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1 IntroductionCurrently automatic parallelization of real-life FOR-TRAN programs is not as perfect as users desire. Asrecent studies [EHLP91, Blu92, May92] indicate, inmany cases false dependences between statements in-troduced by inexact dependence analysis algorithmsprevent loops from being parallelized. In the introduc-tion we analyze the basic reasons for false dependencesand show how the algorithm introduced in this paperavoids introducing false dependences without loosinge�ciency.Value-based dependences vs memory-based de-pendences. Traditionally dependence analyzers ofparallelizing compilers and environments computedonly memory-based dependences. That is, they re-ported that there is a dependence between two state-ments of a program if these statements access the samememory cell. For example, for the program in Fig-ure 1(a) traditional dependence analyzer (for example,that of Parascope) reports that there is a 
ow depen-dence from statement S0 to statement S1 carried bythe loop rs.Since memory-based dependences often can be re-moved by program transformations such as array ex-pansion and privatization (for example, array XRSIQcan be privatized in loop rs), recent research activityhas focused on value-based (or data-
ow) dependences,which need to be computed to perform these trans-formations. Value-based dependences, introduced byFeautrier in [Fea88b], re
ect true 
ow of values in aprogram unobscured by details of storing data in mem-ory.Intuitively, a value-based dependence exists betweentwo statement instances if there exists memory-baseddependence between them and value written in the �rststatement instance is actually used in the second in-stance, that is, the memory cell written in the �rststatement instance is not overwritten before the sec-ond instance occurs.1



INTEGER rs, p, q, iDO rs = 1, nrsDO q = 1, npDO i = 1, mbS0: XRSIQ(i,q) = 0END DOEND DODO p = 1, npDO q = 1, p...DO i = 1, mbS1: XRSIQ(i,q) = XRSIQ(i,q) + ...S2: XRSIQ(i,p) = XRSIQ(i,p) + ...END DOEND DOEND DO...END DO(a) Fragment of subroutine OLDA from TRFD
DO i = 1, NMOL1DO j = i + 1, NMOLC Inlined subroutine CSHIFTS1: XL(1) = XMA-XMBS2: XL(2) = XMA-XB(1)S3: XL(3) = XMA-XB(3)...S12: XL(12) = XA(2)-XB(3)S13: XL(13) = XA(1)-XB(2)S14: XL(14) = XA(3)-XB(2)DO k = 1,14S16: XL(k) = XL(k) - ...END DO...END DOEND DO(b) Fragment of subroutine INTERF from MDGFigure 1: Examples from Perfect Club benchmarkLet's consider a program in Figure 1(a) which isslightly simpli�ed fragment of the subroutine OLDAfrom the Perfect Club benchmark suite [B+89]. In itthere exists loop-independent value-based dependencefrom statement S0 to statement S1 but no loop-carriedvalue-based dependences from S0 to S1, because state-ment S1 reads value of XRSIQ(i,q)written on the sameiteration of the loop rs and does not read values writ-ten on previous iterations of loop rs.Dependence Representation. Traditionally de-pendences were represented by direction vectors[Wol82] and dependence distances [Mur71]. Directionvectors represent a relationship between statement in-stances involved in dependence inexactly, and depen-dence distances are limited to representing only �xeddi�erences between write and read variables. The exactrelationship should be provided, if we want to use ad-vanced loop transformation and code generation tech-niques such as [Fea92a, Fea92b, AL93, KP93]. Somearray expansion and privatization algorithms also re-quire exact dependence information [Fea88b].Recently researchers started to use source func-tions to represent value-based dependences. For agiven statement instance S2[r] the source functionproduces coordinates of the statement instance S1[w]such that S1[w] supplies the value used in S2[r].The version of source function computed in [Fea91]is called Quasi-A�ne Selection Tree (quast). In[MAL93] a di�erent term is used for the same ob-ject | Last Write Tree (LWT). For example, quastfor the statement S2 in Figure 1(a) is Src(S2[p; q; i]) =24 if q=p then S1[p; q; i]elseif q�2 then S2[p; q�1; i]else then S0[p; i] .We found that LWTs/quasts have several drawbacks

as a method of dependence representation (see below),and we decided to use dependence relations introducedin [Pug91] to represent value-based dependences. If apair consisting of the given instance of write statementS1[w] and read statement S2[r] belongs to the depen-dence relation then there is a value-based dependencefrom S1[w] to S2[r].For example, the above LWT can be represented asa union of 3 simple relations:S1[p; q; i] !S2[p; q; i] j 1�p=q�np ^ 1� i�mbS2[p; q�1; i]!S2[p; q; i] j 2�q<p�np ^ 1� i�mbS0[p; i] !S2[p; 1; i] j 2�p�np ^ 1� i�mb (1)Similarly, the source function for S1 is:S2[p; q�1; i]!S1[p; q; i] j 2�p=q�np ^ 1� i�mbS2[p�1; q; i]!S1[p; q; i] j 2�p�np ^ q=p�1 ^ 1� i�mbS1[p�1; q; i]!S1[p; q; i] j p�np ^ 1�q�p�2 ^ 1� i�mbS0[1; i] !S1[1; 1; i] j 1� i�mb (2)These two source functions may seem to be compli-cated, but if we draw dependence graph that they pro-duce (see Figure 2, only axes p and q are shown), wewill see that they encode elegant and relatively simplevalue 
ow pattern.We think that dependence relations have the follow-ing advantages comparing to LWTs/quasts:� If we want to know, under which condition a givenLWT leaf is valid, we need to build and simplify aconjunction of conditions from nodes on the pathfrom this leaf to the LWT root. Since conditionson the ELSE branches of the tree are negated, weend up having disjunction of conjunctions of con-straints, which is much more di�cult to handlethan conjunction of constraints that we have ineach simple relation of dependence relation.2
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Figure 2: Dependence graph for the fragment of subroutine OLDA projected on p and q� Integer division is used in quasts [Fea88a] to repre-sent complicated dependence patterns (see exam-ple in Figure 6). It means that quast may containnon-a�ne functions. On the other hand, all ex-pressions in the dependence relations are a�ne,because integer division is represented using wild-card variables.� Computing a�ne approximations of non-a�ne de-pendence relations, we encounter a situation whena single read instance is dependent on several writeinstances (see Section 5) and therefore the relationbetween read and write instances is not a func-tion anymore and can not be represented as LWT.However, it still can be represented as a depen-dence relation.Computing value-based dependences e�ciently.Computing value-based dependences is currently con-sidered (by many people) to be too slow and ine�cientto be used in production compilers. As we think oneof the reasons of existing techniques ine�ciency is thatthey treat all the statement instances that write to ar-ray in question as having the same chance to be sourceof a given read. However, since we are looking for astatement instance which most recently hit the mem-ory location read by a read statement, we can expectthat write statement instances which are lexicographi-cally closer to the read in iteration space are more likelyto be sources of read data.Having this in mind, we decided to compute thesource function for a given read statement starting with

write statements which are lexicographically closer tothis read statement, and then proceeding to the moreand more distant statements, while keeping track ofinstances of read statement already covered by writes.When all read statement instances are covered, we canstop and not test for dependences from other writes tothe read.For example, let's consider a program in Figure 1(a).Using our algorithm, we are able to compute the de-pendence relations (1) and (2) not using informationabout references to XRSIQ other than in statements S0,S1, S2. These other references do exist, and not hav-ing to prove that dependences from them to S1 andS2 are false dependences improves the performance ofdependence analysis.Or, let's consider another example in Figure 1(b) 1.All instances of the read XL(k) from the statementS16 are covered with writes to XL from statementsS1; : : : ; S14 as follows:S1[i; j]! S16[i; j; 1] j 1� i�NMOL1 ^ i+1�j�NMOL: : : : : :S14[i; j]! S16[i; j; 14] j 1� i�NMOL1 ^ i+1 � j�NMOL(3)We are able to prove this not examining statementinstances which precede S1[i; j], that is, instancesS1[i0; j0]; :::; S14[i0; j0] such that (i0<i) _ (i0= i ^ j0<j)and statements other than S1; :::; S14 referencing thearray XL.1In it IF statement with non-a�ne condition is removed fromstatement S16 to make the example more simple, however ourtechniques work even if this statement is present.3



DO i = 1, nDO j = 1, nx = F(i,j)S0: IF (x) THENS1: A(j) = ...ELSES2: A(j) = ...ENDIFS3: ... = A(j)END DOEND DO(a) Non-a�ne IF condition
DO i = 1, nDO j = 1, nx = F(i,j)S1: A(x) = ...S2: ... = A(x)END DOEND DO(b) Non-a�ne subscript functionFigure 3: Non-a�ne program fragmentsHandling non-a�ne conditions and subscripts.Let's consider a program fragment in Figure 3(a). Init the read A(j) from the statement S3 is covered bythe write A(j) from either statement S1 or S2 at theinnermost loop level. All existing dependence analyzers(that we are aware of) can not recognize this becauseIF statement S0 has non-a�ne condition x = F(i,j).Not knowing that read A(j) is covered within the bodyof loop j, existing systems assume that there exist a
ow dependence from S1 and S2 to S3 carried by theloop i and therefore they can not parallelize loop i.Non-a�ne subscript functions also confuse many ex-isting systems. For fragment in Figure 3(b) they cannot establish that the write to A(x) in statement S1completely covers the read A(x) in S2 at the inner-most level. As before, it happens because x = F(i,j)is non-a�ne function. Assuming that loop-carried de-pendence from S1 to S2 exist they can not parallelizeloops i and j.We can prove that both dependences are loop-independent by using techniques described in Section 5.2 De�nitionsNotation used is summarized in Figure 4.Domain of our work. Our data dependence test-ing algorithm was originally designed to computevalue-based dependences for a�ne program fragments.A�ne program fragment is a loop nest such that in ev-ery statement of it all (1) subscript functions, (2) con-ditions in IF statements, and (3) loop bounds are a�nefunctions of loop variables and symbolic constants. Ifeither of these requirements is not satis�ed, this frag-ment is non-a�ne.Then we modi�ed the algorithm to handle non-a�nefragments (see Section 5), so actually it computes de-pendence relations for any structured program frag-ment which does not contain GOTO, BREAK andWHILE statements. Allowed are assignment state-ment, structured IF and FORTRAN-like DO loop.

Vectors and Statement Instances. Vector (alsocalled tuple) is simply an ordered set of integers. Vec-tors are denoted with bold letters, such asw; r; s. Theyare used to represent points in n-dimensional space.The smallest unit of computation we consider in thispaper is statement instance. The statement instanceW [w; s] is speci�ed by W | statement of the pro-gram,w| vector of loop variables values (loops whichsurround the statement W are included), and by s |vector of symbolic constants.We call variable a symbolic constant if it is not a loopvariable and it is not assigned in the fragment of theprogram that we analyze. For starters we assume thatthe fragment being analyzed is the whole body of theprocedure being analyzed, but later (in Section 5) wewill see that the scope of our dependence analysis al-gorithm is dynamic and so is the de�nition of symbolicconstant.Sequencing predicate. We say that instance ofstatement W speci�ed by loop variables vector w andsymbolic constants vector s is executed before instanceof statement R speci�ed by loop variables vector r andsymbolic constants vector s or W [w; s]� R[r; s] i�w[1::n]� r[1::n] _ w[1::n] = r[1::n] ^ W � Rwhere n is number of common loops surrounding bothstatements W and R.Relations. Relation is a set of ordered pairs of vec-tors. (w! r) 2 R means that pair (w; r) belongs tothe relation R.Since statement instance (which is elemental unit ofcomputation for us) is speci�ed not just by vector ofintegers, but by statement and vector of integers, weconsider relations between statement instances. So wewrite (W [w] ! R[r]) 2 R when pair (W [w] ! R[r])belongs to the relation R.Operations on sets and relations that we use are sum-marized in Figure 5.4



W;R Speci�c statement of a program.R:A;W:B Speci�c read/write array reference A=B in a statement R=W .Arr(A) Array or scalar variable referenced in a reference A.w; r An iteration space vector that represents a speci�c set of values of the loop variables. The individualvalues of the loop variables are referred to as w1; w2; : : : ; r1; r2; : : :r[x::y] Subvector of vector r, consisting of components rx; rx+1 ; :::; ry�1; ry.jwj Number of components in vector w. For example, jr[x::y]j= y � x+ 1.[R; s] The set of iteration vectors for which statement R is executed given symbolic constant vector s.R:A(r; s) The vector of integers produced by subscript function of array reference R:A, when the loop variablesare speci�ed by r, and symbolic constants are speci�ed by s.W � R Statement W occurs before statement R in a text of a program.w� r Vector w is lexicographically less than vector r. That is, (w1 < r1) _ (w1 = r1 ^ w2 < r2) _ (w1 =r1 ^ w2 = r2 ^ w3 < r3) _ � � �.W [w; s] An instance of statement W speci�ed by the loop variables vector w and symbolic constants vector s.W [w; s]� R[r; s] Statement instance W [w; s] is executed before statement instance R[r; s].Figure 4: Notation used in this paperOperation Description De�nitiondomain(F ) The domain of the relation F x 2 domain(F ), 9y s:t: (x! y) 2 Frange(F ) The range of the relation F y 2 range(F ), 9x s:t: (x! y) 2 FF n S Restrict relation F to domain S (x! y) 2 F n S , (x! y) 2 F ^ x 2 SF =S Restrict relation F to range S (x! y) 2 F =S , (x! y) 2 F ^ y 2 S�x(P (x;y)) Project problem P on variables x fx j 9y s:t: P (x;y)g�:x(P (x;y)) Project problem P on variables other than x �y(P (x;y))Figure 5: Operations on vectors and relationsValue-based dependence de�nition and rep-resentation. The value-based dependence relationDepRel that describes the dependences coming to theread reference R:A of statement R is de�ned by thefollowing:8r; s : (V [v; s]! R:A[r; s]) 2 DepRel (w; r; s),V [v; s] = max�(W [w; s] j w 2 [W; s] ^ r 2 [R; s]^Arr(W:B) = Arr(R:A) ^ W:B(w; s) = R:A(r; s)^W [w; s]� R[r; s]) (4)This de�nition is constructive, that is, we can use itto actually compute the dependence relations. Whenlexicographical maximum is computed, the result is adependence relation which is represented as a union ofthe following m simple dependence relations:DepRel = 24 W1[w; s] !R:A[r; s] j DepRel1(w; r; s):::Wm[w; s]!R:A[r; s] j DepRelm(w; r; s)where each DepRel i is a conjunction of constraints andm[i=1�r;s(DepRel i(w; r; s)) � [R; s].Since source functions may involve integer divisionby constant [Fea88a] and we want to keep conjunctsDepRel i a�ne, we use wild-card variables to representthe integer division. That is, we replace constraint i =bk=cc with a�ne constraint ci+� = k ^ 0 � � � c�1.Let's consider a program in Figure 6 [Fea88a] as anexample of representing relatively complex dependence

with dependence relations. Source function for thestatement S2 is de�ned as: Src(S2) =max� (S1[i; j] j0� i�M ^ 0�j�N ^ 2i+ j = k): (5)The PIP algorithm simpli�es this to the quast in theright column of Figure 6. Our algorithm for computinglexicographical maximum (see Section A.1) simpli�es(5) to the dependence relation:S1[M;k�2M ]! S2 j 2M�k�2M+N ^ M � 0S1[i; k�2i]! S2 j k�1�2i�k ^ k�N�2i ^ 0� i�M(6)In the 2nd conjunct of this relation i is not expressed asa function of read variables and symbolic constants, eventhough it is a function of them. There was some discus-sion among researchers as to whether dependence relationsshould contain explicit functional binding between read andwrite variables. We do not feel that this is necessary, butour algorithm can be modi�ed to produce such binding.The above dependence relation expressed in the functionalform but without use of integer division is:S1[M;k�2M ]! S2 j 2M�k�2M+N ^ M � 0S1[i; k�2i]! S2 j2i+�=k ^ 0���1 ^ 0�k�2M + 1 ^ N � 1S1[i; 0]! S2 j2i+�=k ^ 0���1 ^ 0�k=2��2M ^ N =05



DO i = 0, MDO j = 0, NS1: A(2*i+j) = ...END DOEND DOS2: ... = A(k) Src(S2) = 2666666664 if (�k + 2M +N � 0)then if (k � 2M � 0)then S1[M;k� 2M ]else if ((�k + N + 2(k � 2)) � 0)then S1[k � 2; k� 2(k � 2)]else ?else ?Figure 6: Program and source function represented as a quast3 Machinery usedWe use the Disjunctive Normal Form (DNF) to rep-resent sets of vectors. The DNF is a disjunction ofconjunctions of constraints which maps integer vectorsto boolean values. Each constraint is an a�ne equalityor inequality. DNF representing a set of vectors pro-duces True for the vector that belongs to the set, andFalse otherwise.We use the following basic operations on DNFs: ^ ,_ , :, �, RelMax1�, RelMax2�. They can be brokeninto 3 classes.Conjunct to conjunct: ^ , �. We use the Omegatest [Pug92] to simplify conjunctions of constraints andto prove that they have no solutions. The Omega testalways performs the exact simpli�cation.Another useful operation performed by the Omegatest that we use is projection. Projection of aconjunct P (x;y) on variables x is �x(P (x;y)) =�:y(P (x;y)) = fx j 9y s:t: P (x;y)g.DNF to DNF: _ , :. The Omega test works onlywith separate conjuncts. To allow the use of _ and :operations, we implemented the DNF package on topof the Omega test. In it we always maintain the dis-junctive normal form of the formula using distributiveproperties of operations ^ and _ . To avoid combina-torial explosion when computing negation we used gistoperation in a way proposed in [PW93a].Lexicographical maximum: RelMax�. The func-tion RelMax1� (see Appendix A.1) computes the lex-icographical maximum of the set of vectors w whichis described by DNF p(w; r), where r is a vectorof parameter variables. The function produces theDNF that binds maximized w with r: Pm(v; r) =RelMax1�(w j p(w; r)). It is de�ned as8v; r : Pm(v; r), v = max� (w j p(w; r)):The version of this function for a single conjunct iscalled ProblemMax�.The function RelMax2� (see Appendix A.2)computes the lexicographical maximum of two

parametrized source functions. Given the source func-tions R1 = fW1[w1; s] ! R[r; s] j C1(w1; r; s)g andR2 = fW2[w2; s] ! R[r; s] j C2(w2; r; s)g it producesthe relation Rm = RelMax2�(R1; R2) which is de�nedas 8w; r; s : (W [w; s]! R[r; s]) 2 Rm ,W [w; s] = max�(R�11 (r; s); R�12 (r; s))Related work. Feautrier developed the PIP al-gorithm (an integer version of simplex algorithm)[Fea88a] to compute an equivalent of ProblemMax�.We are not aware of any performance �gures for thePIP, and Figure 8 suggests that it is slow. His analogueof RelMax2� does not simplify the resulting quasts, sothey may become very big. To simplify quasts oneneeds to perform negation and it is not mentioned inFeautrier's papers as far as we know.Pugh and Wonnacott in [PW93a] advocate the useof the Presburger arithmetic subclass for dependencetesting. We think that their subclass is equivalent tothe class of formulas that can be built using operationslisted in this section.4 Lazy dependence analysisIn Figure 7 we present the algorithm which com-putes value-based dependences for a given read refer-ence. Dependence graph for the whole program is builtby applying the algorithm to every read reference of ev-ery statement.Our algorithm can be viewed as a lazy implementa-tion of the de�nition (4). Let's consider a set of readstatements instances R[r; s] for which we are comput-ing source function. The set of all candidate write in-stances fW [w; s] jW [w; s] � R[r; s]g is broken into nconvex subsets !i(r; s) such that for any r; s such thatR[r; s] is executed!n(r; s)� � � � � !2(r; s)� !1(r; s)� R[r; s]These subsets are created on the 
y as me move fromthe write instances W [w; s] that are lexicographicallyclose to the read instances R[r; s] to the more distantwrite instances (lines 10{12 and 30{44 of the algo-rithm).6



1: INPUT: R:A: read reference surrounded by n loops with variables r = (r1; :::; rn).s is a vector of symbolic constants.2: OUTPUT: Dependence relation for the read reference R:A.That is, fW [v; s]! R[r; s]g 2 DepRel , W [v; s] = max� ( W [w; s] jw 2 [W; s] ^ r 2 [R; s]^Arr(W:B) = Arr(R:A) ^ W:B(w; s) = R:A(r; s) ^ W [w; s]� R[r; s] )4: Relation DepRel := f;g; Relation WrMax5: Dnf NotCovered(r; s) := IsExecuted(R[r; s])6: Integer FixLoops := n7: Statement W := R8: Boolean SingleWrite := True; Boolean LessFlag := False10:While (NotCovered is feasible) do11: W := statement preceding statement W12: Statement W is surrounded by m loops with variables w = (w1; :::; wm)13: (� Here un�xed zone consists of loops with depths from FixLoops + 1 to n. �)15: If (W is assignment statement and it writes to Arr(R:A)) then16: (� Find source function for instances of reference R:A[r; s] which are NotCovered(r; s) �)17: Dnf SameCell(w; r; s) := NotCovered(r; s) ^ R:A(r; s) = W:B(w; s) ^ IsExecuted(W [w; s])18: Conjunct Wsub(w; r) := w[1::FixLoops] = r[1::FixLoops] ^ (LessFlag ) wFixLoops+1 < rFixLoops+1)19: Dnf DepProb(w; r; s) := SameCell(w; r; s) ^ Wsub(w; r)20: Relation Cmax := RelMax1�(W [w; s]! R:A[r; s] jDepProb(w; r; s))22: If (SingleWrite) then23: DepRel := DepRel [ Cmax24: NotCovered := NotCovered ^ :range(Cmax )25: Else26: WrMax := RelMax2�(WrMax ;Cmax )27: EndIf30: ElseIf (statement W is EndDo or Do i=) then (� Enter loop body through its end �)31: If (SingleWrite) then32: If (statement W is Do i=) then33: FixLoops := FixLoops � 1; LessFlag := True34: W := EndDo stmt for loop with header W35: Else (� statement W is EndDo �)36: LessFlag := False37: EndIf38: WrMax := f;g; SingleWrite := False39: StopLoop := Do i= stmt of the loop whose EndDo stmt is W40: ElseIf (:SingleWrite ^ W = StopLoop) then41: DepRel := DepRel [ WrMax42: NotCovered := NotCovered ^ :range(WrMax )43: SingleWrite := True44: EndIf50: ElseIf (statement W is entry to the subroutine) then51: DepRel := DepRel [ fEntry ! R:A[r; s] jNotCovered(r; s)g52: Break out of While loop 1055: ElseIf (statement W is EndIf or Else or If (...) then) then56: (� Do nothing �)60: EndIf61:EndDo62:Return (DepRel ) Figure 7: Value-based dependence analysis algorithm7



Each of the subsets !i(r; s) can include instancesof one or more write statements. If boolean 
agSingleWrite is True, then current !i(r; s) includes in-stances of only one statement W and to get depen-dences from W [w; s] to R[r; s] we need simply to com-pute max� of eligible instances of W (lines 20{23). IfSingleWrite is False, then instances of several state-ments can be present at !i and after �nding sourcefunction for each statement (line 20) we have to com-pute a maximum of these source functions (line 26).After examining a statement we move to a precedingstatement. If we reach beginning of the loop L whichsurrounds the read statement R where we have started,we move to the end of this loop (line 34), un�x the loopL, require to consider the writes only from previousiterations of L (lines 33 and 18), and enter multiple-write-statement zone (line 38). When later we reachbeginning of loop L, the multiple-write-statement zoneis over and we add lexicographical maximum of thesource functions computed in this zone to the resultingdependence relation (line 41).Lines 17{20 implement the value-based dependencede�nition (4). Line 17 selects writes that are ex-ecuted and that hit the same memory locations asreads. Line 18 selects writes which belong to thecurrent !i. The function IsExecuted returns conjunctthat describes conditions under which the given state-ment executes. This conjunct consists of conditionsimposed on loop variables by loop bounds and IF state-ments surrounding the statement. In other words,IsExecuted(R[r; s]), R[r; s] 2 [R; s].The subexpression range(Cmax ) in lines 24 and 42describes a set of read instances that has been coveredby writes from the current !i. Remaining not coveredreads are described by the problem NotCovered whichis initialized in line 5 and is updated in lines 24 and 42.Termination. Termination of the algorithm isproven trivially. The set of vectors speci�ed by theproblem NotCovered becomes smaller or remains thesame with each iteration of the loop 10{61. WhenNotCovered becomes empty algorithm stops and theresulting relation is returned (lines 10 and 62). If thisdoes not happen then we reach the beginning of theprogram fragment being examined (line 50). We canhave some not covered reads left, and we let them todepend on the Entry node (line 51).Computational complexity. Worst-case computa-tional complexity of the algorithm in the number ofcalls to RelMax1 and RelMax2 is O(nd), where n isnumber of statements writing to Arr(R:A) and d isnumber of loops around statement R. Since usuallyd � 5, we can state that worst-case time complexity isO(n). Practical complexity is lower, since usually read

instances are covered after visiting only small numberof candidate writes.Each call to RelMax1 and RelMax2 is in the worst caseNP-complete in the number of integer programmingproblems to be solved. In practice, however, only smallnumber of problems is solved in each call.4.1 Example of the algorithm workHere we demonstrate how our algorithm computes thesource function for statement S1 of subroutine OLDA(see Figure 1(a)).First, for each write{read pair we summarize all con-straints on loop variables and symbolic constants ex-cept for ordering constraints:C0 : S0 ! S1 C1 : S1 ! S1 C2 : S2 ! S1qw = qriw = ir1�qr�prpr�np1� ir�mb qw = qriw = ir1�qr�pw; prpw; pr�np1� ir�mb pw = qriw = ir1�qw�qr�prpr�np1� ir�mbThen we take care about ordering constraints.The algorithm breaks a set of write statement in-stances into a sum of disjoint subsets !2(r); :::; !ns(r)such that for any r such that R[r] is executed:!ns(r) � ::: � !2(r) � R[r]: For the read instancesS1[rsr; pr; qr; ir ] j 1�rsr�nrs ^ 1�qr�pr�np ^ 1�ir�mb these subsets are the following:!2 = S2[rsr; pr; qr; iw] j 1� iw<irS1[rsr; pr; qr; iw] j 1� iw<ir!3 = S2[rsr; pr; qw; iw] j 1�qw<qr ^ 1� iw�mbS1[rsr; pr; qw; iw] j 1�qw<qr ^ 1� iw�mb!4 = S2[rsr; pw; qw; iw] j 1�qw�pw<pr ^ 1� iw�mbS1[rsr; pw; qw; iw] j 1�qw�pw<pr ^ 1� iw�mb!5 = S0[rsr; qw; iw] j 1�qw�np ^ 1� iw�mb!6 = S2[rsw; pw; qw; iw] j 1�rsw<rsr ^1�qw�pw�np ^ 1� iw�mbS1[rsw; pw; qw; iw] j 1�rsw<rsr ^1�qw�pw�np ^ 1� iw�mbS0[rsw; qw; iw] j 1�rsw<rsr ^1�qw�np ^ 1� iw�mbNow we start moving from !2 back in space/timekeeping track of covered S1 instances. We don't men-tion constraints on rs for brevity and because this vari-able does not appear in subscript functions. InitiallyNotCovered(r; s) = (1�qr�pr�np ^ 1� ir�mb).!2: !2 ^ C1 and !2 ^ C2 have no solutions. So !2doesn't contribute to dependence.!3: C1 ^ !3 is not feasible, but C2 ^ !3 = (1�qw<pw = qr = pr � np ^ 1� iw = ir � mb): ComputingRelMax1�(S2[pw; qw; iw]! S1[pr; qr; ir] jC2 ^ !3)we get S2[pr; qr � 1; ir]! S1[pr; qr; ir] j2�pr=qr�np ^ 1� ir�mb8



Now we cover area 2� pr = qr � np ^ 1� ir � mband therefore NotCovered = (pr=qr=1 ^ 1� ir�mb) _ (1�qr<pr�np ^ 1� ir�mb).!4: (C2 ^ !4 ^ NotCovered) = (1� qw � pw = qr <pr � np ^ 1� iw = ir � mb). Maximum of this isS2[qr; qr; ir] j 1�qr<pr�np ^ 1� ir�mb.(C1 ^ !4 ^ NotCovered) = (1� qw = qr � pw <pr � np ^ 1� iw = ir � mb) leading to maximumS1[pr � 1; qr; ir] j 1�qr<pr�np ^ 1� ir�mb.Then we use RelMax2� to compute max� of twosource functions (Appendix A.2). The result isS2[pr�1; qr; ir]! S1[pr; qr; ir] j2 � pr � np ^ qr=pr�1 ^ 1 � ir � mbS1[pr�1; qr; ir]! S1[pr; qr; ir] jpr � np ^ 1 � qr � pr�2 ^ 1 � ir � mb (7)NotCovered = (pr=qr=1 ^ 1 � ir � mb).!5: (C0 ^ !5 ^ NotCovered) = (qw=qr=pr=1 ^ 1 �iw= ir � mb). This easily computes to dependencerelation S0[1; ir]! S1[1; 1; ir] j 1 � ir � mb: Fi-nally NotCovered = False.After !5 step all the read instances of S1 are coveredand we don't have to compute dependences for !6 andany writes which textually precede S0. The resultingsource function for S1 is given in (2).5 Non-a�ne fragmentsIn this section we present our techniques for computingvalue-based dependences in non-a�ne program frag-ments.What is a symbolic constant? Variable which isnot assigned anywhere within the program fragmentthat we analyze is called symbolic constant. In the pre-vious sections we held a traditional point of view thatthe analyzed fragment is the whole body of procedureor function. Now when we want to do a better job ofdependence analysis for non-a�ne program fragments,we give a dynamic de�nition of analyzed fragment andsymbolic constant.The un�xed zone of depth d around statement S (de-noted UnFixed(S; d)) is a loop nest which consists ofstatements belonging to d innermost loops surroundingS. The �xed zone of depth d around statement S (de-noted Fixed (S; d)) consists of statements not belongingto UnFixed (S; d). If d = 0 then un�xed zone is emptyand everything around S is �xed.A scalar variable v that is last written (de�ned) inthe Fixed(S; d) is considered to be a symbolic con-stant for the statement S at the depth d (denotedv 2 SymConst (S; d)). To �nd the de�nition for theparticular read of scalar variable and to distinguish be-tween di�erent de�nitions of the same variable we use

the Static Single Assignment (SSA) graph of the pro-gram [Wol92].This dynamic de�nition of symbolic constant is usedin our dependence analysis algorithm in the followingway. When computing the execution condition for thewrite statement in line 17 all the variables v such thatv 2 SymConst (S;FixLoops) are considered to be sym-bolic constants.Example: non-a�ne conditions. Let's considerprogram fragment in Figure 3(a). Computing the de-pendence relation for the statement S3, we start withboth loops i and j �xed: iw = ir ^ jw = jr. Thereforeun�xed zone of S3 is empty and variable x is a sym-bolic constant. After visiting statements S2 and S1 weget dependencesS1[i; j]! S3[i; j] j 1 � i; j � n ^ xS2[i; j]! S3[i; j] j 1 � i; j � n ^ :x (8)We discover that we do not have to un�x more loopsbecause these 2 dependences cover all instances of readat S3: (1� i; j�n)^(x_:x) = (1� i; j�n). Thereforewe have proved that no loop-carried dependence existsfrom S1 and S2 to S3.However, dependences relation (8) is a�ne only if ourscope is limited to the body of j loop. If we consider thewhole program then dependence relation (8) becomesnon-a�ne:S1[i; j]! S3[i; j] j 1 � i; j � n ^ x(i; j)S2[i; j]! S3[i; j] j 1 � i; j � n ^ :x(i; j): (9)This relation can not be represented within our frame-work which requires all constraints to be a�ne. More-over, since we do not know which branch of IF state-ment S0 is taken, we do not know exactly what in-stances of S1 and S2 are executed.Computing the upper bound on iteration space.So we expand the actual iteration space to get rid ofnon-a�ne constraints, as it was suggested in [Voe92b].For each non-a�ne expression in IF condition we as-sume that it can be both True and False, that is, wereplace non-a�ne boolean terms with True in the posi-tive context (that is, in the conjunction or disjunction),and with False in the negative context (that is, in thenegation).In the above example the upper bound on iterationspace is (S1[i; j]; S2[i; j]) j 1 � i; j � n, and the lowerbound is empty.Computing the lower and upper bounds on de-pendences. After we expanded the iteration space,we have to expand the set of dependences to make thema�ne too. That is, when dependence relation becomesnon-a�ne as more loops are un�xed, we replace newly9



Our % of f77 -O2 Times faster Times fasterProgram Lines f77 -O2 [Fea91] [PW93a] algorithm compile time than [Fea91] than [PW93a]across 15 200 600 9 7.8 4 62 1.15burg 29 600 5,600 91 82 14 56 1.10relax 13 400 1,700 24 25 6 57 .96gosser 22 700 2,800 62 50 8 43 1.24choles 25 600 2,600 32 32 6 63 1.00lanczos 69 1,700 12,600 119 115 7 88 1.03jacobi 62 1,600 81,900 1,104 1,119 70 61 .98btrix 155 8,600 1,515 1,290 15 1.17cholsky 90 2,900 246 446 15 .55vpenta 101 5,700 473 292 5 1.61dctdx 72 1,440 324 145 10 2.23�a99 197 6,590 4,173 2,848 43 1.46�s99 192 6,460 4,817 3,419 53 1.40interf 257 6,730 3,784 2,546 38 1.48interf-hacked 279 6,790 4,092 2,538 37 1.61ocean 12 820 25 23 3 1.09olda 161 5,140 1,167 468 9 2.49olda-hacked 154 4,800 796 723 15 1.10poteng 194 10,820 1,670 1,293 12 1.29poteng-hacked 212 11,040 1,952 1,535 14 1.27Figure 8: Timing results (all times are in milliseconds)non-a�ne variables with either True or False. Follow-ing [PW93b], we compute lower and upper bound foreach dependence relation:� Lower bound on dependence is computed by re-placing non-a�ne variables with False in the pos-itive context (in disjunctions and conjunctions)and with True in the negative context (in nega-tions). That is, we over-constrain dependences toget lower bound.� Upper bound is computed by replacing non-a�nevariables with True in positive context and withFalse in negative context. That is, we under-constrain dependences to get upper bound.We use lower and upper bound on dependences inthe following way:� When we have to report non-a�ne dependence,we actually report upper bound on this depen-dence. So we add minimal number of dependencesto make dependence relation a�ne.� When computing what was covered by a writestatement, we replace non-a�ne dependence withlower bound on it, because we can not be sure thatany dependences between lower and upper boundreally exist and cover read instances, and we knowthat dependences in the lower bound de�nitely ex-ist.� We do not compute max� of the relations thatcontain a�ne approximations of constraints. Itcan not be done because we do not know exactlywhich statement instances described by these ap-proximations are really executed. Instead we as-sume that all statement instances that are de-scribed by the approximated a�ne constraint areinvolved in the dependence. Doing so, we makedependence relation to bind many write statementinstances to a read instance (instead of one). Thisis inevitable when a�ne approximations are usedand this is the best we can do at the compile time.

For example the upper bound for the dependencerelation (9) is: � S1[i; j]! S3[i; j] j 1 � i; j � nS2[i; j]! S3[i; j] j 1 � i; j � n . Thelower bound for this relation is empty.Example: non-a�ne subscripts. These tech-niques apply equally well to the non-a�ne IF condi-tions, loop bounds, and subscript functions.Computing dependences for program in Figure 3(b)we start with loops i and j �xed and therefore we havea problem 1� iw= ir ; jw=jr�n ^ x=x, where x is asymbolic constant. Simplifying it we get a�ne depen-dence relation: S1[i; j] ! S2[i; j] j 1� i; j �n. What'sinteresting, un�xing loops i and j does not make thisdependence non-a�ne because x is not present in theresulting relation when loop j is un�xed. So non-a�nefragments do not necessarily lead to inexact depen-dence relations.6 How fast is our algorithmWe measured time taken by our dependence analysisalgorithm to analyze Feautrier's benchmarks [Fea91]and some NASA NAS codes. In Figure 8 we compareour timing results with time taken by:� Regular Fortran-77 compiler to compile the pro-gram [PW93a].� Feautrier's algorithm to compute source functionsfor the program [Fea91].� Pugh and Wonnacott techniques to computememory-based direction vectors and value-baseddependence relations for the program [PW93a].Feautrier times were obtained on SUN Sparc ELC(SPECint89 rating of 18.0). All other measurementswere performed on SUN SparcStation IPX (SPECint89rating of 21.7).10



7 Related workWe would like to compare our techniques to severalother approaches to dependence analysis.Memory-based dependence computation. Un-til recently only techniques for computing memory-based dependences were considered by most re-searchers [AK87, Wol82, MHL91]. The problemSameCell(w; r; s) de�ned at line 17 of Figure 7 essen-tially describes a memory-based dependence. Since wecompute this problem only once for each pair of state-ments, we don't take more time to compute memory-based dependences than existing techniques do.In fact computing value-based dependences usingour algorithm can take even less time than computingmemory-based dependences when full cover is foundquickly. Let's consider program in Figure 1(b). Tocompute dependence from S16 to S16 existing systemshave to solve problem with 6 variables, and we know inadvance that this dependence does not exist (as value-based) because statements S1, ..., S14 cover S16 com-pletely. So no time is spent disproving this dependence.Feautrier work. Feautrier [Fea91] computes value-based dependences exactly for what we call a�ne pro-gram fragments, but his techniques are slow, becausewhile computing dependences using de�nition (4), hedoes not keep track of what read instances were cov-ered. So his algorithm always has to call PIP algo-rithm and analogue of RelMax2� nd times, where n isnumber of candidate writes and d is number of loopssurrounding read statement, while for us nd is upperbound which practically is never reached.Also Feautrier's algorithm does not handle IF state-ments and non-a�ne program fragments.Voevodins work. Voevodin & Voevodin [Voe92a,Voe92b] also compute exact value-based dependencesfor a�ne program fragments and they handle non-a�ne program fragments. They use methods that areclose to that of Feautrier's. So we believe that our al-gorithm should work faster than theirs for the samereasons as above. Unfortunately, they do not describetheir algorithm in detail and they do not provide tim-ing results, so it is di�cult to compare their algorithmto ours.Maydan, Amarasinghe and Lam work. Their al-gorithm [MAL93, May92] does not apply to the generalcase of a�ne program fragment, so they use Feautrier'salgorithm for backup. Their algorithm applies only towrites that do not self-interfere (that is, there is no out-put dependence from the write to itself) when unusedloop indices are removed.

Our algorithm is also quick for such writes, becauseunused loop variables do not add constraints to theproblem that we solve, and non-interfering writes usu-ally lead to equating write loop variables to read loopvariables which further simpli�es the problem. Alsotheir algorithm does not seem to handle non-a�ne pro-gram fragments.Pugh andWonnacott work. Pugh and Wonnacottuse kill analysis to compute exact dependence informa-tion, that is, they �rst compute memory-based depen-dences and then kill or re�ne them by techniques orig-inally described in [PW92] and [PW93b]. Since theirkill analysis in the worst case considers all write{killer{read triples, while we in the worst case consider onlyall write{read pairs, the kill analysis can be expensive.So they have incorporated our idea of keeping trackof the read instances that were already covered by an-other dependence under the name of \partial covers".They combine the partial cover computation with theirtraditional kill analysis as described in [PW93a].However, their approach is di�erent from ours be-cause they do not use RelMax� functions, instead theyuse the Presburger arithmetic (it can be described asour DNF package minus RelMax� functions plus 8 and9 quanti�ers that can appear at any level of the for-mula) to perform the kill analysis equivalents of theseoperations. They also use memory-based dependencesto perform some quick kills as it was suggested in theearlier paper [PW92], while we do not need them atall. However, if need be, we can compute the memory-based dependences with ease.Both approaches are implemented in the Tiny tool,originally developed by Michael Wolfe and then consid-erably enhanced in the University of Maryland, CollegePark, so it is possible to compare the timing results (seeFigure 8).Handling non-a�ne constraints. In [Voe92b] and[PW93b] the authors describe their techniques for com-puting value-based dependences for non-a�ne programfragments.Voevodin [Voe92b] suggests that the algorithmgraph(that is, iteration space plus dependences) for non-a�ne fragment should be extended to become a�ne,but he does not describe how this is achieved.In [PW93b] the authors propose to compute upperand lower bounds on dependences. However, their tech-niques can not prove that dependence from statementS1 to S2 is not carried by loop i in Figure 3(a).A number of papers [AK87, HP91, LT88] suggestusing symbolically enhanced versions of GCD test andBanerjee's inequalities. These techniques work only formemory-based dependence analysis and they are inex-act even in this domain.11



8 Source code availabilityThe implementation of our algorithms is integratedinto the UMCP version of the Tiny tool for depen-dence analysis and program transformations. It isfreely available by anonymous FTP from directorypub/omega/lazy on the machine ftp.cs.umd.edu.9 ConclusionIn this paper we presented the algorithm which com-putes exact value-based (data-
ow) dependences fora�ne program fragments and good a�ne approxima-tions of value-based dependences for non-a�ne pro-gram fragments.The basic idea of the algorithm| to start searchingfor candidate writes in lexicographically close proxim-ity of a read statement for which dependence is be-ing computed, and to expand search space only if non-covered read instances remain|makes it both e�cientand capable of handling non-a�ne subscript functions,loop bounds and conditions without slowing down.It also makes dependence analysis insensitive to theprogram size. That is, the time spent by our algorithmdoes not depend on number of statements that writethe array in question or on number of loops that sur-round read. The algorithm time depends, however, onhow many writes reach the read and on how compli-cated the dependence relation is | both these charac-teristics are not a function of program size.10 AcknowledgementsMy thanks go to everyone, who helped me to write thispaper. Specials thanks to William Pugh and DavidWonnacott from the University of Maryland, in dis-cussions with whom this paper was born. I also wouldlike to thank Valentine and Vladimir Voevodin fromthe Research Computing Center of Moscow State Uni-versity, whose research was very inspirational for me.References[AK87] J. R. Allen and K. Kennedy. Automatic transla-tion of Fortran programs to vector form. ACMTransactions on Programming Languages andSystems, 9(4):491{542, October 1987.[AL93] Saman P. Amarasinghe and Monica S. Lam.Communication optimization and code genera-tion for distributed memory machines. In ACM'93 Conf. on Programming Language Design andImplementation, June 1993.[B+89] M. Berry et al. The PERFECT Club bench-marks: E�ective performance evaluation of su-
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single conjunct. The result is a DNF that establishesrelation between maximized variables w and input pa-rameters r.The number of variables that we have to maximize ism (line 3). The problem of maximizing these variablesis solved variable by variable. That is, we begin withmaximizing lexicographically senior variable w1. Whenmaximum for it is established, it becomes input vari-able and variable w2 is maximized, and so on. Let wldenote the variable that is currently being maximized.To maximize wl, we project out all lexicographicallyjunior variables wl+1; : : : ; wm. Then in every resultingconvex problem we examine constraints on wl.If wl is �xed by equality constraint involving only in-put variables and wl itself, then for every value of inputparameters only one value of wl is de�ned. Thereforethis value is the maximal value of wl (lines 11{12).If variable wl is not �xed by equalities, then we con-sider inequalities that provide upper bound for wl (line14). For every upper bound we generate a problem inwhich � operator is replaced with =. This problemdescribes conditions under which this upper bound isreached, so we add the original problem to it and sendit to the output list (line 18).The upper bound on wl expressed as awl � F (: : :)is converted in line 18 to the maximum for wl whichis bF (: : :)=ac. Since we can not represent the integerdivision in our framework, we use wild-card variable �if a 6= 1: awl + � = F (: : :) ^ 0���a� 1.Example of the algorithmwork. Here we demon-strate how our algorithm computes the result of (5):max�((i; j) j 0� i�M ^ 0�j�N ^ 2i+j=k).Parameters of the algorithm are: w = (i; j), m= 2,r=(M;N; k), n=3, p=(0� i�M^0�j�N^2i+j=k).To get upper bounds on i we project away j and �ndtwo upper bounds on i:� 0 � i � Mk �N � 2i � kReplacing i�M with i=M , simplifying and addingthe original problem we get the problem that describeswhen upper bound i�M is reached:p1 = (2M�k � 2M+N ^ 0�M ^ i=M ^ j=k�2M )Then to �nd conditions under which another upperbound on i is a maximum, we replace inequality 2i�kwith 2i+�=k ^ 0���1. Simplifying, we get:p2 = (k�1�2i�k ^ k�N �2i ^ 0� i�M ^ j=k�2i)So after the �rst iteration of the loop l (lines 5{26) wehave the list OutMax that consists of two conjuncts (p1and p2) that describe maximal values of i.On the 2nd iteration of loop l we maximize variablej considering i as an input variable. Both in p1 and p213



Relation RelMax1�(W [w; s]! R[r; s] j p(w; r; s)) BeginRelation MaxRel = f;gFor (cp(w; r; s) in conjuncts of p(w; r; s)) doMaxRel = MaxRel [ fW [w; s]! R[r; s] j ProblemMax�(w j cp(w; r; s))gEndDoReturn (MaxRel )Dnf ProblemMax�(w j p(w; r)) BeginResult is 8v; r : OutMax (v; r), v = max�(w j p(w; r))3: Integer m := jwj; n := jrj4: Dnf InMax (w; r), OutMax (w; r) := p5: For l := 1 to m do6: InMax (w; r) := OutMax ; OutMax (w; r) := False8: For (CInMax (w; r) in conjuncts of InMax ) do9: Dnf p1(w[1::l]; r) := �w[1::l];r(CInMax )10: For (cp1(w[1::l]; r) in conjuncts of p1) do11: If (cp1 contains equality involving wl and not involving wild-card variables) then12: OutMax := OutMax _ (cp1 ^ CInMax )13: Else14: Let's represent cp1 as a conjunction of Nub upper bounds on wl and everything else:cp1 = cpother ^ Nub̂i=1(ai1wl � ci + mXj=2 aijwj + nXj=1 bijrj) where ai1 > 017: For i := 1 to Nub do18: OutMax := OutMax _ (CInMax ^ cpother ^ai1wl + �i = ci + mXj=2 aijwj + nXj=1 bijrj ^ 0 � �i � ai1 � 1)21: EndDo22: If (Nub = 0) then OutMax := OutMax _ wl =123: EndIf24: EndDo25: EndDo26: EndDoReturn (OutMax ) Figure 9: Lexicographical maximum of parametrized set of vectorsthe variable j is �xed by equality, so these conjunctsgo directly to the resulting DNF. Finally we obtain thedependence relation (6).A.2 max� of two source functionsIn Figure 10 we present the algorithm RelMax2� tocompute the lexicographical maximum of two sourcefunctions represented as dependence relations.We consider every possible pair of conjuncts sl1 2 L1and sl2 2 L2. If ranges of these conjuncts intersectthen we call function RelMaxVar� to compute the lexi-cographical maximum in the intersection area and addit to the resulting relation MaxRel . Then range of theintersection is subtracted from both relations and theprocess is repeated.Finally one of the relations becomes empty or therelation ranges do not intersect anymore. We add whatis left of relations to the result, because the relation
that does not provide value for particular read variablesvalue is always lexicographically less than the relationsthat provides the value.We call the function RelMaxVar� to compute themaximum of the two simple relations over the intersec-tion of their ranges 2.When computing maximum of the two simple rela-tions we start with comparing lexicographically seniorwrite variables w1[1] and w2[1]. We build a conjunctpd that lets us know the sign of � = w1[1] � w2[1].In the line 25 we compute constraints on variables r; sunder which � > 0 and therefore L1 � L2, then in line26 | constraints under which � < 0 and L1 � L2.Then if for some values of r; s we have � = 0, wecan not decide at this level which source function pro-duces greater value (line 27). So we compare the vari-2The domain of source function is equal to the range of therelation that represents this function.14



Relation RelMax2�(Relation L1, Relation L2) BeginResult is 8w; r; s : (W [w; s]! R[r; s]) 2 RelMax2�(L1; L2),(W [w; s]! R[r; s]) 2 (L1 =:range(L2) [ L2 =:range(L1)) _ W [w; s] = max�(L�11 (r; s); L�12 (r; s))1: Relation MaxRel := f;g2: For (sl1 = fW1[w; s]! R[r; s] j p1(w; r; s)g in simple relations of L1) do3: For (sl2 = fW2[w; s]! R[r; s] j p2(w; r; s)g in simple relations of L2) do4: Relation Cmax = RelMaxVar�(sl1, sl2, 1, (number of loops surrounding both W1 and W2))5: If (Cmax 6= f;g) then6: MaxRel :=MaxRel [ Cmax7: L1 := L1 \ :range(Cmax ); L2 := L2 \ :range(Cmax )8: Start loop 2 from the beginning9: EndIf10: EndDo11: EndDo12: Return (MaxRel [ L1 [ L2)Relation RelMaxVar�(Simple relation sl1 = fW1[w1; s]! R[r; s] jC1(w1; r; s)g,Simple relation sl2 = fW2[w2; s]! R[r; s] jC2(w2; r; s)g, int level, int maxLevel ) Begin(� Compare the variables w1[level ] and w2[level] assuming w1[1::level�1] = w2[1::level�1] �)21: Relation MaxRel := f;g22: If (level > maxLevel ) Return (If W1 �W2 then sl1 Else sl2 EndIf)23: Dnf pd(r; s;�w) := �:w1 ;w2(C1(w1; r; s) ^ C2(w2; r; s) ^ �w = w1[level]�w2[level ])24: If (pd = False) Return(f;g)25:MaxRel :=MaxRel [ fW1[w1; s]! R[r; s] jC1(w1; r; s) ^ �:�w(pd ^ �w > 0)g26:MaxRel :=MaxRel [ fW2[w2; s]! R[r; s] jC2(w2; r; s) ^ �:�w(pd ^ �w < 0)g27:MaxRel :=MaxRel [ RelMaxVar�(fW1[w1; s]! R[r; s] jC1(w1; r; s) ^ �:�w(pd ^ �w = 0)g,fW2[w2; s]! R[r; s] jC2(w2; r; s) ^ �:�w(pd ^ �w = 0)g, level + 1, maxLevel )30: Return (MaxRel )Figure 10: Lexicographical maximum of two parametrized source functionsables w1[2] and w2[2] by recursively calling the func-tion RelMaxVar�. The level of the variable that we cur-rently compare is stored in the variable level . Finally,if w1[1::maxLevel] = w2[1::maxLevel], then the lexi-cal ordering of the statements is used to decide whichsource function is lexicographically greater (line 22).Example of the algorithm work. When comput-ing source function (7) we call the function RelMax2�with the following arguments:L1 = fS1[pw1; qw1; iw1]! S1[pr; qr; ir] jC1 = (pw1=pr � 1 ^ qw1=qr ^ iw1= ir ^1�qr < pr�np ^ 1� ir�mb)g;L2 = fS2[pw2; qw2; iw2]! S1[pr; qr; ir] jC2 = (pw2=qw2=qr ^ iw2= ir ^1�qr < pr�np ^ 1� ir�mb)gSince range(L1) = range(L2), we execute only one callRelMaxVar�(L1; L2; 1; 3).In RelMaxVar� we start with comparing write vari-ables pw1 and pw2. We form the conjunctpd = (�w = pw2 � pw1 ^ C1 ^ C2); (10)
project away all write variables (fp; q; igwf1;2g), andusing the Omega test �nd that �w � 0.Adding to (10) the inequality �w < 0 and simplify-ing we �nd that L1 is greater than L2 if1 � qr � pr � 2 ^ pr � np ^ 1 � ir � mb: (11)After this we add inequality �w = 0 to (10). Sim-plifying, we get that pw1 = pw2 ifqr = pr � 1 ^ 2 � pr � np ^ 1 � ir � mb: (12)Executing the recursive call to the RelMaxVar� we �ndthat qw1 = qw2 and therefore it's not clear yet whichsource function is greater. Going down one more levelwe get that iw1 = iw2. Being still undecided, we go onemore level down and �nd that there are no more loopvariables to compare. The source function L2 is thendeclared to be a maximum when (12) holds becauseS2 � S1.15


