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ABSTRACT

The theory of eigenvalues and eigenvectors of rectangular matrix pen-
cils is complicated by the fact that arbitrarily small perturbations of
the pencil can cause them disappear. However, there are applications
in which the properties of the pencil ensure the existence of eigen-
values and eigenvectors. In this paper it is shown how to develop a
perturbation theory for such pencils.

In this note we will be concerned with the perturbation theory for the generalized
eigenvalue problem!

BAx = aBz, (1)
where A and B are m x n matrices with m > n and « and § are normalized so
that

la* +[8]* = 1.
Although rectangular matrix pencils have a long history and a well developed
theory of canonical forms (e.g., see [1, 5, 6]), their eigenvalues and eigenvectors

have been less well studied. There are two reasons.
In the first place, eigenvalues and eigenvectors may fail to exist. For example,

(1) (2

then (1) has no nontrivial solution unless o = 3. In the second place, even if (1)

if

has a solution, an arbitrarily small perturbation can make it go away, as the above
example also shows. It is not easy to construct a general perturbation theory for
objects that may not exist and can vanish at the drop of a hat.

Nonetheless, in some applications the nature of the matrices A and B insure
the existence of eigenvectors, and the conditions that do so are stable under small
perturbations (for an example from game theory, see [3]). In these circumstances

!The homogeneous form given here seems preferable to the more conventional form Az =
ABz. We call the pair («, §) an eigenvalue of the problem.
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it is reasonable to try to develop a perturbation theory. In this note we shall show
how to do so by reducing the problem to a square one.

We begin by describing the space of solutions of the unperturbed problem.
First note that equation (1) says that Az and Bz lie in the same one-dimensional
subspace. Generalizing this observation, we say that a subspace X" of dimension
k is an eigenspace of the pencil A — aB if there is a subspace ) of dimension k
such that

AX + BX C ). (2)

Here the sums and products are the usual Minkowski operations; e.g., AX =
{Az : @ € X}. Since the sum of two eigenspaces is an eigenspace, there is a
unique maximal eigenspace, which we shall call the )-eigenspace of the pencil. In
what follows X will be the Q-eigenspace of the pencil A — aB and Y will be the
corresponding subspace in (2). We will assume that A" has dimension k > 0.
The relation between eigenspaces and eigenvectors can be seen as follows. Let

X=(X1X;) and Y = (¥} Y3)

be unitary matrices such that R(X;) = X and R(Y;) = Y. Then YHAX and
YHBX have the forms

Ay A By, B
H - 11 Al H . 11 B2
YHAX = ( 0 A, ) and Y"BX = ( 0 B, ) ) (3)

It follows that if = is an eigenvector of the pencil JA;; — aByy, then Xjx is an
eigenvector of (1).

The converse is also true: all eigenvectors of (1) have the form Xjx. This is a
consequence of the fact that the pencil fAss — aByy does not have an eigenspace.
For if it did, we could reduce A3 and B,y as above, so that the transformed pencil
assumes the form

An 1‘:112 1‘:113 By 3;12 '513
5 0 Asg /}23 -« 0 By ?23
0 0 A33 0 0 B33

Then the original pencil has an eigenspace of dimension greater than k corre-
sponding to the pencil

ﬂ All %12 N Bll '512
0 A22 0 B22 7
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which contradicts the maximality of the )-subspace.

In what follows, we will assume that the matrices of the pencil A —aB are in
the reduced form (3). Note that since the reduction is a unitary equivalence any
perturbation in the original pencil corresponds (in a unitarily invariant norm) to
a perturbation of the same size in the reduced form.

Let us now consider the perturbed matrices

A:(An 1‘:112):(A11+E11 A12+E12)

Eyn A Eo Agy + By
and ~ ~
B = By @12 _( Bu+1Iu B+l
Fyr By | Fxn Bay + Fay )7
where
1B 1 Fll < e, 4 =1,2. (4)
Here || - || denotes both the Euclidean vector norm and the subordinate spectral

matrix norm. Let # = (2! 2! be a normalized eigenvector of the corresponding

pencil:
BA: = aBz,  ||#]| = 1.
We are going to show that under a natural condition (namely, that 7 defined below
is not small) the second component Z of & is small.
First note that since the pencil fA; — aByy has no eigenvectors, there is a
number 7 > 0 such that

18 A2is — aBania|| 2 7. (5)
Since |a]> + |3 = 1, if
F=7—V2e>0, (6)

then o )
|3 Ansis — &Banta]| > Flla]l

Since T is an eigenvector
0 = ||B(End — Agia) = &(Fniy = Byiy)|| 2 7@l = | BEnds — aFni|.

Hence

V2

[22]] < —
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Now let us perform the reduction procedure describe above on the perturbed
pencil, but using only the one-dimensional space spanned by the eigenvector 7.

(59)

be a unitary matrix whose first column is & and for which

2¢
1P]L QN < [[7=2]] < fT (7)

Specifically, let

(The existence of of such a matrix is established in the appendix.) Let

R Q
Y = Ao
(79
be a unitary matrix whose first column is proportional to Az (or Bz if Az = 0).

Then the first £ columns of YHAX and YHBX have the forms

a 3 Wt
0 A, and 0 B. |- (8)
0 F. 0 F.

But by direct computation, this pencil is

5(]%}114113 + I%HEHR + E)H/sz + QHEle + QHlezzp) —
a( BRBy R + R R+ REALP + QU Fy R+ QHAp,P)

or

B(R"ALR + G) — o BBy R+ H),
where from (4) and (7)

e < (2-+ 2vpnes AL IR

F
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We have thus shown that the eigenvalue (N,B) is an eigenvalue of a pertur-
bation of the pencil ﬂR AnR — oRH B11R, a pencil which corresponds to the
Q-eigenspace of the original problem. Since the pencil and its perturbation are
square, we may use standard perturbation theory to bound the perturbation in
the eigenvalue and its eigenvector (for a survey of the perturbation theory of the
generalized eigenvalue problem, see [4, Ch. VI]).

The dependence of the bounds on 7 defined by (5) is entirely natural. If 7 is
small, then (07,5) is almost an eigenvalue of the pencil 3A3; — aByy and could
have come from the perturbed pencil ﬂAgz - a322 Such an eigenvalue need not
be near an eigenvalue associated with the Q-eigenspace of the original problem.
Seen in this light, the condition (6) insures that the perturbed eigenvalue truly
comes from the Q-eigenspace of the original problem.

Finally, we note that the general technique we have outlined here is at least
as important as the particular bounds. For example, it can be extended to ob-
tain perturbations bounds on eigenspaces. Again, if we work with nonorthogonal
diagonalizing transformations, so that A;; = By = 0 in (3) and &' = M =0in
(8), we obtain the result that

& oc oty Ex + O(max{|| B, | F]]}?)

and .
B o f 4y Fa+ O(max{||E|, || F|[}?),

where y! is the left eigenvector corresponding to (a, 3). The details are left to
the reader.

Appendix

The following extension theorem is more general than we need but may be of
independent interest.
Let p > q and let the matrix

q

X
X, = " 11
R (le)

have orthonormal columns. Then there is a unitary matric

q pP—q n—p

X — p Xll X12 X13
X21 X22 X23
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such that
(X1 Xao)|| = || X -

To establish the theorem, first assume that p+¢ < n. By the CS decomposition
(e.g., see [2, p.T7]) we may assume that

18

q rP—q q n—p—q
q C 0 =S5 0
e |01 0 o
X= s 0 ¢ o |
wra N0 00 I

in which we take
S 0

On the other hand, if p+ ¢ > n, we take Xy in the form

ptg—n  n—p

p+g—n 1 0
— 0 C
X, =""
R 0 0
n—p 0 S

In this case the required extension is

pta—n I 0 0 0
_n—p 0 C 0 -5
X = P—q 0 0 I 0 |’
n—p 0 S 0 C

in which

(Xa1 X22)=(0 S 0).
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