
Can Parallel Algorithms Enhance Serial Implementation?(Extended Abstract)Uzi Vishkin�University of Maryland &Tel Aviv UniversityAbstractThe broad thesis presented in this paper suggeststhat the serial emulation of a parallel algorithm hasthe potential advantage of running on a serial ma-chine faster than a standard serial algorithm for thesame problem. It is too early to reach de�nite conclu-sions regarding the signi�cance of this thesis. How-ever, using some imagination, validity of the thesisand some arguments supporting it may lead to severalfar-reaching outcomes:(1) Reliance on \predictability of reference" in the de-sign of computer systems will increase.(2) Parallel algorithms will be taught as part of thestandard computer science and engineering undergrad-uate curriculum irrespective of whether (or when) par-allel processing will become ubiquitous in the general-purpose computing world.(3) A strategic agenda for high-performance paral-lel computing: A multi-stage agenda, which in nostage compromises user-friendliness of the program-mer's model, and thereby potentially alleviates the so-called \parallel software crisis", is discussed.Stimulating a debate is one goal of our presentation.1 IntroductionGiven a problem, we want to �nd a serial algorithmfor it whose actual running time is fast. On presentlyavailable computer organizations, only a small part ofthe computer memory is fast and the rest is slower (forinstance, main memory is slower than the cache anddisks are slower than the main memory; more levelsare also possible in this hierarchy). Therefore, e�-cient computer implementation of an algorithm thatneeds large memory space may depend on how oftenthe processing element needs to suspend its operation(or more precisely, the total time of such suspensions),waiting for data to be fetched from slow memories.The main concrete observation of the paper is verysimple. Consider the serial emulation of a parallelalgorithm. Just before the serial emulation ofa round of the parallel algorithm begins, thewhole list of memory addresses needed dur-ing this round is readily available; and, wecan start fetching all these addresses from sec-ondary memories at this time, so that these datawill be ready at the fast memories when requested bythe CPU.�Partially supported by NSF grants CCR-8906949 and9111348.

This suggests that a parallel algorithm that is im-plemented properly on a serial machine may pay asmaller penalty for the use of large memory and thusrun faster than a comparable serial algorithm.Our basic argument is that the following idea de-serves careful engineering prototyping: use com-puter systems (or update their design asneeded) so that an implementation of such analgorithm will result in better serial runningtime. Speci�cally:1. Given a list of future memory requests, the mem-ory management system should enable them tobe prefetched (i.e., get the required data into thecache) e�ciently. In other words, the memorymanagement system should be able to take advan-tage of \predictability of reference", in the samespirit as memory management systems take ad-vantage of \locality of reference".2. Given a computer program describing a parallelalgorithm, the compiler should be able to identifyall instructions that can be performed in parallel,and thereby extract a list of memory requests forfuture need, as per item 1 above.Programming languages which enable to expressparallelism should be available. Henceforth, we as-sume that such a programming language is available,since designing such a language is clearly doable. Ac-tually, some languages already exist: FORTRAN 90[MR] and SETL [BCHSZ] are two examples.For the user, this would mean the following. 1.Given a problem, and an algorithm for it, try to re-design the algorithm into an e�cient parallel one. Thegoal is that the redesigned algorithm will run in thesmallest possible number of parallel rounds without in-creasing its total number of operations. Often a su�-ciently parallel algorithm can be derived in a straight-forward way. We remark that for the applications de-scribed in this paper even a moderate level of par-allelism can already be helpful; of course, additionalparallelism may be even better. For example, a serialemulation of a parallel algorithm whose parallel run-ning time is ten times faster than its serial counterpartmay, theoretically, already yield better performance.2. If it is impossible to derive a parallel algorithmfrom a serial one, design a new parallel algorithm forthe problem. We do not expect the possible need fordevelopment of a new parallel algorithm to be a sig-ni�cant disadvantage:



Parallel algorithmics has undergone major develop-ments in the last few years (for brevity, we referencehere only [Ja] and [Vi94]). So parallel algorithms andtechniques for many problems already exist. In anycase, the development of a new parallel algorithm is ofindependent interest, since a general long term trendin computer science is in the direction of parallelismand a new parallel algorithm will be added to a longlasting knowledge base. Recall that optimal parallelalgorithms are those where the total number of oper-ations is the same as the serial time complexity of theproblem being considered. Typically, researchers one�cient parallel algorithms have been interested in de-signing optimal parallel algorithms (even if their run-ning time could not be upper bounded by O(logk n),where n is the input length and k is a constant, asdemonstrated in a 1977 thesis by Eckstein, [RC], [SV],[VS], and [KRS]). A notion of performance which issimilar to the one of optimal algorithms, but not iden-tical, is needed in the context of this paper. A serialemulation of a parallel algorithm is compared with thefastest serial algorithm for the same problem, wherethe serial emulation may have a slightly higher run-ning time. How much higher depends on how advan-tageous the implementation of a parallel algorithm (asadvocated in the present paper) is going to be, takinginto account constant factors. Also, getting the ab-solute fastest possible parallel running time is not assigni�cant, since beyond a certain level of parallelismthe incremental advantage of additional parallelism isvery small.\Thinking in parallel" is an \alien culture" and there-fore, if needed, has to be taught in school. So, an inter-esting outcome of our approach is that parallel algo-rithms would have to be taught as part of the standardcomputer science and engineering undergraduate cur-riculum irrespective of whether (or when) parallel pro-cessing will become ubiquitous in the general-purposecomputing world. This curriculum update should oc-cur in anticipation of future changes since one of theobjectives of such a curriculum is to prepare younggraduates for a life-time professional career. Thesethoughts led the author to work on [Vi94].Prefetching in the context of hardware is discussedin [Jo] and references therein. A recent paper thatadvocates the use of software prefetching is [CKP];a helpful heuristic that guides compilers to identifycases where prefetching is possible is suggested. Thisheuristic will not be able to identify opportunities forprefetching that are described in this paper. However,the literature seems to emphasize another approachfor getting more e�cient algorithms in cases wherelarge memories are involved. As a representative ofthis literature, we select [ACF] which suggests revis-ing algorithms to work more e�ciently on a particu-lar model of memory organization. Such an approachessentially requires programming algorithms in a farless user-friendly language, a trend which is not con-sidered desirable in modern computer science. Com-parison with these works is not entirely appropriatesince [ACF], for instance, assumes a relatively low up-per bound on the throughput of secondary memories,

where throughput is de�ned as the rate at which thesememories can transfer data. In Section 6, we observethat upper bounds on throughput have led to paral-lel programming languages which are not su�cientlyuser-friendly. While some Cray machines, for instance,enable alleviating the throughput problem in the con-text of serial processing (or up to 8 processors), one ofthe main conclusions of this paper is that designersof (massively) parallel computers will appar-ently have to improve the throughput of theirmachines if they want to e�ciently support auser-friendly parallel programming language.We also note that our approach circumvents theneed for on-line paging strategies as in [FKLMSY].Our presentation proceeds as follows. Section 2.1presents the main problem addressed in this paper.Section 2.2 outlines a measurement model, which en-ables quantifying the quality of a solution for the prob-lem. Our broad thesis, and the concrete suggestionfor the main problem, are described in Section 3. Sec-tion 4 discusses our suggestion with respect to con-crete examples. Section 5 extends Section 3. Section6 discusses the relevance of this work for parallel com-putation. Section 7 concludes with yet another broadperspective on our thesis.2 The Model2.1 The essence of the problemA serial algorithm that might be particularly hardto implement e�ciently on a serial machine is one inwhich the memory access in each step depends on theprevious step. We will use several examples in thispaper. Our lead example in the present and the nextsection is the list-ranking problem. Later we use otherexamples. The input for the list-ranking problem con-sists of several disjoint linked lists, whose total numberof elements is denoted n - these lists are stored in somearbitrary order in an array of size n; each element hasa pointer to its successor in the list or is the last in itslist. Only the �rst element in each list does not havea predecessor. The problem is to �nd for each elementthe length of the path, counting pointers, from it tothe end of its list.A trivial serial list-ranking algorithm will performa serial traversal of each linked list. If n is large thenat any given time most of the list will be stored on sec-ondary memory (on a typical computer). Therefore,each advance to a new element of the list may entail is-suing a memory request to secondary memory. Thus,list-ranking may take a considerable time.2.2 A nonincreasing-incremental-costmodelA typical machine has local registers, cache andsome secondary storage (e.g., main memory anddisks). Consider a request issued by the processor foran address. Looking for simpli�cations that will nothide the principles, we de�ne the cost of the requestas the number of lost cycles in which the processorhad to suspend its operations and wait until the con-tents of the address reaches the registers. Speci�cally:(i) If the address lies in the cache, the cost is unittime. (ii) If the address lies in one of the secondary2



memories, the cost is A time, for some A > 1. Expla-nation of assumption (ii). Actually, the request willbe sent towards the secondary memory containing it,then, �rst the address will be transferred from the sec-ondary memory to the cache as part of a \fetch unit",and second, the desired address will be picked andforwarded to the registers. In order to maintain thispaper at the level of principles, we will consistently:(1) ignore the time for forwarding a request to thememory containing it, but will only discuss the pathof the address from the memory towards the registers;also (2) we assume the same cost formula (e.g., sameA) for all secondary memories. Generalization to hi-erarchies of secondary storage, with di�erent retrievaltimes appears to not to be too di�cult. We use theterm fetch unit as a generic name for a memory page,or a memory line, containing the desired element. Forcommon organizations of main memory a typical valuefor A will be 5, [HP]. In case the secondary memory ison a disk these values are drastically higher (by [HP]one million (!) is a typical value). 1The list-ranking example (revisited). Under theseassumptions, the implementation of the serial list-ranking algorithm takes at least nA time in the worstcase, since there are at least n accesses to memory andall of them may be to secondary memory.Consider now r address requests issued by the pro-cessor in r successive clock cycles. Assume that allthese addresses lie in secondary memory. Their COSTis upper bounded by F (r), where F is a monotoni-cally non-decreasing function which satis�es the fol-lowing: (1) F (1) = A, where A is as before; (2)F (i + 1) � F (i) � F (i) � F (i � 1) for i > 1. Oneuseful example is F (r) = A + (r � 1)B, whereB < A. We will use this example below for illus-trative purposes and refer to it as the linear model forF .The reason for the name \nonincreasing incremen-tal cost" is that the value A in the cost formula repre-sents some set-up cost, regardless whether one or morerequests are to be satis�ed, and then for every i > 1requests, the incremental cost of satisfying one more(i.e., an (i + 1)st) request does not increase. In orderto obtain good results for our suggestions, we wouldlike the series F (i)=i) (representing the average cost ofa request, where i requests are made) to converge to asmall number. The next section mentions brie
y sev-eral implementation possibilities, and discusses howthey would a�ect the cost function F .There is one central item which is missing from ourmodel: given an algorithm, how to identify its mem-ory requests? For this, we must have a clear idea as towhat should be de�ned as a singlememory access. Un-fortunately, what exactly is to be considered a singleoperation is an unresolved issue in theoretical com-puter science. (This reason, among others, preventsthe development of \robust theory" for some seriouscomputer science problems where \only constant fac-tors are involved".) The following guidelines help us to1On a typical high performance computer the following ac-cess times are not out of line: registers - 10 ns, cache access20-60 ns, memory access 80-200 ns, and disk access 20 ms.

partially circumvent this \single operation" di�culty.In counting memory accesses below we are guided bythe level of speci�cation of our own description, whichresembles high-level programming language, such asPASCAL. While our count may be insu�cient for an-ticipating the exact number of memory requests, itmay be su�cient for the more modest purpose of acrude comparison of two algorithms which are quitesimilar (as is actually done later). Since the detailsof our count o�er little insight, we defer their pre-sentation to the analyses of the algorithms in a latersection.3 The New SuggestionTake any parallel algorithm for some problem; callit P �ALG. Given some input, denote by T the num-ber of rounds of the algorithmand bywi the number ofoperations performed in round i; 1 � i � T , and sup-pose that each operation involves at most one memoryaccess. Let w =PTi=1wi. Consider a serial emulationof P � ALG as follows. The emulation handles oneround at a time. It proceeds by successively emulat-ing the (\virtual") rounds of the parallel algorithm.At each round i, the wi operations are emulated oneat a time.MAIN OBSERVATION: When the emulation ofround i begins, the whole list of memory addressesneeded in round i is readily available.Before proceeding to an explanation of the main obser-vation, we make a short detour and restate the thesisof this paper in a somewhat broader form.THESIS: A parallel program is potentiallyan invaluable asset for e�cient implementationpurposes. Since a parallel program allows con-current tasks to be processed in any order, oreven simultaneously, it also gives a lot morefreedom to lower level implementations: cache,prefetch, pipelining, compiler, code rearrange-ment, estimators of working set and code be-havior in Operating Systems etc. This 
exi-bility is very structured, and might be moreuseful than information about execution thatis gathered from: (1) statistical analysis of ex-ecution and heuristics; (2) statical analysis of
ow diagrams; and (3) ad-hoc optimizations inrun-time. Further, the parallel paradigm al-lows more than just predicting future memoryrequests. It allows the lower levels to alter theexecution so that it will be best suited to theinternal organization of the lower level. For in-stance, loading several independent tasks intothe registers (which is an instance of the gen-eral prefetch idea), may result in better utiliza-tion of the processing unit.These examples are meant to encourage exploring op-portunities for taking advantage of parallel programs,well beyond what is suggested in this paper.Explanation of the main observation. Similar to theway PRAM algorithms are speci�ed, the wi instruc-tions of the operations to be performed in round i,have serial numbers from 1 to wi. Our experience withparallel algorithms is that in many of them all proces-sors perform essentially the same program, and there-3



fore there is a very concise way for representing par-allel programs. However, in the most general case, wemay need to store these instructions (including the ad-dress that each instruction needs) in some designatedspace. If the cache is not big enough we may need tostore them in some designated part of the secondarymemory, and have in the cache an \instruction area"which is devoted for instructions that are brought intothe cache. We assume that the instructions are inplace (in the secondary memory) by the time roundi�1 ends. The emulation of round i begins by instruc-tion prefetch. The size of the instruction area in thecache dictates the size of the fetch unit containing in-structions (since we want them to be large to minimizetransfer time). Instruction fetch units start migratinginto the instruction area of the cache and continue aslong as it is not full. This suggests that round i will beemulated in several subrounds; each subround has thesame number, say p, of instructions. We refer to theemulation of each subround as a \time window". Soonafter the �rst instruction fetch unit reaches the cache,requests for all the addresses that will be needed in thenext \time window" start to go out. These data (i.e.,contents of these addresses) will be ready at the cachewhen requested by the CPU. For simplicity, the corol-lary below assumes that wi � p (this simpli�es thingssince if wi � p, then the instruction area never �llsup and there is only one subround). It also does notcharge for instruction prefetching, since this shouldoverlap for the most part with data prefetch.MAIN COROLLARY: Satisfying the memory requestsfor round i of algorithmP�ALG will take F (wi) time,and for the whole algorithm,PTi=1 F (wi) time. In thelinear model for F , this will be A + (wi�1)B time forround i and AT + (w�T )B time for the whole algo-rithm. (We do not discuss possibilities for overlappingparallel rounds or subrounds in order to maintain thispaper at the principles level.)The list-ranking example (revisited). Pick an e�-cient parallel algorithm for the list-ranking problemthat runs in O(logn) rounds using a total of O(n)operations, and consider its serial emulation. If nis large then at any given time most of the list islikely to be stored in secondary memory, and satis-fying the memory requests will take time proportionalto (logn)A + nB (in the linear model for F ), asopposed to time proportional to nA in the serial algo-rithm. So, this comparison comes down to the relativevalues of A and B, and to the constant factors in thebound for the list-ranking algorithms involved. Thisis discussed in a later section.The next issue is what values we can expect fromthe cost function F , and what can be done to improveit. In particular, the CHALLENGE is to get the valueof F (i)=i, as i increases, to be as close to 1 (i.e., clockcycle time) as possible. However, even getting thevalue of F (i)=i to be considerably smaller than F (1)will be signi�cant. We discuss several (semi) speci�csuggestions, and hope to stimulate the reader to thinkof others.1. Distributing addresses at random. Assume that thesecondary memory consists of several (say m) sepa-

rate banks, called memory modules, each module con-nected by a separate bus to a separate part of thecache. (Think about a \star graph" with the cache asthe center node and each memory module connectedto it by an edge.) The intuitive idea is to distributethe addresses at random initially among the m mem-ory modules hoping that, with high probability, thewi memory requests will be partitioned nearly equallyamong the memory modules. This random distribu-tion idea is implemented by randomly selecting a hashfunction from some set of easy-to-evaluate hash func-tions, as in [MV]. If wi � m then with high proba-bility we will have no more than say 2wi=m requestsfrom any module (for a formal discussion see Fact 2 in[DM] which is based on an analysis by [KRS]). Sup-pose the random distribution idea is applied and thevalues of wi and m imply the 2wi=m upper bound;with a slight abuse of the linear model, we apply itfor evaluating the transmission time from a module toits cache. Such transmission time is upper bounded byA+2wiB=m. With some assumptions on A and B thiscan be made not to exceed wi. This may mean that,subject to proper assumptions (on m and wi, amongothers), the value of B in the linear model for F maybe 1, re
ecting the rate at which data is supplied bythe caches; this is very attractive. We also note thatthese assumptions may be considerably relaxed. Sincebusses tend to have considerable bandwidth, a singlecache, a single bus and (as before) m memorymodulesmay be su�cient. Also, it appears that the bus trans-fer time is unlikely to be a bottleneck, because thefetch unit size (or, in other words additional data thathave to be transmitted along with a requested datum)is becoming smaller (see [HP]), permitting a more ef-fective use of the bus bandwidth. At the same time,the present approach copes well with the fact thatbus access time is less predictable. Finally, we notethat in case the secondary memory is main memory,this whole suggestion falls within the area of memorybanks and interleaved memories (see the example con-cerning a Cray machine in Section 6 and [HP]). Next,we mention a possibility (which has limited promiseby available technology because of throughput prob-lems): it is possible to use a considerable number ofdisks for memory modules. (It appears that technol-ogy advances in the right direction, since it alreadyenables e�ective use of over a hundred disks. For in-stance, a con�guration of 9 Mass Storage Cards with84 disk drives on each, for a total of 756 disk drives, istheoretically permitted in the Encore Multimax com-puter.) This last option can be combined with directmemory access, as described later. Another intriguingpossibility is that of using, instead of disks, the fastmemories of other computers that are connected bya local area network (LAN), such as an Ethernet, tothe computer on which the algorithm under consider-ation is being run. By [St], a computer on an Ethernetcan send a block of over 1K bytes within roughly thesame time (about 1ms) as sending a single byte; amore up-to-date technology allows several thousandsbytes in a block. While the latency may not improvein the near future, the size of the block is likely toincrease without changing the transmission time, and4



as discussed later, the current paper may provide anadditional incentive for further increase in block size(without decrease in transmission time).2. Use Direct Memory Access. See [Vi93].3. Other kinds of main memory. See [Vi93].4. Locality of reference. Following [HP], we distin-guish two kinds of locality of reference properties. (i)Locality in time: If an item is referenced, it will tendto be referenced again soon; and (ii) Locality in space:If an item is referenced, nearby items tend to be ref-erenced soon. The design of many computer systemsis based on the assumption that the execution of mostcomputer programs satis�es these properties; evalu-ating the validity of this assumption is beyond thescope of this paper. Throughout this paper we elab-orate only on a case where locality in space occurs,since as explained in [Vi93] we see no inherent reasonfor why locality in space should be satis�ed in a \typ-ical" serial program, but not in a serial emulation ofa \typical" parallel program.It is interesting to mention that while the tendency ofmany serial algorithms to demonstrate some locality-of-reference has been experimentally demonstrated,our suggestion for using parallel algorithm for fasterperformance on suitably designed machines is basedon proven (!) predictability-of-reference.4 Two Concrete ExamplesWe discuss two examples. For the �rst, a pencil-and-paper kind of analysis is being used, while for thesecond, experimental results are reported.4.1 First example: Depth-�rst search ofgraphsOur lead example in this subsection is the the prob-lem of depth-�rst search traversal of graphs. A serialand a parallel algorithm will be presented. The maingoal of the example is to show that (for dense graphs)the parallel algorithm can result in faster serial imple-mentation.The reader may wonder why we selected this prob-lem. We o�er several reasons: (1) its simplicity; (2)in the standard serial algorithm for depth-�rst searchmemory access in each step depends on the previousstep, as per the subsection on \the essence of the prob-lem" above; and (3) its selection and analysis reinforcethe claim that a parallel algorithm need not achievepoly-logarithmic time to be useful, and the constantsin the running time analysis play an important role.We start by de�ning the problem.Input: An undirected graph G(V;E). There is a vertexarray of length n, where V = f1; :::; ng and an edge-array of length 2m, where m = jEj. Each vertex vhas a record (using PASCAL terminology, or structureusing C terminology) S(v), where S(v):1 is a pointer tothe edge-array, and the deg(v) edges that are incidenton v occupy locations S(v):1; :::; S(v):1 + deg(v) � 1in the array (we de�ne S(v):2 = deg(v)). In otherwords, an edge connecting vertices u and v has twocopies in the edge-array: (i) < u; v > in the list ofedges incident on vertex u, and (ii) < v; u > in the listof edges incident on vertex v. We assume that each of

these copies has a pointer to the other copy, and thatthe graph has no parallel edges.The depth-�rst search (DFS) numbering problem:Starting from vertex 1, number the vertices in theconnected component of 1 according to the order inwhich they are visited in a depth-�rst traversal of G.We �rst give a standard serial algorithm for thisproblem. De�ne the following recursive routine:DFS(v)dfnumber  dfnumber + 1;dfnumber(v)  dfnumberGo to location S(v):1 in the edge-arrayfor every edge < v; u > doif dfnumber(u) = 0then DFS(u)The algorithm follows by ini-tializing dfnumber(v)  0, for every vertex v, andcalling DFS(1).MEMORY ACCESS analysis. For comparisonof the running time of this algorithm with the par-allel algorithm that follows, we count only memoryaccesses and refrain from counting other operations.This is justi�ed since: (1) in this paper we care onlyabout memory accesses; and (2) the time needed foroperations that do not involve memory access in eachof these algorithms is dominated by memory accessoperations. We will use the commonmethod of analy-sis where each operation (in our case, memory access)is charged to an edge or a vertex. For each vertexv, we have a DFS(v) call, one dfnumber increment,one assignment into dfnumber(v) (we do not countthis as a memory access; note that dfnumber(v) wasbrought into memory just prior to the DFS(v) call; acompiler can be designed not to return dfnumber(v)to memory till the assignment into dfnumber(v); seemore on the issue of writes into secondary memoryusing the \write-back' policy under \memory consis-tency" in the next section), an advance to the edgelist through S(v) (which we count as two memory ac-cesses) and one return from the DFS call (which wecount as one memory access). The return from a DFScall may be counted as more than one memory access,since we have to get back to the same state in the call-ing routine. We count this as one since it will be toour disadvantage in the comparison with the parallelalgorithm. Having n vertices, this amounts to a to-tal of 3n memory accesses. For every copy of an edge< v; u >, we advance to it (a memory access), readdfnumber(u) (a memory access), and check whetherdfnumber(u) 6= 0. This gives 2 memory accesses percopy of an edge, and a total of 4m memory accessesfor all 2m copies. We conclude: the depth-�rst searchmethod takes a total of 3n + 4m memory accessesunder this count.Next, we provide a parallel variant of this algo-rithm. While unaware of a reference, we will not besurprised if this variant has appeared in print. A vari-ant that uses concurrent writes by several processorsto the same memory location is given in [VS], and onethat uses more space is given in a 1977 University ofIowa Doctoral Thesis by D. Eckstein. For each vertex5



v, we maintain a doubly-linked list of all its incidentedges < v; u > whose other vertex (namely u) has notyet been visited by the depth-�rst search traversal.This is done using two pointers: N (< v; u >) (to thenext edge) and P (< v; u >) (to the preceding edge).The main di�erence with respect to the serial DFSabove is that the parallel DFS never advances on anedge leading to a vertex that has already been visited.The recursive routine is:P �DFS(v)dfnumber  dfnumber + 1;dfnumber(v)  dfnumberfor every edge < v; u > pardo (i.e., do in parallel)P (N (< u; v >)) P (< u; v >);N (P (< u; v >)) N (< u; v >)(i.e., discard edge < u; v > from the doubly-linkedlist of u)for every edge < v; u > on the doubly-linked list ofv doP �DFS(u)The algorithm starts with the following initializa-tions: (i) for every vertex v dfnumber(v)  0; and(ii) for every edge < u; v > in the edge-list: (a)P (< u; v >) is the edge preceding < u; v > in theedge list; and (b) N (< u; v >) is the edge succeed-ing < u; v > in the edge list. Finally, the traversal isinitiated by calling P �DFS(1).The only subtle point in showing that this parallelalgorithm is correct is the following: the \discard"operations never applies to two successive edges in anyof the doubly-linked lists.Memory access analysis. The parallel DFS runs inn rounds, each corresponding to some vertex v. Eachround consists of several subrounds. In each subround,several operations can be done in parallel. The follow-ing subrounds are associated with vertex v: a DFS(v)call, one dfnumber increment and one assignment intodfnumber(v), an advance to the edge list using S(v)(which values two memory accesses that have to beperformed one after the other) and one return fromthe DFS call (which is counted as one memory access,in order to be consistent with the analysis of the se-rial algorithm). This provides 3 (non successive) sub-rounds with a single memory access in each. Havingn vertices, this amounts to a total of 3n single sub-rounds each consisting of a single memory access.Next come the subrounds in which parallel operationsare performed. In parallel, for every copy of an edge< v; u >, we advance to it (a memory access), ad-vance to its anti-parallel copy < u; v > (a memoryaccess), advance (simultaneously) to P (< u; v >) andN (< u; v >) (two memory accesses in one subround),and update them. This provides additional 3 sub-rounds, per vertex, with 4 memory accesses per copyof an edge, and a total of 3n subrounds and 8m op-erations. So, the total number of subrounds is 6n andthe total number of operations is 3n + 8m.Comment. From the point of view of the theoryof parallel algorithms, the asymptotic time upperbound of the parallel DFS (including all operations) isO(m=p + n), which means that if the graph is not too

sparse (i.e., m� n) then we have an e�cient parallelalgorithm for up to O(m=n) processors.Comparison of the serial DFS with the par-allel DFS in the linear model for the costfunction F : The serial DFS algorithm will take(3n + 4m)A time, and the parallel DFS will take6nA + (3n + 8m � 6n)B = 6nA + (8m � 3n)Btime. We are ready to try some concrete values: (1)Let A = 10B and m = 100n, then the parallel DFSwill run nearly 5 times faster. (2) Let A = 100B andm = 1000n, then the parallel DFS will run nearly 50times faster.Using an asymptotic comparison style, the compari-son becomes mA memory access time for serial DFSversus nA+mB memory access time in parallel DFS(assuming that m� n and A� B). We feel that thisstyle is less relevant than in \traditional" computerscience applications of asymptotic analysis.4.2 Second example: Su�x treesA more exciting example is the construction of suf-�x trees, a fundamental tool in text processing. Thesu�x tree data-structure is probably the most usefulmechanism known for �nding initial similarities withina very long string of characters, and as such is stronglyrelated to the development of molecular sequence com-parison algorithms, as per the grand challenges of theU.S. High Performance Computing and Communica-tion Program. The linear-time serial algorithms (by P.Weiner, or E.M. McCreight [Mc]), which are consid-ered theoretically superior because of the asymptoticupper bounds on their running time, seem to su�erfrom the following problem: their memory access of-ten depends on the preceding step, as in the serialdepth-�rst search, or serial list-ranking algorithms.Next, we review some preliminary experimentalwork that, using simulations, compares McCreight'sserial algorithm against a serially-emulated parallel al-gorithm [AILSV]. Henceforth, these algorithms arereferred to as Algorithm M and Algorithm P, respec-tively. We considered it more appropriate to base ourexperiment with AlgorithmM on code written by oth-ers, rather than by ourselves. William Chang kindlyagreed to provide us with his code for Algorithm M.We �rst sum up the experimental results, then givesome more information about the experiments them-selves, and �nally brie
y discuss the relevance of theresults. Since the problem of su�x tree construction isof particular interest to us where the input is large andthe data structures required by an algorithm do not �tinto the fast memory of a computer, our experimentsused an input string of length 106. We assumed a fastmemory whose number of pages is 2K, each of size1K bytes. We are aware that larger fast memories areavailable but found it more convenient to experimentwith these sizes.Using the linear model for the cost function F forcomparing the two algorithms, we found that the twoalgorithms had similar performance where the ratioA=B was around 250.For A=B = 10, Algorithm M was 14:14 times fasterthan algorithm P.For A=B = 102, Algorithm M was 2:26 times faster6



than algorithm P.For A=B = 103, Algorithm P was 4:15 times fasterthan algorithm M.We also used another cost model, which will be de-scribed by the function G. The function G will sumup the cost of the memory accesses of an algorithm, asfollows: (i) if an address request hits the fast memory,the cost is B; (ii) if a single address request misses thefast memory and has to be fetched from the slow mem-ory, the cost is A (so far this is similar to the linearcost model and A=B may be 106); (iii) consider r ad-dress requests issued by the processor in r successiveclock cycles, and assume that all these addresses liein the slow memory; then their cost is dr=CeA, whereA=C > B.This function G captures the possibility of forwardingup to C addresses to the fast memory for the priceof forwarding one address. Additional justi�cation forusing this cost function is given later in this subsec-tion.For A=B = 106, and C = 300, Algorithm P wasnot slower than algorithm M.For C = 103, Algorithm P was 2:76 times faster thanalgorithm M.For C = 104, Algorithm P was 27:38 times faster thanalgorithm M.For C = 105 Algorithm P was 243:93 times faster thanalgorithm M.More on the experiment. Cache policies: the resultsreported are for LRU (the page to be removed fromthe fast memory is the least recently used). We triedalso FIFO (�rst-in �rst-out), and AlgorithmM did nothave better performance than with LRU. Source of in-put: we used �les of alphabet symbols only that wereextracted from the most recent messages on bulletinboards of two electronic news groups (comp.paralleland comp.theory). We tried also �les whose characterswere generated by a random function and AlgorithmM had slightly more fast memory misses on these ran-domly generated kind of input. Alphabet size was 52(all upper and lower case letters).The values with respect to the linear cost functionF are related to performance of disks, as discussed inthe previous section. The �gures on disk performancejusti�ed considering the function F for values of A=Bup to 103.The possibility of using the fast memories of othercomputers which are connected by a local area net-work justi�es the use of the second cost function Gas a �rst approximation (note that where C = A=B,the functions G and the linear cost function for Fdescribe similar costs). There will be a \master" com-puter which actually runs the algorithm. Having acomputer on an Ethernet sending back a block withat least 1:2K bytes in response to memory requestssent to it by the master computer can be done withinroughly the same time (about 1ms) as sending a sin-gle byte. Therefore, the total time for handling 300words (of 4 bytes each) is only slightly higher than forhandling a single word. This makes the preliminaryresults reported for C = 300 appear possible by avail-

able computers and local area networks. While it isnot clear whether latency will decrease in the near fu-ture the size of the block is likely to increase (possibly,without changing the transmission time) and the cur-rent paper may give additional motivation for furtherimprovements in this direction. Our experimental re-sults actually demonstrate that such development maylead to an implementation of Algorithm P which isseveral orders of magnitude faster than that ofAlgorithm M.4.3 Additional examplesList ranking. For the list-ranking problem, we ac-tually suggest an algorithm which is referred to, in[CV], as the \Basic list-ranking algorithm". This al-gorithm runs in O(logn log logn) time and O(n) op-eration, and the constant factors hidden by the big-oh notation are 8 for both time and operations. Thereason for mentioning this algorithm is that it seemsto imply fewer operations than in other parallel list-ranking algorithms and at the same time provide con-siderable parallelism. The count was done in a sim-ilar way to the depth-�rst search example above andis omitted here. The total number of operations ofthe serial list-ranking algorithm given earlier is 2. So,for the linear model for F , the comparison is between8(logn log logn)A + 8nB and 2nA. The simple ran-domized algorithms in [AM] and [Vi84b] achieve alsosimilar performance. See [Vi93] for another example.5 Caveats, Extensions and Discussion� Memory consistency. The main issue is how toavoid a situation where an outdated copy of an addressis interpreted as having a correct value. See [Vi93].� How much parallelism depends on the serial ma-chine and the algorithms. Figuring out which parallelalgorithm yields the fastest running time on a serialcomputer, will involve a trade-o� between the level ofparallelism and the total number of operations (includ-ing constant factors).� Throughput. Our aforementioned challenge canbe stated in terms of \throughput": secondary memo-ries need to be capable of providing data at a su�cientrate for the processing unit. The idea of randomdistribution of addresses on Cray-like memo-ries appears to meet these throughput require-ments, as explained in the next paragraph.� Hardware technology for implementation of ran-dom distribution of addresses. See [HP] regarding thethe technology of memory banks. Since 1982 Cray ma-chines have multiple memory pipelines. On the CrayX-MP (see [HJ]), one can make from 1 to 64 memoryrequests at a time. These memory requests do nothave to be in any pattern, but can be scattered acrossmemory. The requests are sent o� serially, one perclock cycle, and after a latency of about 17 clock cy-cles (this can depend on collisions), the �rst elementcomes back. After that, the remaining elements comeback one per clock cycle (again, there can be furtherdelays due to collisions). The requests are guaranteedto come back in the same order as they were made.This means that if one can create blocks of memoryrequests (using parallelism), they can actually be re-ceived at an e�ective throughput of one request per7



clock cycle. The memory is actually organized intomany banks, such that if all the requests are to thesame bank, the throughput is signi�cantly slower. Fi-nally, we note that such memories are quite expensive.� Languages and compiler technology. The �nalgoal is that the compiler will be able to extract from auser-friendly program as much information as possiblefor predicting future memory address needs. This callsfor an e�ort concerning both languages and compilers.Given a programming language, the challenge for com-piler writers is well de�ned; the work by [CKP] is inthis spirit. Next, consider design of programming lan-guages which will enable expressing relevant informa-tion, that will later be used by the compiler to improveits predictions. A language in which parallelism canbe expressed, will make it possible for a compiler tocreate the code for predicting memory accesses in thecompiled program (due to parallelism) as advocatedin the present paper. In addition, it will be nice to al-low the programmer to have the option to express allhis/her knowledge concerning memory access depen-dencies using the programming language (if he/she sodesires, and not at the expense of user-friendliness).� Looser parallel speci�cations are su�cient. Ob-serve that the whole processor allocation, which is anessential part of a PRAM algorithm, will typically notbe such a serious issue for extracting the parallelismneeded here. A starting point for a weaker model thanthe PRAM for describing parallelism might be Infor-mal Data-Parallelism, (originally presented in [SV] us-ing Brent's theorem), as per [Vi94]; this has also beencalled the work-time presentation paradigm for parallelalgorithms, as elucidated by the author in [Ja]. Thisparadigm suggests preceding a \full-PRAM" descrip-tion of a parallel algorithm by a high-level descriptionof work and time only. Speci�cally, this includes theoperations to be performed at each parallel round, andeven this can be done in an implicit way. Such a high-level description might be enough here.6 Relevance for Parallel ComputersMost of the above considerations are valid also forthe design of a parallel machine that will support thePRAM model of parallel computation.This paragraph includes some background. As ex-plained elsewhere (e.g., [Vi84a]), the PRAM shouldbe viewed as a programmer's model for a parallel ma-chine and not as a physical parallel machine, and im-provement in the parallel running time of a PRAMalgorithm can bene�t us in reducing the actual run-ning time in several ways. Speci�cally, [Va] (also in aCACM 1990 paper by L. Valiant) and [Vi84a] advo-cate slackness in processors as explained next. Sup-pose we are given an e�cient PRAM algorithm anda (real) parallel machine with p1 processors, on whichwe wish to simulate the algorithm. Suppose that thePRAM algorithm is speci�ed for p2 PRAM proces-sors. (It is a trivial observation that such an algorithmscales also into an e�cient algorithm for < p2 proces-sors.) In this case, processor slackness is de�ned asthe ratio p2=p1. Informally, each of the above papersspeci�es ways for more e�cient simulation by the realmachine. Even if p1 is �xed, having larger and larger

p2 (and therefore larger processor slackness) leads toimprovements in e�ciency. Several parallel machinedesigns take advantage of processor slackness; this in-cludes the 1981 HEP design by B.J. Smith and themore recent design [ACCKPS], as well as [AKP]In other words, the concept of processor slacknessconsiders parallelism as a resource. Our thesis takesadvantage of this resource for the degenerate casewhere the computer has a single processor. Infor-mally, when replacing 1 by p1 processors, requests toremote memories will be managed e�ciently by usingsimulations of parallel algorithms on a parallel ma-chine with p1 processors. Namely, processor slacknesstogether with a properly designed memory manage-ment system can also be used in a parallel machinefor circumventing memory requests whose implemen-tation is very costly, especially where locality of ref-erence is not satis�ed. Throughput will become evenmore critical than in the context of serial algorithms:retrieval of memory should be done at a rate com-patible with the speed of the processors. It is in-teresting to mention that following experiments withimplementation of parallel sorting algorithms, it hasbeen observed that \throughput bottlenecks of thisnature" exist in modern parallel machines such as theCM-2, by Thinking Machines Corporation [BLMPSZ].Throughput bottlenecks occurred even at the Cray Y-MP [ZB], when interpreted as a parallel machine with512 processors. (However, considering the Cray X-MPand Cray Y-MP machines as having between 1 and 8Cray-1-like CPUs [HJ], as we do in the present pa-per, alleviates throughput bottlenecks.) There mightbe some insight in observing that, for both serial andparallel processing, alleviating throughput bottlenecksis helpful for supporting a user-friendly language.Building a parallel machine that supports thePRAM is a considerable challenge. It is possible thatadoption of our more concrete ideas for serialcomputers will enable a more gradual tran-sition into machines that support a \virtualPRAM" (i.e., as a programmer's model). Thisis since developing the right tools for the memoryman-agement system of a serial computer may be a �rststep towards building a general-purpose parallel com-puter that uses such system. This gradual approachhas the following potential advantage relative to someongoing parallel machine projects. Ideally, all stagesof a parallel machine project should aim at support-ing a single (\robust") parallel programming language.Identifying a robust languagemight be the most signif-icant challenge facing parallel computation today. Tounderstand the importance of this issue, assume thatwe fail to de�ne such a robust parallel language andimagine a computer industry decision maker that con-siders whether to invest several human-years in writ-ing code for a certain parallel programming language.By the time the programming project will have been�nished, the language is likely to become, or about tobecome, obsolete. The only reasonable business de-cision under this circumstances is to write code forsome existing robust programming language, whichpresently would mean a serial programming language.This lack of a robust language is part of the \par-8



allel software crisis" [P]. Following a meeting ofan industry advisory board panel [P], pessimism isexpressed about reaching agreement on a robust par-allel programming language, because of the following.While, there seems to be agreement that a shared-memory (\PRAM-like") language will be ideal fromthe user end, present parallel machines require thatparallel programs include considerably more machine-speci�c information for getting the best performance.It remains to be seen whether their design can a�ordsupporting a programming language that will be con-sidered satisfactory by \the user". Unfortunately, ma-chines that do not support a robust parallel program-ming language may remain an academic exercise, sincefrom the industry perspective, the test for successfulparallel computers is their usability at the end. Incontrast to this, our multi-stage approach is based onusing a shared-memory parallel programminglanguage already in its �rst stage.The companion paper [Vi92] considers this multi-stage approach and adds the following perspective.The new generation of \serial machines" is far frombeing literally serial. Each possible state of a ma-chine can be described by listing the contents of allits data cells, where data cells include memory cellsand registers. For instance, pipelining with, say, ssingle cycle stages may be described by associating adata cell with each stage; all s cells may change in asingle cycle of the machine. More generally, a tran-sition function may describe all possible changes ofdata cells that can occur in a single cycle; the num-ber of data cells that change in a cycle de�ne themachine-parallelism of the cycle; a machine is liter-ally serial if this number is never more than one. Weclaim that literally serial machines hardly exist andthat considerable increase in machine-parallelism is tobe expected. Machine-parallelism comes in such formsas pipelining, or in connection with the Very-Long In-struction Word (VLIW) technology, to mention justtwo. Still the \serial programmer's model" of com-puters as being taught in courses on algorithms anddata structure in a standard computer science cur-riculum has not changed in the last several decades.The current paper suggests that parallel algorithmscan bene�t this new generation of machines, if thesemachines are adapted to be programmable by parallelalgorithms and be designed to take advantage of theirparallelism (by mapping \program parallelism" intotheir machine-parallelism). Another necessary condi-tion for this to happen is that users will be capableto design parallel algorithms. Parallelism is a concernwhich is missing from \traditional" algorithm design,and the skill of designing parallel algorithms is basedon �rst principles. Therefore, users should be taughtthis skill in school. Perhaps the main contributionof this paper is in demonstrating that parallel algo-rithms can be exploited to make more e�ective use ofmachine-parallelism irrespective of whether the ma-chine itself is classi�ed as \massively parallel", or even\parallel". Since the computer science curriculum ismeant to prepare young graduates for a life time ca-reer, it is timely to put on the agenda a curriculumupdate to include the topic of parallel algorithms.

In [Vi88] I made the following prediction: A fu-ture parallel computer, which does not support thePRAM model of parallel computation (as a program-mer's model), will not be competitive, as a general-purpose computer, with the strongest non parallelcomputer that will become available at the same time.This prediction is yet to be proven wrong, but is therereason for optimism? In recent years, multiproces-sors based on inexpensive microprocessors, each witha large local memory (\shared nothing architectures"),allowed drastic increase in the size of fast memories,and led to a success of parallel data base systems [DG],increasing the interest of that community in faster par-allel computation. Hash partitioning of data and hashjoin appear to become main stream techniques in thiscontext. Note that [MV] actually suggested hash par-titioning of memory addresses among the local mem-ories of parallel processors as a general method foremulating a PRAM programmer's model on a simi-lar shared nothing architecture! Facing problemswhich are similar to possible bottlenecks tar-geted by commercial data base applications isa reason for some optimism.7 ConclusionWe encourage research in several directions. Weencourage more experimental research to study theadvantage of serially emulating more complicated par-allel algorithms in order to cope with delays caused bycomputer memories. The present paper reports suchwork for the su�x tree problem; we encourage othersto do the same for other problems.This paper provides some evidence that prefetch-ing will increase the e�ectiveness of serial machines.The challenge is twofold: (1) Advance the prefetchingfacility in hardware; and (2) �nd more ways to takeadvantage of software prefetching, either in the spiritof [CKP] or the present paper.The �ne structure of parallel programs may be ben-e�cial in ways which are beyond the scope of this pa-per. Our thesis, in section 3, calls for exploring suchopportunities.AcknowledgementsThe su�x tree programmingwas done by SuleymanSahinalp. The code for McCreight's algorithm waswritten by William Chang, while at Berkeley. GuyBlelloch led me to the information about the CrayX-MP machine. Scott Carson led me to the informa-tion about the Encore Multimax computer. OlafurGudmundsson was very helpful in providing technicaldata. Yossi Gil and Yossi Matias were particularlyenergetic in making thoughtful suggestions. I also gotnumerous useful comments from Richard Cole, MikeFranklin, Joseph J�aJ�a, Hong Che Liu, Bill Pugh, JimPurtilo, and Neal Young. All this help is gratefullyacknowledged.References[AKP] F. Abolhassan, J. Keller and W.J. Paul. On thecost-e�ectiveness of PRAMs. In Proc. 3rd IEEESymp. on Par. and Dist. Proc., 1991, Dallas, TX.9
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