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Perturbation Theory forRectangular Matrix PencilsG. W. StewartABSTRACTThe theory of eigenvalues and eigenvectors of rectangular matrix pen-cils is complicated by the fact that arbitrarily small perturbations ofthe pencil can cause them disappear. However, there are applicationsin which the properties of the pencil ensure the existence of eigen-values and eigenvectors. In this paper it is shown how to develop aperturbation theory for such pencils.In this note we will be concerned with the perturbation theory for the generalizedeigenvalue problem1 �Ax = �Bx; (1)where A and B are m � n matrices with m > n and � and � are normalized sothat j�j2 + j�j2 = 1:Although rectangular matrix pencils have a long history and a well developedtheory of canonical forms (e.g., see [1, 5, 6]), their eigenvalues and eigenvectorshave been less well studied. There are two reasons.In the �rst place, eigenvalues and eigenvectors may fail to exist. For example,if A =  1� ! and B =  1� ! ;then (1) has no nontrivial solution unless � = �. In the second place, even if (1)has a solution, an arbitrarily small perturbation can make it go away, as the aboveexample also shows. It is not easy to construct a general perturbation theory forobjects that may not exist and can vanish at the drop of a hat.Nonetheless, in some applications the nature of the matrices A and B insurethe existence of eigenvectors, and the conditions that do so are stable under smallperturbations (for an example from game theory, see [3]). In these circumstances1The homogeneous form given here seems preferable to the more conventional form Ax =�Bx. We call the pair (�; �) an eigenvalue of the problem.1



2 Rectangular Matrix Pencilsit is reasonable to try to develop a perturbation theory. In this note we shall showhow to do so by reducing the problem to a square one.We begin by describing the space of solutions of the unperturbed problem.First note that equation (1) says that Ax and Bx lie in the same one-dimensionalsubspace. Generalizing this observation, we say that a subspace X of dimensionk is an eigenspace of the pencil �A� �B if there is a subspace Y of dimension ksuch that AX +BX � Y: (2)Here the sums and products are the usual Minkowski operations; e.g., AX =fAx : x 2 X g. Since the sum of two eigenspaces is an eigenspace, there is aunique maximal eigenspace, which we shall call the 
-eigenspace of the pencil. Inwhat follows X will be the 
-eigenspace of the pencil �A��B and Y will be thecorresponding subspace in (2). We will assume that X has dimension k > 0.The relation between eigenspaces and eigenvectors can be seen as follows. LetX = (X1 X2) and Y = (Y1 Y2)be unitary matrices such that R(X1) = X and R(Y1) = Y. Then Y HAX andY HBX have the formsY HAX =  A11 A120 A22 ! and Y HBX =  B11 B120 B22 ! : (3)It follows that if x is an eigenvector of the pencil �A11 � �B11, then X1x is aneigenvector of (1).The converse is also true: all eigenvectors of (1) have the form X1x. This is aconsequence of the fact that the pencil �A22��B22 does not have an eigenspace.For if it did, we could reduce A22 and B22 as above, so that the transformed pencilassumes the form�0BB@ A11 Â12 Â130 Â22 Â230 0 Â33 1CCA� �0BB@ B11 B̂12 B̂130 B̂22 B̂230 0 B̂33 1CCA :Then the original pencil has an eigenspace of dimension greater than k corre-sponding to the pencil�  A11 Â120 Â22 !� � B11 B̂120 B̂22 ! ;



Rectangular Matrix Pencils 3which contradicts the maximality of the 
-subspace.In what follows, we will assume that the matrices of the pencil �A��B are inthe reduced form (3). Note that since the reduction is a unitary equivalence anyperturbation in the original pencil corresponds (in a unitarily invariant norm) toa perturbation of the same size in the reduced form.Let us now consider the perturbed matrices~A =  ~A11 ~A12E21 ~A22 ! �  A11 + E11 A12 + E12E21 A22 + E22 !and ~B =  ~B11 ~B12F21 ~B22 ! �  B11 + F11 B12 + F12F21 B22 + F22 ! ;where kEijk; kFijk � �; i; j = 1; 2: (4)Here k � k denotes both the Euclidean vector norm and the subordinate spectralmatrix norm. Let ~x = (~xH1 ~xH2 )H be a normalized eigenvector of the correspondingpencil: ~� ~A~x = ~� ~B~x; k~xk = 1:We are going to show that under a natural condition (namely, that ~� de�ned belowis not small) the second component ~x2 of ~x is small.First note that since the pencil �A22 � �B22 has no eigenvectors, there is anumber � > 0 such that k~�A22~x2 � ~�B22~x2k � �k~x2k: (5)Since j~�j2 + j~�j2 = 1, if ~� � � �p2� > 0; (6)then k~� ~A22~x2 � ~� ~B22~x2k � ~�k~x2k:Since ~x is an eigenvector0 = k~�(E21~x1 � ~A22~x2)� ~�(F21~x1 � ~B22~x2)k � ~�k~x2k � k~�E21~x1 � ~�F21~x1k:Hence k~x2k � p2�~� :



4 Rectangular Matrix PencilsNow let us perform the reduction procedure describe above on the perturbedpencil, but using only the one-dimensional space spanned by the eigenvector ~x.Speci�cally, let X =  R QP S !be a unitary matrix whose �rst column is ~x and for whichkPk; kQk � k~x2k � p2�~� : (7)(The existence of of such a matrix is established in the appendix.) LetY =  R̂ Q̂P̂ Ŝ !be a unitary matrix whose �rst column is proportional to ~Ax (or ~Bx if ~Ax = 0).Then the �rst k columns of Y H ~AX and Y H ~BX have the forms0B@ ~� ~aH0 ~A�0 E� 1CA and 0B@ ~� ~bH0 ~B�0 F� 1CA : (8)Thus (~�; ~�) is an eigenvalue of the pencil�  ~� ~aH0 ~A� !� � ~� ~bH0 ~B� !But by direct computation, this pencil is�(R̂HA11R+ R̂HE11R + R̂H ~A12P + Q̂HE21R + Q̂H ~A22P )��(R̂HB11R + R̂HF11R+ R̂H ~A12P + Q̂HF21R + Q̂H ~A22P )or �(R̂HA11R +G)� �(R̂HB11R+H);where from (4) and (7)kGk; kHk �  2 + 2p2maxfk ~Ak; k ~Bk~� ! �:



Rectangular Matrix Pencils 5We have thus shown that the eigenvalue (~�; ~�) is an eigenvalue of a pertur-bation of the pencil �R̂HA11R � �R̂HB11R, a pencil which corresponds to the
-eigenspace of the original problem. Since the pencil and its perturbation aresquare, we may use standard perturbation theory to bound the perturbation inthe eigenvalue and its eigenvector (for a survey of the perturbation theory of thegeneralized eigenvalue problem, see [4, Ch. VI]).The dependence of the bounds on � de�ned by (5) is entirely natural. If � issmall, then (~�; ~�) is almost an eigenvalue of the pencil �A22 � �B22 and couldhave come from the perturbed pencil � ~A22 � � ~B22. Such an eigenvalue need notbe near an eigenvalue associated with the 
-eigenspace of the original problem.Seen in this light, the condition (6) insures that the perturbed eigenvalue trulycomes from the 
-eigenspace of the original problem.Finally, we note that the general technique we have outlined here is at leastas important as the particular bounds. For example, it can be extended to ob-tain perturbations bounds on eigenspaces. Again, if we work with nonorthogonaldiagonalizing transformations, so that A12 = B12 = 0 in (3) and ~aH = ~bH = 0 in(8), we obtain the result that~� / �+ yHEx+O(maxfkEk; kFkg2)and ~� / � + yHFx+O(maxfkEk; kFkg2);where yH is the left eigenvector corresponding to (�; �). The details are left tothe reader. AppendixThe following extension theorem is more general than we need but may be ofindependent interest.Let p � q and let the matrixX1 =  qp X11n�p X21 !have orthonormal columns. Then there is a unitary matrixX =  q p�q n�pp X11 X12 X13n�p X21 X22 X23 !



6 Rectangular Matrix Pencilssuch that k(X21 X22)k = kX21k:To establish the theorem, �rst assume that p+q � n. By the CS decomposition(e.g., see [2, p.77]) we may assume thatX1 = 0BBB@ qq Cp�q 0q Sn�p�q 0 1CCCA;where C and S are nonnegative diagonal matrices. Then the required extensionis X = 0BBB@ q p�q q n�p�qq C 0 �S 0p�q 0 I 0 0q S 0 C 0n�p�q 0 0 0 I 1CCCA;in which we take (X21 X22) =  S 00 0 ! :On the other hand, if p+ q > n, we take X1 in the formX1 = 0BBB@ p+q�n n�pp+q�n I 0n�p 0 Cp�q 0 0n�p 0 S 1CCCAIn this case the required extension isX = 0BBB@ p+q�n n�p p�q n�pp+q�n I 0 0 0n�p 0 C 0 �Sp�q 0 0 I 0n�p 0 S 0 C 1CCCA;in which (X21 X22) = (0 S 0):
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