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Abstract

We consider the problem of exploiting parallelism to accel-
erate the performance of spatial access methods and specif-
ically, R-trees [11]. Our goal is to design a server for spatial
data, so that to maximize the throughput of range queries.
This can be achieved by (a) maximizing parallelism for large
range queries, and (b) by engaging as few disks as possible
on point queries [22].

We propose a simple hardware architecture consisting of
one processor with several disks attached toit. On this archi-
tecture, we propose to distribute the nodes of a traditional
R-tree, with cross-disk pointers (‘Multiplexed’ R-tree). The
R-tree code is identical to the one for a single-disk R-tree,
with the only addition that we have to decide which disk
a newly created R-tree node should be stored in. We pro-
pose and examine several criteria to choose a disk for a new
node. The most successful one, termed ‘proximity index’ or
PI, estimates the similarity of the new node with the other
R-tree nodes already on a disk, and chooses the disk with
the lowest similarity. Experimental results show that our
scheme consistently outperforms all the other heuristics for
node-to-disk assignments, achieving up to 55% gains over the
Round Robin one. Experiments also indicate that the mul-
tiplexed R-tree with PI heuristic gives better response time
than the disk-stripping (=”Super-node”) approach, and im-
poses lighter load on the I/O sub-system.

The speed up of our method is close to linear speed up,
increasing with the size of the queries.
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1 Introduction

One of the requirements for the database management
systems (DBMSs) of the future is the ability to handle
spatial data. Spatial data arise in many applications,
including: Cartography [26], Computer-Aided Design
(CAD) [18], [10], computer vision and robotics [2], tradi-
tional databases, where a record with k attributes corre-
sponds to a point in a k-d space, rule indexing in expert
database systems [25], temporal databases, where time
can be considered as one more dimension [15], scientific
databases, with spatial-temporal data, etc.

In the above applications, one of the most typical
queries is the range query: Given a rectangle, retrieve
all the elements that intersect 1t. A special case of the
range query is the point query or stabbing query, where
the query rectangle degenerates to a point.

In this paper we study the problem of improving the
search performance using parallelism, and specifically,
multiple disk units. There are two main reasons for
using multiple disks,; as opposed to a single disk:

(a) All of the above applications will be I/O bound.
Our measurements on a DECstation 5000 showed
that the CPU time to process an R-tree page,
once brought in core, is 0.12 msec. This is 156
times smaller, than the average disk access time
(20 msec). Therefore it is important to parallelize
the I/O operation.

(b) The second reason for using multiple disk units is
that several of the above applications involve huge
amounts of data, which do not fit in one disk. For
example, NASA expects 1 Terabyte (=10'?) of data
per day; this corresponds to 10'¢ bytes per year of
satellite data. Geographic databases can be large,
for example, the TIGER database mentioned above
1s 19 Gigabytes. Historic and temporal databases
tend to archive all the changes and grow quickly in
size.

The target system is intended to operate as a server,

responding to range queries of concurrent users. Our

goal is to maximize the throughput, which translates
into the following two requirements:



‘minLoad’: Queries should touch as few nodes as pos-
sible, imposing a light load on the I/O sub-system.
As a corollary, queries with small search regions
should activate as few disks as possible.

‘uniSpread’: Nodes that qualify under the same query,
should be distributed over the disks as uniformly as
possible. As a corollary, queries that retrieve a lot
of data should activate as many disks as possible.

The proposed hardware architecture consists of one pro-
cessor with several disks attached to it. We do not
consider multi-processor architectures, because multi-
ple CPUs will probably be an over-kill, increasing the
dollar cost and the complexity of the system without re-
lieving the I/O bottleneck. Moreover, a multi-processor
loosely-coupled architecture, like GAMMA [5], will have
communication costs, which are non-existing in the pro-
posed single-processor architecture. In addition, our ar-
chitecture 1s simple: it requires only widely available
off-the-shelf components, without the need for synchro-
nized disks, multiple CPU’s, or specialized operating
system.

On this architecture, we will distribute the nodes
of a traditional R-tree. We propose and study several
heuristics on how to choose a disk to place a newly cre-
ated R-tree node. The most successful heuristic, based
on the ‘proximity index’, estimates the similarity of the
new node with the other R-tree nodes already on a disk,
and chooses the disk with the least similar contents. FEx-
perimental results showed that our scheme consistently
outperforms other heuristics.

The paper is organized as follows. Section 2 briefly
describes the R-tree and its variants. Also, it surveys
previous efforts to parallelize other file structures. Sec-
tion 3 proposes the ‘multiplexed’ R-tree as a way to
store an R-tree on multiple disks. Section 4 examines
alternative criteria to choose a disk for a newly create
R-tree node. It also introduces the ‘proximity’ measure
and derives the formulas for it. Section 5 presents ex-
perimental results and observations. Section 6 gives the
conclusions and directions for future research.

2 Survey

Several spatial access methods have been proposed. A
recent survey can be found in [21]. These classifica-
tion includes methods that transform rectangles into
points in a higher dimensionality space [12], methods
that use linear quadtrees [8] [1] or, equivalently, the
z-ordering [17] or other space filling curves [6] [13],
and finally, methods based on trees (k-d-trees [4], k-
d-B-trees [19], hB-trees [16], cell-trees [9] e.t.c.)

One of the most characteristic approaches in the last
class is the the R-tree [11]. Due to space limitations,
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Figure 1: Data (dark rectangles) organized in an R-tree.
Fanout=3 - Dotted rectangles indicate queries

we omit a detailed description of the method. Figure 1
illustrates data rectangles (in black), organized in an R-
tree with fanout 3. Figure 2 shows the file structure for
the same R-tree, where nodes correspond to disk pages.
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Figure 2: The file structure for the R-tree of the previ-
ous figure (fanout=3)

In the rest of this paper, the term ‘node’ and the term
‘page’ will be used interchangeably, except when dis-
cussing about the super-nodes method, subsection 3.2.
Extensions, variations and improvements to the origi-
nal R-tree structure include the packed R-trees [20], the
RT-tree [23] and the R*-tree [3].

There 1s also much work on how to organize tra-
ditional file structures on multi-disk or multi-processor
machines. For the B-tree, Pramanic and Kim proposed
PNB-tree [24] which uses a ‘super-node’ (‘super-page’)
scheme on synchronized disks. Seeger and Larson [22]
proposed an algorithm to distribute the nodes of the
B-tree on different disks. Their algorithm takes into ac-
count not only the response time of the individual query
but also, the throughput of the system.

Parallelization of the R-trees is an unexplored topic,
to the best of the authors’ knowledge. Next, we present
some software designs to achieve efficient paralleliza-
tion.



3 Alternative designs

The underlying file structure is the R-tree. Given that,
our goal is to design a server for spatial objects on a
parallel architecture, to achieve high throughput under
concurrent range queries.

The first step is to decide on the hardware architec-
ture. For the reasons mentioned in the introduction, we
propose a single processor with multiple disks attached
to 1t. The next step is to decide how to distribute an
R-tree over multiple disks. There are three major ap-
proaches to do that: (a) d independent R-trees, (b) Disk
stripping (or ‘super-nodes’, or ‘super-pages’), and (c)
the ‘Multiplexed’ R-tree, or MX R-tree for short, which
we describe and propose later. We examine the three
approaches qualitatively:

3.1 Independent R-trees

In this scheme we can distribute the data rectangles
between the d disks and build a separate R-tree index for
each disk. This mainly works for unsynchronized disks.
The performance will depend on how we distribute the
rectangles over the different disks. There are two major
approaches:

Data Distribution The data rectangles are as-
signed to the different disks in a round robin fashion,
or using a hashing function. The data load (number of
rectangles per disk) will be balanced. However, this ap-
proach violates the minimum load (‘minLoad’) require-
ment: even small queries will activate all the disks.

Space Partitioning The idea is to divide the space
into d partitions, and assign each partition to a separate
disk. For example, for the R-tree of Figure 1, we could
assign nodes 1, 2 and 3 to disks A, B and C, respectively.
The children of each node follow their parent on the
same disk. This approach will activate few disks on
small queries, but it will fail to engage all disks on large
queries (uniform spread, or ‘uniSpread’ requirement).

3.2 Super-nodes

In this scheme we have only one large R-tree with each
node (=‘super-node’) consisting of d pages; the i-th page
is stored on the é-th disk (¢ = 1,...,d). To retrieve a
node from the R-tree we read in parallel all d pages
that constitute this node. In other words, we ‘stripe’
the super-node on the d disks, using page-stripping [7].
Almost identical performance will be obtained with bit-
or byte-level stripping.

This scheme can work both with synchronized or
unsynchronized disks. However, this scheme violates
the ‘minLoad’ requirement: regardless of the size of the
query, all the d disks become activated.

3.3 Multiplexed (‘MX’) R-tree

In this scheme we use a single R-tree, with each node
spanning one disk page. Nodes are distributed over
the d disks, with pointers across disks. For example,
Figure 3 shows one possible multiplexed R-tree, corre-
sponding to the R-tree of Figure 1. The root node kept
in main memory while other nodes are distributed over
the disks A, B and C. For the multiplexed R-tree, each

Disk A Disk B Disk C
Figure 3: R-tree stored on three disks

pointer consists of a diskad, in addition to the page.id
of the traditional R-tree. However, the fanout of the
node is not affected, because the disk.id can be encoded
within the 4 bytes of the pagead.

Notice that the proposed method fulfills both re-
quirements (minLoad and uniSpread): For example,
from Figure 3, we see that the ‘small’ query @, of Fig-
ure 1 will activate only one disk per level (disk B, for
node 2, and disk A, for node 7), fulfilling the minimum
load requirement. The large query ; will activate al-
most all the disks in every level (disks B and C at level
2, and then all three disks at the leaf level), fulfilling
the uniform spread requirement.

Thus, with a careful node-to-disk assignment, the
MX R-tree should outperform both the methods that
use super-nodes as well as the ones that use d indepen-
dent R-trees. Our goal now is to find a good heuristic
to assign nodes to disks.

By its construction, the multiplexed R-tree fulfills
the minimum load requirement. To meet the uniform
spread requirement, we have to find a good heuristic to
assign nodes to disks. In order to measure the quality
of such heuristics, we shall use the response time as a
criterion, which we calculate as follows.

Let R(q) denote the response time for the query
q. First, we have to discuss how the search algorithm
works. Given arange query q the search algorithm needs
a queue of nodes, which is manipulated as follows:
Algorithm 1: Range Search

S1. Insert the root node of the R-tree in the processing
queue.



S2. while (more nodes in queue)

e Pick a node n from the processing queue.

e Process node n, by checking for intersections
with the query rectangle. If this is a leaf node,
print the results; otherwise send a list of re-
quests to some or all of the d disks, in parallel.

The nodes that the disks retrieve are inserted at the
end of the processing queue (FIFO). Since the CPU is
much faster than the disk, we assume that the CPU
time is negligible (=0) compared to the time required
by a disk to retrieve a page. Thus, the measure for
the response time is the number of disk accesses that
the latest disk will require. The ‘disk-time’ diagram
helps visualize this concept better. Figure 4 presents
the ‘disk-time’ diagram for the query ); of Figure 1.
The horizontal axis is time, divided in slots. The dura-
tion of each slot is the time for a disk access (which is
considered constant). The diagram indicates when each
disk is busy, as well as the page it 1s seeking, during each
time slot. Thus, the response time for @J; is 2, while its
load L(Q;)= 4, because @; retrieved 4 pages in total.

As another example, the ‘huge’ query @y of Fig-
ure 1 results in the disk-time diagram of Figure b, with

response time R(GQ5)=3, and a load of L(Qh)=7.
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Figure 4: Disk-Time diagram for the large query @Q; of
Figure 1.

Given the above examples, we have the following
definition for the response time:

Definition 1 (Response Time) The response time
R(q) for a query ¢ is the response time of the latest
disk in the disk-time diagram.

4 Disk assignment algorithms

The problem we examine in this section is how to assign
nodes to disks, within the Multiplexed R-tree frame-
work. The goal is to minimize the response time, to sat-
isfy the requirement for uniform disk activation (‘uniS-
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Figure 5: Disk-Time diagram for the huge query Qp of
Figure 1.

pread’). As discussed before, the minimum load require-
ment is fulfilled.

When a node (page) in the R-tree overflows, it is
split into two nodes. One of these nodes, say, Ny, has
to be assigned to another disk. If we carefully select this
new disk we can improve the search time. Let diskO f()
be the function that maps nodes to the disks they reside.
Ideally, we should consider all the nodes that are on the
same level with Ng, before we decide where to store it.
However, this will require too many disk accesses. Thus,
we consider only the sibling nodes Ny, ..., N, that is,
the nodes that have the same father Nyqiper with Np.
Accessing the father node comes at no extra cost, be-
cause we have to bring it in main memory anyway, to
msert Ng. Notice that we do not need to access the sib-
ling nodes Ny, ..., Ng, because all the information we
need about them (extend of MBR (= minimum bound-
ing rectangle) and disk of residence) are recorded in the
father node.

Thus, the problem can be informally abstracted as
follows:

Problem 1: Disk assignment

Given a node (= rectangle) Ny, a set of nodes
Ni,..., Ny and the assignment of nodes to disks
(diskOf() function)

Assign Ny to a disk, to maximize the response time on
range queries.

There are several criteria that we have considered:

Data balance: Ideally, all disks should have the same
number of R-tree nodes. If a disk has many more
pages than others, it is more likely to become a ‘hot
spot’ during query processing.

Area balance: Since we are storing not only points but
also rectangles, the area of the pages stored on a
disk is another factor. A disk that covers a larger
area than the rest is again more likely to become a
hot spot.



Proximity: Another factor that affects the search time
is the spatial relation between the nodes that are
stored on the same disk. If two nodes are intersect-
ing, or are close to each other, they should be stored
on different disks, to maximize the parallelism.

We can not satisfy all these criteria simultaneously, be-
cause some of them may conflict. Next, we describe
some heuristics, each trying to satisfy one or more of the
above criteria. In Section 5 we compare these heuristics
experimentally.

Round Robin (‘RR’). When a new page is created
by splitting, this criterion assigns it to a disk in
a round robin fashion. Without deletions, this
scheme achieves perfect data balance. For exam-
ple, in Figure 6, RR will assign Ny to the least
populated disk, that is, disk C.

Minimum Area (‘MA’). This heuristic tries to balance
the area of the disks: When a new node is cre-
ated, the heuristic assigns it to the disk that has
the smallest area covered. For example, in Fig-
ure 6, MA would assign Ny to disk A, because the
light gray rectangles Ny, N3, Ny and Ng of disk A
have the smallest sum of area.
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Figure 6: Node Ny is to be assigned to one of the three
disks.

Minimum Intersection (‘MTI’). This heuristic tries to
minimize the overlap of nodes that belong to the
same disk. Thus, 1t assigns a new node to such a
disk, so that the new node intersects as little as
possible with the other nodes on that disk. Ties
are broken using one of the above criteria.

Proximity Index (‘PT’). This heuristic is based on the
proximity measure, which we describe in detail in
the next subsection. Intuitively, this measure com-
pares two rectangles and assesses the probability
that they will be retrieved by the same query. As
we shall see soon, it is related to the Manhattan (or

city-block or L) distance. Rectangles with high
proximity (i.e., intersecting, or close to each other)
should be assigned to different disks. The prozimaty
index of a new node Ny and a disk D (which con-
tains the sibling nodes Ny, ..., Np) is the proximity
of the most ‘proximal’ node to Nj.

This heuristic assigns node Ny to the disk with the
lowest proximity index, 1.e., to the disk with the
least similar nodes with respect to Ng. Ties are
resolved using the number of nodes (data balance):
Ny 1s assigned to the disk with the fewest nodes.
For the setting of Figure 6, PI will assign Ny to disk
B because it contains the most remote rectangles.
Intuitively, disk B is the best choice for Np.

Although favorably prepared, the example of Fig-
ure 6 indicates that PI should perform better than the
rest of the heuristics. Next we show how to calculate
exactly the ‘proximity’ of two rectangles.

4.1 Proximity measure

Whenever a new R-tree node Ny is created, it should be
placed on the disk that contains nodes (= rectangles)
that are as dissimilar to Ny as possible. Here we try
to quantify the notion of similarity between two rectan-
gles. The proposed measure can be trivially generalized
to hold for hyper-rectangles of any dimensionality. For
clarity, we examine 1- and 2- dimensional spaces first.

Intuitively, two rectangles are similar if they qualify
often under the same query. Thus, a measure of sim-
ilarity of two rectangles R and S is the proportion of
queries that retrieve both rectangles. Thus,

prozimity(R,S) = Prob { a query retrieves both R
and S }

or, formally

prozimity(R,S) =
#of queries retrieving both _ |q|
totalft of queries @l

(1)

To avoid complications with infinite numbers, let’s as-
sume during this subsection that our address space is
discrete, with very fine granularity (The case of a con-
tinuous address space will be the limit for infinitely fine
granularity).

Based on the above definition, we can derive the
formulas for the proximity, given the coordinates of the
two rectangles R and S. To simplify the presentation,
let’s consider the 1-dimensional case first.

1-d Case: Without loss of generality, we can normalize
our coordinates, and assume that all our data segments
lie within the unit line segment [0,1]. Consider two line



segments R and S where R=(7s14r¢, Tend) and S=(Ss14rt,
56nd)~

If we represent each segment X as the point (s¢qr¢,
Tend), the segments R and S are transformed to 2-
dimensional points [12] as shown in Figure 7. In the

0 05 1 X 1 05 0 Ram 05 s 1 xstart

Figure 7: Mapping line segments to points

same Figure, the area within the dashed lines is a mea-
sure of the number of all the possible query segments,
ie, queries whose size is < 1 and who intersect the unit
segment. There are two cases to consider, depending
on whether R and S intersect or not. Without loss
of generality, we assume that R starts before S (ie.,
Tstart S Sstart)

(a) If R and S intersect, let ‘I’ denote their intersec-
tion, and let 6 be its length. Every query that intersects
‘I’ will retrieve both segments R and S. The total num-
ber |@Q| of possible queries is proportional to the trape-
zoidal area within the dashed lines in Figure 7; its area
is |@Q] = (2x2—1x1)/2=3/2. The total number of
queries |¢| that retrieve both R and S is proportional to
the shaded area of Figure 8

0 g 1 x -1 0 Saén R‘-md 1 x-start

*’:5?*

Figure 8: The shaded area contains all the segments
that intersect R and S simultaneously

lgl = (1+8)?=6%)/2=1/2x (1+2x68) (2
Thus, for intersecting segments R and S we have
prozimity(R,S) = q|/1Q| =1/3x (1 +2x6) (3)

where 6 is the length of the intersection

(b) If R and S are disjoint, let A be the distance
between them (see Figure 9). Then, a query has to

Figure 9: The shaded area contains all the segments
that intersect R and S

cover the segment (vend, Sstart), in order to retrieve both
segments. The number of such queries 1s proportional
to the shaded area in Figure 9.b; its area is given by

g=1/2x (1 -A)* (4)
and the proximity measure for R and S is

prozimity(R, ) = ql/1Q| = 1/3 x (1= A (5)

Notice that the two formulas agree, when R and S

just touch: in this case, 6 = A = 0 and the proximity is
1/3.
n-d Case: The previous formulas can be generalized
by assuming uniformity and independence. For a 2-d
space, let 2 and S be two data rectangles, with R, R,
denoting the x and y projections of R. A query X will
retrieve both R and S if and only if (a) its @-projection
X, retrieves both R, and S, and (b) its y-projection
Xy retrieves both Ry and S,.

Since the  and y sizes of the query rectangles are in-
dependent, the fraction of queries that meet both of the
above criteria is the product of the fractions for each in-
dividual axis, i.e., the proximity measure prozimitys()
in two dimensions is given by:

prozimitys(R,S) =
prozimity(Ry, Sy) X prozimity(R,,S,) (6)

The generalization for n-dimensions is straightforward:
n

prozimity, (R, S) = Hproximity(Ri, Sy (7))
where R; and S; are the plr_oﬁections on the ¢-th axis,
and the prozimity() function for segments is given by
eqgs. 3 and 5.

The proximity indexr measures the similarity of a
rectangle Ry with a set of rectangles R = {Ry, ..., Ri}.
We need this concept to assess the similarity of a new
rectangle Ry and a disk D, containing the rectangles of



Symbols Definitions
a average area of a data rectangle
c cover quotient
d number of disks
diskOf() maps nodes to disks
L(q) total number of pages touched
by ¢ (‘Load’)
N number of data rectangles
P size of a disk page in Kbytes
proximity,() | proximity of two n-d rectangles
qs side of a query rectangle
R(q) response time for query ¢
r(q) relative response time
(compared to PT)
s speed-up

Table 1: Summary of Symbols and Definitions

the set R. The proximity index is the proximity of the
most similar rectangle in R. Formally:
prozimityIndex(R, R) = max proximity, (R, R;) (8)
i€

where R; € R, and n is the dimensionality of the address
space.

5 Experimental results

To assess the merit of the proximity index heuristic
over the other heuristics, we ran simulation experi-
ments on two-dimensional rectangles. We augmented
the original R-tree code with some routines to han-
dle the multiple disks (e.g., ‘choose_disk()’, ‘proximity()’
e.t.c.) The code is written in C under Ultrix and the
simulation experiments ran on a DECstation 5000. We
used both the linear and the quadratic splitting algo-
rithm of Guttman [11]. The quadratic algorithm re-
sulted in better R-trees, i.e., with smaller father nodes.
The exponential algorithm was very slow and it was not
used. Unless otherwise stated, all the results we present
are based on R-trees that used the quadratic split algo-
rithm.
In our experiments we assume that

e all d disk units are identical.

e the page access time is constant.

o the first two levels of the multiplexed R-tree (the
root and its children) fit in main memory. The
required space is of the order of 100 Kb, which is a
modest requirement even for personal computers.

e the CPU time is negligible. As discussed before,
the CPU 1is two orders of magnitude faster than
the disk. Thus, for a number of disks we have ex-

amined (1-25 disks), the delay caused by the CPU

is negligible.

Without loss of generality, the address space was nor-
malized to the unit square. There are several factors
that affect the search time. We studied the following
input parameters, ranging as mentioned: The number
of disks d (5-25); the total number of data rectangles N
(25,000 to 200,000); the size of queries g5 x ¢5 (g5 ranged
from 0 (point queries) to 0.25); the page size P (1Kb to
4KDb).

Another important factor, which is derived from N
and the average area a of the data rectangles, is the
”cover quotient” ¢ (or ”density”) of the data rectangles.
This 1s the sum of the areas of the data rectangles in
the unit square, or equivalently, the average number of
rectangles that cover a randomly selected point. Math-
ematically: ¢ = N x a. For the selected values of N and
a, the cover quotient ranges from 0.25 - 2.0.

The data rectangles were generated as follows:
Their centers were uniformly distributed in the unit
square; their # and y sizes were uniformly distributed
in the range [0,max], where maz = 0.006

The query rectangles were squares with side g;.
Their centers are uniformly distributed in the unit
square. For every experiment, 100 randomly generated
queries were asked and the results were averaged. Data
or query rectangles that were not completely inside the
unit square were clipped.

The proximity index heuristic performed very well
in our experiments, and therefore is the proposed ap-
proach. To make the comparison easier, we normalize
the response time of the different heuristics to that of
the proximity index and plot the ratios of the response
times.

In the following subsections, we present (a) a com-
parison among the node-to-disk assignment heuristics
(MI, MA, RR and PI); recall that they are all within
the multiplexed R-tree framework. (b) A more detailed
study of the RR heuristic vs. the PI one. (¢) A com-
parison of the PI vs. super-node method (d) A study of
the speed-up achieved by PI.

5.1 Comparison of the disk assignment
heuristics

Figure 10 shows the actual response time for each of
the four heuristics (RR, MI, MA, PI), as a function
of the query size ¢;. The parameters were as follows:
N=25,000 ¢=0.26, d=10, P=4. This behavior is typ-
ical for several combinations of the parameter values:
P=1,24; ¢=0.5,1,2; d=5,10,20. The main observation
is that PI and MI, the two heuristics that take the spa-
tial relationships into account, perform the best. Round
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Figure 10: Comparison among all heuristics (PL,MI,RR
and MA )- response time vs query size

Robin is the next best, while the Minimum Area heuris-
tic has the worst performance.

Comparing the MI and PI heuristics, we see that
MI performs as well as the proximity index heuristic
for small queries; for larger queries, the proximity index
wins. The reason 1s that MI may assign the same disk
to two non-intersecting rectangles that are very close to
each other.

5.2 Proximity index Round

Robin

versus

Here we study the savings that the proposed heuristic
PI can achieve over the RR. The reason we have chosen
RR is because it is the simplest heuristic to design and
implement. We show that the extra effort to design the
PI heuristic pays off consistently.

cover =0.26, # rect=25k, # disks=10
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Figure 11: Relative response time (RR over PI) vs query
size.

Figure 11 plots the response time of RR relative to
PI as a function of the query size ¢s. The number of
disks was d=10, the cover quotient is ¢=0.26 and the

Page size = 4k, No disks = 10

ratio of response time
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qsx 1073
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Figure 12: Relative response time (RR over PI) vs query
size.

page sizes P varied: 1, 2 and 4Kb. The conclusion is
that the gains of PI increase with increasing page size.
This 1s because the PI heuristic considers only sibling
nodes (nodes under the same father); with a larger the
page size, the heuristic takes more nodes into account,
and therefore makes better decisions.

Figure 12 illustrates the effect of the cover quotient
on the relative gains of PI over RR. The page size P was
fixed at 4Kb; the cover quotient varied (¢=0.26, 0.5, 1
and 2). Everything else was the same as in Figure 11.
The main observation is that r(g) decreases with the
cover quotient ¢. This is explained as follows: For large
¢, there are more rectangles in the vicinity of the newly
created rectangle, which means that we need to take
more sibling nodes into account and use more disk units
to get a better results.

An observation common to both Figures is that r(q)
peaks for medium size queries. For small queries, the
number of nodes to be retrieved is small, leaving little
room for improvement. For huge queries, almost all
the nodes need to be retrieved, in which case the data
balance of RR achieves good results.

We should re-emphasize that Figures 11 and 12 re-
veal only a small fraction of the experimental data we
gathered. We also performed experiments with several
values for the number of disks d, as well as with the
linear splitting algorithm for the R-tree. In all our ex-
periments, PI invariantly outperformed RR.

5.3 Comparison with the super-node
method

In order to justify our claims about the advantages
of the Multiplexed (‘MX’) R-tree over the super-node
method, we compared the two methods with respect to
the two requirements, ‘uniform spread’ and ‘minimum
load’. The measure for the first is the response time



R(q); the measure for the second is the load L(q). We
present graphs with respect to both measures.

Figure 13 compares the response time of the
Multiplexed R-tree (with PI) against the super-node
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Figure 13: Response time vs query size for Multiplexed
R-tree, with PI, and for super-nodes. (d=5 disks)

method. Notice that the difference in performance in-
creases with the query size ¢;. In general, the multi-
plexed R-tree outperforms the super-node scheme for
large queries. The only situation where the super-node
scheme performs slightly better is when there are many
disks d and the query is small. The explanation is that,
since d is large, the R-tree with super-nodes has fewer
levels than the multiplexed R-tree; in addition, since
the query is small, the response time of both trees is
the bounded by the height of the respective tree. How-
ever, this is exactly the situation where the super-node
method violates the ‘minimum load’ requirement, im-
posing a large load on the I/O sub-system and paying
penalties in throughput. In order to gain insight on the
effect on the throughput, we plot the ‘load’” for each
method, for various parameter values. Recall that the
load L(g) for a query ¢ is the total number of pages
touched (1 super-page counts as d simple pages). Fig-
ure 14 shows the results for the same setting as before
(Figure 13). The multiplexed R-tree imposes a much
lighter load: for small queries, its load is 2-3 times
smaller than the load of the super-node method. In-
terestingly, the absolute difference increases with the
query size.

The conclusion of the comparisons is that the pro-
posed method has better response time than the super-
node method, at least for large queries. In addition, it
will lead to higher throughput, because it tends to im-
pose lighter loads on the disks. Both results agree with
our intuition, and indicate that the proposed method
will offer a higher throughput for a spatial object server.

coverage = 2, # rect = 100k
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Figure 14: Total number of pages retrieved (load), vs.
query size q5 - d=5.

5.4 Speed-up

The standard measure of the efficiency of a parallel sys-
tem is the speed up s, which is defined as follows: Let
Ri(q) be the response time for the query ¢ on a system
with d disks. Then: s = Ri(q)/Ra(q) We examined
exclusively the multiplexed R-tree method, with the PI
heuristic, since it seems to offer the best performance.
Due to space limitations, we report here the conclusions
only; the details are in a technical report [14]. The ma-
jor result was that the speed up is high, eg. 84% of the
linear speedup, for cover quotient ¢=2, page size P=4
and for query side size ¢;=0.25. Moreover, the speed up
increases with the size of the query.

6 Conclusions

We have studied alternative designs for a spatial object
server, using R-trees as the underlying file structure.
Our goal is to maximize the parallelism for large queries,
and on the same time to engage as few disks as possible
for small queries. To achieve these goals, we propose

e a hardware architecture with one CPU and multi-
ple disk, which is simple, effective and inexpensive.
It has no communication costs, it requires inexpen-
sive, general purpose components, it can easily be
expanded (by simply adding more disks) and it can
take easily advantage of large buffer pools.

e a software architecture (termed ‘Multiplexed” R-
tree). It operates exactly like a single-disk R-tree,
with the only difference that its nodes are care-
fully distributed over the d disks. Intuitively, this
approach should be better than the Super-node
approach and the ‘independent R-trees’ approach
with respect to throughput.

o the ‘proximity index’ (PI) criterion, which decides
how to distribute the nodes of the R-tree on the d



disks. Specifically, it tries to store a new node on

that one disk that contains nodes as dissimilar to

the new node as possible.
Extensive simulation experiments show that the PI cri-
terion consistently outperforms other criteria (round
robin and the minimum area), and that it performs ap-
proximately as well or better than the minimum inter-
section criterion.

A comparison with the super-node (= disk strip-
ping) approach shows that the proposed method offers
a better response time for large queries; and that it im-
poses lighter load, leading to higher throughput.

With respect to the speed up, the proposed method
can achieve near linear for large queries. Thus, the mul-
tiplexed R-tree with the PI heuristic seems to be the
best method to use, in order to implement a spatial ob-
ject server.

Future research could focus on the use of the prox-
imity concept to aid the parallelization of other spatial

file structures.
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