
Parallel R-treesIbrahim Kamel and Christos Faloutsos�Department of CSUniversity of MarylandCollege Park, MD 20742AbstractWe consider the problem of exploiting parallelism to accel-erate the performance of spatial access methods and specif-ically, R-trees [11]. Our goal is to design a server for spatialdata, so that to maximize the throughput of range queries.This can be achieved by (a) maximizing parallelism for largerange queries, and (b) by engaging as few disks as possibleon point queries [22].We propose a simple hardware architecture consisting ofone processor with several disks attached to it. On this archi-tecture, we propose to distribute the nodes of a traditionalR-tree, with cross-disk pointers (`Multiplexed' R-tree). TheR-tree code is identical to the one for a single-disk R-tree,with the only addition that we have to decide which diska newly created R-tree node should be stored in. We pro-pose and examine several criteria to choose a disk for a newnode. The most successful one, termed `proximity index' orPI, estimates the similarity of the new node with the otherR-tree nodes already on a disk, and chooses the disk withthe lowest similarity. Experimental results show that ourscheme consistently outperforms all the other heuristics fornode-to-disk assignments, achieving up to 55% gains over theRound Robin one. Experiments also indicate that the mul-tiplexed R-tree with PI heuristic gives better response timethan the disk-stripping (="Super-node") approach, and im-poses lighter load on the I/O sub-system.The speed up of our method is close to linear speed up,increasing with the size of the queries.�Also, a memberof UMIACS. This researchwas sponsored par-tially by the National Science Foundation under the grants IRI-8719458 and IRI-8958546, by a Department of Commerce JointStatistical Agreement JSA-91-9, by a donation from EMPRESSSoftware Inc. and by a donation from Thinking Machines Inc..

1 IntroductionOne of the requirements for the database managementsystems (DBMSs) of the future is the ability to handlespatial data. Spatial data arise in many applications,including: Cartography [26], Computer-Aided Design(CAD) [18], [10], computer vision and robotics [2], tradi-tional databases, where a record with k attributes corre-sponds to a point in a k-d space, rule indexing in expertdatabase systems [25], temporal databases, where timecan be considered as one more dimension [15], scienti�cdatabases, with spatial-temporal data, etc.In the above applications, one of the most typicalqueries is the range query: Given a rectangle, retrieveall the elements that intersect it. A special case of therange query is the point query or stabbing query, wherethe query rectangle degenerates to a point.In this paper we study the problem of improving thesearch performance using parallelism, and speci�cally,multiple disk units. There are two main reasons forusing multiple disks, as opposed to a single disk:(a) All of the above applications will be I/O bound.Our measurements on a DECstation 5000 showedthat the CPU time to process an R-tree page,once brought in core, is 0.12 msec. This is 156times smaller, than the average disk access time(20 msec). Therefore it is important to parallelizethe I/O operation.(b) The second reason for using multiple disk units isthat several of the above applications involve hugeamounts of data, which do not �t in one disk. Forexample, NASA expects 1 Terabyte (=1012) of dataper day; this corresponds to 1016 bytes per year ofsatellite data. Geographic databases can be large,for example, the TIGER database mentioned aboveis 19 Gigabytes. Historic and temporal databasestend to archive all the changes and grow quickly insize.The target system is intended to operate as a server,responding to range queries of concurrent users. Ourgoal is to maximize the throughput, which translatesinto the following two requirements:1



`minLoad': Queries should touch as few nodes as pos-sible, imposing a light load on the I/O sub-system.As a corollary, queries with small search regionsshould activate as few disks as possible.`uniSpread': Nodes that qualify under the same query,should be distributed over the disks as uniformly aspossible. As a corollary, queries that retrieve a lotof data should activate as many disks as possible.The proposed hardware architecture consists of one pro-cessor with several disks attached to it. We do notconsider multi-processor architectures, because multi-ple CPUs will probably be an over-kill, increasing thedollar cost and the complexity of the system without re-lieving the I/O bottleneck. Moreover, a multi-processorloosely-coupled architecture, like GAMMA [5], will havecommunication costs, which are non-existing in the pro-posed single-processor architecture. In addition, our ar-chitecture is simple: it requires only widely availableo�-the-shelf components, without the need for synchro-nized disks, multiple CPU's, or specialized operatingsystem.On this architecture, we will distribute the nodesof a traditional R-tree. We propose and study severalheuristics on how to choose a disk to place a newly cre-ated R-tree node. The most successful heuristic, basedon the `proximity index', estimates the similarity of thenew node with the other R-tree nodes already on a disk,and chooses the disk with the least similar contents. Ex-perimental results showed that our scheme consistentlyoutperforms other heuristics.The paper is organized as follows. Section 2 brieydescribes the R-tree and its variants. Also, it surveysprevious e�orts to parallelize other �le structures. Sec-tion 3 proposes the `multiplexed' R-tree as a way tostore an R-tree on multiple disks. Section 4 examinesalternative criteria to choose a disk for a newly createR-tree node. It also introduces the `proximity' measureand derives the formulas for it. Section 5 presents ex-perimental results and observations. Section 6 gives theconclusions and directions for future research.2 SurveySeveral spatial access methods have been proposed. Arecent survey can be found in [21]. These classi�ca-tion includes methods that transform rectangles intopoints in a higher dimensionality space [12], methodsthat use linear quadtrees [8] [1] or, equivalently, thez-ordering [17] or other space �lling curves [6] [13],and �nally, methods based on trees (k-d-trees [4], k-d-B-trees [19], hB-trees [16], cell-trees [9] e.t.c.)One of the most characteristic approaches in the lastclass is the the R-tree [11]. Due to space limitations,

0 1

0

1

4
5

6

7
8

9

10

11 12

1

2

3

Q

Q

Q

s

l

h

Figure 1: Data (dark rectangles) organized in an R-tree.Fanout=3 - Dotted rectangles indicate querieswe omit a detailed description of the method. Figure 1illustrates data rectangles (in black), organized in an R-tree with fanout 3. Figure 2 shows the �le structure forthe same R-tree, where nodes correspond to disk pages.
Root

1 2 3

4 5 6 7 8 9 10 11 12Figure 2: The �le structure for the R-tree of the previ-ous �gure (fanout=3)In the rest of this paper, the term `node' and the term`page' will be used interchangeably, except when dis-cussing about the super-nodes method, subsection 3.2.Extensions, variations and improvements to the origi-nal R-tree structure include the packed R-trees [20], theR+-tree [23] and the R�-tree [3].There is also much work on how to organize tra-ditional �le structures on multi-disk or multi-processormachines. For the B-tree, Pramanic and Kim proposedPNB-tree [24] which uses a `super-node' (`super-page')scheme on synchronized disks. Seeger and Larson [22]proposed an algorithm to distribute the nodes of theB-tree on di�erent disks. Their algorithm takes into ac-count not only the response time of the individual querybut also, the throughput of the system.Parallelization of the R-trees is an unexplored topic,to the best of the authors' knowledge. Next, we presentsome software designs to achieve e�cient paralleliza-tion.



3 Alternative designsThe underlying �le structure is the R-tree. Given that,our goal is to design a server for spatial objects on aparallel architecture, to achieve high throughput underconcurrent range queries.The �rst step is to decide on the hardware architec-ture. For the reasons mentioned in the introduction, wepropose a single processor with multiple disks attachedto it. The next step is to decide how to distribute anR-tree over multiple disks. There are three major ap-proaches to do that: (a) d independent R-trees, (b) Diskstripping (or `super-nodes', or `super-pages'), and (c)the `Multiplexed' R-tree, or MX R-tree for short, whichwe describe and propose later. We examine the threeapproaches qualitatively:3.1 Independent R-treesIn this scheme we can distribute the data rectanglesbetween the d disks and build a separate R-tree index foreach disk. This mainly works for unsynchronized disks.The performance will depend on how we distribute therectangles over the di�erent disks. There are two majorapproaches:Data Distribution The data rectangles are as-signed to the di�erent disks in a round robin fashion,or using a hashing function. The data load (number ofrectangles per disk) will be balanced. However, this ap-proach violates the minimum load (`minLoad') require-ment: even small queries will activate all the disks.Space PartitioningThe idea is to divide the spaceinto d partitions, and assign each partition to a separatedisk. For example, for the R-tree of Figure 1, we couldassign nodes 1, 2 and 3 to disks A, B and C, respectively.The children of each node follow their parent on thesame disk. This approach will activate few disks onsmall queries, but it will fail to engage all disks on largequeries (uniform spread, or `uniSpread' requirement).3.2 Super-nodesIn this scheme we have only one large R-tree with eachnode (=`super-node') consisting of d pages; the i-th pageis stored on the i-th disk (i = 1; : : : ; d). To retrieve anode from the R-tree we read in parallel all d pagesthat constitute this node. In other words, we `stripe'the super-node on the d disks, using page-stripping [7].Almost identical performance will be obtained with bit-or byte-level stripping.This scheme can work both with synchronized orunsynchronized disks. However, this scheme violatesthe `minLoad' requirement: regardless of the size of thequery, all the d disks become activated.

3.3 Multiplexed (`MX') R-treeIn this scheme we use a single R-tree, with each nodespanning one disk page. Nodes are distributed overthe d disks, with pointers across disks. For example,Figure 3 shows one possible multiplexed R-tree, corre-sponding to the R-tree of Figure 1. The root node keptin main memory while other nodes are distributed overthe disks A, B and C. For the multiplexed R-tree, each
1 2 3

4 7 11 6 9 12 5 8 10

Root

Disk A Disk B Disk CFigure 3: R-tree stored on three diskspointer consists of a disk id, in addition to the page idof the traditional R-tree. However, the fanout of thenode is not a�ected, because the disk id can be encodedwithin the 4 bytes of the page id.Notice that the proposed method ful�lls both re-quirements (minLoad and uniSpread): For example,from Figure 3, we see that the `small' query Qs of Fig-ure 1 will activate only one disk per level (disk B, fornode 2, and disk A, for node 7), ful�lling the minimumload requirement. The large query Ql will activate al-most all the disks in every level (disks B and C at level2, and then all three disks at the leaf level), ful�llingthe uniform spread requirement.Thus, with a careful node-to-disk assignment, theMX R-tree should outperform both the methods thatuse super-nodes as well as the ones that use d indepen-dent R-trees. Our goal now is to �nd a good heuristicto assign nodes to disks.By its construction, the multiplexed R-tree ful�llsthe minimum load requirement. To meet the uniformspread requirement, we have to �nd a good heuristic toassign nodes to disks. In order to measure the qualityof such heuristics, we shall use the response time as acriterion, which we calculate as follows.Let R(q) denote the response time for the queryq. First, we have to discuss how the search algorithmworks. Given a range query q the search algorithmneedsa queue of nodes, which is manipulated as follows:Algorithm 1: Range SearchS1. Insert the root node of the R-tree in the processingqueue.



S2. while (more nodes in queue)� Pick a node n from the processing queue.� Process node n, by checking for intersectionswith the query rectangle. If this is a leaf node,print the results; otherwise send a list of re-quests to some or all of the d disks, in parallel.The nodes that the disks retrieve are inserted at theend of the processing queue (FIFO). Since the CPU ismuch faster than the disk, we assume that the CPUtime is negligible (=0) compared to the time requiredby a disk to retrieve a page. Thus, the measure forthe response time is the number of disk accesses thatthe latest disk will require. The `disk-time' diagramhelps visualize this concept better. Figure 4 presentsthe `disk-time' diagram for the query Ql of Figure 1.The horizontal axis is time, divided in slots. The dura-tion of each slot is the time for a disk access (which isconsidered constant). The diagram indicates when eachdisk is busy, as well as the page it is seeking, during eachtime slot. Thus, the response time for Ql is 2, while itsload L(Ql)= 4, because Ql retrieved 4 pages in total.As another example, the `huge' query Qh of Fig-ure 1 results in the disk-time diagram of Figure 5, withresponse time R(Qh)=3, and a load of L(Qh)=7.
Disk C

Disk B

Disk A

time

3

11

9
2

page access time

1 2 3Figure 4: Disk-Time diagram for the large query Ql ofFigure 1.Given the above examples, we have the followingde�nition for the response time:De�nition 1 (Response Time) The response timeR(q) for a query q is the response time of the latestdisk in the disk-time diagram.4 Disk assignment algorithmsThe problem we examine in this section is how to assignnodes to disks, within the Multiplexed R-tree frame-work. The goal is to minimize the response time, to sat-isfy the requirement for uniform disk activation (`uniS-

Disk C

Disk B

Disk A

time

3

11

92

page access time

8

12

10

1 2 3Figure 5: Disk-Time diagram for the huge query Qh ofFigure 1.pread'). As discussed before, the minimumload require-ment is ful�lled.When a node (page) in the R-tree overows, it issplit into two nodes. One of these nodes, say, N0, hasto be assigned to another disk. If we carefully select thisnew disk we can improve the search time. Let diskOf()be the function that maps nodes to the disks they reside.Ideally, we should consider all the nodes that are on thesame level with N0, before we decide where to store it.However, this will require too many disk accesses. Thus,we consider only the sibling nodes N1; : : : ; Nk, that is,the nodes that have the same father Nfather with N0.Accessing the father node comes at no extra cost, be-cause we have to bring it in main memory anyway, toinsert N0. Notice that we do not need to access the sib-ling nodes N1; : : : ; Nk, because all the information weneed about them (extend of MBR (= minimum bound-ing rectangle) and disk of residence) are recorded in thefather node.Thus, the problem can be informally abstracted asfollows:Problem 1: Disk assignmentGiven a node (= rectangle) N0, a set of nodesN1; : : : ; Nk and the assignment of nodes to disks(diskOf() function)Assign N0 to a disk, to maximize the response time onrange queries.There are several criteria that we have considered:Data balance: Ideally, all disks should have the samenumber of R-tree nodes. If a disk has many morepages than others, it is more likely to become a `hotspot' during query processing.Area balance: Since we are storing not only points butalso rectangles, the area of the pages stored on adisk is another factor. A disk that covers a largerarea than the rest is again more likely to become ahot spot.



Proximity: Another factor that a�ects the search timeis the spatial relation between the nodes that arestored on the same disk. If two nodes are intersect-ing, or are close to each other, they should be storedon di�erent disks, to maximize the parallelism.We can not satisfy all these criteria simultaneously, be-cause some of them may conict. Next, we describesome heuristics, each trying to satisfy one or more of theabove criteria. In Section 5 we compare these heuristicsexperimentally.Round Robin (`RR'). When a new page is createdby splitting, this criterion assigns it to a disk ina round robin fashion. Without deletions, thisscheme achieves perfect data balance. For exam-ple, in Figure 6, RR will assign N0 to the leastpopulated disk, that is, disk C.MinimumArea (`MA'). This heuristic tries to balancethe area of the disks: When a new node is cre-ated, the heuristic assigns it to the disk that hasthe smallest area covered. For example, in Fig-ure 6, MA would assign N0 to disk A, because thelight gray rectangles N1, N3,N4 and N6 of disk Ahave the smallest sum of area.
N

N

N

N

N

N

N

N

Disk A

Disk B

Disk C

N
0

1

2

3

5

6

7

8

4

N father

Figure 6: Node N0 is to be assigned to one of the threedisks.Minimum Intersection (`MI'). This heuristic tries tominimize the overlap of nodes that belong to thesame disk. Thus, it assigns a new node to such adisk, so that the new node intersects as little aspossible with the other nodes on that disk. Tiesare broken using one of the above criteria.Proximity Index (`PI'). This heuristic is based on theproximity measure, which we describe in detail inthe next subsection. Intuitively, this measure com-pares two rectangles and assesses the probabilitythat they will be retrieved by the same query. Aswe shall see soon, it is related to the Manhattan (or

city-block or L1) distance. Rectangles with highproximity (i.e., intersecting, or close to each other)should be assigned to di�erent disks. The proximityindex of a new node N0 and a disk D (which con-tains the sibling nodes N1; : : : ; Nk) is the proximityof the most `proximal' node to N0.This heuristic assigns node N0 to the disk with thelowest proximity index, i.e., to the disk with theleast similar nodes with respect to N0. Ties areresolved using the number of nodes (data balance):N0 is assigned to the disk with the fewest nodes.For the setting of Figure 6, PI will assign N0 to diskB because it contains the most remote rectangles.Intuitively, disk B is the best choice for N0.Although favorably prepared, the example of Fig-ure 6 indicates that PI should perform better than therest of the heuristics. Next we show how to calculateexactly the `proximity' of two rectangles.4.1 Proximity measureWhenever a new R-tree node N0 is created, it should beplaced on the disk that contains nodes (= rectangles)that are as dissimilar to N0 as possible. Here we tryto quantify the notion of similarity between two rectan-gles. The proposed measure can be trivially generalizedto hold for hyper-rectangles of any dimensionality. Forclarity, we examine 1- and 2- dimensional spaces �rst.Intuitively, two rectangles are similar if they qualifyoften under the same query. Thus, a measure of sim-ilarity of two rectangles R and S is the proportion ofqueries that retrieve both rectangles. Thus,proximity(R;S) = Prob f a query retrieves both Rand S gor, formallyproximity(R;S) =#of queries retrieving bothtotal# of queries = jqjjQj (1)To avoid complications with in�nite numbers, let's as-sume during this subsection that our address space isdiscrete, with very �ne granularity (The case of a con-tinuous address space will be the limit for in�nitely �negranularity).Based on the above de�nition, we can derive theformulas for the proximity, given the coordinates of thetwo rectangles R and S. To simplify the presentation,let's consider the 1-dimensional case �rst.1-d Case: Without loss of generality, we can normalizeour coordinates, and assume that all our data segmentslie within the unit line segment [0,1]. Consider two line



segmentsR and S where R=(rstart, rend) and S=(sstart,send).If we represent each segment X as the point (xstart,xend), the segments R and S are transformed to 2-dimensional points [12] as shown in Figure 7. In the
x end

xstartx

S-end

R-end

S-startR-start 0.50.50.5

S

R

SR

1

-1 1010 Figure 7: Mapping line segments to pointssame Figure, the area within the dashed lines is a mea-sure of the number of all the possible query segments,ie, queries whose size is � 1 and who intersect the unitsegment. There are two cases to consider, dependingon whether R and S intersect or not. Without lossof generality, we assume that R starts before S (ie.,rstart � sstart)(a) If R and S intersect, let `I' denote their intersec-tion, and let � be its length. Every query that intersects`I' will retrieve both segments R and S. The total num-ber jQj of possible queries is proportional to the trape-zoidal area within the dashed lines in Figure 7; its areais jQj = (2 � 2� 1 � 1)=2 = 3=2. The total number ofqueries jqj that retrieve both R and S is proportional tothe shaded area of Figure 8
0 .5 1 -1 0 1x x-start

x-end

S-start R-end

S

R

δδFigure 8: The shaded area contains all the segmentsthat intersect R and S simultaneouslyjqj = ((1 + �)2 � �2)=2 = 1=2� (1 + 2� �) (2)Thus, for intersecting segments R and S we haveproximity(R;S) = jqj=jQj = 1=3� (1 + 2� �) (3)where � is the length of the intersection

(b) If R and S are disjoint, let � be the distancebetween them (see Figure 9). Then, a query has to
0 .5 1 -1 0 1x x-start

x-end

SR

∆∆
R-end S-startFigure 9: The shaded area contains all the segmentsthat intersect R and Scover the segment (rend, sstart), in order to retrieve bothsegments. The number of such queries is proportionalto the shaded area in Figure 9.b; its area is given byq = 1=2� (1 ��)2 (4)and the proximity measure for R and S isproximity(R;S) = jqj=jQj = 1=3� (1��)2 (5)Notice that the two formulas agree, when R and Sjust touch: in this case, � = � = 0 and the proximity is1=3.n-d Case: The previous formulas can be generalizedby assuming uniformity and independence. For a 2-dspace, let R and S be two data rectangles, with Rx, Rydenoting the x and y projections of R. A query X willretrieve both R and S if and only if (a) its x-projectionXx retrieves both Rx and Sx and (b) its y-projectionXy retrieves both Ry and Sy .Since the x and y sizes of the query rectangles are in-dependent, the fraction of queries that meet both of theabove criteria is the product of the fractions for each in-dividual axis, i.e., the proximity measure proximity2()in two dimensions is given by:proximity2(R;S) =proximity(Rx; Sx)� proximity(Ry ; Sy) (6)The generalization for n-dimensions is straightforward:proximityn(R;S) = nYi=1 proximity(Ri; Si) (7)where Ri and Si are the projections on the i-th axis,and the proximity() function for segments is given byeqs. 3 and 5.The proximity index measures the similarity of arectangle R0 with a set of rectangles R = fR1; : : : ; Rkg.We need this concept to assess the similarity of a newrectangle R0 and a disk D, containing the rectangles of



Symbols De�nitionsa average area of a data rectanglec cover quotientd number of disksdiskOf() maps nodes to disksL(q) total number of pages touchedby q (`Load')N number of data rectanglesP size of a disk page in Kbytesproximityn() proximity of two n-d rectanglesqs side of a query rectangleR(q) response time for query qr(q) relative response time(compared to PI)s speed-upTable 1: Summary of Symbols and De�nitionsthe set R. The proximity index is the proximity of themost similar rectangle in R. Formally:proximityIndex(R;R) = maxRi2R proximityn(R;Ri) (8)where Ri 2 R, and n is the dimensionality of the addressspace.5 Experimental resultsTo assess the merit of the proximity index heuristicover the other heuristics, we ran simulation experi-ments on two-dimensional rectangles. We augmentedthe original R-tree code with some routines to han-dle the multiple disks (e.g., `choose disk()', `proximity()'e.t.c.) The code is written in C under Ultrix and thesimulation experiments ran on a DECstation 5000. Weused both the linear and the quadratic splitting algo-rithm of Guttman [11]. The quadratic algorithm re-sulted in better R-trees, i.e., with smaller father nodes.The exponential algorithm was very slow and it was notused. Unless otherwise stated, all the results we presentare based on R-trees that used the quadratic split algo-rithm.In our experiments we assume that� all d disk units are identical.� the page access time is constant.� the �rst two levels of the multiplexed R-tree (theroot and its children) �t in main memory. Therequired space is of the order of 100 Kb, which is amodest requirement even for personal computers.� the CPU time is negligible. As discussed before,the CPU is two orders of magnitude faster thanthe disk. Thus, for a number of disks we have ex-

amined (1-25 disks), the delay caused by the CPUis negligible.Without loss of generality, the address space was nor-malized to the unit square. There are several factorsthat a�ect the search time. We studied the followinginput parameters, ranging as mentioned: The numberof disks d (5-25); the total number of data rectangles N(25,000 to 200,000); the size of queries qs�qs (qs rangedfrom 0 (point queries) to 0.25); the page size P (1Kb to4Kb).Another important factor, which is derived from Nand the average area a of the data rectangles, is the"cover quotient" c (or "density") of the data rectangles.This is the sum of the areas of the data rectangles inthe unit square, or equivalently, the average number ofrectangles that cover a randomly selected point. Math-ematically: c = N �a. For the selected values of N anda, the cover quotient ranges from 0.25 - 2.0.The data rectangles were generated as follows:Their centers were uniformly distributed in the unitsquare; their x and y sizes were uniformly distributedin the range [0,max], where max = 0.006The query rectangles were squares with side qs.Their centers are uniformly distributed in the unitsquare. For every experiment, 100 randomly generatedqueries were asked and the results were averaged. Dataor query rectangles that were not completely inside theunit square were clipped.The proximity index heuristic performed very wellin our experiments, and therefore is the proposed ap-proach. To make the comparison easier, we normalizethe response time of the di�erent heuristics to that ofthe proximity index and plot the ratios of the responsetimes.In the following subsections, we present (a) a com-parison among the node-to-disk assignment heuristics(MI, MA, RR and PI); recall that they are all withinthe multiplexed R-tree framework. (b) A more detailedstudy of the RR heuristic vs. the PI one. (c) A com-parison of the PI vs. super-node method (d) A study ofthe speed-up achieved by PI.5.1 Comparison of the disk assignmentheuristicsFigure 10 shows the actual response time for each ofthe four heuristics (RR, MI, MA, PI), as a functionof the query size qs. The parameters were as follows:N=25,000 c=0.26, d=10, P=4. This behavior is typ-ical for several combinations of the parameter values:P=1,2,4; c=0.5,1,2; d=5,10,20. The main observationis that PI and MI, the two heuristics that take the spa-tial relationships into account, perform the best. Round



Coverage = 0.26, Page size = 4k, no disks = 10

min area

round robin

min intersection

Proximity index

response time

-3sizeof qside x 10

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

3.60

3.80

4.00

4.20

4.40

4.60

4.80

5.00

0.00 50.00 100.00 150.00Figure 10: Comparison among all heuristics (PI,MI,RRand MA)- response time vs query sizeRobin is the next best, while the MinimumArea heuris-tic has the worst performance.Comparing the MI and PI heuristics, we see thatMI performs as well as the proximity index heuristicfor small queries; for larger queries, the proximity indexwins. The reason is that MI may assign the same diskto two non-intersecting rectangles that are very close toeach other.5.2 Proximity index versus RoundRobinHere we study the savings that the proposed heuristicPI can achieve over the RR. The reason we have chosenRR is because it is the simplest heuristic to design andimplement. We show that the extra e�ort to design thePI heuristic pays o� consistently.
cover=0.26, # rect=25k, # disks=10

prox

P=1k

P=2k

P=4k

ratio of response time

-3qs x 10

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00Figure 11: Relative response time (RR over PI) vs querysize.Figure 11 plots the response time of RR relative toPI as a function of the query size qs. The number ofdisks was d=10, the cover quotient is c=0.26 and the

Page size = 4k, No disks = 10

prox

cov=0.26

cov=0.5

cov=1

cov=2

ratio of response time

-3qs x 10

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

0.00 50.00 100.00 150.00Figure 12: Relative response time (RR over PI) vs querysize.page sizes P varied: 1, 2 and 4Kb. The conclusion isthat the gains of PI increase with increasing page size.This is because the PI heuristic considers only siblingnodes (nodes under the same father); with a larger thepage size, the heuristic takes more nodes into account,and therefore makes better decisions.Figure 12 illustrates the e�ect of the cover quotienton the relative gains of PI over RR. The page size P was�xed at 4Kb; the cover quotient varied (c=0.26, 0.5, 1and 2). Everything else was the same as in Figure 11.The main observation is that r(q) decreases with thecover quotient c. This is explained as follows: For largec, there are more rectangles in the vicinity of the newlycreated rectangle, which means that we need to takemore sibling nodes into account and use more disk unitsto get a better results.An observation common to both Figures is that r(q)peaks for medium size queries. For small queries, thenumber of nodes to be retrieved is small, leaving littleroom for improvement. For huge queries, almost allthe nodes need to be retrieved, in which case the databalance of RR achieves good results.We should re-emphasize that Figures 11 and 12 re-veal only a small fraction of the experimental data wegathered. We also performed experiments with severalvalues for the number of disks d, as well as with thelinear splitting algorithm for the R-tree. In all our ex-periments, PI invariantly outperformed RR.5.3 Comparison with the super-nodemethodIn order to justify our claims about the advantagesof the Multiplexed (`MX') R-tree over the super-nodemethod, we compared the two methods with respect tothe two requirements, `uniform spread' and `minimumload'. The measure for the �rst is the response time



R(q); the measure for the second is the load L(q). Wepresent graphs with respect to both measures.Figure 13 compares the response time of theMultiplexed R-tree (with PI) against the super-node
Coverage = 2, # rect = 100k

Supernode

Multiplexed R-tree

response time

-3Sizeof qside x 102.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

40.00

42.00

44.00

46.00

0.00 50.00 100.00 150.00 200.00Figure 13: Response time vs query size for MultiplexedR-tree, with PI, and for super-nodes. (d=5 disks)method. Notice that the di�erence in performance in-creases with the query size qs. In general, the multi-plexed R-tree outperforms the super-node scheme forlarge queries. The only situation where the super-nodescheme performs slightly better is when there are manydisks d and the query is small. The explanation is that,since d is large, the R-tree with super-nodes has fewerlevels than the multiplexed R-tree; in addition, sincethe query is small, the response time of both trees isthe bounded by the height of the respective tree. How-ever, this is exactly the situation where the super-nodemethod violates the `minimum load' requirement, im-posing a large load on the I/O sub-system and payingpenalties in throughput. In order to gain insight on thee�ect on the throughput, we plot the `load' for eachmethod, for various parameter values. Recall that theload L(q) for a query q is the total number of pagestouched (1 super-page counts as d simple pages). Fig-ure 14 shows the results for the same setting as before(Figure 13). The multiplexed R-tree imposes a muchlighter load: for small queries, its load is 2-3 timessmaller than the load of the super-node method. In-terestingly, the absolute di�erence increases with thequery size.The conclusion of the comparisons is that the pro-posed method has better response time than the super-node method, at least for large queries. In addition, itwill lead to higher throughput, because it tends to im-pose lighter loads on the disks. Both results agree withour intuition, and indicate that the proposed methodwill o�er a higher throughput for a spatial object server.

coverage = 2, # rect = 100k

supernode

multiplexed

load

-3sizeof qside x 100.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

160.00

170.00

180.00

190.00

200.00

210.00

220.00

230.00

0.00 50.00 100.00 150.00 200.00Figure 14: Total number of pages retrieved (load), vs.query size qs - d=5.5.4 Speed-upThe standard measure of the e�ciency of a parallel sys-tem is the speed up s, which is de�ned as follows: LetRd(q) be the response time for the query q on a systemwith d disks. Then: s = R1(q)=Rd(q) We examinedexclusively the multiplexed R-tree method, with the PIheuristic, since it seems to o�er the best performance.Due to space limitations, we report here the conclusionsonly; the details are in a technical report [14]. The ma-jor result was that the speed up is high, eg. 84% of thelinear speedup, for cover quotient c=2, page size P=4and for query side size qs=0.25. Moreover, the speed upincreases with the size of the query.6 ConclusionsWe have studied alternative designs for a spatial objectserver, using R-trees as the underlying �le structure.Our goal is to maximize the parallelism for large queries,and on the same time to engage as few disks as possiblefor small queries. To achieve these goals, we propose� a hardware architecture with one CPU and multi-ple disk, which is simple, e�ective and inexpensive.It has no communication costs, it requires inexpen-sive, general purpose components, it can easily beexpanded (by simply adding more disks) and it cantake easily advantage of large bu�er pools.� a software architecture (termed `Multiplexed' R-tree). It operates exactly like a single-disk R-tree,with the only di�erence that its nodes are care-fully distributed over the d disks. Intuitively, thisapproach should be better than the Super-nodeapproach and the `independent R-trees' approachwith respect to throughput.� the `proximity index' (PI) criterion, which decideshow to distribute the nodes of the R-tree on the d



disks. Speci�cally, it tries to store a new node onthat one disk that contains nodes as dissimilar tothe new node as possible.Extensive simulation experiments show that the PI cri-terion consistently outperforms other criteria (roundrobin and the minimum area), and that it performs ap-proximately as well or better than the minimum inter-section criterion.A comparison with the super-node (= disk strip-ping) approach shows that the proposed method o�ersa better response time for large queries, and that it im-poses lighter load, leading to higher throughput.With respect to the speed up, the proposed methodcan achieve near linear for large queries. Thus, the mul-tiplexed R-tree with the PI heuristic seems to be thebest method to use, in order to implement a spatial ob-ject server.Future research could focus on the use of the prox-imity concept to aid the parallelization of other spatial�le structures.Acknowledgements: The authors would like tothank George Panagopoulos, for his help with the type-setting.References[1] Walid G. Aref and Hanan Samet. Optimization strate-gies for spatial query processing. Proc. of VLDB (VeryLarge Data Bases), pages 81{90, September 1991.[2] D. Ballard and C. Brown. Computer Vision. PrenticeHall, 1982.[3] N. Beckmann, H.-P. Kriegel, R. Schneider, andB. Seeger. The r*-tree: an e�cient and robust ac-cess method for points and rectangles. ACM SIGMOD,pages 322{331, May 1990.[4] J.L. Bentley. Multidimensional binary search treesused for associative searching. CACM, 18(9):509{517,September 1975.[5] D. DeWitt, R.H. Gerber, G. Graefe, M.L. Heytens,K.B. Kumar, and M. Muralikrishna. Gamma - a highperformance dataow database machine. In Proc. 12thInternational Conference on VLDB, pages 228{237,Kyoto, Japan, August 1986.[6] C. Faloutsos and S. Roseman. Fractals for sec-ondary key retrieval. Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems(PODS), pages 247{252, March 1989. also available asUMIACS-TR-89-47 and CS-TR-2242.[7] H. Garcia-Molina and K. Salem. The impact of diskstripping on reliability. IEEE Database Engineering,11(1):26{39, March 1988.[8] I. Gargantini. An e�ective way to represent quadtrees.Comm. of ACM (CACM), 25(12):905{910, December1982.[9] O. Gunther. The cell tree: an index for geometric data.Memorandum No. UCB/ERL M86/89, Univ. of Cali-fornia, Berkeley, December 1986.[10] A. Guttman. New Features for Relational Database Sys-tems to Support CAD Applications. PhD thesis, Uni-versity of California, Berkeley, June 1984.

[11] A. Guttman. R-trees: a dynamic index structure forspatial searching. Proc. ACM SIGMOD, pages 47{57,June 1984.[12] K. Hinrichs and J. Nievergelt. The grid �le: a datastructure to support proximity queries on spatial ob-jects. Proc. of the WG'83 (Intern. Workshop on GraphTheoretic Concepts in Computer Science), pages 100{113, 1983.[13] H.V. Jagadish. Linear clustering of objects with mul-tiple attributes. ACM SIGMOD Conf., pages 332{342,May 1990.[14] Ibrahim Kamel and Christos Faloutsos. Parallel r-trees.Proc. of ACM SIGMOD Conf., pages 195{204, June1992. Also available as Tech. Report UMIACS TR 92-1, CS-TR-2820.[15] Curtis P. Kolovson and Michael Stonebraker. Seg-ment indexes: Dynamic indexing techniques for multi-dimensional interval data. Proc. ACM SIGMOD, pages138{147, May 1991.[16] David B. Lomet and Betty Salzberg. The hb-tree: amultiattribute indexing method with good guaranteedperformance. ACM TODS, 15(4):625{658, December1990.[17] J. Orenstein. Spatial query processing in an object-oriented database system. Proc. ACM SIGMOD, pages326{336, May 1986.[18] J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S.Scott, and G. S. Taylor. Magic: a vlsi layout system. In21st Design Automation Conference, pages 152 { 159,Alburquerque, NM, June 1984.[19] J.T. Robinson. The k-d-b-tree: a search structure forlarge multidimensional dynamic indexes. Proc. ACMSIGMOD, pages 10{18, 1981.[20] N. Roussopoulos and D. Leifker. Direct spatial searchon pictorial databases using packed r-trees. Proc. ACMSIGMOD, May 1985.[21] H. Samet. The Design and Analysis of Spatial DataStructures. Addison-Wesley, 1989.[22] Bernhard Seeger and Per-Ake Larson. Multi-disk b-trees. Proc. ACM SIGMOD, pages 138{147, May 1991.[23] T. Sellis, N. Roussopoulos, and C. Faloutsos. The r+tree: a dynamic index for multi-dimensional objects. InProc. 13th International Conference on VLDB, pages507{518, England,, September 1987. also available asSRC-TR-87-32, UMIACS-TR-87-3, CS-TR-1795.[24] S.Pramanik and M.H. Kim. Parallel processing of largenode b-trees. Trans on Computers, 39(9):1208{1212,90.[25] M. Stonebraker, T. Sellis, and E. Hanson. Rule indexingimplementations in database systems. In Proceedings ofthe First International Conference on Expert DatabaseSystems, Charleston, SC, April 1986.[26] M. White. N-Trees: Large Ordered Indexes for Multi-Dimensional Space. Application Mathematics ResearchSta�, Statistical Research Division, U.S. Bureau of theCensus, December 1981.


