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Abstract

Active networks represent a significant step in the evolution of packet-switched

networks, from traditional packet-forwarding engines to more general functionality

supporting dynamic control and modification of network behavior. However, the phrase

“active network” means different things to different people. This survey introduces a

model and nomenclature for talking about active networks, describes some possible

approaches in terms of that nomenclature, and presents various aspects of the architecture

being developed in the DARPA-funded active networks program. Also, a snapshot of the

current research issues and activities of different institutions is provided. Potential

applications of active networks are highlighted, along with some of the challenges that

must be overcome to make them reality.

1. Introduction

Traditional data networks passively transport bits from one end system to another. A

packet in a passive network carries only data and this data is passed opaquely without

examination or modification from node to node. The action that a router takes on a packet

is specified independently from the end application that generated the packet. The role of

computation within such networks is extremely limited, e.g., header processing in packet-

switched networks, signaling in connection-oriented networks, and simple Quality-of-

Service (QoS) schemes (i.e., priority schemes via packet marking) with packet processing

independent of packet contents. Because of this extremely limited computation over a

Figure 1 – Hour glass model of internetworking
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packet's contents and the decoupling of user control over network behavior, passive

networks are often referred to as store-and-forward networks.

New applications can benefit from new network services that are tailored to the

characteristics of an end host to achieve optimal performance, e.g., customizing a video

feed to the display, processing, and connectivity characteristics of different end-user

devices such as Personal Digital Assistants (PDAs) and laptop computers. However,

wide-scale deployment of new services is too slow due to the long standardization

process and the backwards compatibility required for the existing network infrastructure.

RSVP (September 1997) [1], Mobile IP (October 1996) [2], IPv6 (December 1995) [3],

and IP multicast (August 1989) [4] are perfect examples of slow service deployment-

none is in common use today.

The fundamental design goal for new Internet services is interoperability. As shown in

Figure 1, the idea is to have a wide variety of high-level services and low-level

networking technology that interoperate by funneling them through the common IP

interface. IP defines a standard packet format and virtual source and destination

addressing mechanism that enables interoperation of different networking systems. Its

success can be seen by its worldwide acceptance and penetration in the marketplace and

its enabling of other services, such as the World Wide Web. However, when new

functionality is needed but can not be added either above or below the IP layer, then this

layer must be modified. The task of incorporating new functionality, such as support for

QoS in the Internet, is subject to a lengthy standardization process which includes

determining the effects on the existing infrastructure. It is this need to standardize on the

IP interoperability layer which makes network evolution so slow.

Research into mechanisms to provide new services includes proxies, firewalls, and

transport gateways. These solutions are usually ad hoc and tailored to specific users and

applications. Ideally, the goal is to replace the ad hoc approaches to network-based

computation with a flexible, generic capability that enables uncoordinated deployment of

new services and protocols.

In 1994, the Defense Advanced Research Projects Agency (DARPA) research

community introduced the concept of active networking. Active Networks [5-9] are

different from traditional passive networks in that they allow the network to perform
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customized computations on the user data. All nodes in an active network support

equivalent computational models, which enables users to effect different computations on

different packets. For example, a user of an active network could send a customized

compression program to a node within the network (e.g., a router) and request that the

node executes that program when processing their packets. Hence, active networks are

referred to as store-compute-and-forward networks. Figure 2 is a simple depiction of the

difference between the passive and active networking paradigms.

These networks are "active" in two ways:

• Routers and switches within the network actively process, i.e., perform

computations on, the user data flowing through them.

• Individual users and/or administrators can inject customized programs into the

network, thereby tailoring the node processing to be user and/or application

specific.

So instead of standardizing on the low-level packet formats and transmission protocols as

in passive networks, active networks present an abstract network programmable interface

(or a network API) that allows low-level details to be programmed and customized. An

Figure 2 – Passive Vs. Active networks
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active network, essentially, provides a user-programmable interface to its nodes, enabling

modification of network behavior as seen by the user.

Research in active networks is motivated by both technology "push" and user "pull".

The technology "push" is the emergence of "active technologies", compiled and

interpreted, supporting the encapsulation, transfer, interposition, and safe and efficient

execution of program fragments. Today, active technologies are applied within individual

end systems and above the end-to-end network layer; for example, to allow Web servers

and clients to exchange program fragments (e.g. Java applets). The objective is to

leverage and extend these technologies for use within the network - in ways that will

fundamentally change today's model of what is in the network.

The "pull" comes from the ad hoc collection of firewalls, Web proxies, multicast

routers, mobile proxies, video gateways, etc. that perform user-driven computation at

nodes within the network. Despite architectural injunctions against them, these nodes are

flourishing, suggesting user and management demand for their services.

The remainder of this paper is organized as follows. Section 2 describes DARPA's

architectural framework for active networks. The code in "smart" packets is distributed

through an active network either in-band or out-of-band. These two approaches will be

discussed in Section 2. Then in section 3, various approaches to programming packets in

an active network are discussed. Following this, section 4 presents overviews on the

various approaches for service composition and code distribution in an active network.

Next, in section 5, a window into current research efforts is presented by reviewing the

work of various institutions. This review sets the stage for section 4, which presents the

numerous issues and challenges that make the realization of active networking a non-

trivial task. Section 5 provides a brief overview of enabling technologies which may

contribute to active network development. Section 6 describes some applications to

demonstrate the flexibility and usefulness of active networks over passive networks.

Finally, the paper is concluded in section 7.

2. A General Architecture Framework

In this section we present an overview of the architecture developed in the DARPA active

networks program [7]. The active network architecture deals with global matters like
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addressing and end-to-end services, which are intended to be programmable (not fixed) in

an active network. The general approach has therefore been to specify a node architecture

that defines a common base functionality, including how packets are processed, what

resources are available at the node, and how they are accessed. Thus, the architecture

defines the basic functionality of the active node-programming interface, although it does

not specify any particular language or encoding for that interface. This approach has the

pleasant effect of minimizing the amount of global agreement and standardization

required to implement an active network. The DARPA architectural framework serves as

a reference model for the research efforts. The intent of this model is:

• To lay out the guidelines and objectives for defining the major components and

interfaces which make up an active node, and

• To allow various possible solutions/approaches towards the construction of an

active node by describing a generic architecture that contains "functional slots" to

be filled by the research groups.

DARPA defines an active network as a set of active nodes connected by a variety of

network technologies. Each active node runs an operating system (NodeOS), a security

enforcement engine, and one or more Execution Environments (EE). The composition of

an active node is depicted in Figure 3.

Figure 3 – Components of DARPA’s Active Node
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2.1 Execution Environments

Each execution environment is analogous to a "shell" program in a general-purpose

computing system, providing an interface through which end-to-end network services are

provided to users. All user access to node resources (including transmission bandwidth)

is provided through an EE. An EE provides user access to node resources by exporting an

API through which users can program. Examples of an API may be an extended Java

Virtual Machine (JVM) or an enhanced sockets interface or a secured module-loading

interface for adding extensions. Effectively, an EE resembles a virtual machine that users

can control by sending it the appropriate coded instructions in packets. Interpretation of

these packets generally causes the state of the active node to be updated to reflect the

network behavior desired by an end-user.

Multiple EEs can exist on an active node1. The node architecture is explicitly designed

to support multiple network APIs simultaneously. Several factors motivate this

requirement. First, current active network prototypes occupy disparate points in the

taxonomy described earlier, and given our lack of experience it seems desirable to let

them be used and compared side-by-side to enhance our understanding. Second, this

approach supports the goal of fast-path processing for those packets that just want "plain

old forwarding service". A third and related factor is that it provides a built-in

evolutionary path, not only for new and existing APIs, but also for backward

compatibility: IPv4 or IPv6 functionality can be provided as simply another network API.

Any methods of dynamically downloading and installing a new EE should only be

accessible to node administrators via a management EE as depicted in Figure 3.

2.2 Node Operating System (NodeOS)

The NodeOS provides the basic functions from which EEs build the abstractions that

make up net APIs. It manages the resources of the active node and mediates the demand

for those resources, including transmission, computing and storage. The NodeOS isolates

EEs from details of resource management and the existence of other EEs. The EEs, in

1 It is expected that the number of different EEs supported by a single node at any one

time will be small due to the nontrivial task of developing an EE.
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turn, hide most (but not all) of the details of interaction with the end user from the

NodeOS.

Users and other entities in the network are represented by an abstraction called the

principal. Security policies are defined in terms of principals; the NodeOS is responsible

for enforcement of such policies. When an EE requests a service from the NodeOS, the

request is accompanied by an identifier (and possibly a credential) for the principal in

whose behalf the request is made. This principal may be the EE itself, or another party

(e.g., a user) in whose behalf the EE is acting. The NodeOS presents this information to

an enforcement engine, which verifies its authenticity and checks that the node's security

policy database (see Figure 3) authorizes the principal to receive the requested service or

perform the requested operation. EEs may implement their own policies to augment those

of the node, but they may not override the NodeOS policies.

The NodeOS implements communication channels, over which EEs send and receive

packets. These channels consist of physical transmission links (e.g., Ethernet, ATM), plus

the protocol processing associated with higher level protocols (e.g., TCP, UDP, IP).

When an active node receives a packet over a physical link, it classifies the packet based

on the packet's contents (i.e. headers); each packet is either assigned to an existing

channel or discarded.

The mapping of incoming packets to channels is controlled by a pattern specified by

the EE when it creates the channel. In the typical case, an EE requests creation of a

channel for packets matching a certain pattern of headers, e.g. a certain Ethernet type or

combination of IP protocol and TCP port numbers. It is the responsibility of the security

engine to ensure that a given principal is allowed to create a channel with a particular

pattern.

To provide for quality of service, the NodeOS has scheduling mechanisms that control

access to the computation and transmission resources of the node. These mechanisms

isolate user traffic to some degree from the effects of other users' traffic, so that each

appears to have its own virtual machine and/or virtual link. When channels are created,

the requesting EE specifies the desired treatment by the scheduler(s). Such treatment may

include reservation of a specific amount of bandwidth for traffic on the channel, or

isolation from other traffic and "fair sharing" of available bandwidth with other channels.
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Input channels are scheduled only for computation, while output channels must be

scheduled for both computation and transmission.

2.3 Active Network Encapsulation Protocol (ANEP)

So far it has not been specified how users can have their packets routed to a particular EE

at a node. The Active Network Encapsulation Protocol [10] provides this capability. The

ANEP header includes a "Type Identifier" field; well-known Type IDs are assigned to

specific execution environments. (Presently this assignment is handled by the Active

Network Assigned Number Authority). If a particular EE is present at a node, packets

containing a valid ANEP header with the appropriate Type ID (encapsulated in a

supported protocol stack) will be routed to the appropriate EE.

A packet need not contain an ANEP header for it to be processed by an EE. EEs may

also process "legacy" traffic, originated by end systems that are not active-aware by

setting up the appropriate channels. An example of this kind of functionality would be a

TCP performance enhancement service implemented at the border between two regions

of the network with different bandwidth/error characteristics.

2.4 Design Objectives

The architecture meets five main objectives [8]:

• Minimize the standardized protocols required to develop and implement end-to-end

services. By reducing the amount of global agreement needed, this objective serves

both research and commercial interests. Designers can experiment with a "five"

network because the network is flexible enough to accommodate their needs during

its operation. On the standard foundation, a variety of communication services can

be established within each EE.

• Maximize flexibility in services supported. An element of this is to support different

services simultaneously. The network-element resources the NodeOS controls are

those universally needed by EEs; in this sense the architecture resembles a kernel

architecture, in which EEs are multiprocessed. Because multiple EEs can run

concurrently in each network node, research into different programming models can

proceed in parallel. This is important for two reasons. First, although the

programming community is gaining more insight into various models, they have yet
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to select a winner. Second, designers can migrate to new versions of EEs while

continuing to support the old ones.

• Let networks operated by different administrations be interconnected. Part of this is

recognizing that trust relationships vary across administrations. It also means that

security must be a fundamental consideration. In the general architecture, the

NodeOS provides security services to EEs.

• Support scaling in both size and speed. This means considering fast-path

processing, for packets that may not need active capabilities.

• Encompass current protocols, particularly the Internet Protocol (IP), as instances. In

the general architecture, an IP stack can be viewed as an EE, albeit with a very

simple API and role.

3. Code Distribution

User customization of network behavior requires that the user's program be distributed to

the active nodes in a network. Several approaches to code distribution have been

identified. In this section, we distinguish two approaches: discrete and integrated,

depending on whether programs and data are carried discretely (i.e. within separate

messages) or in an integrated fashion [5,6].

3.1. A Discrete (Out-of-band) Approach

The processing of messages may be architecturally separated from the business of

injecting programs into the node, with a separate, auxiliary, out-of-band mechanism.

Users send their packets through such a node much the way they do today. When a

packet arrives, its header is examined and a program is dispatched to operate on its

contents. The program actively processes the packet, possibly changing its contents. A

degree of customized computation is possible because the header of the message

identifies which program should be run - so it is possible to arrange for different

programs to be executed for different users or applications.

This approach is preferable when the programs are large compared to the packet size.

It also maintains modularization between user data and program, enabling better control

by network administrators over what programs are loaded into the nodes. For example,
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program loading could be restricted to a router's operator who is furnished with a "back

door" through which they can dynamically load code. This "back door" would at

minimum authenticate the operator and might also perform extensive checks on the code

that is being loaded. Note that allowing operators to dynamically load code into their

routers would be useful for router extensibility purposes, even if the programs do not

perform application- or user-specific computations.

3.2. Capsules - An Integrated (In-band) Approach

A more extreme view of active networks is one in which every message is a program

“Capsule”. A capsule is a miniature program (of at least one instruction) that may include

embedded data and is executed at each router/switch the message traverses. When a

capsule arrives at an active node, its contents are evaluated, in much the same way that a

PostScript printer interprets the contents of each file that is sent to it.

Bits arriving to the active node, on incoming links, are processed by a mechanism that

identifies capsule boundaries, possibly using the framing mechanisms provided by

traditional link layer protocols. The capsule's contents are dispatched to the selected

execution environment where they can safely be executed. The execution of a capsule

may result in the scheduling of zero or more capsules for transmission on the outgoing

links and/or changes to the non-transient state of the node.

Of course, one can employ an approach which is a hybrid of the two approaches

described above. For example, it is plausible to have an out-of-band loading of programs

into a node and also have packets contain code fragments which might supplement

program execution.

4. Composite Network Services

Ultimately, the goal of active networking is to ease the deployment of new network

services. This implies that an active network should do more than simply make it possible

to install new services. Rather, explicit support should be provided for the process of

service creation. An important support feature of a network API is the ability to compose

services from building blocks. In what follows, we refer to the building blocks for

network services as components. A network API contains a composition mechanism used

to create a composite service from components. Composition of network services has the
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usual positive properties of modular design: services need not be built from scratch each

time and robust components can be developed incrementally. Further, a composition

mechanism may also be used to constrain the set of composite services that can be

created, possibly making it easier to reason about the correctness of the overall service

and interactions between individual components.

Composite services can take on a variety of forms. A service may execute in its

entirety at a single active network node, or it may perform a distributed computation

across a set of active nodes. The form of the network API directly affects the

sophistication achievable through service composition. For example, if the network API

supports only selection of a specific service from a fixed set of choices, then these

constitute all of the available "composite" services. At the other extreme, if the network

API is a Turing-complete language, an essentially infinite set of composite services can

be formed from an available set of service components, using the sequence control

constructs of the programming language. Some approaches to service composition are as

follows:

• Choice from a set of options

In this case, the network API supports specification of a scalar argument that selects

a predefined computation at the network node. This idea can be generalized to a

fixed number of scalar arguments, each of which selects a particular pre-defined

computation, executed in a pre-defined order. This scheme can be efficiently

implemented, and proving the correctness of the composite service is not more

difficult than proving the correctness for each of the components. However, in

terms of service composition, scalar selection does not provide much flexibility to

the end-users. Examples of this scheme are IPv4 and IPv6 in which the user

interface to the network is limited to the fields in the IP headers. Correspondingly,

the flexibility afforded to users is limited.

• Turing-complete programming language

At the other extreme in expressive power, a Turing-complete programming

language forms a generic composition mechanism for statements of the language.

The structure of the composition depends entirely upon the statements in the

program, and thus the constraints on structure are extremely weak. This is the
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approach advocated by the ANTS project discussed in the next section, in which

components can be installed in the active node as Java subroutines, and the

composite service is a Java program that calls components. Correctness and

properties like termination of the composite are typically difficult to prove since the

interface is Turing complete.

• Special-purpose language for composition

A restricted language specifically designed for service creation can be used to

compose network services. These languages can be designed such that all the

composite services created have certain desirable properties, e.g. termination and

preservation of the active node's safety. This approach is taken by the Switchware

and the Netscript projects discussed in the next section, with the languages PLAN

and Netscript, respectively.

• Event-based framework

In this approach, a service is constructed by binding code modules to specific

events. A user selects an underlying program from those that are offered by a node.

The program offers a basic-level service such as forwarding but it also contains

"slots" into which users can inject customized code. Each "slot" is associated with a

specific execution point in the underlying program. The Language-Independent

Active Network Environment (LIANE) composition model, described in next

section, is an example of such event-based composition.

5. Current Research

Work on active networks is underway at a number of sites which are independently

studying: capsule and programmable switch architectures; enabling technologies;

specification techniques; end system issues; and applications, including network,

mobility, and congestion management. In this section, a window into the current research

efforts is presented by reviewing the work of various institutions.

5.1 ANTS (MIT)

ANTS [11-13] is a protocol architecture that defines a communication model from which

new protocols can be developed independently. Each node in an ANTS-based network
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executes the ANTS runtime environment based on Java. There are three key components

to the ANTS architecture:

1. Capsules: A capsule is the unit of message forwarding. It plays the role of traditional

packets. Each capsule contains the identifier of a forwarding routine to use at an active

node. All forwarding routines belonging to related capsule types form a code group

which is the unit of code transfer from node to node. In turn, related code groups form

a protocol which is the unit of protection seen by an active node, i.e., capsules of one

protocol may not access information and state of other protocols, nor can these

capsules create new capsules belonging to other protocols. The relationships between

these entities is illustrated in Figure 5.

Capsules within a protocol can communicate with each other through state that is

shared at active nodes. For example, one capsule type can set up location information

at active nodes that other capsule types will use to reach a mobile host. They can also

spawn other capsules that belong to the same protocol. Figure 6 shows the contents of

each capsule. The capsule carries the regular IP header fields plus extension fields

specific to ANTS. The field "Type" is an identifier that tells the associated protocol and

forwarding routine. The rest of the capsule contains a shared header with fields

common to all capsules, including version information and addresses used by the code

Protocol

Code Group

Capsules

Unit of programming
protection

Unit of code transfer

Unit of message
forwarding

Figure 4 – Capsule composition hierarchy

Figure 5 – Capsule format

Version TypeSource
address

Payload

IP Header

Destination
address TTL

Previous
address
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header fields

+ANTS Header
+ Higher

layers
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distribution system. Next are header fields that are used directly by the forwarding

routines, and vary depending on the capsule type. Finally, the payload contains higher

layer information that is carried across the network and exchanged between

applications.

2. Active Nodes: The active nodes execute capsule-processing routines and maintain

protocol state. Each node provides a set of primitives that are used by applications to

construct forwarding routines. The choice of primitives is important because it

determines the kinds of routines that applications can deploy. Ten primitives have

been specified. These primitives roughly fall into three categories: environment calls

(return information about the local node environment), storage calls, and control

operations (used to route capsules toward other nodes or deliver them to local

applications).

The forwarding routines for a capsule are set at the sender's local node and remain

fixed as the capsule traverses the network. Each routine is expected to run to

completion locally within a short time, and their memory and bandwidth consumption

are bounded by a scheme similar to IP's TTL (Time To Live). Additionally, capsule

processing relies on Java sandboxing and bytecode verification to execute untrusted

routines efficiently in a contained manner.

3. Code Distribution Mechanism: The code distribution system sends forwarding

routines to nodes where they must be run. First, applications provide forwarding

routines to their local node before sending the corresponding capsules. These routines,

however, need to be distributed from the local node to the nodes which a capsule will

visit. Code distribution is accomplished via an incremental, demand-loading

mechanism which couples the transfer of code with the transfer of data as an in-band

function. This approach limits the distribution of code to where it is needed. When a

capsule arrives at a node and the required protocol code is not in the node's cache, a

request message is sent by the node to the previous node visited by the capsule. The

previous node replies with the needed routines, which are then integrated into the

current node's cache and used to process the capsule. Effectively, code is propagated

along the path that a capsule travels from sender to receiver. Eventually, as more and

more capsules are processed, a region in the network develops where the same
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processing is invoked repeatedly, thus, code transfer is no longer necessary. This

mechanism is also adaptable to routing changes that may be caused by network

congestion.

Currently, the ANTS architecture has been implemented as a prototype in Java to evaluate

the suitability of this design for ease and flexibility in developing new services. The

architecture has been used to study an auction service, a reliable multicast protocol, a web

cashing service, and a multicast routing [11,13].

5.2 SwitchWare (University of Pennsylvania)

The SwitchWare architecture [14, 15] tries to achieve a balance between the flexibility of

a programmable network infrastructure against the safety and security requirements

inherent in sharing that infrastructure. The architecture consists of three layers, ordered

from the highest, most limited in functionality, and least trusted to the lowest, and most

trusted: active packets (capsules), active extensions, and secure active router

infrastructure.

Active packets carry code and data from node to node. Packets are programmed in

PLAN (Programming Language for Active Networks) [16-20], a simple strongly-typed,

script-like language that supports very simple data and control structures. This simplicity

makes programs easy to compile or interpret. PLAN programs are resource-bounded and

can be statically type-checked before they are injected into the network, to ensure

program correctness. A packet's PLAN code cannot modify or leave state at the router.

The limited functionality in PLAN is intended so that no authentication is required to

achieve lightweight execution. This decision is deliberate to prevent implementation of

arbitrary protocols.

The active extensions layer extends the capabilities of active packets by providing

services to access node facilities such as cache storage and routing tables. Extensions are

loaded onto routers and execute entirely on a particular node. Loading can be done

statically (as base functionality in a node) or dynamically (on-demand when an active

packet requests a service). Because extensions can access the resources in a node, the

loading process is subject to heavier-weight security checks such as cryptographic
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signatures or proof carrying code (PCC). To study the active extensions layer, a

prototype, Active Bridge [21], has been constructed.

The lowest layer in the SwitchWare architecture is the secure active router

infrastructure. The goal of this layer is to provide a secure foundation upon which the

other two layers build. This infrastructure is embodied in SANE (Secure Active Network

Environment) [22].

SANE performs two core functions:

1. Ensure that an active network element is brought into its operational state via the

AEGIS secure bootstrap architecture. The boot process is layered, starting from

the lowest layer (initialization firmware) up to the node operating-system layer.

Each successive layer is checked for integrity with a digital signature before

control is passed to it.

2. Ensure that security is maintained when the active network element is

operational. This involves node-to-node authentication and provision of a

restricted environment for the execution of programs.

5.3 NetScript (Columbia University)

The NetScript architecture [23] uses an overlay to achieve both network programmability

and interoperability. The network is viewed as a collection of Virtual Network Engines

(VNE) interconnected by Virtual Links (VL), which, in its entirety, forms the NetScript

Virtual Network (NVN). Each VL is composed of a collection of nodes and links with

one or more VNEs running at a node. Mobile agents are used to transfer programs to the

intermediate nodes. NetScript programs can use a library of primitives (provided by the

VNE) to access node resources, in addition to scheduling and transmission of packets

over VLs.

A NetScript program operates on one or more streams of packets. It is based on a

dataflow computational model where the computation is organized into a collection of

concurrent threads that are distributed at the VNEs. One can imagine the computation as

a pipeline or assembly line where each "stage" (representing a thread running at a VNE)

performs its assigned computation on a packet before delivering this packet to the next

"stage". Each "stage", called a box in the NetScript language, is connected through its
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input and output ports to other boxes. The boxes form a reactive system in which the

arrival of data triggers computation within each box. Otherwise, the box sleeps until data

arrives to trigger it.

Dynamic composition of protocols is achieved by dispatching boxes to nodes in the

NVN and connecting them to the boxes already residing there. This feature enables a user

or network administrator to extend the network with various functions.

The NetScript language [24] is based on the "box" notion and as such, is the central

construct. The language provides primitives for declaring a box, its input and output

ports, and a means to create compound boxes by connecting ports of simpler boxes

together.

5.4 CANES & LIANE (Georgia Tech)

The CANES project [25 - 27] focuses on applying the active network paradigm to solving

the problem of network congestion. The motivation for this work lies in the fact that

congestion is an intranetwork event and is potentially far removed from the application.

Since active networks enable the programming of intermediate nodes between two

endpoints, congestion is a good candidate to study the benefits of network

programmability.

The CANES architecture defines a finite set of functions that can be executed at each

node. Because only specific network-supported functions can be invoked, the researchers

claim that security is not an issue. A function is selected via an Active Processing

Function Identifier (APFI) that is carried in packet control information. This control

information also includes a set of labels called an Association Descriptor (AD) that select

the state information to use (and possibly update) for the packet computation. The AD

effectively groups packets into a protocol, since packets matching the same set of labels

are subjected to the same treatment.

The node architecture consists of a routing core that connects node inputs, outputs, and

active processing elements. Data entering the node is either sent directly to the node

output if no congestion if; detected or to the appropriate active process otherwise. Due to

the finite set of operations in CANES, it can be heavily optimized by implementing the
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active processing elements in specialized hardware as opposed to general purpose

processors.

The CANES project applies the active paradigm to network congestion in order to

detect congestion at the points or nodes where it occurs in the network. In turn, these

nodes can react promptly to handle the congestion rather than incurring delay by waiting

for the endpoints to notice the phenomenon.

LIANE (The Language-Independent Active Networking Environment) is

an example of event-based service composition. LIANE attempts to construct

dynamic, trustworthy services from reliable base services. It is not tied to a

particular language, although its prototype implementation is in C++, but

relies on a reduced programming model that gives a predecided amount of

flexibility to the dynamic environment. The advantage is that designers can

limit the required security analysis.

Service composition in LIANE has two parts. First, the user selects an underlying

program from amongst those offered by an active node. There will typically be a small

number of underlying programs, and these are installed by the node provider (possibly

using a privileged network API). The underlying program provides a basic service (e.g.,

forwarding) and includes a set of processing slots to be used for customization (e.g., to

replace the default forwarding table with a customized forwarding table). Each

processing slot is associated with a specific execution point in the underlying program.

In the second part of composition, the user selects or provides a set of injected

programs used to customize the underlying program. The injected programs can either be

supplied by the user, or provided by component developers. Each injected program is

"bound" to one or more processing slots. The injected program is "eligible" for execution

when the appropriate slot is reached ("raised"). More than one injected program may be

bound to the same slot; the order of execution of instructions belonging to different

injected programs bound to the same slot is non-deterministic. This style of composition

has advantages with respect to proving properties about the composite service based on

properties of the underlying program and preservation of properties by the injection
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process. A similar approach to service composition is being developed in the Active

Reservation Protocol project at USC/ISI.

5.5 Smart Packets (BBN Technologies)

The Smart Packets project [28] focuses on applying active networks to network

management and monitoring. Like an SNMP packet, each smart packet can request and

retrieve data from a Management Information Base (MIB). However, unlike SNMP, each

smart packet can perform complex operations on this MIB data at the source site, as

opposed to only at the requesting host. This capability has the advantages of tailoring the

data to the interests of the management center as well as shortening the monitoring and

control loop of information exchange.

Each node (including end hosts) in a Smart Packets active network contains an Active

Network Encapsulation Protocol (ANEP) daemon process that is responsible for the

injection/reception of smart packets and the operation of a virtual machine to execute

programs. Computations may not leave state at the routers since state persistence is

expensive and can lead to consistency problems. Additionally, packet fragmentation is

not allowed, i.e., all packets are self-contained, and programs must be under 1KB in

length. For security purposes, node resources are not accessible, instead, implementors

must rely on the MIB to provide this information.

A smart packet contains either a program, data resulting from a computation, or

informational/error messages. A context field in the smart-packet header identifies the

originator of the packet, and a sequence number is used to differentiate the messages

belonging to the same flow. Interoperability with the existing IP infrastructure is

achieved by encapsulating each smart packet in ANEP, which in turn is encapsulated in

IPv4, IPv6, or UDP. However, current IP forwarding semantics do not have a notion of a

datagram whose contents is processed at intermediate nodes. To enable IP routers to look

at payload, the "Router Alert" IP option is used to tell routers to examine the contents of a

datagrarn.

Smart packet programs are written in one of two languages:

1. Sprocket is a C-like language but with security-threatening constructs, such as

pointers, removed. The language also has built-in types for MIB access.
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2. Spanner is a CISC assembly language designed to yield very small encoded

programs. Sprocket programs are compiled into Spanner programs which are, in

turn, assembled into a compact, machine-independent binary encoding.

Since the Smart Packets architecture is targeted towards network management and

monitoring, programs are not expected to exceed 1KB due to the claim that network

management functions do not take up a lot of program space.

Security at a node is achieved by having each packet carry an authenticator that

identifies the entity which originated the packet. The authenticator is used to first check

data integrity via a cryptographic hash over the packet's non-mutable fields, i.e., the

packet header. If the verification fails, an error message packet is sent back to the

originator, otherwise, authorization is performed by checking against an Access Control

List (ACL) to determine what limits a packet program can have, such as access to MIB

"set" functions or forwarding packets along a non-default path. If authorization fails, the

packet is directed towards a restricted, resource-limited environment for execution.

5.6 Liquid software (University of Arizona)

Liquid software [29] is an entire infrastructure for dynamically moving functionality

around in a network. The name indicates that the software easily flows from machine to

machine. Liquid uses Java as its API. Java’s machine-independent bytecode can be safely

executed on different machines. However, the important problem that remains is how to

execute this mobile code efficiently. The current practice is for each machine to interpret

the bytecode, but this is not an efficient approach. Supporting mobile code on network

nodes requires that the bytecode be compiled, but this puts the compilation on the critical

path. To solve this problem, Liquid software contains a set of Java tools that offset the

speed problem in two ways: First, it uses Java-to-C translators in conjunction with C

compilers, thus avoiding the need to interpret byte code at runtime. Second, it uses

compilers that themselves execute quickly and can be run at the point of execution

(gigabit compilers). This approach maintains the usability and flexibility of Java while

improving performance.
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5.7 Protocol Boosters (Bellcore)

Protocol Boosters [30, 31] represent a design methodology for network protocols which

is centered on the use of transparent, composable protocol functions that are injected into

protocol stacks at end hosts and intermediate nodes. The basis for this work lies in the x-

Kernel [31], which uses protocol graphs to represent the interactions between protocol

elements that carry out functions for a protocol. These graphs are implemented as

executable modules that cooperate via messages and/or shared state. Protocol boosters are

inserted into the execution path that is followed by a group of packets handled by a

protocol. This feature enables boosters to adapt a protocol to a specific application

requirement or network environment.

A protocol booster is both parasitic and transparent. The parasitic property means that

a booster uses whatever functionality and information is available from other protocols or

boosters, but, by itself, it serves no useful purpose. The transparent property describes the

booster's ability to add, delete, or delay messages of a protocol without originating,

terminating, or converting that protocol's syntax and semantics. Transparency also refers

to the user's/network administrator's ability to dynamically add and delete boosters

anywhere in the network. Elimination of a booster does not terminate end-to-end

communication but the end user might observe degradation in network performance as a

result.

Protocol boosters are implemented as kernel-level modules. Policies associated with

boosters determine the conditions under which booster functions are invoked. These

policies may be based on, but certainly not limited to, observed network behavior, packet

source and destination addresses, or time of day.

Two practical examples of protocol boosters are an encryption booster and a

compression booster. The encryption booster can transparently increase the security of

the network services provided in the case of sensitive data travelling across an insecure

subnet. By modifying the protocol stack at the boundary routers, packets can be

encrypted (or boosted) upon entrance into the subnet and decrypted (or deboosted) upon

leaving. Similarly, the compression booster can transparently reduce the amount of

bandwidth required without any added user-level complexity. Policies can be
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programmed with the booster to detect the proper conditions under which it should be

invoked, e.g., network congestion or transmission to a subnet with limited bandwidth.

Currently, the project is implementing protocol-booster support in the IP layer of

FreeBSD. To identify a packet for boosting, the Type of Service (TOS) field in the IP

header is used to store a booster id. Multiple boosters are supported by using a

demultiplexing algorithm that examines a packet's IP address and based on a table

lookup, either invokes a booster (if a match is found) or reinserts the packet into the

normal execution path. While the current implementation only supports boosting at the IP

layer, the ultimate goal is to provide a general environment to allow booster placement.

5.8 Architectural Features Summary

Table 1 summarizes features in each of the active network architectures surveyed. Entries

with the value "-" means that the particular feature is not mentioned in the corresponding

literature.

Project Architecture Network
API

Security
Mechanism

State
Persistence

Code
Distribution
Mechanism

Service
Composition

ANTS Per-packet
execution

Java TTL-like

schem; coded

function id;

Java sandbox

model

Yes in-band, on

demand

Turing

SwitchWare Layered PLAN Programming

language

centric;

authenticated

services

Yes in-band using

active

packets; out-

of-band for

active

extensions

Special

purpose

NetScript Overlay NetScript Coded

function id

Yes in-band Special

purpose
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CANES Per packet − − Yes Out-of-band Predefined

set of

components

Smart
Packets

Per-packet
execution

Sprocket

(C-like) and

Spanner

(CISC

assembly)

Per-packet

authenticator;

Access

Control list

No In-band Turing

(though

limited to

network

management

and

monitoring

Protocol
Boosters

Per-packet
execution − − − Out-of-band Event-based

Table 1 – Feature summary of active-network architecture

6. Challenges For Deployment

As DARPA's active networks program moves into its mid-life, the work by

various research groups will be shaped by the challenges that are inherent in

active networks. Two key challenges are security and performance. While it

is obvious that security mechanisms are needed to prevent invalid use of or

malicious attacks on a node's resources, there is a tradeoff between how

much security one can provide and the efficiency needed for packet

processing. These two challenges are described in addition to others that

researchers must tackle towards the realization of active networks.

6.1 Security

Like traditional networks, active network are concerned with the authenticity, integrity,

and confidentiality of the data going through the network. However, traditional networks

are concerned only with possible damage to user data and end nodes. Active networks

share these concerns but must also consider possible damage as the active packet moves

into each node and EE. Active nodes could be harmed by active code, either because the
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code modifies the node's state or because it drains resources (essentially launching a

denial-of-service attack). Thus, enforcing protections at end nodes is not sufficient for

active networks. Securing an active network means that protection mechanisms must

move into each node and each EE. Protecting the network as a whole is only possible by

building a common protection mechanism into the design of individual nodes and EEs.

This could be achieved by the following sequence of tasks:

1. Validation. Ensuring the program is indeed the correct program. This is commonly

achieved by encoding the contents of a packet using a cryptographic hashing

algorithm such as the MD5 message digest [32], and carrying this encoding in the

packet header. Any packet that fails the validation check is subjected to either

dropping or some default forwarding behavior.

2. Authorization. Ensuring the program comes from an authorized user. Once a

program is validated, an Access Control List (ACL) is consulted. Packets that fail

the authorization are handled either by some node-specific or user-specified default

processing.

3. Execution. Based on information from the authorization phase, the run-time

environment enforces the resource usage and access limits on the program's

execution. These limits include the maximum amount of time a program can spend

running at a node and the amount of memory that can be accessed.

4. Fault Detection. Any program faults that may occur during execution are seen as

attacks, and must be caught and handled efficiently to prevent harm to the correct

operation of the node. Handling of the fault/attack should not disrupt services to

existing flows.

A strong security architecture should address all the concerns listed above, but still be as

lightweight as possible. However, providing an optimal solution is a very complex

problem.

With active networks, security protections travel with the packet so that appropriate

protections can be chosen dynamically at nodes to suit the environment through which

the packet passes. Different users and organizations have different security requirements

and as a result, security systems need to support dynamic interoperable security policies
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to enforce proper security measures and access control for packets. This necessity gives

rise to several challenges.

• How can these security policies be defined for the different uses of an active

network, i.e., different permission levels at a node?

• The ability to negotiate a common set of security services between two or more

administrative domains is required. How can differing policies be reconciled?

• How can the security architecture scale to handle a growing population of users

with different interests?

• Not only must protection be guaranteed within a node, but protection must also

exist on a per-user basis, i.e., it must be possible to protect one user's packets from

those of another user.

The requirements on a security mechanism are also dependent on the set of functions a

node exports and the expressiveness of the language used to create active network

programs. Functions that enable access to node resources and modification to node state

are extremely dangerous, requiring tight control over their use. Furthermore, if an

expressive language, such as Java, is used to program packets, a node must be able to

detect program logic that would behave in a malicious way (e.g., an infinite loop) and

prevent the program's execution as early as possible.

The ideal solution to security should be both lightweight and scalable. Most of the

proposed solutions offer strong security measures but are costly in time, computation, or

the number of messages needed to retrieve keys, especially if a public key infrastructure

is in place. Even if the proposed security services are lightweight, this often comes at a

cost of less flexibility in what a packet can do at a node. The point is that there is no one

perfect, generic solution to the security problem; each solution requires the tradeoffs in

one or more areas.

6.2 Performance

Recent developments in network technology seek to implement packet switching at

Gigabit per second rates. This is motivated by the need to increase the throughput and

speed of networks as the numbers of users and applications continue to grow. However,

this trend may suffer a setback with the introduction of active networks. The idea of
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moving computation into the nodes suggests that active networks may in fact reduce

network performance. Computation and the required security services drastically increase

the per-packet processing time. This extra burden complicates the techniques developed

to minimize packet processing along an end-to-end path. The challenge that researchers

face is how to translate the fast switching technology of passive networks into the active

paradigm. What exactly would the translation entail in terms of program complexity,

compiler/interpreter technology, execution environments, restrictions on node resources,

and hardware?

The scalability problem also affects performance since, potentially, there may be

thousands of user processes active at the same time at a node. Worse, the processes may

need to access the same set of resources, requiring resource management to prioritize

processing needs of applications. The determination of computational requirements for

end-to-end services is difficult due to the differences in the underlying hardware

architecture of nodes, especially when the nodes lie in different administrative domains.

Traditional network performance measures, such as throughput and round-trip time,

are aimed at evaluating the performance of the network rather than the performance of

the applications using it. However, network performance is not necessarily related to

application performance. While it is true that packet processing in active networks will

incur longer delays in packet transmission, applications may actually experience an

improvement in performance resulting from active operations that delegate service-code

processing and/or congestion handling to intermediate nodes. As a result, performance

should be evaluated in terms of application-specific metrics such as the number of client

requests serviced per second. Determining which performance metrics to use is

dependent on the application being evaluated.

6.3 Interoperability

Current research in active networks offers a good variety of programming approaches in

the implementation of router services (service decomposition). This leads to differences

in the programming languages and the packet formats, allowing a user the flexibility to

select and use the various features of each approach. However, this flexibility requires

some means to reconcile their differences in order to provide compatibility. If two or
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more administrative domains take different approaches, how will the routers handle the

various kinds of packets passing through them? Does this mean that participating

domains must agree to run each other's execution environments to enable compatibility?

If so, how will this scale when there is no strict control on what approaches can be

implemented at a router at any one time? This problem is further exacerbated by the

discrete and integrated models presented in section 3. The difficulty here also lies in

bridging these two models. Packets in the discrete model have their programs loaded out-

of-band, as opposed to the integrated model where packets carry the programs. When a

packet leaves a network implementing the discrete model and enters a network

implementing the integrated model, how will the required code, pre-loaded at the routers,

be moved into the packet? What is not clear at this moment is whether DARPA

eventually plans to standardize an active packet format, programming language, and

computational model, or to simply leave interoperability as an exercise for domain

administrators. In addition to interoperability among programming approaches, there is

also a need to define a common network API.

6.4 Backwards Compatibility

Because the Internet connects millions of nodes, this infrastructure will be a good

deployment mechanism for active networks in the future. From a practical point of view,

it is unreasonable to expect that every network domain will embrace the active paradigm

of network communication. In light of this, backwards compatibility is essential to enable

active packets to travel between passive and active domains and to be processed

accordingly.

There are two approaches to achieving backwards compatibility [33]:

• Encapsulation. Active-packet programs are encapsulated into an ANEP packet that is,

in turn, placed into an IP packet. This approach is simple and effective, especially when

one or more passive IP networks separate two active networks. The difficulty that arises

with encapsulation, however, is determining how to inform an active node to process

the IP packet payload. Proposed solutions to the problem include modifying IP options

in the header or using the Type Of Service (TOS) field (which would then lead into

discussions on how this affects Differentiated Services).
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• Gateways. Gateways sit at network boundaries and convert one protocol to another.

The translation process can get quite complex if IP packets do not map well to the

packet format required by an active network. There are two challenges that need to be

addressed:

1. Packets moving from a passive to an active network. If the packet is simply a

passive IP packet, the gateway must translate it into a "non-functional" active

packet. This could be achieved by placing an invalid function id in the active

packet header so that each node can treat it with a default forwarding behavior. If

the packet originated in an active network, the gateway must "reactivate" the

packet after its "deactivation" in the passive network. This might be trivial if the

originating and receiving active networks both share the same programming and

security architectures (i.e., they are both under the same administration). However,

if this is not the case, resolving the differences between the two active networks

further complicates the translation process.

2. Packets moving from an active to a passive network. This case is easier to deal

with than its converse since IP encapsulation can simply be used to tunnel the

active packet through the passive network.

Both approaches must also deal with fragmentation (when an active program is too

large to fit into an IP packet) and the interoperability issues described earlier. For

fragmentation, discrepancies between the Maximum Transmission Unit (MTU) sizes at

different layers of a protocol must be resolved to effect proper delivery of active

programs. Allowing fragmentation in an active network architecture introduces additional

performance overhead, since a node must wait for the complete program before it can be

executed. An efficient node might be able to execute the portion of code it receives while

awaiting the rest, but then the question of program correctness and security resurfaces.

7. Applications of active networks

The task for active networking researchers is to justify the eventual migration towards the

active paradigm. To achieve this, active networks must provide some "immediate"

benefits over existing solutions to passive network applications. Functionality for active

networking will not be added to end systems unless there is some benefit in doing so, and
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switch manufacturers and network operators will not upgrade their switches to support

active networking unless customer demand exists. In light of this, various research groups

have proposed some applications to demonstrate the merits of active networks for

controlling the behavior of packets inside the network.

7.1 Reliable Multicast

Multicasting provides an efficient way of disseminating data from a sender to a group of

receivers. Instead of sending a separate copy of the data to each individual receiver, the

sender just sends a single copy to all receivers, thus, potentially reducing communication

costs. A multicast tree is used to determine the delivery paths from the sender (root of the

tree) to the receivers (the leaves). Data generated by the sender flows downstream in the

tree, traversing each tree edge exactly once. Receivers will either send an ACK upstream

towards the sender if data reception is successful, or a NACK if no data is received

within a timeout period. However, this reliability in the multicast protocol has some

problems:

• The number of receivers could be high, which causes the ACK and NACK

implosion problem where the number of ACKS/NACKS sent upstream is too large

for the sender to handle.

• Heterogeneity in receivers means that each one will have different loss rates based

on differing network connections and processing capabilities. Retransmissions are

costly in bandwidth consumption, since packets are resent to all receivers in the

group.

• Dynamic membership changes make it hard to designate some router to serve as a

proxy in order to reduce consumption of transmission bandwidth. What this means

is that rather than having the sender be responsible for all retransmissions, routers at

key locations (or interior nodes) in the multicast tree can cache sender packets and

retransmit them to the receivers that fall under each router's jurisdiction. However,

dynamic membership changes may cause the multicast tree to be restructured so

that a router selected as a proxy at one time may no longer be effective at another

(e.g., the router becomes the leaf of the multicast tree). These changes must be
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continuously detected by the multicast protocol so that proxy designations will also

change with the memberships.

Existing work on reliable multicast protocols [34 - 36] offers only partial solutions to the

above problems.

Active-network technology has some potential to address the difficulties in deploying

multicast [37, 38]. Intermediate, active routers in the multicast tree can merge ACKS or

NACKS travelling upstream to prevent implosion at the sender. Packet caching at active

nodes enable retransmission to only the subset of receivers that experience loss, and not

to the entire multicast group. These nodes can be placed strategically so they are local to

different groups of receivers and/or placed where bandwidth becomes scarce, such as at

the boundary between wired and wireless links. This implies that not all nodes need to

cache packets, but for those that do, each packet has an associated TTL to help a node

determine which parts of cache storage it can recover. Retransmissions by intermediate

active routers can significantly reduce recovery latency for topologically distant

receivers. This helps to distribute load for retransmission to the routers in a multicast tree,

which, in turn, protects the sender and bottleneck links from retransmission requests and

repair traffic. The fusion of ACKS and NACKS at active nodes also contributes to

lowered bandwidth consumption.

7.2 Network Congestion

Network congestion is a problem that is unlikely to disappear. Current congestion-control

mechanisms are employed at endpoints, and use network feedback to control

transmission rate and to invoke loss-handling routines. While this has worked well for the

most part, there are still some well-known challenges:

1. The time interval required for the sender to detect congestion, adapt to bring packet

losses under control, and have the controlled-loss data propagate to the receiver

can be long. During this interval, the receiver experiences uncontrolled packet loss,

resulting in a reduction in quality of service. This problem is further exacerbated if

the end-to-end delay and network bandwidth increase, since the longer the delay,

the longer it will take the source to detect congestion, and the larger the bandwidth,
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the larger the amount of data that will be sent into the network before congestion

control is applied.

2. Sender detection of an increase in available bandwidth. Currently, packet loss is

the only mechanism for determining available bandwidth. For example, in

continuous media applications, a sender adapts to congestion by changing to a

lossier encoding. The sender must also detect the easing of congestion by

periodically reducing compression and waiting for feedback from the receiver.

However, this would cause the receiver to experience periods of uncontrolled loss

(from the reduced compression) in the case of long-lived congestion.

To enhance mechanisms for reducing network congestion, active networks [26, 39] can

be employed to extend congestion detection and congestion response into the

intermediate nodes. This reduces the feedback delay since congestion is detected where it

occurs, and changes in congestion state are propagated to the endpoints which, in turn,

take further action to alleviate the congestion. As a result, congestion is relieved sooner.

Common techniques for controlling loss in the face of congestion can be transplanted into

the active paradigm as node programs. These techniques include buffering and rate

control, selective dropping of packets, and media transformation.

7.3 Wireless Services

Wireless networks are characterized by low bandwidth and lossy links subject to

interference. Transmission over a wireless link requires the data to be limited to a rate

that matches the bandwidth of the link. Otherwise, packet loss can occur as a result of

queue overflow. Additionally, wireless links have changing bit error rates (BER) and are

prone to sporadic connectivity breakdowns.

Active networking is applied in both [30] and [40] to address the above problems.

Adaptive Forward Error Correction (FEC) is utilized to demonstrate how active networks

can reduce the effective packet loss rate on wireless links. Active nodes at the wired-

wireless boundary continuously monitor the BER of their links. Based on the current

BER of a link, an appropriate number of FEC bits are added to the packet before

transmitting it to the wireless side. To counter intermittent connectivity, packet caching is

performed at the active nodes. For timing-sensitive packets, a maximum allowable delay
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is maintained and checked against the current time. If the delay time is exceeded, the

packet is discarded. Filtering is also applied in [40] to tackle the bandwidth problem.

8. Conclusions

Active networks present an opportunity to change the current network infrastructure from

a closed transport system to an open computational environment. By allowing the

injection of user programs into network nodes, an active network offers the ability to test

and deploy new services quickly. This ability will lead to a user-driven innovation

process in which the availability of new services will be dependent on their acceptance in

the marketplace, and not be delayed by long standardization activities. However, this is

not a universal truth; wrongly applied, active networking could lead to chaotic non-

interoperability and severe performance degradation of the network. With various

research groups each developing their own approaches to such areas as code distribution,

execution environment, node security, and programming language, how will all the

differences between the work be resolved? As it stands now, the DARPA architecture

seems too general to provide a solid foundation for global agreement and implementation

of active networks. There is no clear strategy to develop and deploy the active paradigm

into the existing infrastructure. Perhaps this is due to development still largely being in its

infant stage, resulting in a lack of clarity on what the role of active networks is

envisioned to be in the future. Ultimately, a fundamental and tightly-defined architecture

of the network needs to be agreed upon by all segments of the industry. Hence, the long

and painful IETF standardization process that active networking seeks to bypass will

continue to be necessary until a consensus can be reached.

The flexibility and programmability in active networks is attractive since the current

infrastructure is riddled with a diverse range of applications that require different

services. However, when one stands back and assesses the potential of an active network,

it can be difficult to swallow the idea of nodes running arbitrary user programs that

provide the desired services. This over-glorified picture offered by some researchers is

misleading and presents many opportunities for nay-sayers to question the feasibility and

practicality of active networks, particularly, in the areas of security and performance.

From a practical point of view, active networks can provide the flexibility that is needed
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in the current infrastructure, but researchers must understand which classes of

applications are best suited for the active paradigm and what restrictions are needed in

programming environments to balance security and performance. Computation at nodes

will no doubt prevent active networks from achieving the network performance of

traditional networks, but one must think of gains in application performance when

arguing for the side of active networking. Furthermore, the question of who is responsible

for programming the nodes requires clarification. Will new services be deployed by the

users themselves or by third-party service developers? It seems more practical to employ

third-party provisioning of services, since they can be envisioned as having contracts

with network domains, as opposed to per-user programming that would require tight

control of activity over a potentially large user population. Consequently, the active-

networking paradigm can be realized as a restricted programming environment (to

balance security and performance) with a modular set of functions for service

composition that is developed by third-party programmers.

The challenge for active networking in the next few years is to provide useful and

feasible solutions to the many problems inherent in this new paradigm. These include

security, performance, interoperability, and robustness. Active-network research must

demonstrate the merits of this new paradigm to justify the continuation of research

activities. Further to this, a more difficult task is convincing service providers of the

advantages of moving to an active network. How can one market the active approach to

substantiate a potential growth in the revenue and customer base of a service provider?

Perhaps by offering better solutions to new and existing application areas such as

multicast and network congestion, these benefits will help shape the future direction.
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