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1 Introduction

Currently automatic parallelization of real-life FOR-
TRAN programs is not as perfect as users desire. As
recent studies [EHLP91, Blu92, May92] indicate, in
many cases false dependences between statements in-
troduced by inexact dependence analysis algorithms
prevent loops from being parallelized. In the introduc-
tion we analyze the basic reasons for false dependences
and show how the algorithm introduced in this paper
avoids introducing false dependences without loosing
efficiency.

Value-based dependences vs memory-based de-
pendences. Traditionally dependence analyzers of
parallelizing compilers and environments computed
only memory-based dependences. That is, they re-
ported that there is a dependence between two state-
ments of a program if these statements access the same
memory cell. For example, for the program in Fig-
ure 1(a) traditional dependence analyzer (for example,
that of Parascope) reports that there is a flow depen-
dence from statement Sy to statement S; carried by
the loop rs.

Since memory-based dependences often can be re-
moved by program transformations such as array ex-
pansion and privatization (for example, array XRSIQ
can be privatized in loop rs), recent research activity
has focused on value-based (or data-flow) dependences,
which need to be computed to perform these trans-
formations. Value-based dependences, introduced by
Feautrier in [Fea88b], reflect true flow of values in a
program unobscured by details of storing data in mem-
ory.

Intuitively, a value-based dependence exists between
two statement instances if there exists memory-based
dependence between them and value written in the first
statement instance is actually used in the second in-
stance, that is, the memory cell written in the first
statement instance is not overwritten before the sec-
ond instance occurs.



INTEGER rs, p, q, 1
DO rs = 1, nrs
DO q =1, np
DO i =1, mb
S0: XRSIQ(i,q) = 0
END DO
END DO
DOp =1, np
DOgq=1,p

DO i=1, mb

S1: XRSIQ(i,q) = XRSIQ(i,q) + ...
s2: XRSIQ(i,p) = XRSIQ(i,p) + ...
END DO
END DO
END DO
END DO

(«) Fragment of subroutine OLDA from TRFD

DO i = 1, NMOL1

DO j =i + 1, NMOL
C Inlined subroutine CSHIFT
S1: XL(1) = XMA-XMB
S2: XL(2) = XMA-XB(1)
S3: XL(3) = XMA-XB(3)
S12: XL(12) = XA(2)-XB(3)
S13: XL(13) = XA(1)-XB(2)
S14: XL(14) = XA(3)-XB(2)
DOk = 1,14
S16: XL(k) = XL(k) - ...
END DO
END DO
END DO

(b) Fragment of subroutine INTERF from MDG

Figure 1: Examples from Perfect Club benchmark

Let’s consider a program in Figure 1(a) which is
slightly simplified fragment of the subroutine OLDA
from the Perfect Club benchmark suite [BT89]. In it
there exists loop-independent value-based dependence
from statement Sy to statement S; but no loop-carried
value-based dependences from Sy to 57, because state-
ment S7 reads value of XRSIQ(i,q) written on the same
iteration of the loop rs and does not read values writ-
ten on previous iterations of loop rs.

Dependence Representation. Traditionally de-
pendences were represented by direction vectors
[Wol82] and dependence distances [Mur71]. Direction
vectors represent a relationship between statement in-
stances involved in dependence inexactly, and depen-
dence distances are limited to representing only fixed
differences between write and read variables. The ezact
relationship should be provided, if we want to use ad-
vanced loop transformation and code generation tech-
niques such as [Fea92a, Fea92b, AL93, KP93]. Some
array expansion and privatization algorithms also re-
quire exact dependence information [Fea88b].
Recently researchers started to use source func-
tions to represent value-based dependences. For a
given statement instance Ss[r] the source function
produces coordinates of the statement instance S;[w]
such that Si[w] supplies the value used in Si[x].
The version of source function computed in [Fea9l]
is called Quasi-Affine Selection Tree (quast). 1In
[MAL93] a different term is used for the same ob-
ject — Last Write Tree (LWT). For example, quast
for the statement Sz in Figure 1(a) is Sre(Sa[p, ¢,4]) =

if gq=p then Si[p,q,i
elseif ¢>2 then Si[p,q—1,4] .
else then Sy[p, i]

We found that LWTs/quasts have several drawbacks

as a method of dependence representation (see below),
and we decided to use dependence relations introduced
in [Pug91] to represent value-based dependences. If a
pair consisting of the given instance of write statement
Si[w] and read statement Sz[r] belongs to the depen-
dence relation then there is a value-based dependence
from Si[w] to Sa[x].

For example, the above LW'T can be represented as
a union of 3 simple relations:

Silp,¢,i]  — Salp,q,i] | 1<p=¢<np A 1<i<mb
Salp,q—1,4— Sa[p, ¢,7] | 2<q<p<np A 1<i<mb
SO[pai] HSZ[palai] | QSPSHP A 1§Z§mb

(1)

Similarly, the source function for S is:

Salp,¢—1,i— Si[p,¢,7] | 2<p=¢<npA 1<i<mb
Salp—1,¢,1— Si[p, ¢,1] | 2<p<np A g=p-1 A1<i<mb
Sl[p_laQai]_“gl[paQai] |
Soll,1] —S51[1,1,4] | 1<i<mb

(2)
These two source functions may seem to be compli-
cated, but if we draw dependence graph that they pro-
duce (see Figure 2, only axes p and ¢ are shown), we
will see that they encode elegant and relatively simple
value flow pattern.

We think that dependence relations have the follow-

ing advantages comparing to LWTs/quasts:

e If we want to know, under which condition a given
LWT leaf is valid, we need to build and simplify a
conjunction of conditions from nodes on the path
from this leaf to the LWT root. Since conditions
on the ELSE branches of the tree are negated, we
end up having disjunction of conjunctions of con-
straints, which is much more difficult to handle
than conjunction of constraints that we have in
each simple relation of dependence relation.

p<npA1<q<p2AN1<i<mb
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Figure 2: Dependence graph for the fragment of subroutine OLDA projected on p and ¢

o Integer division is used in quasts [Fea88a] to repre-
sent complicated dependence patterns (see exam-
ple in Figure 6). It means that quast may contain
non-affine functions. On the other hand, all ex-
pressions in the dependence relations are affine,
because integer division is represented using wild-
card variables.

e Computing affine approximations of non-affine de-
pendence relations, we encounter a situation when
a single read instance is dependent on several write
instances (see Section 5) and therefore the relation
between read and write instances is not a func-
tion anymore and can not be represented as LWT.
However, it still can be represented as a depen-
dence relation.

Computing value-based dependences efficiently.
Computing value-based dependences is currently con-
sidered (by many people) to be too slow and inefficient
to be used in production compilers. As we think one
of the reasons of existing techniques inefficiency is that
they treat all the statement instances that write to ar-
ray in question as having the same chance to be source
of a given read. However, since we are looking for a
statement instance which most recently hit the mem-
ory location read by a read statement, we can expect
that write statement instances which are lexicographi-
cally closer to the read in iteration space are more likely
to be sources of read data.

Having this in mind, we decided to compute the
source function for a given read statement starting with
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write statements which are lexicographically closer to
this read statement, and then proceeding to the more
and more distant statements, while keeping track of
instances of read statement already covered by writes.
When all read statement instances are covered, we can
stop and not test for dependences from other writes to
the read.

For example, let’s consider a program in Figure 1(a).
Using our algorithm, we are able to compute the de-
pendence relations (1) and (2) not using information
about references to XRSIQ other than in statements Sp,
S1, S2. These other references do exist, and not hav-
ing to prove that dependences from them to S; and
Ss are false dependences improves the performance of
dependence analysis.

Or, let’s consider another example in Figure 1(b) L.
All instances of the read XL(k) from the statement
Sis are covered with writes to XL from statements
St1,...,514 as follows:

Sild,j] — Sisld, 4, 1] | 1<i<NMOL1 A #1 <j<NMOL
S14lt, j] — Sisli, 4, 14] | 1 <i<NMOL1 A i1 < j <NMOL
(3)
We are able to prove this not examining statement
instances which precede Si[i,j], that is, instances
Sil', 4], .., S1ald, j/] such that (¢ <) v (i =i A j' <)
and statements other than Sy, ..., 514 referencing the
array XL.

1In it IF statement with non-affine condition is removed from
statement S1g to make the example more simple, however our
techniques work even if this statement is present.



DOi=1,n

DO j=1,n
x = F(i,))
S0: IF (x) THEN
S1: AGH) = ...
ELSE
$2: AGH) = ...
ENDIF
$3: ... = AP
END DO
END DO

(a) Non-affine IF condition

DO0i=1, n
DO j=1,n
x =F(@{,j)
S1: A(x) = ...
S2 = A(x)
END DO
END DO

(b) Non-affine subscript function

Figure 3: Non-affine program fragments

Handling non-affine conditions and subscripts.
Let’s consider a program fragment in Figure 3(a). In
it the read A(j) from the statement Ss is covered by
the write A(j) from either statement S; or Sy at the
innermost loop level. All existing dependence analyzers
(that we are aware of) can not recognize this because
IF statement Sy has non-affine condition x = F(1,3).
Not knowing that read A(j) is covered within the body
of loop j, existing systems assume that there exist a
flow dependence from S; and S; to Ss carried by the
loop i and therefore they can not parallelize loop 1i.

Non-affine subscript functions also confuse many ex-
isting systems. For fragment in Figure 3(b) they can
not establish that the write to A(x) in statement S,
completely covers the read A(x) in S; at the inner-
most level. As before, it happens because x = F(1i,j)
is non-affine function. Assuming that loop-carried de-
pendence from S to S5 exist they can not parallelize
loops 1 and j.

We can prove that both dependences are loop-
independent by using techniques described in Section 5.

2 Definitions

Notation used is summarized in Figure 4.

Domain of our work. Our data dependence test-
ing algorithm was originally designed to compute
value-based dependences for affine program fragments.
Affine program fragment is a loop nest such that in ev-
ery statement of it all (1) subscript functions, (2) con-
ditions in TF statements, and (3) loop bounds are affine
functions of loop variables and symbolic constants. If
either of these requirements is not satisfied, this frag-
ment is non-affine.

Then we modified the algorithm to handle non-affine
fragments (see Section 5), so actually it computes de-
pendence relations for any structured program frag-
ment which does not contain GOTO, BREAK and
WHILE statements. Allowed are assignment state-
ment, structured IF and FORTRAN-like DO loop.

Vectors and Statement Instances. Vector (also
called tuple) is simply an ordered set of integers. Vec-
tors are denoted with bold letters, such as w,r,s. They
are used to represent points in n-dimensional space.

The smallest unit of computation we consider in this
paper is statement instance. The statement instance
Wiw,s] is specified by W — statement of the pro-
gram, w — vector of loop variables values (loops which
surround the statement W are included), and by s —
vector of symbolic constants.

We call variable a symbolic constant if it is not a loop
variable and it 1s not assigned in the fragment of the
program that we analyze. For starters we assume that
the fragment being analyzed is the whole body of the
procedure being analyzed, but later (in Section 5) we
will see that the scope of our dependence analysis al-
gorithm is dynamic and so is the definition of symbolic
constant.

Sequencing predicate. We say that instance of
statement W specified by loop variables vector w and
symbolic constants vector s is executed before instance
of statement R specified by loop variables vector r and
symbolic constants vector s or W[w,s] < R[r, s] iff

wll.n]<<r[l.n] V w[l.n]=r[l.n] A WK R

where n is number of common loops surrounding both
statements W and R.

Relations. Relation is a set of ordered pairs of vec-
tors. (w —r) € R means that pair (w,r) belongs to
the relation R.

Since statement instance (which is elemental unit of
computation for us) is specified not just by vector of
integers, but by statement and vector of integers, we
consider relations between statement instances. So we
write (W[w] — R[r]) € R when pair (W[w] — R[r])
belongs to the relation R.

Operations on sets and relations that we use are sum-
marized in Figure 5.



W, R Specific statement of a program.

R.AW.B Specific read/write array reference A/B in a statement R/W.

Arr(A) Array or scalar variable referenced in a reference A.

w, T An iteration space vector that represents a specific set of values of the loop variables. The individual
values of the loop variables are referred to as wi,w2,...,71,72,...

r[z..y] Subvector of vector r, consisting of components rq, ry41, ..., 7y—1,Ty-

|w| Number of components in vector w. For example, |r[z..y]| =y — = + 1.

[R,s] The set of iteration vectors for which statement R is executed given symbolic constant vector s.

R.A(r,s) The vector of integers produced by subscript function of array reference R.A, when the loop variables
are specified by r, and symbolic constants are specified by s.

W <« R Statement W occurs before statement R in a text of a program.

w&r Vector w is lexicographically less than vector r. That is, (w1 < 71) V (w1 =711 A we <712) V (w1 =
rT A\ w2 =12 A ’LU3<T3) AV

Wiw,s] An instance of statement W specified by the loop variables vector w and symbolic constants vector s.

Statement instance W[w,s] is executed before statement instance R[r,s].

Figure 4: Notation used in this paper

Operation Description Definition

domain(F) The domain of the relation F ¢ € domain(F) & Jy s.t. (r — y) € F
range(F) The range of the relation F' y €Erange(F) & Jz st. (v —y) € F

F\S Restrict relation F' to domain S (t—=y)€EF\S & (z—y)eFANzES
F/s Restrict relation F' to range S (t—y)eEF/S & (r—y)EFANYyES
mx(P(x,y)) Project problem P on variables x {x |3y s.t. P(x,y)}

7-x(P(x,y)) | Project problem P on variables other than x | 7y (P(x,y))

Figure 5: Operations on vectors and relations

Value-based dependence definition and rep-
resentation. The value-based dependence relation
DepRel that describes the dependences coming to the
read reference R.A of statement R is defined by the
following:

Vr,s: (V[v,s] — R.A[r,s]) € DepRel(w,r,s) <
Vv,s] = maxe (W[w,s]| w € [W,s] A I‘E[R,s]/\
Arr(WW.B) = Arr(R. A) A W.B(w, ) = R.A(r,s)A
Ww.s] < Rlr.s))
(4)

This definition is constructive, that is, we can use it
to actually compute the dependence relations. When
lexicographical maximum is computed, the result is a
dependence relation which is represented as a union of
the following m simple dependence relations:

Wilw,s] — R.Alx,s]| DepRel,(w,x,s)
DepRel =
Win[w,s] — R.Alr,s]| DepRel,,(w,r,s)

where each DepRel; is a conjunction of constraints and

U mr,s(DepRel;(w,r,s)) C [R,s].
Z 1Since source functions may involve integer division
by constant [Fea88a] and we want to keep conjuncts
DepRel, affine, we use wild-card variables to represent
the integer division. That is, we replace constraint ¢ =
|k/c| with affine constraint ci+a =k A0 < a < e—1.
Let’s consider a program in Figure 6 [Fea88a] as an
example of representing relatively complex dependence

with dependence relations. Source function for the
statement Sy is defined as: Sre(S2) =

max($1[i, j][0<i<M A 0<G<N A 2i4j = k). (5)

The PIP algorithm simplifies this to the quast in the
right column of Figure 6. Our algorithm for computing
lexicographical maximum (see Section A.l) simplifies
(5) to the dependence relation:

V[M, k=2M] — So | 2M <k<2M+N A M >0
V[ k=24 — So | k—1<2i<k A k=N <2i A 0<i<M
(6)

In the 2nd conjunct of this relation ¢ is not expressed as

S
S

a function of read variables and symbolic constants, even
though it is a function of them. There was some discus-
sion among researchers as to whether dependence relations
should contain explicit functional binding between read and
write variables. We do not feel that this is necessary, but
our algorithm can be modified to produce such binding.
The above dependence relation expressed in the functional
form but without use of integer division is:

Si[M, k—2M] — S5 | 2M <k <2M+N A M >0
Sy [i, k=2i] — S5 |

2ita=k A 0<a<l A 0<k<2M+1 A N >1
Sl[i,O]—>52|

2itao=k A 0<a<l A 0<k=26<2M A N=0



DOi=0, M
DO j=0,0H
Si: A(2*%i+]) = ...
END DO
END DO
S2: ... = A(k)

if (=k+2M + N >0)
then if (k—2M > 0)
then S1[M, k—2M]

Sre(S2) = else if ((—k+N+2(k+2)>0)

then Si[k+2,k—2(k=+2)]
else L

else L

Figure 6: Program and source function represented as a quast

3 Machinery used

We use the Disjunctive Normal Form (DNF) to rep-
resent sets of vectors. The DNF is a disjunction of
conjunctions of constraints which maps integer vectors
to boolean values. Each constraint is an affine equality
or inequality. DNF representing a set of vectors pro-
duces True for the vector that belongs to the set, and
False otherwise.

We use the following basic operations on DNFs: A,
V, =, 7, RelMaxlg, RelMax2,. They can be broken
into 3 classes.

Conjunct to conjunct: A, 7. We use the Omega
test [Pug9?2] to simplify conjunctions of constraints and
to prove that they have no solutions. The Omega test
always performs the exact simplification.

Another useful operation performed by the Omega
test that we use is projection.  Projection of a
conjunct P(x,y) on variables x is 7x(P(x,y)) =
Ty (P(x,y)) = {x| 3y s.t. P(x,y)}.

DNF to DNF: v, =. The Omega test works only
with separate conjuncts. To allow the use of V and —
operations, we implemented the DNF package on top
of the Omega test. In it we always maintain the dis-
junctive normal form of the formula using distributive
properties of operations A and V. To avoid combina-
torial explosion when computing negation we used gist
operation in a way proposed in [PW93a].

Lexicographical maximum: RelMax,. The func-
tion RelMaxly (see Appendix A.1) computes the lex-
icographical maximum of the set of vectors w which
is described by DNF p(w,r), where r is a vector
of parameter variables. The function produces the
DNF that binds maximized w with r: Py(v,r) =
RelMaxl (w | p(w,x)). Tt is defined as

Vv,r: Pp(v,r) e v = mémx(w | p(w,1)).

The version of this function for a single conjunct is
called ProblemMax .

The function RelMax2 (see Appendix A.2)
computes the lexicographical maximum of two

parametrized source functions. Given the source func-
tions Ry = {Wi[wy,s] — R[r,s]| Ci(wy,r,s)} and
Ry = {Wa[wa,s] — R[r,s] | Ca2(wa,x,s)} it produces
the relation R, = RelMax24 (R, Rz) which is defined
as
Vw,r,s: (W[w,s] — R[r,s]) € R, <
Wlw,s] = maxe (R7!(x,s), Ry ' (x,s))

Related work. Feautrier developed the PIP al-
gorithm (an integer version of simplex algorithm)
[Fea88a] to compute an equivalent of ProblemMax« .
We are not aware of any performance figures for the
PIP, and Figure 8 suggests that it is slow. His analogue
of RelMax2 does not simplify the resulting quasts, so
they may become very big. To simplify quasts one
needs to perform negation and it is not mentioned in
Feautrier’s papers as far as we know.

Pugh and Wonnacott in [PW93a] advocate the use
of the Presburger arithmetic subclass for dependence
testing. We think that their subclass is equivalent to
the class of formulas that can be built using operations
listed in this section.

4 Lazy dependence analysis

In Figure 7 we present the algorithm which com-
putes value-based dependences for a given read refer-
ence. Dependence graph for the whole program is built
by applying the algorithm to every read reference of ev-
ery statement.

Our algorithm can be viewed as a lazy implementa-
tion of the definition (4). Let’s consider a set of read
statements instances R[r,s] for which we are comput-
ing source function. The set of all candidate write in-
stances {Ww,s]| W[w,s] < R|[r,s]} is broken into n
convex subsets w;(r, s) such that for any r,s such that
R[r, s] is executed

wp(r,s) € - K ws(r,s) € wi(r,s) < Rx, s]

These subsets are created on the fly as me move from
the write instances W{w,s] that are lexicographically
close to the read instances R[r,s] to the more distant
write instances (lines 10-12 and 30-44 of the algo-
rithm).
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10:
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13:
15:
16:
17:
18:
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20:
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23:
24
25:
26:
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30:
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32:
33:
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44:
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51:
52:
55:
56:
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61:
62:

: INPUT: R.A: read reference surrounded by n loops with variables r = (rq, ..., 7).

s 18 a vector of symbolic constants.
OUTPUT: Dependence relation for the read reference R.A.
That is, {W][v,s] — R[r,s]} € DepRel < W]v,s] = maxg ( W[w,s]|w € [W,s] A r € [R,s]A
Arr(W.B) = Arr(R.A) A W.B(w,s) = R.A(r,s) A W[w,s] < R[r,s])
Relation DepRel := {0}; Relation WrMaz
Dnf NotCovered(r, s) := IsExecuted( R[r, s])
Integer FizLoops :=n
Statement W := R
Boolean Single Write := True; Boolean LessFlag := False
While (NotCovered is feasible) do
W := statement preceding statement W
Statement W is surrounded by m loops with variables w = (w1, ..., wp)
(+ Here unfixed zone consists of loops with depths from FizLoops + 1 to n. *)
If (W is assignment statement and it writes to Arr(R.A4)) then
(* Find source function for instances of reference R.A[r,s] which are NotCovered(r,s) *)
Dnf SameCell(w,r,s) := NotCovered(x,s) A R.A(r,s) = W.B(w,s) A IsExecuted(W[w,s])
Conjunct Wsub(w,r) := w[l..FizLoops] = r[1..FizLoops] N (LessFlag = WrirLoops+1 < TFizLoops+1)
Dnf DepProb(w,r,s) := SameCell(w,r,s) A Wsub(w,r)
Relation Cmaz := RelMaxl (W([w,s] — R.A[r,s]| DepProb(w,r,s))
If (Single Write) then
DepRel :== DepRel U Cmaz
NotCovered := NotCovered A —range(Cmaz)
Else
WrMaz := RelMax2« (WrMaz, Cmaz)
EndIf
Elself (statement W is EndDo or Do i=) then (* Enter loop body through its end %)
If (Single Write) then
If (statement ¥ is Do i=) then
FizLoops .= FixLoops — 1; LessFlag := True
W := EndDo stmt for loop with header W
Else (* statement ¥ is EndDo #)
LessFlag := False
EndIf
WrMaz := {0}; SingleWrite := False
StopLoop := Do i= stmt of the loop whose EndDo stmt is W
Elself (mSingle Write A W = StopLoop) then
DepRel := DepRel U WrMaz
NotCovered := NotCovered N —range( WrMaz)
Single Write := True
EndIf
Elself (statement W is entry to the subroutine) then
DepRel := DepRel U {Entry — R.A[x,s]| NotCovered(r,s)}
Break out of While loop 10
Elself (statement W is EndIf or Else or If (...) then) then
(* Do nothing =)
EndIf
EndDo
Return (DepRel)

Figure 7: Value-based dependence analysis algorithm



Fach of the subsets w;(r,s) can include instances
of one or more write statements. If boolean flag
Single Write is True, then current w;(r,s) includes in-
stances of only one statement W and to get depen-
dences from Ww,s] to R[r,s] we need simply to com-
pute maxg of eligible instances of W (lines 20-23). If
Single Write is False, then instances of several state-
ments can be present at w; and after finding source
function for each statement (line 20) we have to com-
pute a maximum of these source functions (line 26).

After examining a statement we move to a preceding
statement. If we reach beginning of the loop L which
surrounds the read statement R where we have started,
we move to the end of this loop (line 34), unfix the loop
L, require to consider the writes only from previous
iterations of L (lines 33 and 18), and enter multiple-
write-statement zone (line 38). When later we reach
beginning of loop L, the multiple-write-statement zone
is over and we add lexicographical maximum of the
source functions computed in this zone to the resulting
dependence relation (line 41).

Lines 17-20 implement the value-based dependence
definition (4). Line 17 selects writes that are ex-
ecuted and that hit the same memory locations as
reads. Line 18 selects writes which belong to the
current w;. The function IsExecuted returns conjunct
that describes conditions under which the given state-
ment executes. This conjunct consists of conditions
imposed on loop variables by loop bounds and IF state-
ments surrounding the statement. In other words,
IsExecuted (R[r, s]) < R|r,s] € [R,s].

The subexpression range(Cmaz) in lines 24 and 42
describes a set of read instances that has been covered
by writes from the current w;. Remaining not covered
reads are described by the problem NotCovered which
is initialized in line 5 and is updated in lines 24 and 42.

Termination. Termination of the algorithm is
proven trivially. The set of vectors specified by the
problem NotCovered becomes smaller or remains the
same with each iteration of the loop 10-61. When
NotCovered becomes empty algorithm stops and the
resulting relation is returned (lines 10 and 62). If this
does not happen then we reach the beginning of the
program fragment being examined (line 50). We can
have some not covered reads left, and we let them to
depend on the Entry node (line 51).

Computational complexity. Worst-case computa-
tional complexity of the algorithm in the number of
calls to RelMaxl and RelMax2 is O(nd), where n is
number of statements writing to Arr(R.A) and d is
number of loops around statement R. Since usually
d <5, we can state that worst-case time complexity is
O(n). Practical complexity is lower, since usually read

instances are covered after visiting only small number
of candidate writes.

Each call to RelMax1 and RelMax2 is in the worst case
NP-complete in the number of integer programming
problems to be solved. In practice, however, only small
number of problems is solved in each call.

4.1 Example of the algorithm work

Here we demonstrate how our algorithm computes the
source function for statement S; of subroutine OLDA
(see Figure 1(a)).

First, for each write-read pair we summarize all con-
straints on loop variables and symbolic constants ex-
cept for ordering constraints:

CQZSQ—>51 01151—>51 CQZSQ—>51
qw = qr qw = qr Pw = 4r

ty = 1y ty = Up ty = Up

1<q. <p» 1< <pw,pr 1<qw<¢-<ps
pr <1p Pw, Pr SDP pr <1p

1<4, <mb 1<4, <mb 1<4, <mb

Then we take care about ordering constraints.
The algorithm breaks a set of write statement in-
stances into a sum of disjoint subsets wa(r), ..., wps(r)
such that for any r such that R[r] is executed:
wps(r) € ... € wa(r) < R[r]. For the read instances
Sl[rsr,pr,qhir] | I<rs;<nrs A 1<g¢,<p,<np A 1<
1, <mb these subsets are the following:

WZISZ[rsr;praqhiw]|1§iw<ir
Sl[rsr;praqhiw]|1§iw<ir
ws = So[rse, Pr, qu, tw] | 1 <quw<gr A 1<4, <mb
Sl[rsrapraQw;iw] | 1SQw<QT A 1§Zw§mb
Wy = Sz[TSr,Pw,Qw,inlSQw <pw <pr A 1<0, <mb
Sl[rsrapw;Qwaiw]|1§(Jw§pw<pr A 1§Zw§mb
ws = So[rsr, qu,tw] | 1 <qw <np A 1<i, <mb
we = S2[rsw, Pus Guw, tw] | 1 <rsy <rsy A
1<¢uw<pw<np A 1<iy<mb
S1[PSw, Pws Qus tw) | L <780 <780 A
1<¢uw<pw<np A 1<iy<mb
Solrsw, qu, tw] | L <18y <780 A
1<¢w<np A 1<i, <mb

Now we start moving from ws back in space/time
keeping track of covered Sp instances. We don’t men-
tion constraints on rs for brevity and because this vari-
able does not appear in subscript functions. Initially
NotCovered(r,s) = (1<¢,<p,<np A 1<4, <mb).
wo: wy A Cq and ws A C5 have no solutions. So ws
doesn’t contribute to dependence.

ws: C1 A wg is not feasible, but C2 A w3z = (1<qy <
Pw=¢ =pr <np A 1<iy =1, < mb)' Computing
RelMax1« (S2[pw, quw, tw] — S1[pr, @r, ir] | C2 A w3)

we get

SZ[praQT - 17i7‘] _>Sl[p7‘aq7‘ai7‘] |
2<pr=¢,<np A 1<4, <mb



Now we cover area 2<p,=¢, <np A 1<z, <mb
and therefore NotCovered = (pr=¢,=1 AN 1<4, <
mb) V (1<q¢, <pr<np A 1<i, <mb).

wg: (C2 A wy A NotCovered) = (1 < qy <py =¢r <
pr <np A 1<y, =4, <mb). Maximum of this is
Salgr, ¢r, 0] | 1< qr <pr <np A 1<4, <mb.
(C1 A wa A NotCovered) = (1<qy=¢qr <puy <
pr <mp A 1<1iy, =i <mb) leading to maximum
Silpr =1, 47,4 | 1<g- <pr <np A 1<4, <mb.
Then we use RelMax2, to compute maxg of two
source functions (Appendix A.2). The result is

52[])7‘_1aQ7‘ai7‘]_>Sl[p7"Q7‘ai7‘]|

2<p <np A gr=p~1 AN 1T<4 <mb
Sl[pT_laQTaiT]_>Sl[p7"Q7‘ai7‘]|

pr<mp A 1<¢g <p—2A1<4 <mb

(7)
NotCovered = (pr=¢,=1 A 1 < i, <mb).
ws: (Cy Aws A NotCovered) = (qu=¢r=pr=1 A 1<
iy =i, < mb). This easily computes to dependence
relation  Sp[l,4é,] — S1[1,1,4,] | 1 < ¢ <mb. Fi-
nally NotCovered = False.

After ws step all the read instances of S; are covered
and we don’t have to compute dependences for wg and
any writes which textually precede Sy. The resulting
source function for S; is given in (2).

5 Non-affine fragments

In this section we present our techniques for computing
value-based dependences in non-affine program frag-
ments.

What is a symbolic constant? Variable which is
not assigned anywhere within the program fragment
that we analyze is called symbolic constant. In the pre-
vious sections we held a traditional point of view that
the analyzed fragment is the whole body of procedure
or function. Now when we want to do a better job of
dependence analysis for non-affine program fragments,
we give a dynamic definition of analyzed fragment and
symbolic constant.

The unfized zone of depth d around statement S (de-
noted UnFized(S,d)) is a loop nest which consists of
statements belonging to d innermost loops surrounding
S. The fized zone of depth d around statement S (de-
noted Fized(S,d)) consists of statements not belonging
to UnFized(S,d). If d = 0 then unfixed zone is empty
and everything around S is fixed.

A scalar variable v that is last written (defined) in
the Fized(S,d) is considered to be a symbolic con-
stant for the statement S at the depth d (denoted
v € SymConst(S,d)). To find the definition for the
particular read of scalar variable and to distinguish be-
tween different definitions of the same variable we use

the Static Single Assignment (SSA) graph of the pro-
gram [Wol92].

This dynamic definition of symbolic constant is used
in our dependence analysis algorithm in the following
way. When computing the execution condition for the
write statement in line 17 all the variables v such that
v € SymConst(S, FizLoops) are considered to be sym-
bolic constants.

Example: non-affine conditions. Let’s consider
program fragment in Figure 3(a). Computing the de-
pendence relation for the statement Ss, we start with
both loops 1 and j fixed: 4, = ¢ A ju = jr. Therefore
unfixed zone of S3 is empty and variable = is a sym-
bolic constant. After visiting statements S5 and 57 we
get dependences

Sl[laj] - SS[Za]] | 1 S ? = (8)

We discover that we do not have to unfix more loops
because these 2 dependences cover all instances of read
at Sz: (1<4, j<n)A(xzV—x) = (1<i,j<n). Therefore
we have proved that no loop-carried dependence exists
from S; and S5 to Ss.

However, dependences relation (8) is affine only if our
scope is limited to the body of j loop. If we consider the
whole program then dependence relation (8) becomes
non-affine:

Sl [Zaj] - 53[Za.7]
J

A (i, )
Suli ] — Sali.j ©

[1<ij<n
11<ig<n A —elig).

This relation can not be represented within our frame-
work which requires all constraints to be affine. More-
over, since we do not know which branch of IF state-
ment Sy 1s taken, we do not know exactly what in-
stances of S7 and S5 are executed.

Computing the upper bound on iteration space.
So we expand the actual iteration space to get rid of
non-affine constraints, as it was suggested in [Voe92b].
For each non-affine expression in IF condition we as-
sume that it can be both True and False, that is, we
replace non-affine boolean terms with True in the posi-
tive context (that is, in the conjunction or digjunction),
and with False in the negative context (that is, in the
negation).

In the above example the upper bound on iteration
space is (S1[7,7], 52[4,J]) | 1 < 4,5 < n, and the lower
bound is empty.

Computing the lower and upper bounds on de-
pendences. After we expanded the iteration space,
we have to expand the set of dependences to make them
affine too. That is, when dependence relation becomes
non-affine as more loops are unfixed, we replace newly



Our | % of £77 -02 | Times faster Times faster
Program Lines | £77 -02 | [Fea91] | [PW93a] | algorithm | compile time | than [Fea91] | than [PW93a]
across 15 200 600 9 7.8 4 62 1.15
burg 29 600 5,600 91 82 14 56 1.10
relax 13 400 1,700 24 25 6 57 .96
gosser 22 700 2,800 62 50 8 43 1.24
choles 25 600 2,600 32 32 6 63 1.00
lanczos 69 1,700 12,600 119 115 7 88 1.03
jacobi 62 1,600 | 81,900 1,104 1,119 70 61 98
btrix 155 8,600 1,515 1,290 15 1.17
cholsky 90 2,900 246 446 15 .55
vpenta 101 5,700 473 292 5 1.61
dctdx 72 1,440 324 145 10 2.23
ffa99 197 6,590 4,173 2,848 43 1.46
ffs99 192 6,460 4,817 3,419 53 1.40
interf 257 6.730 3.784 2,546 38 1.48
interf-hacked 279 6.790 4,092 2,538 37 1.61
ocean 12 820 25 23 3 1.09
olda 161 5,140 1,167 468 9 2.49
olda-hacked 154 4,800 796 723 15 1.10
poteng 194 | 10,820 1,670 1,293 12 1.29
poteng-hacked 212 11,040 1,952 1,535 14 1.27

Figure 8: Timing results (all times are in milliseconds)

non-affine variables with either True or False. Follow-
ing [PW93b], we compute lower and upper bound for
each dependence relation:

e Lower bound on dependence is computed by re-
placing non-affine variables with False in the pos-
itive context (in disjunctions and conjunctions)
and with True in the negative context (in nega-
tions). That is, we over-constrain dependences to
get lower bound.

e Upper bound is computed by replacing non-affine
variables with True in positive context and with
False in negative context. That is, we under-
constrain dependences to get upper bound.

We use lower and upper bound on dependences in
the following way:

e When we have to report non-affine dependence,
we actually report upper bound on this depen-
dence. So we add minimal number of dependences
to make dependence relation affine.

e When computing what was covered by a write
statement, we replace non-affine dependence with
lower bound on it, because we can not be sure that
any dependences between lower and upper bound
really exist and cover read instances, and we know
that dependences in the lower bound definitely ex-
ist.

e We do not compute maxg of the relations that
contain affine approximations of constraints. It
can not be done because we do not know exactly
which statement instances described by these ap-
proximations are really executed. Instead we as-
sume that all statement instances that are de-
scribed by the approximated affine constraint are
involved in the dependence. Doing so, we make
dependence relation to bind many write statement
instances to a read instance (instead of one). This
is inevitable when affine approximations are used
and this i1s the best we can do at the compile time.

For example the upper bound for the dependence
lower bound for this relation is empty.

relation (9) is:

Example: non-affine subscripts. These tech-
niques apply equally well to the non-affine IF condi-
tions, loop bounds, and subscript functions.

Computing dependences for program in Figure 3(b)
we start with loops i and j fixed and therefore we have
a problem 1<y =%, jy=Jjr <n A z==g, where z is a
symbolic constant. Simplifying it we get affine depen-
dence relation: Si[i, j] — S2[i,j] | 1 <4,j <n. What’s
interesting, unfixing loops 1 and j does not make this
dependence non-affine because x is not present in the
resulting relation when loop j is unfixed. So non-affine
fragments do not necessarily lead to inexact depen-
dence relations.

6 How fast is our algorithm

We measured time taken by our dependence analysis
algorithm to analyze Feautrier’s benchmarks [Fea91]
and some NASA NAS codes. In Figure 8 we compare
our timing results with time taken by:

e Regular Fortran-77 compiler to compile the pro-
gram [PW93a].

e Feautrier’s algorithm to compute source functions
for the program [Fea91].

e Pugh and Wonnacott techniques to compute
memory-based direction vectors and value-based
dependence relations for the program [PW93a].

Feautrier times were obtained on SUN Sparc ELC
(SPECint89 rating of 18.0). All other measurements
were performed on SUN SparcStation IPX (SPECint89
rating of 21.7).



7 Related work

We would like to compare our techniques to several
other approaches to dependence analysis.

Memory-based dependence computation. Un-
til recently only techniques for computing memory-
based dependences were considered by most re-
searchers [AK87, Wol82, MHL91]. The problem
SameCell(w,r,s) defined at line 17 of Figure 7 essen-
tially describes a memory-based dependence. Since we
compute this problem only once for each pair of state-
ments, we don’t take more time to compute memory-
based dependences than existing techniques do.

In fact computing value-based dependences using
our algorithm can take even less time than computing
memory-based dependences when full cover is found
quickly. Let’s consider program in Figure 1(b). To
compute dependence from Sys to Si6 existing systems
have to solve problem with 6 variables, and we know in
advance that this dependence does not exist (as value-
based) because statements S, ..., Si4 cover Sig com-
pletely. So no time is spent disproving this dependence.

Feautrier work. Feautrier [Fea9l] computes value-
based dependences exactly for what we call affine pro-
gram fragments, but his techniques are slow, because
while computing dependences using definition (4), he
does not keep track of what read instances were cov-
ered. So his algorithm always has to call PIP algo-
rithm and analogue of RelMax2, nd times, where n is
number of candidate writes and d is number of loops
surrounding read statement, while for us nd is upper
bound which practically is never reached.

Also Feautrier’s algorithm does not handle IF state-
ments and non-affine program fragments.

Voevodins work. Voevodin & Voevodin [Voe92a,
Voe92b] also compute exact value-based dependences
for affine program fragments and they handle non-
affine program fragments. They use methods that are
close to that of Feautrier’s. So we believe that our al-
gorithm should work faster than theirs for the same
reasons as above. Unfortunately, they do not describe
their algorithm in detail and they do not provide tim-
ing results; so it is difficult to compare their algorithm
to ours.

Maydan, Amarasinghe and Lam work. Their al-
gorithm [MAL93, May92] does not apply to the general
case of affine program fragment, so they use Feautrier’s
algorithm for backup. Their algorithm applies only to
writes that do not self-interfere (that is, there is no out-
put dependence from the write to itself) when unused
loop indices are removed.
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Our algorithm is also quick for such writes, because
unused loop variables do not add constraints to the
problem that we solve, and non-interfering writes usu-
ally lead to equating write loop variables to read loop
variables which further simplifies the problem. Also
their algorithm does not seem to handle non-affine pro-
gram fragments.

Pugh and Wonnacott work. Pugh and Wonnacott
use kill analysis to compute exact dependence informa-
tion, that is, they first compute memory-based depen-
dences and then kill or refine them by techniques orig-
inally described in [PW92] and [PW93b]. Since their
kill analysis in the worst case considers all write—killer—
read triples, while we in the worst case consider only
all write-read pairs, the kill analysis can be expensive.
So they have incorporated our idea of keeping track
of the read instances that were already covered by an-
other dependence under the name of “partial covers”.
They combine the partial cover computation with their
traditional kill analysis as described in [PW93a].

However, their approach is different from ours be-
cause they do not use RelMax« functions, instead they
use the Presburger arithmetic (it can be described as
our DNF package minus RelMax functions plus V and
J quantifiers that can appear at any level of the for-
mula) to perform the kill analysis equivalents of these
operations. They also use memory-based dependences
to perform some quick kills as 1t was suggested in the
earlier paper [PW92], while we do not need them at
all. However, if need be, we can compute the memory-
based dependences with ease.

Both approaches are implemented in the Tiny tool,
originally developed by Michael Wolfe and then consid-
erably enhanced in the University of Maryland, College
Park, so it is possible to compare the timing results (see
Figure 8).

Handling non-affine constraints. In [Voe92b] and
[PW93b] the authors describe their techniques for com-
puting value-based dependences for non-affine program
fragments.

Voevodin [Voe92b] suggests that the algorithm graph
(that is, iteration space plus dependences) for non-
affine fragment should be extended to become affine,
but he does not describe how this is achieved.

In [PW93b] the authors propose to compute upper
and lower bounds on dependences. However, their tech-
niques can not prove that dependence from statement
S to Sy is not carried by loop i in Figure 3(a).

A number of papers [AK87, HP91, LT88] suggest
using symbolically enhanced versions of GCD test and
Banerjee’s inequalities. These techniques work only for
memory-based dependence analysis and they are inex-
act even in this domain.



8 Source code availability

The implementation of our algorithms is integrated
into the UMCP version of the Tiny tool for depen-
dence analysis and program transformations. It is
freely available by anonymous FTP from directory
pub/omega/lazy on the machine ftp.cs.umd. edu.

9 Conclusion

In this paper we presented the algorithm which com-
putes exact value-based (data-flow) dependences for
affine program fragments and good affine approxima-
tions of value-based dependences for non-affine pro-
gram fragments.

The basic idea of the algorithm — to start searching
for candidate writes in lexicographically close proxim-
ity of a read statement for which dependence is be-
ing computed, and to expand search space only if non-
covered read instances remain — makes it both efficient
and capable of handling non-affine subscript functions,
loop bounds and conditions without slowing down.

It also makes dependence analysis insensitive to the
program size. That is, the time spent by our algorithm
does not depend on number of statements that write
the array in question or on number of loops that sur-
round read. The algorithm time depends, however, on
how many writes reach the read and on how compli-
cated the dependence relation is — both these charac-
teristics are not a function of program size.
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A Appendix: computing lexi-
cographical maximum

A.1 maxe of relation

In Figure 9 we present the algorithm to compute lexico-
graphical maximum of relation which is not a function
from read to write instances. The core of the algorithm
is the function ProblemMax« which finds maxe of a
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single conjunct. The result is a DNF that establishes
relation between maximized variables w and input pa-
rameters r.

The number of variables that we have to maximize is
m (line 3). The problem of maximizing these variables
is solved variable by variable. That is, we begin with
maximizing lexicographically senior variable wy. When
maximum for it 1s established, it becomes input vari-
able and variable ws 1s maximized, and so on. Let w;
denote the variable that is currently being maximized.
To maximize w;, we project out all lexicographically
junior variables w41, ..., wy. Then in every resulting
convex problem we examine constraints on wj.

If wy 1s fixed by equality constraint involving only in-
put variables and w; itself, then for every value of input
parameters only one value of w; is defined. Therefore
this value is the maximal value of w; (lines 11-12).

If variable w; is not fixed by equalities, then we con-
sider inequalities that provide upper bound for w; (line
14). For every upper bound we generate a problem in
which < operator 1s replaced with =. This problem
describes conditions under which this upper bound is
reached, so we add the original problem to it and send
it to the output list (line 18).

The upper bound on w; expressed as aw; < F(...)
1s converted in line 18 to the maximum for w; which
is [F(...)/a]. Since we can not represent the integer
division in our framework, we use wild-card variable «
ifazl:avmi+a=F(.)A0<a<a-1.

Example of the algorithm work. Here we demon-
strate how our algorithm computes the result of (5):
maxg ((7,7) |0<i<M A 0Lj<N A 2+ =k).

Parameters of the algorithm are: w=(%,j), m=2,
r=(M,N,k),n=3,p=(0<i<MAO<j<NA2#=k).
To get upper bounds on ¢ we project away j and find
two upper bounds on i:

0< i
k—N< 2

Replacing : < M with ¢= M, simplifying and adding
the original problem we get the problem that describes
when upper bound ¢ < M is reached:

<M
<k

pr=(Q2M<k <2M+N A O<M Ai=M A j=k-2M)

Then to find conditions under which another upper
bound on 7 1s a maximum, we replace inequality 2¢ <k
with 2+ =%k A 0<a<1. Simplifying, we get:

po= (k=1<2i<k A k=N <2 A 0<i<M A j=k—2i)

So after the first iteration of the loop ! (lines 5-26) we
have the list OutMaz that consists of two conjuncts (p;
and ps) that describe maximal values of .

On the 2nd iteration of loop | we maximize variable
j considering ¢ as an input variable. Both in p; and ps



Relation RelMaxlg (W[w,s] — R[r,s]| p(w,x,s)) Begin
Relation MazRel = {0}

For (ep(w,r,s) in conjuncts of p(w,r,s)) do

MazRel = MazRel U {W[w,s] — R[x,s] | ProblemMax« (w | cp(w,x,s))}

EndDo
Return (MazRel)

Dnf ProblemMax (w | p(w, 1)) Begin

Result is Vv, r: OutMaz(v,r) < v = maxg (W
3: Integer m := |w|, n:=|r|
4: Dnf InMaz(w,r), OutMaz(w,r) :=p
5: For [:=1to m do
6 InMaz(w,r) := OutMaz; OutMaxz(w,r):= False
8 For (CInMaxz(w,r) in conjuncts of InMaz) do

©

| p(w, 1))

Dnf py(w[l..l],r) == mwp. e CInMaz)

10: For (epyr(w[l..]],r)in conjuncts of p1) do
11: If (epy contains equality involving w; and not involving wild-card variables) then
12: OutMaxz := OutMaz V (cp1 A ClnMaz)
13: Else
14: Let’s represent cp; as a conjunction of Nub upper bounds on w; and everything else:

Nub

€p1 = CPother N /\ a;rw; < ¢ + Za”w] + Zb”r] ) where a;1 > 0

i=1 ji=2 ji=1
17: For i := 1 to Nub do
18: OutMaz := QutMaz \/ (CInMa:z? A cPother N

ap w4+ o; = ¢; + Za”w] + Zb”r] AN 0<ao; <app—1)
Jj=2 j=1

21: EndDo
22: If (Nub = 0) then OutMaz := OutMaz V w; =
23: EndIf
24: EndDo
25:  EndDo
26: EndDo

Return (OutMaz)

Figure 9: Lexicographical maximum of parametrized set of vectors

the variable j is fixed by equality, so these conjuncts
go directly to the resulting DNF. Finally we obtain the
dependence relation (6).

A.2 maxe of two source functions

In Figure 10 we present the algorithm RelMax2« to
compute the lexicographical maximum of two source
functions represented as dependence relations.

We consider every possible pair of conjuncts sl; € 1y
and sls € Ls. If ranges of these conjuncts intersect
then we call function RelMaxVar« to compute the lexi-
cographical maximum in the intersection area and add
it to the resulting relation MazRel. Then range of the
intersection is subtracted from both relations and the
process is repeated.

Finally one of the relations becomes empty or the
relation ranges do not intersect anymore. We add what
is left of relations to the result, because the relation

that does not provide value for particular read variables
value is always lexicographically less than the relations
that provides the value.

We call the function RelMaxVarg to compute the
maximum of the two simple relations over the intersec-
tion of their ranges 2.

When computing maximum of the two simple rela-
tions we start with comparing lexicographically senior
write variables wi[1] and ws[1]. We build a conjunct
pd that lets us know the sign of A = wy[1] — wo[1].
In the line 25 we compute constraints on variables r,s
under which A > 0 and therefore Ly > L4, then in line
26 — constraints under which A < 0 and L1 <« L».

Then if for some values of r,s we have A = 0, we
can not decide at this level which source function pro-
duces greater value (line 27). So we compare the vari-

2The domain of source function is equal to the range of the
relation that represents this function.



Relation RelMax2« (Relation L1, Relation Lz) Begin

Result is Yw,r,s: (W[w,s] — R[r,s]) € RelMax2 (L1, L2) &
(W([w,s] — R[r,s]) € (L, /-range(L2) U Ly /—range(L1)) V W[w,s] = maxe (L7 (x,s), L3 (x,s))

1: Relation MazRel := {0}

2: For (sl = {Wh[w,s] — R[r,s]|p1(w,r,s)} in simple relations of L) do

3:  For (sly = {Wa[w,s] — R[r,s] | p2(w,r,s)} in simple relations of L) do
4. Relation Cmaz = RelMaxVar(sl1, slz2, 1, (number of loops surrounding both 1 and Ws))
5: If (Cmaz # {0}) then

6: MazRel := MazRel U Cmaz

7 Ly :=1L; N —range(Cmaz); Lo := Ly N —range(Cmaz)

8: Start loop 2 from the beginning

9: EndIf

10:  EndDo

11: EndDo

12: Return (MazRel U Ly U L)

Relation RelMaxVar (

Simple relation sl; = {W;[wy,s] — R[r,s]| C1(wi,r,s)},
Simple relation sly = {Ws[wa,s] — R[r,s]| Ca(w2,r,s)}, int level, int mazLevel) Begin
(* Compare the variables wy[level] and ws[level] assuming wy[l..level—1] = wy[l..level-1] *)

21: Relation MazRel := {0}
22:1f (level > mazLevel) Return (If Wy > W5 then sl Else sly EndIf)
23: Dnf pd(r, s, Aw) := Tow, w,(C1(wa,r,8) A Ca(wa,r,s) A Aw = wq[level] — wo[level])
24:1f (pd = False) Return({(}})
25: MazRel := MaxzRel U {Wi[wy,s] — R[r,s]| C1(wi,r,8) A Toaw(pd A Aw > 0)}
26: MazRel := MaxzRel U {Wa[wsg,s] — R[r,s]| Ca(wa,r,8) A Toaw(pd A Aw < 0)}
27: MazRel := MazRel U RelMaxVar(
{Wilwi, 8] — R[r,s] | Cr1(wi,r,8) A Toaw(pd A Aw =0)},
{Walwa, s] — R[r,s]| Ca(wa,r,8) A Toaw(pd A Aw = 0)}, level + 1, mazLevel)
30: Return (MazRel)

Figure 10: Lexicographical maximum of two parametrized source functions

ables w1[2] and ws[2] by recursively calling the func-
tion RelMaxVary . The level of the variable that we cur-
rently compare is stored in the variable level. Finally,
if wi[l..mazLevel] = wy[l..mazLevel], then the lexi-
cal ordering of the statements is used to decide which
source function is lexicographically greater (line 22).

Example of the algorithm work. When comput-
ing source function (7) we call the function RelMax2 .«
with the following arguments:

Ly = {Sl[pwla Quw1, Zwl] — 51 [Pr, dr, Zr] |
Cp = (pwlzpr -1 A qu1=¢r N twl =1 A
I<gq, <pr<mp A 1§ir§mb)}a
Ly = {SZ[pra qw?2, ZwZ] — 51 [Pr, dr, Zr] |
Co = (prIQwZI(]r A o =1, A
I<gq, <pr<mp A 1§ir§mb)}
Since range(L1) = range(Ls), we execute only one call
RelMaxVar (L1, Lo, 1, 3).
In RelMaxVar¢ we start with comparing write vari-
ables py1 and pys. We form the conjunct

pd = (Aw = pur — pw1 A C1 A Ch),

(10)

15

project away all write variables ({p,q,7}w1,2}), and
using the Omega test find that Aw <0.

Adding to (10) the inequality Aw < 0 and simplify-
ing we find that L, is greater than Lo if

1<¢<pr—2Ap<np A1<i <mb. (11)
After this we add inequality Aw = 0 to (10). Sim-
plifying, we get that py1 = pyo if

G =pr—1 AN 2<p.<np A 1<i. <mb. (12)
Executing the recursive call to the RelMaxVar we find
that ¢u1 = w2 and therefore it’s not clear yet which
source function is greater. Going down one more level
we get that 7,1 = iy2. Being still undecided, we go one
more level down and find that there are no more loop
variables to compare. The source function Ls is then
declared to be a maximum when (12) holds because

So > 5.



