these systems represent a signi�cant step forward in the area's abilityto realize the vast potential of distributing a computation. Subsequently, Matchmaker [10] provided a transfor-mational approach to the problem of integrating distributed components: an application would be written in asynthesis of, say, Pascal and a higher-level `speci�cation language.' This source would be transformed into ordi-nary Pascal code having accessors to the host communication system inserted explicitly, again for static controlof distribution.Especially appropriate for multiprocessor con�gurations are Camelot [2] (a transaction facility built on top ofMach) and Avalon (a language resource constructed using Camelot.) The V Kernel [5] implements a distributed-and parallel-programming resource appropriate for a homogeneous set of hosts. The HCS project [14] shows oneway to provide a heterogeneous RPC capability in a distributed environment. Concert [20] and Marionette [18] aremore variations on a theme. Several early projects emphasized a network �lesystem approach (such as Locus [16].)An interesting approach to cross-architecture procedure call using a common backing-store is given by Essick [6].Finally, the Durra system allows for some forms of dynamic recon�guration within the Ada environment [3], while13

the Mercury system supports heterogeneity in applications by managing a networked object repository [13].6 CONCLUSIONWe have described a broad framework that organizes software recon�guration activities, speci�cally within adistributed programming environment. In order to run experiments within this framework, we have constructedan execution environment containing a few, fundamental recon�guration capabilities. This paper has exposed ouroverall approach; described our workbench for evaluating diverse, recon�gurable applications; and demonstratedits utility in sample programs. The collection of primitives given to programmers for utilizing our system representsa type of `assembly language' for dynamic recon�guration; like an assembly language, these primitives are quiteexible, but also perhaps best employed through automatic generation frommore abstract declarations. Therefore,and as a result of our experiences with this system, we are continuing our research by investigating abstractionsto better help programmers direct dynamic recon�gurations within our framework. In addition, we are studyingtechniques for automatically identifying and introducing the representation functions to extract process stateduring recon�guration operations.REFERENCES[1] Y. Artsy, R. Finkel, \Designing a Process Migration Facility: The Charlotte Experience," IEEE Computer, vol. 22,no. 9, pp. 47-56, 1989.[2] J. Bloch, \The Camelot Library: C Language Extension for Programming General Purpose Distributed TransactionSystem," Proc of 9th Conf on Distributed Computing Systems, pp. 172-180, 1989.[3] M. Barbacci, D. Doubleday, C. Weinstock, J. Wing, \A Status Report on Durra: A Tool for PMS-level Programming,"Proceedings of 3rd Workshop on Large-grained Parallelism, 1989.[4] K. Chandy, J. Misra, \The Drinking Philosophers Problem," ACM Transactions on Programming Languages andSystems, vol. 6, no. 4, pp. 632-646, 1984.[5] D. Cheriton, \The V Distributed System," Communications of the ACM, vol. 31, pp. 314-333, 1988.[6] R. Essick, The Cross-architecture Procedure Call. Ph.D. Thesis, UIUC Dept of Computer Science UIUC-R-87-1340,1987.[7] R. Hayes, S. Manweiler, R. Schlichting, \A Simple System for Constructing Distributed, Mixed-language Programs,"Software Practice and Experience, vol. 18, no. 7, pp. 641-600, 1988.[8] M. Herlihy, B. Liskov, \A Value Transmission Method for Abstract Data Types," ACM Transactions on ProgrammingLanguages and Systems, vol. 2, pp. 527-551, 1982.[9] E. Jul, H. Levy, N. Hutchinson, A. Black, \Fine-grained Mobility in the Emerald System," Transactions on ComputerSystems, vol. 6, no. 1, pp. 109-133, 1988.[10] M. Jones, R. Rashid, M. Thompson, \Matchmaker: An Interface Speci�cation Language for Distributed Processing,"Proc of 12th Symp on Principles of Prog Languages, 1985.[11] J. Kramer, J. Magee, \The Evolving Philosophers Problem: Dynamic Change Management," IEEE Transactions onSoftware Engineering, vol. 16, no. 11, pp. 1293-1306. 1990.[12] B. Liskov, R. Atkinson, CLU Reference Manual, Springer-Verlag LNCS 114, 1981.[13] B. Liskov, T. Bloom, D. Gi�ord, R. Scheier, W. Weihl, \Communication in the Mercury System," Proceedings ofthe 21st Annual Hawaii Conference on System Sciences, pp. 178-187, 1988.[14] D. Notkin, A. Black, E. Lazowska et alia, \Interconnecting Heterogeneous Computer Systems," Communications ofthe ACM, vol. 31, no. 3, pp. 258-273, 1988. 14

[15] J. Purtilo, \The Polylith Software Toolbus," to appear, ACM Transactions on Programming Languages and Systems,currently available as University of Maryland CSD Technical Report 2469, 1990.[16] G. Popek, B. Walker, J. Chow et alia, \LOCUS: A Network Transparent, High Reliability Distributed System," Procof 9th Symp on Operating Systems Principles, pp. 169-177, 1981.[17] R. Strom, D. Bacon, \Hermes: A High-level Process-based Language for Reliable Distributed Computing," Proceedingsof 3rd Workshop on Large-grain Parallelism, 1989.[18] M. Sullivan, D. Anderson, \Marionette: A system for Parallel Distributed Programming using a Master/slave Model,"Proc of 9th Conf on Distributed Computing Systems, pp. 181-189, 1989.[19] R. Sweet, \The Mesa Programming Environment," Proceedings of the ACM SIGPLAN Symposium on ProgrammingIssues in Programming Environments, pp. 216-229, 1985.[20] S. Yemini, G. Goldszmidt et alia, \CONCERT: A High-level Language Approach to Heterogeneous DistributedSystems," Proc of 9th Conf on Distributed Computing Systems, pp. 162-171, 1989.ACKNOWLEDGEMENTWe appreciate the guidance given to us by Rich LeBlanc. Also, we are grateful to Je� Kramer and Je� Magee,both for their helpful comments concerning this research and for cheerfully sharing their experiences with Conic.

15

