
University of Maryland College ParkInstitute for Advanced Computer Studies TR{91{166Department of Computer Science TR{2813Direction of Arrival and The Rank-RevealingURV Decomposition�E. C. BomanyM. F. Gri�enyG. W. StewartzDecember, 1991ABSTRACTIn many practical direction-of-arrival (DOA) problems the number ofsources and their directions from an antenna array do not remainstationary. Hence a practical DOA algorithm must be able to trackchanges with a minimal number of snapshots. In this paper we describeDOA algorithms, based on a new decomposition, that are not expensiveto compute or di�cult to update. The algorithms are compared withalgorithms based on the singular value decomposition (SVD).
�This report is available by anonymous ftp from thales.cs.umd.edu in the directorypub/reports.yAdvanced Digital Systems, United Technologies Research Center, E. Hartford, CT 06108zDepartment of Computer Science and Institute for Advanced Computer Studies, Universityof Maryland, College Park, MD 20742. This work was supported in part by the Air Force O�ceof Scienti�c Research under Contract AFOSR-87-0188.



Direction of Arrival and The Rank-RevealingURV DecompositionE. C. BomanM. F. Gri�enG. W. StewartDecember, 1991ABSTRACTIn many practical direction-of-arrival (DOA) problems the numberof sources and their directions from an antenna array do not remainstationary. Hence a practical DOA algorithm must be able to trackchanges with a minimal number of snapshots. In this paper we describeDOA algorithms, based on a new decomposition, that are not expen-sive to compute or di�cult to update. The algorithms are comparedwith algorithms based on the singular value decomposition (SVD).1. IntroductionIn many modern subspace-based direction-of-arrival algorithms the eigenvalue de-composition or the SVD is used to compute an estimate of a target's directionin the presence of noise. Unfortunately, the SVD is expensive to compute anddi�cult to update, which severely limits the applicability of the algorithms. Oneway out of the di�culty is to observe that the algorithms require only an estimateof rank and orthogonal bases for the signal and orthogonal (\noise") subspaces.Any decomposition providing these items can be used in the place of the SVD. Inthis paper, we introduce a new decomposition|the URV decomposition|thatprovides what is needed and is cheap to update. Moreover it does not require aninitial decomposition nor does it need to be restarted. The purpose of this paperis to compare the resulting algorithms with algorithms based on the SVD.2. Rank Revealing URV DecompositionsLet X be an m� p matrix of e�ective rank k. By e�ective rank k we mean thatthe singular values of X satisfy �1 � � � � � �k > �k+1 � � � � � �p, where �k is largeenough to be regarded as \signi�cant" and �k+1 is small enough to be regarded1



2 URV Decompositionas \insigni�cant." Then X can be decomposed in the formX = U  R F0 G !V H;where1. R and G are upper triangular,2. The smallest singular value of R is approximately equal to �k,3. qkFk2 + kGk2 �= q�2k+1 + � � ��2p.Since this decomposition makes the rank of X evident on inspection, it is calleda rank revealing URV decomposition [1].In practice the choice of k will depend on the size of F and G. For now wewill consider F and G small if� def= qkFk2 + kGk2 � tol; (2:1)where tol is a user supplied tolerance. We will return to the choice of tol later.3. Updating The URVDIn this section an algorithm is sketched to update a rank revealing URVD of Xwhen a row xH is appended to X; i.e., when X is replaced by �XxH ! : (3:1)Here � is a forgetting factor that damps out the e�ects of the previous data.The updating procedure determines if the rank has either increased, decreased, orremained the same.The �rst step is to compute (yHzH) = xHV , where y is of dimension k. Theproblem then becomes one of updatingS = 0B@ R F0 GyH zH 1CA :



URV Decomposition 3There are two cases to consider. The �rst occurs when �new = q(��)2 + kyk2 �tol. In this case S is reduced to triangular form by a sequence of rotations appliedfrom the left. Since �new is less than or equal to the prescribed tolerance, the newURVD satis�es � � tol, and the approximate rank does not increase. However, itis possible for the rank to decrease. Hence the rank is checked, using a conditionestimator [2]. If it has decreased, then R is de
ated by computing its rank-revealing URV decomposition.The second case occurs when �new > tol and consequently the rank may haveincreased. Since the increase in rank can be at most one, the matrix is transformedto upper triangular form in such a way that the small values in all but the �rstcolumn of F and G are preserved. Then k is increased by one to re
ect the possibleincrease in rank, and the rank of the augmented R is checked as described in thelast paragraph.These updating algorithms require O(p2) time. They can be implemented ona linear array of p processors in such a way that they require only O(p) time. See[1] for details.4. An Adaptive ToleranceIn practice the small singular values of X will come from noise, and the usermust furnish a tolerance to distinguish them from the singular values associatedwith the signal. The simple model described in [1] seems to provide an e�ectivetolerance.Suppose that X has the form X = X̂ + E, where X̂ has rank exactly k. Wewill assume that the errors are roughly of the same size|say �|so that whenthe forgetting factor is taken into account, the ith row of E has the form �n�ieHi ,where the components of the ei are approximately � in size. Let the columns ofV2 (V = [V1V2]) form an orthonormal basis for the error space of X̂. Then ourtolerance should approximate the norm of XV2 = EV2 (remember X̂V2 = 0). Nowthe ith row of EV2 consists of p� k elements of size roughly �n�i�. Consequently,kEV2k2 �= (p � k)�2 nXi=1 �2(n�i) � (p � k)�21� �2 :Consequently the tolerance|call it tol| should be chosen so thattol � s p � k1� �2 �: (4:1)



4 URV DecompositionNote that tol should be chosen somewhat larger than the right-hand side of(4.1) to account for statistical 
uctuations in the elements of E. If the signal-to-noise ratio (SNR) is reasonable, this should not result in an underestimation ofthe rank.5. Updating The DOAThe algorithms we will use to update the DOAs are the minimum-norm (min-norm) method [3] and root-MUSIC. The polynomial rooting form of MUSIC andmin-norm will be used only to evaluate the statistical performance of the algo-rithms and not as a fast algorithm. Note that �nding the roots of a polynomialwill destroy any advantage gained by using the URVD.In our simulations we use the standard data model of M narrowband sourcesimpinging on a uniform linear array composed of N (M < N) identical, equallyspaced, sensors. The narrowband signals with known angular frequency ! impingeon the array from directions, �1, �2, : : : ,�M. The reader is referred to [4] foradditional details on the signal model and signal covariance matrix.We may obtain the estimate of the orthogonal subspace required for DOAestimation from the covariance matrix or from the data matrix. In the later case,the problem becomes one of computing a DOA estimate from the updated datamatrix X̂Hm+1 =  �XHmxHm+1 ! : (5:1)Updating the orthogonal subspace of (5.1) is one of updating a URVD.The �rst step is to update the subspaces of X̂Hm using a rank-revealing URVD.Since the matrix U is not needed for min-norm or MUSIC algorithms, it is notnecessary to update it. After V and k are updated, the direction estimates arethen updated using the min{norm and MUSIC algorithms.6. Simulation ResultsThe data for the simulation consist of four uncorrelated sources impinging on a10-element array from �15�, 0�, 10�, and 20�. The forgetting factor � was chosento be 0.79, representing a 10 snapshot e�ective window, and the tolerance wasset to 3.5. For those simulations using the adaptive tolerance the error, or �, wasset to 1.0{the noise variance. The narrowband source frequency was set to 0.2and the element spacing is half a wavelength. Each of the four sources assumed



URV Decomposition 5SNR (dB) Signal Subspace Noise Subspace0 0:123 � :038 O(10�9)6 0:052 � :019 O(10�9)12 0:023 � :009 O(10�9)18 0:011 � :005 O(10�4)24 0:005 � :002 O(10�5)30 0:002 � :001 O(10�4)Table 6.1: Angle (rads) between SVD and URVD Subspaces for a �xed tolerance,tol=3.5.an uniformly distributed random phase term from �� to �. Moreover, whiteGaussian noise uncorrelated with the sources was added to the data snapshots.The number of updates used in all of the estimates was 10, i.e., a total of 10snapshots.We chose to run two types of experiments, one to check the distance betweensubspaces and the other to test the accuracy of the angle estimates. For bothof these experiments we varied the signal-to-noise ratio from 0 to 30 dB. All ofour experiments were conducted with a 500 record ensemble and the results aretabulated as mean and standard deviation.In our distance measure we established as \truth" the subspaces computedvia the SVD from a 200 snapshot covariance matrix. The distance was thencomputed between the true subspaces and the \converged" subspaces, i.e., theURVD subspaces at the 10th update or snapshot. Thus we compute the distancebetween the SVD and URVD signal subspaces, and the distance between the SVDand URVD noise subspaces. The average angle (in radians) between subspacesas a function of SNR are tabulated in Tables 1 and 2. Table 1 is the averagedistance for a �xed tolerance while Table 2 is the average distance for the adaptivetolerance.These two tables show that the URVD closely approximates the true subspaceeven near 0 dB. In Table 1 the subspace representing the noise is practicallyidentical. The average distance of the signal subspace is smaller with an adaptivetolerance but its interesting to note that the noise subspace distance isn't as smallas for the �xed tolerance case. Nevertheless the URVD closely approximates thetrue subspaces computed from a more expensive SVD algorithm.



6 URV DecompositionSNR (dB) Signal Subspace Noise Subspace0 0:073 � :040 0:020 � :0326 0:028 � :018 0:017 � :01812 0:012 � :009 0:010 � :01018 0:006 � :005 0:005 � :00524 0:003 � :002 0:003 � :00230 0:001 � :001 0:001 � :001Table 6.2: Angle (rads) between SVD and URVD Subspaces for an adaptivetolerance, � = 1:0.The next set of experiments establishes the statistical accuracy of the URVD-based DOA algorithms versus those algorithms based on the SVD of an estimatedcovariance matrix. The estimated covariance matrix is computed from the 10snapshot vectors originally used to update the URVD subspaces. In other wordswe are comparing a block approach versus an updating one. As before we usethe converged estimate of the URVD subspaces. The subspaces are then used inthe root-MUSIC and min-norm algorithms to compute the angle estimates. Inaddition to comparing the SVD versus URVD-based algorithms we compare theangle estimates obtained using both the signal subspace and the noise subspace,with the exception of root-MUSIC which was obtained from the noise subspaceonly. In this experiment we shall only show the mean and standard deviation ofthe source at 10�, which is representative of the other three sources.In Table 3 root-MUSIC is used to estimate the target location. As expectedboth the SVD and URVD-based algorithms have a large standard deviation at0 dB SNR but it appears that the URVD based algorithm is actually better.When the SNR increases the URVD-based algorithm has a slightly higher standarddeviation. Still the estimate of 10� is very good. Note that the entries in the tableare rounded to two decimal places.Next we consider the results using the min-norm algorithm. Table 4 representsthe results of using the signal subspace version of the min-norm algorithm. Table 5on the other hand represents the results of using the noise subspace version of themin-norm algorithm. Both tables show that the URVD-based algorithm exhibitssome bias in its estimate whereas the bias in the SVD-based algorithm is evidentonly at lower SNRs. Again the estimate of target angle is very good.



URV Decomposition 7SNR (dB) SVD URVD0 8:52� 8:19 9:91 � 5:966 10:13 � 0:82 10:08 � 1:5612 10:01 � 0:34 9:99 � 0:4818 10:00 � 0:18 10:00 � 0:2524 10:00 � 0:10 10:00 � 0:1430 10:00 � 0:05 10:00 � 0:06Table 6.3: Root-MUSIC estimate of 10� for a �xed tolerance, tol=3.5.SNR (dB) SVD URVD0 9:95� 2:18 9:13 � 3:876 10:07 � 1:08 9:94 � 1:5212 10:02 � 0:48 9:99 � 0:7418 10:00 � 0:23 9:98 � 0:5424 10:00 � 0:12 9:99 � 0:1530 10:00 � 0:06 10:00 � 0:08Table 6.4: Min-Norm Estimate of 10�-Signal Subspace.SNR (dB) SVD URVD0 9:95� 2:18 9:16 � 3:676 10:07 � 1:08 10:00 � 1:5312 10:02 � 0:48 9:99 � 0:6518 10:00 � 0:23 9:99 � 0:5624 10:00 � 0:12 9:98 � 0:4730 10:00 � 0:06 9:98 � 0:45Table 6.5: Min-Norm Estimate of 10�-Noise Subspace.



8 URV DecompositionSNR (dB) Signal Subspace Noise Subspace0 6:94 � 5:58 5:31 � 5:206 10:04 � 1:99 9:87 � 1:9912 10:02 � 0:86 9:98 � 0:8018 9:99 � 0:38 9:99 � 0:3924 10:00 � 0:20 9:99 � 0:2030 10:00 � 0:10 10:00 � 0:10Table 6.6: URVD Min-Norm Estimate of 10� with adaptive tolerance, � = 1:0.Finally the last table represents only the URVD-based min-norm algorithmusing both signal and noise subspace versions. Table 6 clearly show that themean and standard deviation for either subspace method are about the same.The average angle at 0 dB, however, exhibits a large bias error unlike the �xedtolerance algorithm. And the standard deviations are larger up to 18 dB SNR.It appears that for small SNR's either � = 1:0 was not a good choice or that thesimple model for deriving an adaptive tol may be inappropriate. A statisticalmodel based on the distribution of the noise might be more suitable for lowerSNRs.7. SummaryIn this paper we �rst introduced what is called a rank revealing URV decomposi-tion and then sketched an algorithm to update it. We also showed how to choosethe user supplied tolerance tol. Then we showed that updating the DOA from theorthogonal subspace of a data matrix is essentially one of updating a URVD. Inour simulations we examined two things, the average distance between subspacesand the average estimate of one of four target directions. The distance betweensubspaces showed that on average there is little di�erence between the subspacescomputed from the SVD and those converged subspaces computed from the rankrevealing URVD. The average angle estimate using the URVD behaved very muchlike those computed using the block SVD approach. Though there was some biasevident, it was very small.We should emphasize that it isn't necessary to know the rank for this algo-rithm, the updating algorithm automatically tracks the dimensions of the sub-



URV Decomposition 9spaces. This is unlike the SVD-based algorithms which require knowledge of thedimensions of the subspaces. Furthermore the updating algorithm does not re-quire an initial decomposition|we can simply start with the zero matrix|nordoes it need to be restarted. Through experiments we have found that the URVD-based DOA algorithms are very stable and perform nearly as well as block SVDalgorithms when the number of snapshots are few. Clearly then, updating a highresolution DOA estimate using the URVD o�ers an attractive alternative to anexpensive SVD approach.References[1] G. W. Stewart, \An Updating Algorithm For Subspace Tracking," Universityof Maryland Computer Science Technical Report CS-TR 2494, 1990.[2] N. J. Higham, \A Survey of Condition Number Estimation for TriangularMatrices," Siam Review, 29, pp. 575{596, 1987.[3] R. Kumaresan and D.W. Tufts, \Estimating the Angles of Arrival of MultiplePlane Waves," IEEE Trans. Aerosp. and Elect. Syst., AES-19, pp. 134-139,1983.[4] S. Haykin, ed., Array Signal Processing, Prentice-Hall, Englewood Cli�s, NewJersey, 1984.


