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ABSTRACT

In many practical direction-of-arrival (DOA) problems the number
of sources and their directions from an antenna array do not remain
stationary. Hence a practical DOA algorithm must be able to track
changes with a minimal number of snapshots. In this paper we describe
DOA algorithms, based on a new decomposition, that are not expen-
sive to compute or difficult to update. The algorithms are compared
with algorithms based on the singular value decomposition (SVD).

1. Introduction

In many modern subspace-based direction-of-arrival algorithms the eigenvalue de-
composition or the SVD is used to compute an estimate of a target’s direction
in the presence of noise. Unfortunately, the SVD is expensive to compute and
difficult to update, which severely limits the applicability of the algorithms. One
way out of the difficulty is to observe that the algorithms require only an estimate
of rank and orthogonal bases for the signal and orthogonal (“noise”) subspaces.
Any decomposition providing these items can be used in the place of the SVD. In
this paper, we introduce a new decomposition —the URV decomposition —that
provides what is needed and is cheap to update. Moreover it does not require an
initial decomposition nor does it need to be restarted. The purpose of this paper
is to compare the resulting algorithms with algorithms based on the SVD.

2. Rank Revealing URV Decompositions

Let X be an m x p matrix of effective rank k. By effective rank & we mean that
the singular values of X satisty oy > .-+ > o, > 0441 > -+ > 0, where oy, is large
enough to be regarded as “significant” and ojyq is small enough to be regarded
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as “insignificant.” Then X can be decomposed in the form

— R F H
yev(y g

where
1. R and G are upper triangular,
2. The smallest singular value of R is approximately equal to oy,
3 IPIE NG = \Jop + o

Since this decomposition makes the rank of X evident on inspection, it is called
a rank revealing URV decomposition [1].

In practice the choice of k will depend on the size of ' and (. For now we
will consider F' and ' small if

v = IFI+ G2 < tol, (2.1)

where tol is a user supplied tolerance. We will return to the choice of tol later.

3. Updating The URVD

In this section an algorithm is sketched to update a rank revealing URVD of X
when a row 29 is appended to X; i.e., when X is replaced by

( o ) (3.1)

Here 3 is a forgetting factor that damps out the effects of the previous data.
The updating procedure determines if the rank has either increased, decreased, or
remained the same.

The first step is to compute (yz1) = 21V, where y is of dimension k. The
problem then becomes one of updating

F
G
H
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There are two cases to consider. The first occurs when vypew = /(57)? + ||y]|?> <
tol. In this case S is reduced to triangular form by a sequence of rotations applied
from the left. Since vyey 1s less than or equal to the prescribed tolerance, the new
URVD satisfies v < tol, and the approximate rank does not increase. However, it
is possible for the rank to decrease. Hence the rank is checked, using a condition
estimator [2]. If it has decreased, then R is deflated by computing its rank-
revealing URV decomposition.

The second case occurs when v, > tol and consequently the rank may have
increased. Since the increase in rank can be at most one, the matrix is transformed
to upper triangular form in such a way that the small values in all but the first
column of F'and G are preserved. Then £k is increased by one to reflect the possible
increase in rank, and the rank of the augmented R is checked as described in the
last paragraph.

These updating algorithms require O(p?) time. They can be implemented on
a linear array of p processors in such a way that they require only O(p) time. See
[1] for details.

4. An Adaptive Tolerance

In practice the small singular values of X will come from noise, and the user
must furnish a tolerance to distinguish them from the singular values associated
with the signal. The simple model described in [1] seems to provide an effective
tolerance.

Suppose that X has the form X = X+ E, where X has rank exactly k. We
will assume that the errors are roughly of the same size —say e—so that when

the forgetting factor is taken into account, the sth row of £ has the form g7 el

i
where the components of the e; are approximately ¢ in size. Let the columns of
Vo (V = [V1V2]) form an orthonormal basis for the error space of X. Then our
tolerance should approximate the norm of XV5 = EV; (remember X'V, = 0). Now

the 7th row of EV, consists of p— k elements of size roughly 3" ‘e. Consequently,

~Y = n—i p_ k 62
BV = - ey o) < B2
=1

Consequently the tolerance —call it tol —should be chosen so that

p—k
T €. (4.1)

tol >
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Note that tol should be chosen somewhat larger than the right-hand side of
(4.1) to account for statistical fluctuations in the elements of E. If the signal-to-
noise ratio (SNR) is reasonable, this should not result in an underestimation of
the rank.

5. Updating The DOA

The algorithms we will use to update the DOAs are the minimum-norm (min-
norm) method [3] and root-MUSIC. The polynomial rooting form of MUSIC and
min-norm will be used only to evaluate the statistical performance of the algo-
rithms and not as a fast algorithm. Note that finding the roots of a polynomial
will destroy any advantage gained by using the URVD.

In our simulations we use the standard data model of M narrowband sources
impinging on a uniform linear array composed of N (M < N) identical, equally
spaced, sensors. The narrowband signals with known angular frequency w impinge
on the array from directions, 61, 0, ... 0. The reader is referred to [4] for
additional details on the signal model and signal covariance matrix.

We may obtain the estimate of the orthogonal subspace required for DOA
estimation from the covariance matrix or from the data matrix. In the later case,
the problem becomes one of computing a DOA estimate from the updated data

matrix "
0 BX,
wt = (). (51)
m+1
Updating the orthogonal subspace of (5.1) is one of updating a URVD.

The first step is to update the subspaces of X! using a rank-revealing URVD.
Since the matrix U is not needed for min-norm or MUSIC algorithms, it is not
necessary to update it. After V and k are updated, the direction estimates are
then updated using the min—norm and MUSIC algorithms.

6. Simulation Results

The data for the simulation consist of four uncorrelated sources impinging on a
10-element array from —15°, 0°, 10°, and 20°. The forgetting factor # was chosen
to be 0.79, representing a 10 snapshot effective window, and the tolerance was
set to 3.5. For those simulations using the adaptive tolerance the error, or €, was
set to 1.0-the noise variance. The narrowband source frequency was set to 0.2
and the element spacing is half a wavelength. Each of the four sources assumed
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‘ SNR (dB) H Signal Subspace ‘ Noise Subspace ‘

0 0.123 £ .033 0(107)
6 0.052 £ .019 0(107)
12 0.023 £ .009 0(107)
13 0.011 £ .005 O(1077)
24 0.005 & .002 O(10~7)
30 0.002 £ .001 O(1077)

Table 6.1: Angle (rads) between SVD and URVD Subspaces for a fixed tolerance,
tol=3.5.

an uniformly distributed random phase term from —=x to w. Moreover, white
(Gaussian noise uncorrelated with the sources was added to the data snapshots.
The number of updates used in all of the estimates was 10, i.e., a total of 10
snapshots.

We chose to run two types of experiments, one to check the distance between
subspaces and the other to test the accuracy of the angle estimates. For both
of these experiments we varied the signal-to-noise ratio from 0 to 30 dB. All of
our experiments were conducted with a 500 record ensemble and the results are
tabulated as mean and standard deviation.

In our distance measure we established as “truth” the subspaces computed
via the SVD from a 200 snapshot covariance matrix. The distance was then
computed between the true subspaces and the “converged” subspaces, i.e., the
URVD subspaces at the 10th update or snapshot. Thus we compute the distance
between the SVD and URVD signal subspaces, and the distance between the SVD
and URVD noise subspaces. The average angle (in radians) between subspaces
as a function of SNR are tabulated in Tables 1 and 2. Table 1 is the average
distance for a fixed tolerance while Table 2 is the average distance for the adaptive
tolerance.

These two tables show that the URVD closely approximates the true subspace
even near 0 dB. In Table 1 the subspace representing the noise is practically
identical. The average distance of the signal subspace is smaller with an adaptive
tolerance but its interesting to note that the noise subspace distance isn’t as small
as for the fixed tolerance case. Nevertheless the URVD closely approximates the
true subspaces computed from a more expensive SVD algorithm.
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‘ SNR (dB) H Signal Subspace ‘ Noise Subspace

0 0.073 £.040 0.020 £ .032
6 0.028 £ .018 0.017 £.018
12 0.012 £ .009 0.010 £ .010
18 0.006 £ .005 0.005 £ .005
24 0.003 £ .002 0.003 £ .002
30 0.001 £ .001 0.001 £ .001

Table 6.2: Angle (rads) between SVD and URVD Subspaces for an adaptive

tolerance, € = 1.0.

The next set of experiments establishes the statistical accuracy of the URVD-
based DOA algorithms versus those algorithms based on the SVD of an estimated
covariance matrix. The estimated covariance matrix is computed from the 10
snapshot vectors originally used to update the URVD subspaces. In other words
we are comparing a block approach versus an updating one. As before we use
the converged estimate of the URVD subspaces. The subspaces are then used in
the root-MUSIC and min-norm algorithms to compute the angle estimates. In
addition to comparing the SVD versus URVD-based algorithms we compare the
angle estimates obtained using both the signal subspace and the noise subspace,
with the exception of root-MUSIC which was obtained from the noise subspace
only. In this experiment we shall only show the mean and standard deviation of
the source at 10°, which is representative of the other three sources.

In Table 3 root-MUSIC is used to estimate the target location. As expected
both the SVD and URVD-based algorithms have a large standard deviation at
0 dB SNR but it appears that the URVD based algorithm is actually better.
When the SNR increases the URVD-based algorithm has a slightly higher standard
deviation. Still the estimate of 10° is very good. Note that the entries in the table
are rounded to two decimal places.

Next we consider the results using the min-norm algorithm. Table 4 represents
the results of using the signal subspace version of the min-norm algorithm. Table 5
on the other hand represents the results of using the noise subspace version of the
min-norm algorithm. Both tables show that the URVD-based algorithm exhibits
some bias in its estimate whereas the bias in the SVD-based algorithm is evident
only at lower SNRs. Again the estimate of target angle is very good.



URV DECOMPOSITION

[SNR (dB) || SVD|  URVD|
0 8.52 £ 8.19 | 9.91 +5.96
6 10.13 £ 0.82 | 10.08 £ 1.56
12 1001 + 031 | 9.99 £ 0.48
B 10.00 + 0.18 | 10.00 £ 0.25
24 10.00 + 0.10 | 10.00 £ 0.14
30 10.00 + 0.05 | 10.00 £ 0.06

Table 6.3: Root-MUSIC estimate of 10° for a fixed tolerance, tol=3.5.

[SNR (dB) | SVD | URVD |
0 9.95+ 218 [ 9.13 £ 3.87
6 10.07 £ 1.08 | 9.94 £ 1.52
12 10.02£0.48 | 9.99£0.74
8 10.00 £0.23 | 9.98 £ 0.54
24 10.00 £0.12 | 999 £0.15
30 10.00 £ 0.06 | 10.00 £ 0.08

Table 6.4: Min-Norm Estimate of 10°-Signal Subspace.

[SNR (dB) | SVD | URVD |
0 9.95+2.18 | 9.16 +3.67
6 10.07 = 1.08 | 10.00 + 1.53
12 10.02+0.43 | 9.99 + 0.65
13 10.00 £ 0.23 | 9.99 + 0.56
21 10.00 £ 0.12 | 9.98 £ 0.47
30 10.00 £ 0.06 | 9.98 % 0.45

Table 6.5: Min-Norm Estimate of 10°-Noise Subspace.
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‘ SNR (dB) H Signal Subspace ‘ Noise Subspace ‘

0 6.94 £5.58 5.31 £5.20
6 10.04 £1.99 9.87+1.99
12 10.02 £ 0.86 9.98 £0.80
18 9.99 £0.38 9.99 £0.39
24 10.00 £ 0.20 9.99 £0.20
30 10.00 £0.10 10.00 £0.10

Table 6.6: URVD Min-Norm Estimate of 10° with adaptive tolerance, e = 1.0.

Finally the last table represents only the URVD-based min-norm algorithm
using both signal and noise subspace versions. Table 6 clearly show that the
mean and standard deviation for either subspace method are about the same.
The average angle at 0 dB, however, exhibits a large bias error unlike the fixed
tolerance algorithm. And the standard deviations are larger up to 18 dB SNR.
It appears that for small SNR’s either € = 1.0 was not a good choice or that the
simple model for deriving an adaptive tol may be inappropriate. A statistical
model based on the distribution of the noise might be more suitable for lower

SNRs.

7. Summary

In this paper we first introduced what is called a rank revealing URV decomposi-
tion and then sketched an algorithm to update it. We also showed how to choose
the user supplied tolerance tol. Then we showed that updating the DOA from the
orthogonal subspace of a data matrix is essentially one of updating a URVD. In
our simulations we examined two things, the average distance between subspaces
and the average estimate of one of four target directions. The distance between
subspaces showed that on average there is little difference between the subspaces
computed from the SVD and those converged subspaces computed from the rank
revealing URVD. The average angle estimate using the URVD behaved very much
like those computed using the block SVD approach. Though there was some bias
evident, it was very small.

We should emphasize that it isn’t necessary to know the rank for this algo-
rithm, the updating algorithm automatically tracks the dimensions of the sub-
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spaces. This is unlike the SVD-based algorithms which require knowledge of the
dimensions of the subspaces. Furthermore the updating algorithm does not re-
quire an initial decomposition— we can simply start with the zero matrix — nor
does it need to be restarted. Through experiments we have found that the URVD-
based DOA algorithms are very stable and perform nearly as well as block SVD
algorithms when the number of snapshots are few. Clearly then, updating a high
resolution DOA estimate using the URVD offers an attractive alternative to an
expensive SVD approach.
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