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Scaling for OrthogonalityAlan EdelmanG. W. StewartIn many updating algorithms it is required to accumulate a product of the formXk = Q1 � � �Qk�1Qk;where the matrices Qi are orthogonal. Although mathematically speaking Xkmust be orthogonal, in practice rounding error will cause it to drift from orthog-onality with increasing k. If we take the deviation of XTk Xk from the identity asa measure of the loss of orthogonality, then typicallykI �XTk XkkF � k�n�M;where k � kF is the Frobenius norm, �M is the rounding unit for the arithmetic inquestion, and �n is a slowly growing function of the size n of Xk (e.g. n1:5).As a cure for this problem DeGroat and Roberts [1] have proposed that eachXk be subjected to a partial reorthogonalization in which the second column isorthogonalized against the �rst, the third against the second, and so on with allthe columns being renormalized after orthogonalization. In a subsequent noteon their paper Moonen, Van Dooren, and Vandewalle [2] pointed out that thenormalization alone is su�cient to maintain orthogonality and supported theirclaim with a heuristic argument. In a reply DeGroat pointed out that normaliza-tion \does not yield working precision orthogonality." However, the error remainsquite small.The purpose of this note is to give a more complete analysis of the method,one that explains the phenomena mentioned in the last paragraph. In particular,we show that this method succeeds when the Qi manage to transfer o�-diagonalerror in the matrices I �XTi Xi to the diagonal. We also show that normalizingis the best possible scaling up to to �rst order. However, it can actually decreaseorthogonality in certain unlikely circumstances.For notational convenience we will drop subscripts and writeX̂ = XQ;where X is scaled so that its its column norms are one and Q is orthogonal (forthe moment we ignore rounding error). Since X is normalized, we can writeA � XTX = I + E;1



Scaling for Orthogonality 2where the diagonals of E are zero. WriteÂ � X̂TX̂ = I + D̂ + Ê;where D̂ + Ê = QTEQ (1)is a decomposition of QTEQ into its diagonal and o�-diagonal parts. In thisnotation, the scaling of X̂ amounts to settingŜ = (I + D̂)�1 (2)and ~X = X̂Ŝ 12 :The deviation from orthogonality of ~X is the Frobenius norm of~E = Ŝ 12 ÊŜ 12 : (3)The above equations de�ne a recurrence for E, ~E, etc., which we are going toanalyze. But �rst we will motivate the scaling by comparing it with the optimalscaling, which is characterized in the following theorem.Theorem 1. For any diagonal matrix D let diag(D) denote the vector consistingof the diagonal element of D. Then for all su�ciently small E, the optimal scalingmatrix S satis�es Â �Âdiag(S) = diag(I +D); (4)where Â �Â is the component-wise product (a.k.a., the Schur or Hadamard prod-uct) of Â with itself.Proof. Regarded as a function of the elements of S, the function kS 12 ÊS 12 k2F isa quadratic function that is bounded below by zero. Di�erentiating this functionand setting the results to zero, we obtain (4). It follows that if (4) has a positivesolution, then that solution will provide the optimal scaling. Now limÊ!0 Â �Â =(I +D)2. Consequently,limÊ!0diag(S) = limÊ!0(Â �Â)�1diag(I +D) = diag[(I +D)�1] = diag(Ŝ) > 0: (5)Hence for all su�ciently small E, the solution of (4) is positive.



3 Scaling for OrthogonalityEquation (5) provides a heuristic justi�cation for the method, since it saysthat to �rst order in E our scaling approximates the optimal scaling. However,the matrix Â =  1� �2 �� 1� �2 !shows that the method is not guaranteed to increase orthogonality for all smallE. Nevertheless, this situation is quite unlikely, as we will now demonstrate byan analysis of the recurrence (3).First note that from (1) and the unitary invariance of the Frobenius norm wehave kEk2F = kD̂k2F + kÊk2F: (6)Now the square of the (i; j) element of ~E isê2ij(1 + d̂i)(1 + d̂j) � ê2ij(1 � kD̂kF)2 :Here d̂i is the ith element of D̂, and we assume that kD̂kF < 1. Hencek ~Ek2F � kÊk2F(1� kD̂kF)2 : (7)Setting � = kEkF and �̂ = kD̂kF;we have from (6) and (7) k ~Ek2F � ~�2 � �2 � �̂2(1 � �̂)2 : (8)A little extra notation will help us decide when the scaling results in an increaseof orthogonality. Since from (6) we have �̂ � �, we can write�̂ = 
�; 0 � 
 � 1:In this notation the equality in (8) becomes~�2 = �2 " 1 � 
2(1 � 
�)2# � �2'(
): (9)Thus the problem is to ascertain when '(
) is less than one. The following factsare easily veri�ed.



Scaling for Orthogonality 41. '(
) � 1 in the interval [0; 2�=(1 + �2)]. At 
 = � it assumes a maximum of(1 � �2)�1.2. '(
) decreases monotonically from one to zero on the interval [2�=(1+�2); 1].In terms of our iteration, if �̂ is too small, roughly less than 2�2, then thescaling has the potential to reduce orthogonality|but not by very much if �is at all small. For larger �̂ the scaling is guaranteed to increase orthogonality.Otherwise put, multiplication by the matrix Q moves part of E to the diagonalwhere it is eliminated by the scaling. The more of E that is moved to the diagonalthe better.The amount of E that is moved will depend on Q, which in turn depends onthe application in question. However, it is interesting to note what happens whenQ is chosen at random uniformly from the group of orthogonal matrices. To doso we proveTheorem 2. Let Q = (q1; : : : ; qn) be a random orthogonal matrix, uniformlydistributed over the group of orthogonal matrices. Then for any symmetricmatrixE E nXi=1(qTi Eqi)2! = 1n + 2[trace(E)2 + 2kEk2F];where E is the expectation operator.Proof. Let u denote a random vector of n independent standard normals. Letr denote kuk and v = u=r (n.b., v is a typical column of Q). It is well knownthat v is distributed uniformly over the sphere, while r2 is independent with �2ndistribution. Thus using standard results on the moments of the normal and �2distributions, we have Ev4i = Eu4iEr4 = 3n(n + 2)and E(v2i v2j ) = E(u2iu2j)Er4 = 1n(n+ 2) ; i 6= j:It is clearly su�cient to prove the lemma for diagonal matrices, sayE = diag(�1; : : : ; �n):For this case the result follows easily on expanding Pni=1(qTi Eqi)2 and using theabove formulas to take expectations (recall that trace(E)2 = kEk2F+Pi 6=j �i�j).



5 Scaling for OrthogonalityIn our application, the trace of E is zero and we have on the average�̂2 = 2n+ 2 �2;i.e., 
2 = 2=(n + 2). Thus, � is of the same order as �, and by the secondobservations following (9) we can expect to observe an increase of orthogonality.However, this increase decreases as n grows. For if � is small enough so that thedenominator in '(
) can be ignored, an iteration will reduce �2 on the average bya factor of of only n=(n+ 2).Finally, returning to the role of rounding error, its e�ect is to add errors to ~E.The Frobenius norm of this error will be proportional to the rounding unit �M,say �n�M. Thus the recurrence (9) must be rewritten in the form~� = '(
) 12 �+ �n�M:If we assume that 
 is constant, then this recurrence has the �xed point� = �n�M1 � '(
) 12 �= 2�n�M
2 ;the last approximation holding for small gamma. For example, with random Qwe should not expect to reduce the measure of orthogonality much below (n +2)�n�M. These considerations perhaps explain the lack of orthogonality to workingprecision noticed by DeGroat.References[1] R. D. DeGroat and R. A. Roberts. E�cient numerically stabilized rank-oneeigenstructure updating. IEEE Transactions on Acoustics, Speech, and SignalProcessing, 38:301{316, 1990. Cited in [2].[2] M. Moonen, P. Van Dooren, and J. Vandewalle. A note on \e�cient nu-merically stabilized rank-one eigenstructure updating. IEEE Transactions onSignal Processing, 39:1911{1913, 1991. Reply by DeGroat, pp. 1913{1914.


