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Abstract

The broad thesis presented in this paper suggests
that the serial emulation of a parallel algorithm has
the potential advantage of running on a serial ma-
chine faster than a standard serial algorithm for the
same problem. It is too early to reach definite conclu-
stons regarding the significance of this thesis. How-
ever, using some imagination, validity of the thesis
and some arguments supporting it may lead to several
far-reaching outcomes:

(1) Reliance on “predictability of reference” in the de-
sign of computer systems will increase.

(2) Parallel algorithms will be taught as part of the
standard computer science and engineering undergrad-
uate curriculum irrespective of whether (or when) par-
allel processing will become ubtquitous in the general-
purpose computing world.

(3) A strategic agenda for high-performance paral-
lel computing: A multi-stage agenda, which in no
stage compromises user-friendliness of the program-
mer’s model, and thereby potentially alleviates the so-
called ”pamllel software crisis”, is discussed.
Stimulating a debate is one goal of our presentation.

1 Introduction

Given a problem, we want to find a serial algorithm
for it whose actual running time is fast. On presently
available computer organizations, only a small part of
the computer memory is fast and the rest is slower (for
instance, main memory is slower than the cache and
disks are slower than the main memory; more levels
are also possible in this hierarchy). Therefore, effi-
cient computer implementation of an algorithm that
needs large memory space may depend on how often
the processing element needs to suspend its operation
(or more precisely, the total time of such suspensions),
waiting for data to be fetched from slow memories.
The main concrete observation of the paper 1s very
simple. Consider the serial emulation of a parallel
algorithm. Just before the serial emulation of
a round of the parallel algorithm begins, the
whole list of memory addresses needed dur-
ing this round is readily available; and, we
can start fetching all these addresses from sec-
ondary memories at this time, so that these data
will be ready at the fast memories when requested by

the CPU.
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This suggests that a parallel algorithm that is im-
plemented properly on a serial machine may pay a
smaller penalty for the use of large memory and thus
run faster than a comparable serial algorithm.

Our basic argument is that the following idea de-
serves careful engineering prototyping: use com-
puter systems (or update their design as
needed) so that an implementation of such an
algorithm will result in better serial running
time. Specifically:

1. Given a list of future memory requests, the mem-
ory management system should enable them to
be prefetched (i.e., get the required data into the
cache) efficiently. In other words, the memory
management system should be able to take advan-
tage of “predictability of reference”, in the same
spirit as memory management systems take ad-
vantage of “locality of reference”.

2. Given a computer program describing a parallel
algorithm, the compiler should be able to identify
all instructions that can be performed in parallel,
and thereby extract a list of memory requests for
future need, as per item 1 above.

Programming languages which enable to express
parallelism should be available. Henceforth, we as-
sume that such a programming language is available,
since designing such a language 1s clearly doable. Ac-
tually, some languages already exist: FORTRAN 90
[MR] and SETL [BCHSZ] are two examples.

For the user, this would mean the following. 1.
Given a problem, and an algorithm for it, try to re-
design the algorithm into an efficient parallel one. The
goal is that the redesigned algorithm will run in the
smallest possible number of parallel rounds without in-
creasing its total number of operations. Often a suffi-
ciently parallel algorithm can be derived in a straight-
forward way. We remark that for the applications de-
scribed in this paper even a moderate level of par-
allelism can already be helpful; of course, additional
parallelism may be even better. For example, a serial
emulation of a parallel algorithm whose parallel run-
ning time is ten times faster than its serial counterpart
may, theoretically, already yield better performance.
2. If it 1s impossible to derive a parallel algorithm
from a serial one, design a new parallel algorithm for
the problem. We do not expect the possible need for
development of a new parallel algorithm to be a sig-
nificant disadvantage:



Parallel algorithmics has undergone major develop-
ments in the last few years (for brevity, we reference
here only [Ja] and [Vi94]). So parallel algorithms and
techniques for many problems already exist. In any
case, the development of a new parallel algorithm is of
independent interest, since a general long term trend
in computer science is in the direction of parallelism
and a new parallel algorithm will be added to a long
lasting knowledge base. Recall that optimal parallel
algorithms are those where the total number of oper-
ations is the same as the serial time complexity of the
problem being considered. Typically, researchers on
efficient parallel algorithms have been interested in de-
signing optimal parallel algorithms (even if their run-

ning time could not be upper bounded by O(logk n),
where n is the input length and % is a constant, as
demonstrated in a 1977 thesis by Eckstein, [RC], [SV],
[VS], and [KRS]). A notion of performance which 1s
similar to the one of optimal algorithms, but not iden-
tical, is needed in the context of this paper. A serial
emulation of a parallel algorithm is compared with the
fastest serial algorithm for the same problem, where
the serial emulation may have a slightly higher run-
ning time. How much higher depends on how advan-
tageous the implementation of a parallel algorithm (as
advocated in the present paper) is going to be, taking
wmto account constant factors. Also, getting the ab-
solute fastest possible parallel running time is not as
significant, since beyond a certain level of parallelism
the incremental advantage of additional parallelism is
very small.

“Thinking in parallel” is an “alien culture” and there-
fore, if needed, has to be taught in school. So, an inter-
esting outcome of our approach is that parallel algo-
rithms would have to be taught as part of the standard
computer science and engineering undergraduate cur-
riculum irrespective of whether (or when) parallel pro-
cessing will become ubiquitous in the general-purpose
computing world. This curriculum update should oc-
cur in anticipation of future changes since one of the
objectives of such a curriculum is to prepare young
graduates for a life-time professional career. These
thoughts led the author to work on [Vi94].

Prefetching in the context of hardware 1s discussed
in [Jo] and references therein. A recent paper that
advocates the use of software prefetching is [CKPJ;
a helpful heuristic that guides compilers to identity
cases where prefetching is possible is suggested. This
heuristic will not be able to identify opportunities for
prefetching that are described in this paper. However,
the literature seems to emphasize another approach
for getting more efficient algorithms in cases where
large memories are involved. As a representative of
this literature, we select [ACF] which suggests revis-
ing algorithms to work more efficiently on a particu-
lar model of memory organization. Such an approach
essentially requires programming algorithms in a far
less user-friendly language, a trend which is not con-
sidered desirable in modern computer science. Com-
parison with these works 1s not entirely appropriate
since [ACF], for instance, assumes a relatively low up-
per bound on the throughput of secondary memories,

where throughput is defined as the rate at which these
memories can transfer data. In Section 6, we observe
that upper bounds on throughput have led to paral-
lel programming languages which are not sufficiently
user-friendly. While some Cray machines, for instance,
enable alleviating the throughput problem in the con-
text of serial processing (or up to 8 processors), one of
the main conclusions of this paper is that designers
of (massively) parallel computers will appar-
ently have to improve the throughput of their
machines if they want to efficiently support a
user-friendly parallel programming language.

We also note that our approach circumvents the
need for on-line paging strategies as in [FKLMSY].

Our presentation proceeds as follows. Section 2.1
presents the main problem addressed in this paper.
Section 2.2 outlines a measurement model, which en-
ables quantifying the quality of a solution for the prob-
lem. Our broad thesis, and the concrete suggestion
for the main problem, are described in Section 3. Sec-
tion 4 discusses our suggestion with respect to con-
crete examples. Section 5 extends Section 3. Section
6 discusses the relevance of this work for parallel com-
putation. Section 7 concludes with yet another broad
perspective on our thesis.

2 The Model

2.1 The essence of the problem

A serial algorithm that might be particularly hard
to implement efficiently on a serial machine is one in
which the memory access in each step depends on the
previous step. We will use several examples in this
paper. Our lead example in the present and the next
section is the list-ranking problem. Later we use other
examples. The input for the list-ranking problem con-
sists of several disjoint linked lists, whose total number
of elements is denoted n - these lists are stored in some
arbitrary order in an array of size n; each element has
a pointer to its successor in the list or is the last in its
list. Only the first element in each list does not have
a predecessor. The problem is to find for each element
the length of the path, counting pointers, from it to
the end of its list.

A trivial serial list-ranking algorithm will perform
a serial traversal of each linked list. If n is large then
at any given time most of the list will be stored on sec-
ondary memory (on a typical computer). Therefore,
each advance to a new element of the list may entail is-
suing a memory request to secondary memory. Thus,
list-ranking may take a considerable time.

2.2 A nonincreasing-incremental-cost
model

A typical machine has local registers, cache and
some secondary storage (e.g., main memory and
disks). Consider a request issued by the processor for
an address. Looking for simplifications that will not
hide the principles, we define the cost of the request
as the number of lost cycles in which the processor
had to suspend 1its operations and wait until the con-
tents of the address reaches the registers. Specifically:
(i) If the address lies in the cache, the cost is unit
time. (ii) If the address lies in one of the secondary



memories, the cost is A time, for some A > 1. Fzpla-
nation of assumption (ii). Actually, the request will
be sent towards the secondary memory containing it,
then, first the address will be transferred from the sec-
ondary memory to the cache as part of a “fetch unit”,
and second, the desired address will be picked and
forwarded to the registers. In order to maintain this
paper at the level of principles, we will consistently:
(1) ignore the time for forwarding a request to the
memory containing it, but will only discuss the path
of the address from the memory towards the registers;
also (2) we assume the same cost formula (e.g., same
A) for all secondary memories. Generalization to hi-
erarchies of secondary storage, with different retrieval
times appears to not to be too difficult. We use the
term fetch unit as a generic name for a memory page,
or a memory line, containing the desired element. For
common orgamzatlons of main memory a typical value
for A will be 5, [HP]. In case the secondary memory is
on a disk these values are drastically higher (by [HP]
one million (!) is a typical value).

The list-ranking example (revisited). TUnder these
assumptions, the implementation of the serial list-
ranking algorithm takes at least nA time in the worst
case, since there are at least n accesses to memory and
all of them may be to secondary memory.

Consider now r address requests issued by the pro-
cessor in r successive clock cycles. Assume that all
these addresses lie in secondary memory. Their COST
is upper bounded by F(r), where F' is a monotoni-
cally non-decreasing function which satisfies the fol-
lowing: (1) F(1) = A, where A is as before; (2)
Fi+1)—F@E) < F(i)—F(i—1)fori > 1. One
useful example is Fi(r) = A + (r —1)B, where
B < A. We will use this example below for illus-
trative purposes and refer to it as the linear model for

The reason for the name “nonincreasing incremen-
tal cost” is that the value A in the cost formula repre-
sents some set-up cost, regardless whether one or more
requests are to be satisfied, and then for every ¢ > 1
requests, the incremental cost of satisfying one more
(i.e., an (¢ + 1)st) request does not increase. In order
to obtain good results for our suggestions, we would
like the series F'(i)/¢) (representing the average cost of
a request, where ¢ requests are made) to converge to a
small number. The next section mentions briefly sev-
eral implementation possibilities, and discusses how
they would affect the cost function F'.

There is one central item which is missing from our
model: given an algorithm, how to identify its mem-
ory requests? For this, we must have a clear idea as to
what should be defined as a single memory access. Un-
fortunately, what exactly is to be considered a single
operation is an unresolved issue in theoretical com-
puter science. (This reason, among others, prevents
the development of “robust theory” for some serious
computer science problems where “only constant fac-
tors are involved”.) The following guidelines help us to

10On a typical high performance computer the following ac-
cess times are not out of line: registers - 10 ns, cache access
20-60 ns, memory access 80-200 ns, and disk access 20 ms.

partially circumvent this “single operation” difficulty.
In counting memory accesses below we are guided by
the level of specification of our own description, which
resembles high-level programming language, such as
PASCAL. While our count may be insufficient for an-
ticipating the exact number of memory requests, it
may be sufficient for the more modest purpose of a
crude comparison of two algorithms which are quite
similar (as is actually done later). Since the details
of our count offer little insight, we defer their pre-
sentation to the analyses of the algorithms in a later
section.

3 The New Suggestion

Take any parallel algorithm for some problem; call
it P— ALG. Given some input, denote by 7' the num-
ber of rounds of the algorithm and by w; the number of
operations performed in round 7, 1 < ¢ <7, and sup-
pose that each operation involves at most one memory

access. Let w = Z . Consider a serial emulation
of P— ALG as foflovvs The emulation handles one
round at a time. It proceeds by successively emulat-
ing the (“virtual”) rounds of the parallel algorithm.
At each round ¢, the w; operations are emulated one
at a time.

MAIN OBSERVATION: When the emulation of
round i begins, the whole list of memory addresses
needed tn round i ts readily available.

Before proceeding to an explanation of the main obser-
vation, we make a short detour and restate the thesis
of this paper in a somewhat broader form.

THESIS: A parallel program is potentially
an invaluable asset for efficient implementation
purposes. Since a parallel program allows con-
current tasks to be processed in any order, or
even simultaneously, it also gives a lot more
freedom to lower level implementations: cache,
prefetch, pipelining, compiler, code rearrange-
ment, estimators of working set and code be-
havior in Operating Systems etc. This flexi-
bility is very structured, and might be more
useful than information about execution that
is gathered from: (1) statistical analysis of ex-
ecution and heuristics; (2) statical analysis of
flow diagrams; and (3) ad-hoc optimizations in
run-time. Further, the parallel paradigm al-
lows more than just predicting future memory
requests. It allows the lower levels to alter the
execution so that it will be best suited to the
internal organization of the lower level. For in-
stance, loading several independent tasks into
the registers (which is an instance of the gen-
eral prefetch idea), may result in better utiliza-
tion of the processing unit.

These examples are meant to encourage exploring op-
portunities for taking advantage of parallel programs,
well beyond what is suggested in this paper.

Ezplanation of the mawn observation. Similar to the
way PRAM algorithms are specified, the w; instruc-
tions of the operations to be performed in round ¢,
have serial numbers from 1 to w;. Our experience with
parallel algorithms is that in many of them all proces-
sors perform essentially the same program, and there-



fore there is a very concise way for representing par-
allel programs. However, in the most general case, we
may need to store these instructions (including the ad-
dress that each instruction needs) in some designated
space. If the cache 1s not big enough we may need to
store them in some designated part of the secondary
memory, and have in the cache an “instruction area”
which is devoted for instructions that are brought into
the cache. We assume that the instructions are in
place (in the secondary memory) by the time round
t—1 ends. The emulation of round ¢ begins by nstruc-
tion prefetch. The size of the instruction area in the
cache dictates the size of the fetch unit containing in-
structions (since we want them to be large to minimize
transfer time). Instruction fetch units start migrating
into the instruction area of the cache and continue as
long as it 1s not full. This suggests that round ¢ will be
emulated in several subrounds; each subround has the
same number, say p, of instructions. We refer to the
emulation of each subround as a “time window”. Soon
after the first instruction fetch unit reaches the cache,
requests for all the addresses that will be needed in the
next “time window” start to go out. These data (i.e.,
contents of these addresses) will be ready at the cache
when requested by the CPU. For simplicity, the corol-
lary below assumes that w; < p (this simplifies things
since if w; < p, then the instruction area never fills
up and there is only one subround). Tt also does not
charge for instruction prefetching, since this should
overlap for the most part with data prefetch.

MAIN COROLLARY: Satisfying the memory requests
for round ¢ of algorithm P— ALG will take F'(w;) time,

and for the whole algorithm, ZZ'T:1 F(w;) time. In the
linear model for F', this will be A + (w; —1)B time for
round i and AT 4+ (w—T)B time for the whole algo-
rithm. (We do not discuss possibilities for overlapping
parallel rounds or subrounds in order to maintain this
paper at the principles level.)

The list-ranking example (revisited). Pick an effi-
cient parallel algorithm for the list-ranking problem
that runs in O(logn) rounds using a total of O(n)
operations, and consider its serial emulation. If n
is large then at any given time most of the list is
likely to be stored in secondary memory, and satis-
fying the memory requests will take time proportional
o (logn)A + nB (in the linear model for F'), as
opposed to time proportional to nA in the serial algo-
rithm. So, this comparison comes down to the relative
values of A and B, and to the constant factors in the
bound for the list-ranking algorithms involved. This
is discussed in a later section.

The next issue is what values we can expect from
the cost function F', and what can be done to improve
it. In particular, the CHALLENGE is to get the value
of F'(i)/i, as ¢ increases, to be as close to 1 (i.e., clock
cycle tlme) as poss1ble However, even gettmg the
value of F'(i)/i to be considerably ‘smaller than (1)
will be significant. We discuss several (semi) specific
suggestions, and hope to stimulate the reader to think
of others.

1. Distributing addresses at random. Assume that the
secondary memory consists of several (say m) sepa-

rate banks, called memory modules, each module con-
nected by a separate bus to a separate part of the
cache. (Think about a “star graph” with the cache as
the center node and each memory module connected
to it by an edge.) The intuitive idea is to distribute
the addresses at random initially among the m mem-
ory modules hoping that, with high probability, the
w; memory requests will be partitioned nearly equally
among the memory modules. This random distribu-
tion 1dea is implemented by randomly selecting a hash
function from some set of easy-to-evaluate hash func-
tions, as in [MV]. If w; > m then with high proba-
bility we will have no more than say 2w;/m requests
from any module (for a formal discussion see Fact 2 in
[DM] which is based on an analysis by [KRS]). Sup-
pose the random distribution idea i1s applied and the
values of w; and m imply the 2w;/m upper bound;

with a slight abuse of the linear model, we apply it
for evaluating the transmission time from a module to
its cache. Such transmission time is upper bounded by
A+2w; B/m. With some assumptions on A and B this
can be made not to exceed w;. This may mean that,
subject to proper assumptions (on m and w;, among
others), the value of B in the linear model for F' may
be 1, reflecting the rate at which data is supplied by
the caches; this is very attractive. We also note that
these assumptions may be considerably relazed. Since
busses tend to have considerable bandwidth, a single
cache, a single bus and (as before) m memory modules
may be sufficient. Also, it appears that the bus trans-
fer time is unlikely to be a bottleneck, because the
fetch unit size (or, in other words additional data that
have to be transmitted along with a requested datum)
is becoming smaller (see [HP]), permitting a more ef-
fective use of the bus bandwidth. At the same time,

the present approach copes well with the fact that
bus access time is less predictable. Finally, we note
that in case the secondary memory is main memory,
this whole suggestion falls within the area of memory
banks and interleaved memories (see the example con-
cerning a Cray machine in Section 6 and [HP]). Next,

we mention a possibility (which has limited promise
by available technology because of throughput prob-
lems): it is possible to use a considerable number of
disks for memory modules. (It appears that technol-
ogy advances in the right direction, since it already
enables effective use of over a hundred disks. For in-
stance, a configuration of 9 Mass Storage Cards with
84 disk drives on each, for a total of 756 disk drives, is
theoretically permitted in the Encore Multimax com-
puter.) This last option can be combined with direct
memory access, as described later. Another intriguing
possibility is that of using, instead of disks, the fast
memories of other computers that are connected by
a local area network (LAN), such as an Ethernet, to
the computer on which the algorithm under consider-
ation is being run. By [St], a computer on an Ethernet
can send a block of over 1K bytes within roughly the
same time (about 1ms) as sending a single byte; a
more up-to-date technology allows several thousands
bytes in a block. While the latency may not improve
in the near future, the size of the block is likely to
increase without changing the transmission time, and



as discussed later, the current paper may provide an
additional incentive for further increase in block size
(without decrease in transmission time).

2. Use Direct Memory Access. See [Vi93].

3. Other kinds of main memory. See [Vi93].

4. Locality of reference. Following [HP], we distin-
guish two kinds of locality of reference properties. (i)
Locality in teme: If an 1item is referenced, it will tend
to be referenced again soon; and (ii) Locality in space:
If an item is referenced, nearby items tend to be ref-
erenced soon. The design of many computer systems
is based on the assumption that the execution of most
computer programs satisfies these properties; evalu-
ating the validity of this assumption is beyond the
scope of this paper. Throughout this paper we elab-
orate only on a case where locality in space occurs,
since as explained in [Vi93] we see no inherent reason
for why locality in space should be satisfied in a “typ-
ical” serial program, but not in a serial emulation of
a “typical” parallel program.

It is interesting to mention that while the tendency of
many serial algorithms to demonstrate some locality-
of-reference has been experimentally demonstrated,
our suggestion for using parallel algorithm for faster
performance on suitably designed machines is based
on proven (1) predictability-of-reference.

4 Two Concrete Examples

We discuss two examples. For the first, a pencil-
and-paper kind of analysis is being used, while for the
second, experimental results are reported.

4.1 First example: Depth-first search of

graphs

Our lead example in this subsection is the the prob-
lem of depth-first search traversal of graphs. A serial
and a parallel algorithm will be presented. The main
goal of the example is to show that (for dense graphs)
the parallel algorithm can result in faster serial tmple-
mentation.

The reader may wonder why we selected this prob-
lem. We offer several reasons: (1) its simplicity; (2)
in the standard serial algorithm for depth-first search
memory access in each step depends on the previous
step, as per the subsection on “the essence of the prob-
lem” above; and (3) its selection and analysis reinforce
the claim that a parallel algorithm need not achieve
poly-logarithmic time to be useful, and the constants
in the running time analysis play an important role.
We start by defining the problem.

Input: Anundirected graph G(V, E'). There is a vertex
array of length n, where V' = {1,...,n} and an edge-
array of length 2m, where m = |E|. Each vertex v
has a record (using PASCAL terminology, or structure
using C terminology) S(v), where S(v).1 is a pointer to
the edge-array, and the deg(v) edges that are incident
on v occupy locations S(v).1, ..., S(v).1 + deg(v) — 1
in the array (we define S(v).2 = deg(v)). In other
words, an edge connecting vertices u and v has two
copies in the edge-array: (i) < u,v > in the list of
edges incident on vertex u, and (11) < v, u > in the list
of edges incident on vertex v. We assume that each of

these copies has a pointer to the other copy, and that
the graph has no parallel edges.

The depth-first search (DFS) numbering problem:
Starting from vertex 1, number the vertices in the
connected component of 1 according to the order in
which they are visited in a depth-first traversal of G.

We first give a standard serial algorithm for this
problem. Define the following recursive routine:

DFS(v)
df number «— dfnumber + 1,
dfnumber(v) — dfnumber
Go to location S(v).1 in the edge-array
for every edge < v,u> do

if dfnumber(u) = 0

then DFS(u)

The algorithm follows by ni-
tializing dfnumber(v) — 0, for every vertex v, and
calling DFS(1).

MEMORY ACCESS analysis. For comparison
of the running time of this algorithm with the par-
allel algorithm that follows, we count only memory
accesses and refrain from counting other operations.
This is justified since: (1) in this paper we care only
about memory accesses; and (2) the time needed for
operations that do not involve memory access in each
of these algorithms is dominated by memory access
operations. We will use the common method of analy-
sis where each operation (in our case, memory access)
is charged to an edge or a vertex. For each vertex
v, we have a DFS(v) call, one dfnumber increment,
one assignment into dfnumber(v) (we do not count
this as a memory access; note that dfnumber(v) was
brought into memory just prior to the DF.S(v) call; a
compiler can be designed not to return dfnumber(v)
to memory till the assignment into dfnumber(v); see
more on the issue of writes into secondary memory
using the “write-back’ policy under “memory consis-
tency” in the next section), an advance to the edge
list through S(v) (which we count as two memory ac-
cesses) and one return from the DFS call (which we
count as one memory access). The return from a DFS
call may be counted as more than one memory access,
since we have to get back to the same state in the call-
ing routine. We count this as one since it will be to
our disadvantage in the comparison with the parallel
algorithm. Having n vertices, this amounts to a to-
tal of 3n memory accesses. For every copy of an edge
< v,u >, we advance to it (a memory access), read
dfnumber(u) (a memory access), and check whether
dfnumber(u) # 0. This gives 2 memory accesses per
copy of an edge, and a total of 4m memory accesses
for all 2m copies. We conclude: the depth-first search
method takes a total of 3n 4+ 4m memory accesses
under this count.

Next, we provide a parallel variant of this algo-
rithm. While unaware of a reference, we will not be
surprised if this variant has appeared in print. A vari-
ant that uses concurrent writes by several processors
to the same memory location is given in [VS], and one
that uses more space is given in a 1977 University of
Towa Doctoral Thesis by D. Eckstein. For each vertex



v, we maintain a doubly-linked list of all its incident
edges < v,u > whose other vertex (namely u) has not
yvet been visited by the depth-first search traversal.
This is done using two pointers: N(< v,u >) (to the
next edge) and P(< v,u >) (to the preceding edge).
The main difference with respect to the serial DFS
above is that the parallel DFS never advances on an
edge leading to a vertex that has already been visited.
The recursive routine is:

P—DFS(v)
df number «— dfnumber + 1,
dfnumber(v) — dfnumber
for every edge < v,u > pardo (i.e., doin parallel)
P(N(< u,v>)) — P(<u,v>);
N(P(< u,v>))— N(< u,v>)
(i.e., discard edge < u, v > from the doubly-linked
list of w)
for every edge < v,u > on the doubly-linked list of
v do

P — DFS(u)

The algorithm starts with the following initializa-
tions: (i) for every vertex v dfnumber(v) — 0; and
(ii) for every edge < wu,v > in the edge-list: (a)
P(< u,v >) is the edge preceding < w,v > in the
edge list; and (b) N(< w,v >) is the edge succeed-
ing < u,v > in the edge list. Finally, the traversal is
initiated by calling P — DFS(1).

The only subtle point in showing that this parallel
algorithm is correct is the following: the “discard”
operations never applies to two successive edges in any
of the doubly-linked lists.

Memory access analysis. The parallel DFS runs in
n rounds, each corresponding to some vertex v. Each
round consists of several subrounds. In each subround,
several operations can be done in parallel. The follow-
ing subrounds are associated with vertex v: a DFS(v)
call, one df number increment and one assignment into
dfnumber(v), an advance to the edge list using S(v)
(which values two memory accesses that have to be
performed one after the other) and one return from
the DFS call (which is counted as one memory access,
in order to be consistent with the analysis of the se-
rial algorithm). This provides 3 (non successive) sub-
rounds with a single memory access in each. Having
n vertices, this amounts to a total of 3n single sub-
rounds each consisting of a single memory access.
Next come the subrounds in which parallel operations
are performed. In parallel, for every copy of an edge
< w,u >, we advance to it (a memory access), ad-
vance to its anti-parallel copy < wu,v > (a memory
access), advance (simultaneously) to P(< u,v >) and
N(< u,v >) (two memory accesses in one subround),
and update them. This provides additional 3 sub-
rounds, per vertex, with 4 memory accesses per copy
of an edge, and a total of 3n subrounds and 8m op-
erations. So, the total number of subrounds is 6n and
the total number of operations is 3n + 8m.
Comment. From the point of view of the theory
of parallel algorithms, the asymptotic time upper
bound of the parallel DFS (including all operations) is
O(m/p + n), which means that if the graph is not too

sparse (i.e., m > n) then we have an efficient parallel
algorithm for up to O(m/n) processors.
Comparison of the serial DFS with the par-
allel DFS in the linear model for the cost
function F: The serial DFS algorithm will take
(3n 4+ 4m)A time, and the parallel DFS will take
6nA + 3n+8m—6n)B = 6nA + (8m—3n)B
time. We are ready to try some concrete values: (1)
Let A = 10B and m = 100n, then the parallel DFS
will run nearly b times faster. (2) Let A = 100B and
m = 1000n, then the parallel DFS will run nearly 50
times faster.
Using an asymptotic comparison style, the compari-
son becomes mA memory access time for serial DFS
versus nA + mB memory access time in parallel DFS
(assuming that m > n and A > B). We feel that this
style is less relevant than in “traditional” computer
science applications of asymptotic analysis.

4.2 Second example: Suffix trees

A more exciting example is the construction of suf-
fiz trees, a fundamental tool in text processing. The
suffix tree data-structure is probably the most useful
mechanism known for finding initial similarities within
a very long string of characters, and as such is strongly
related to the development of molecular sequence com-
parison algorithms, as per the grand challenges of the
U.S. High Performance Computing and Communica-
tion Program. The linear-time serial algorithms (by P.
Weiner, or E.M. McCreight [Mc]), which are consid-
ered theoretically superior because of the asymptotic
upper bounds on their running time, seem to suffer
from the following problem: their memory access of-
ten depends on the preceding step, as in the serial
depth-first search, or serial list-ranking algorithms.

Next, we review some preliminary experimental
work that, using simulations, compares McCreight’s
serial algorithm against a serially-emulated parallel al-
gorithm [ATLSV]. Henceforth, these algorithms are
referred to as Algorithm M and Algorithm P, respec-
tively. We considered it more appropriate to base our
experiment with Algorithm M on code written by oth-
ers, rather than by ourselves. William Chang kindly
agreed to provide us with his code for Algorithm M.

We first sum up the experimental results, then give
some more information about the experiments them-
selves, and finally briefly discuss the relevance of the
results. Since the problem of suffix tree construction is
of particular interest to us where the input is large and
the data structures required by an algorithm do not fit
into the fast memory of a computer, our experiments
used an input string of length 10°. We assumed a fast
memory whose number of pages is 2K, each of size
1K bytes. We are aware that larger fast memories are
available but found it more convenient to experiment
with these sizes.

Using the linear model for the cost function F' for
comparing the two algorithms, we found that the two
algorithms had similar performance where the ratio
A/B was around 250.

For A/B = 10, Algorithm M was 14.14 times faster
than algorithm P.
For A/B = 107, Algorithm M was 2.26 times faster



than algorithm P.
For A/B = 10° Algorithm P was 4.15 times faster
than algorithm M.

We also used another cost model, which will be de-

scribed by the function (. The function G will sum
up the cost of the memory accesses of an algorithm, as
follows: (i) if an address request hits the fast memory,
the cost is B; (ii) if a single address request misses the
fast memory and has to be fetched from the slow mem-
ory, the cost is A (so far this is similar to the linear
cost model and A/B may be 10°); (iii) consider » ad-
dress requests issued by the processor in r successive
clock cycles, and assume that all these addresses lie
in the slow memory; then their cost is [r/CT A, where
A/C > B.
This function ' captures the possibility of forwarding
up to C' addresses to the fast memory for the price
of forwarding one address. Additional justification for
using this cost function is given later in this subsec-
tion.

For A/B = 10° and C = 300, Algorithm P was
not slower than algorithm M.

For C' = 103, Algorithm P was 2.76 times faster than
algorithm M.
For C' = 10*, Algorithm P was 27.38 times faster than
algorithm M.
For C' = 10° Algorithm P was 243.93 times faster than
algorithm M.

More on the experiment. Cache policies: the results
reported are for LRU (the page to be removed from
the fast memory is the least recently used). We tried
also FIFO (first-in first-out), and Algorithm M did not
have better performance than with LRU. Source of in-
put: we used files of alphabet symbols only that were
extracted from the most recent messages on bulletin
boards of two electronic news groups (comp.parallel
and comp.theory). We tried also files whose characters
were generated by a random function and Algorithm
M had slightly more fast memory misses on these ran-
domly generated kind of input. Alphabet size was 52
(all upper and lower case letters).

The values with respect to the linear cost function
I are related to performance of disks, as discussed in
the previous section. The figures on disk performance
justified considering the function F for values of A/B
up to 103.

The possibility of using the fast memories of other
computers which are connected by a local area net-
work justifies the use of the second cost function G
as a first approximation (note that where C' = A/B,
the functions GG and the linear cost function for F
describe similar costs). There will be a “master” com-
puter which actually runs the algorithm. Having a
computer on an Ethernet sending back a block with
at least 1.2K bytes in response to memory requests
sent to it by the master computer can be done within
roughly the same time (about 1ms) as sending a sin-
gle byte. Therefore, the total time for handling 300
words (of 4 bytes each) is only slightly higher than for
handling a single word. This makes the preliminary
results reported for C' = 300 appear possible by avail-

able computers and local area networks. While 1t is
not clear whether latency will decrease in the near fu-
ture the size of the block is likely to increase (possibly,
without changing the transmission time) and the cur-
rent paper may give additional motivation for further
improvements in this direction. OQur experimental re-
sults actually demonstrate that such development may
lead to an implementation of Algorithm P which is
several orders of magnitude faster than that of
Algorithm M.

4.3 Additional examples

List ranking. For the list-ranking problem, we ac-
tually suggest an algorithm which is referred to, in
[CV], as the “Basic list-ranking algorithm”. This al-
gorithm runs in O(lognloglogn) time and O(n) op-
eration, and the constant factors hidden by the big-
oh notation are 8 for both time and operations. The
reason for mentioning this algorithm is that it seems
to imply fewer operations than in other parallel list-
ranking algorithms and at the same time provide con-
siderable parallelism. The count was done in a sim-
ilar way to the depth-first search example above and
is omitted here. The total number of operations of
the serial list-ranking algorithm given earlier is 2. So,
for the linear model for F', the comparison is between
8(lognloglogn)A + 8nB and 2nA. The simple ran-
domized algorithms in [AM] and [Vi84b] achieve also
similar performance. See [V193] for another example.

5 Caveats, Extensions and Discussion
e Memory conststency. The main issue is how to

avoid a situation where an outdated copy of an address

is interpreted as having a correct value. See [Vi93].

e How much parallelism depends on the serial ma-
chine and the algorithms. Figuring out which parallel
algorithm yields the fastest running time on a serial
computer, will involve a trade-off between the level of
parallelism and the total number of operations (includ-
ing constant factors).

e Throughput. Our aforementioned challenge can
be stated in terms of “throughput”: secondary memo-
ries need to be capable of providing data at a sufficient
rate for the processing unit. The idea of random
distribution of addresses on Cray-like memo-
ries appears to meet these throughput require-
ments, as explained in the next paragraph.

e Hardware technology for tmplementation of ran-
dom distribution of addresses. See [HP] regarding the
the technology of memory banks. Since 1982 Cray ma-
chines have multiple memory pipelines. On the Cray
X-MP (see [HJ]), one can make from 1 to 64 memory
requests at a time. These memory requests do not
have to be in any pattern, but can be scattered across
memory. The requests are sent off serially, one per
clock cycle, and after a latency of about 17 clock cy-
cles (this can depend on collisions), the first element
comes back. After that, the remaining elements come
back one per clock cycle (again, there can be further
delays due to collisions). The requests are guaranteed
to come back in the same order as they were made.
This means that if one can create blocks of memory
requests (using parallelism), they can actually be re-
ceived at an effective throughput of one request per



clock cycle. The memory is actually organized into
many banks, such that if all the requests are to the
same bank, the throughput is significantly slower. Fi-
nally, we note that such memories are quite expensive.

e Languages and compiler technology. The final
goal is that the compiler will be able to extract from a
user-friendly program as much information as possible
for predicting future memory address needs. This calls
for an effort concerning both languages and compilers.
Given a programming language, the challenge for com-
piler writers is well defined; the work by [CKP] is in
this spirit. Next, consider design of programming lan-
guages which will enable expressing relevant informa-
tion, that will later be used by the compiler to improve
its predictions. A language in which parallelism can
be expressed, will make it possible for a compiler to
create the code for predicting memory accesses in the
compiled program (due to parallelism) as advocated
in the present paper. In addition, it will be nice to al-
low the programmer to have the option to express all
his/her knowledge concerning memory access depen-
dencies using the programming language (if he/she so
desires, and not at the expense of user-friendliness).

e Looser parallel specifications are sufficient. Ob-
serve that the whole processor allocation, which is an
essential part of a PRAM algorithm, will typically not
be such a serious issue for extracting the parallelism
needed here. A starting point for a weaker model than
the PRAM for describing parallelism might be Infor-
mal Data-Parallelism, (originally presented in [SV] us-
ing Brent’s theorem), as per [Vi94]; this has also been
called the work-time presentation paradigm for parallel
algorithms, as elucidated by the author in [Ja]. This
paradigm suggests preceding a “full-PRAM” descrip-
tion of a parallel algorithm by a high-level description
of work and time only. Specifically, this includes the
operations to be performed at each parallel round, and
even this can be done in an implicit way. Such a high-
level description might be enough here.

6 Relevance for Parallel Computers

Most of the above considerations are valid also for
the design of a parallel machine that will support the
PRAM model of parallel computation.

This paragraph includes some background. As ex-
plained elsewhere (e.g., [Vi84a]), the PRAM should
be viewed as a programmer’s model for a parallel ma-
chine and not as a physical parallel machine, and im-
provement in the parallel running time of a PRAM
algorithm can benefit us in reducing the actual run-
ning time in several ways. Specifically, [Va] (also in a
CACM 1990 paper by L. Valiant) and [Vi84a] advo-
cate slackness in processors as explained next. Sup-
pose we are given an efficient PRAM algorithm and
a (real) parallel machine with p; processors, on which
we wish to simulate the algorithm. Suppose that the
PRAM algorithm is specified for po PRAM proces-
sors. (Tt is a trivial observation that such an algorithm
scales also into an efficient algorithm for < ps proces-
sors.) In this case, processor slackness is defined as
the ratio pa/p1. Informally, each of the above papers
specifies ways for more efficient simulation by the real
machine. Even if p; 1s fixed, having larger and larger

pa2 (and therefore larger processor slackness) leads to
improvements in efficiency. Several parallel machine
designs take advantage of processor slackness; this in-
cludes the 1981 HEP design by B.J. Smith and the
more recent design [ACCKPS], as well as [AKP)]

In other words, the concept of processor slackness
considers parallelism as a resource. OQur thesis takes
advantage of this resource for the degenerate case
where the computer has a single processor. Infor-
mally, when replacing 1 by p; processors, requests to
remote memories will be managed efficiently by using
simulations of parallel algorithms on a parallel ma-
chine with p; processors. Namely, processor slackness
together with a properly designed memory manage-
ment system can also be used in a parallel machine
for circumventing memory requests whose implemen-
tation is very costly, especially where locality of ref-
erence 1s not satisfied. Throughput will become even
more critical than in the context of serial algorithms:
retrieval of memory should be done at a rate com-
patible with the speed of the processors. It 1s in-
teresting to mention that following experiments with
implementation of parallel sorting algorithms, i1t has
been observed that “throughput bottlenecks of this
nature” exist in modern parallel machines such as the
CM-2, by Thinking Machines Corporation [BLMPSZ].
Throughput bottlenecks occurred even at the Cray Y-
MP [ZB], when interpreted as a parallel machine with
512 processors. (However, considering the Cray X-MP
and Cray Y-MP machines as having between 1 and 8
Cray-1-like CPUs [HJ], as we do in the present pa-
per, alleviates throughput bottlenecks.) There might
be some insight in observing that, for both serial and
parallel processing, alleviating throughput bottlenecks
is helpful for supporting a user-friendly language.

Building a parallel machine that supports the
PRAM is a considerable challenge. It is possible that
adoption of our more concrete ideas for serial
computers will enable a more gradual tran-
sition into machines that support a “virtual
PRAM?” (i.e., as a programmer’s model). This
is since developing the right tools for the memory man-
agement system of a serial computer may be a first
step towards building a general-purpose parallel com-
puter that uses such system. This gradual approach
has the following potential advantage relative to some
ongoing parallel machine projects. Ideally, all stages
of a parallel machine project should aim at support-
ing a single (“robust”) parallel programming language.
Identifying a robust language might be the most signif-
icant challenge facing parallel computation today. To
understand the importance of this issue, assume that
we fail to define such a robust parallel language and
imagine a computer industry decision maker that con-
siders whether to invest several human-years in writ-
ing code for a certain parallel programming language.
By the time the programming project will have been
finished, the language is likely to become, or about to
become, obsolete. The only reasonable business de-
cision under this circumstances is to write code for
some existing robust programming language, which
presently would mean a serial programming language.
This lack of a robust language is part of the “par-



allel software crisis” [P]. Following a meeting of
an industry advisory board panel [P], pessimism is
expressed about reaching agreement on a robust par-
allel programming language, because of the following.
While, there seems to be agreement that a shared-
memory (“PRAM-like”) language will be ideal from
the user end, present parallel machines require that
parallel programs include considerably more machine-
specific information for getting the best performance.
It remains to be seen whether their design can afford
supporting a programming language that will be con-
sidered satisfactory by “the user”. Unfortunately, ma-
chines that do not support a robust parallel program-
ming language may remain an academic exercise, since
from the industry perspective, the test for successful
parallel computers is their usability at the end. In
contrast to this, our multi-stage approach is based on
using a shared-memory parallel programming
language already in its first stage.

The companion paper [Vi92] considers this multi-
stage approach and adds the following perspective.
The new generation of “serial machines” is far from
being literally serial. Each possible state of a ma-
chine can be described by listing the contents of all
its data cells, where data cells include memory cells
and registers. For instance, pipelining with, say, s
single cycle stages may be described by associating a
data cell with each stage; all s cells may change in a
single cycle of the machine. More generally, a tran-
sition function may describe all possible changes of
data cells that can occur in a single cycle; the num-
ber of data cells that change in a cycle define the
machine-parallelism of the cycle; a machine is liter-
ally serial if this number is never more than one. We
claim that literally serial machines hardly exist and
that considerable increase in machine-parallelism is to
be expected. Machine-parallelism comes in such forms
as pipelining, or in connection with the Very-Long In-
struction Word (VLIW) technology, to mention just
two. Still the “serial programmer’s model” of com-
puters as being taught in courses on algorithms and
data structure in a standard computer science cur-
riculum has not changed in the last several decades.
The current paper suggests that parallel algorithms
can benefit this new generation of machines, if these
machines are adapted to be programmable by parallel
algorithms and be designed to take advantage of their
parallelism (by mapping “program parallelism” into
their machine-parallelism). Another necessary condi-
tion for this to happen is that users will be capable
to design parallel algorithms. Parallelism is a concern
which 1s missing from “traditional” algorithm design,
and the skill of designing parallel algorithms is based
on first principles. Therefore, users should be taught
this skill in school. Perhaps the main contribution
of this paper is in demonstrating that parallel algo-
rithms can be exploited to make more effective use of
machine-parallelism irrespective of whether the ma-
chine itself 1s classified as “massively parallel”, or even
“parallel”. Since the computer science curriculum is
meant to prepare young graduates for a life time ca-
reer, it 18 timely to put on the agenda a curriculum
update to include the topic of parallel algorithms.

In [Vi88] T made the following prediction: A fu-
ture parallel computer, which does not support the
PRAM model of parallel computation (as a program-
mer’s model), will not be competitive, as a general-
purpose computer, with the strongest non parallel
computer that will become available at the same time.
This prediction is yet to be proven wrong, but is there
reason for optimism? In recent years, multiproces-
sors based on inexpensive microprocessors, each with
a large local memory ( “shared nothing architectures”),
allowed drastic increase in the size of fast memories,
and led to a success of parallel data base systems [DG],
increasing the interest of that community in faster par-
allel computation. Hash partitioning of data and hash
join appear to become main stream techniques in this
context. Note that [MV] actually suggested hash par-
titioning of memory addresses among the local mem-
ories of parallel processors as a general method for
emulating a PRAM programmer’s model on a simi-
lar shared nothing architecture! Facing problems
which are similar to possible bottlenecks tar-
geted by commercial data base applications is
a reason for some optimism.

7 Conclusion

We encourage research in several directions. We
encourage more experimental research to study the
advantage of serially emulating more complicated par-
allel algorithms in order to cope with delays caused by
computer memories. The present paper reports such
work for the suffix tree problem; we encourage others
to do the same for other problems.

This paper provides some evidence that prefetch-
ing will increase the effectiveness of serial machines.
The challenge is twofold: (1) Advance the prefetching
facility in hardware; and (2) find more ways to take
advantage of software prefetching, either in the spirit
of [CKP] or the present paper.

The fine structure of parallel programs may be ben-
eficial in ways which are beyond the scope of this pa-
per. Qur thesis; in section 3, calls for exploring such
opportunities.
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